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Abstract

‘We show that mn — 1 is an upper bound of the exponent of the Cartesian product D x E of two digraphs
D and E on m, n vertices, respectively and we prove our upper bound is extremal when (m, n) = 1. We also
find all D and E when the exponent of D x E ismn — 1. In addition, when m = n, we prove that the extremal
upper bound of exp(D x E) is n? —n+1and only the Cartesian product, Z,; x Wj,, of the directed cycle
and Wielandt digraph has exponent equals to this bound.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let D = (V, A) be a digraph on n vertices. Throughout this paper, we assume that D has no
loops and multiple arcs. For each pair (u, v) of vertices on D, we define au — v walk, or a walk
from u to v, in D by a sequence of vertices on D, u = ug, u1, ..., up = v, and a sequence of arcs
of D, (u,uy), (u1,uz), ..., (up—1, v) where the vertices (arcs) are not necessarily distinct. The
length of au — v walk is the length of the sequence of arcs within it. A digraph D = (V, A) is
primitive if there is a positive integer, k, such that for any given pair of vertices, u, v, there is a
u — v walk of length k. We say that the smallest such value of k is the exponent of D, denoted
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by exp(D). The exponent of a primitive digraph D is equal to the minimal k such that all entries
of A is positive for the adjacency matrix A of D. See book [2] for more details. Wielandt [10]
found that the maximum exponent of a primitive digraph on 7 vertices is n> — 2n + 2. Motivated
by Wielandt, many results have been appeared on the upper and lower bounds for the exponents
of digraphs [3-6,8,9,11].

Let D = (Vp, Ap) and E = (Vg, Af) be digraphs such that |Vp| = n, |Vg| = m. The Carte-
sian product D x E = (V, A) of D and FE is defined as V = Vp x Vg and A = {((u1, v1),
(uz, )| ((u1,u2) € Ap and vy = vp) or (u; = up and (v, v2) € Ag)}. Lamprey and Barnes
[7] showed

exp(D x E) < (n+m)> —4(n +m) + 5.
We improve this upper bound more sharply. That is,
exp(D x E) <mn — 1. (€))

We also show that the upper bound (1) is extremal when (m, n) = 1. And we characterize all
digraphs D and E which satisfy (1). Moreover, we prove that

exp(DxE)gnz—n—l-l

when D and E are digraphs on n vertices.
2. Some lemmas

From now on, D and E are digraphs on n, m vertices (3 < n < m), respectively. And we

. .. . k k: k kp—1 k
assume that D x E is primitive. We use the notation u BN uj BN uy = Up—1 N Up
when there are u; _; — u; walks of length k; foralli =1,2,...,p.Ifky =--- =k, =1, we

write ug —> uy —> -+ —> Up.

Definition 1. (1) The directed n-cycle Z, = (V, A) is defined by V = {z0, z1, ..., Z4—1} and
A ={(zi,zj))lj =i+ 1 (modn)}.

(2) For m > n, define Z,, , = (Vi, A1) by Vi = {20, 21, ..., 2m—1} and A; = {(z;, zj)|j =
i+1(modm)ori > j, i =j— 1 (modn}.

Definition 2. The Wielandt digraph W,, = (V, A) on n vertices is defined by V = {wy, w1, .. .,
wp—1}and A = {(w;, 0;11)|0 <i <n —2} U {(wp—1, w0), (@p—1, ©1)}.

The Frobenius number g(ly, I, ..., I;) of the relatively prime positive numbers /1, ..., [ is
the largest number G such that the equation /1 x1 + - - - 4+ I;x; = G is not solvable for nonnegative
integers x1, ..., x;. If H is a subgraph of a digraph F, we write H < F.

Lemmal. Let C; (i = 1,...,1t) be the directed l;-cycles in D U E. Let k be the number of C;
such that C; < D and (11, I, ...,1l;) = 1. Then we have

exp(Dx E)< glly,lp,....I))-l1 —---—L+k+Dn+ (¢t —k+ Dm—1.

Proof. Assume Ci, Cy,...,Cy < D. Let (u, v), (z, w) € D x E. Since D x E is primitive, D
and E are strongly connected. So there is a shortest path from u to a vertex of C. Thus there is a ver-

51 .. S1 ) s3
tex u1 of Cy suchthatu = ug — uj forsomes; < n —I;. Similarly, u = up — uy — uy —
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Sk rl Sk+1 Sk+2 Sk+3 St rp .
cor—> U —>z and v = vg — V] — V) —> - - - —> V;_; —> w where u; is a vertex of C;

and s; <n—1;, v; is a vertex of Cry; and sg4; <m —lgyj, 1 <n—1land rn <m—1. If

a>glh,b,....ln)-L1—--—L+(k+Dn+ @ —k+ 1)m — 1, then
od¢—85 ——8—r —n
Sa—(n—l) == (=) = (m =) — - — (m = 1)

—(n—-1D—-@m-1)
=at+th+-+L—Gk+Dhn—-©C—k+1)m+2
>g(ll,12,...,l[)-

Sothere are nonnegative integers xq, . .. x; suchthat/ix; +-- -+ Lx; =« — 51 — -+ - — 8§y — 11 —
s I r s I R
ra. Then (u,v) = (1o, Vo) —> (i1, v0) “=>(u1, V) —2> - - —> (ug, o) “5 (., v0) ~ (.
Sk+2 St X r1 rn .
V1) = lep1Xpp1 (g, v1) —> - - —> (U, Ve—g) —> (g, Vi—) —> (2, V) —>(z, w).  Since
si+hxi+sy+bhxy+---+se+hxe +r1 +r=a, (u,v) i>(z, w). Thus
exp(Dx E)y< glh,lr,....ln-L1—---—L+®k+Dn+¢—k+ Dm—1. O

Lemma?2. IfZ, < E < Z;, ,, thenexp(Z, x E) > mn — 1.

-2
Proof. Suppose (z0, 20) — (Zu—1, Zm—1)- Then, (2o, z0) = (o, vo) —> (U1, V1) —> -+ —>
(Umn—2, Vmn—2) = (Zn—1, Zm—1) for some vertices (u;, v;) of Z,, x E. Let

A={ill<i<mn—-2,ui_1 #u;} and B={i|l <i<mn—2,v;_1 # v}
Then,
AUB={ill<i<mn—-—2} and ANB=¢.

fA={i1<ia<---<igandB={j1 < jo<--- < ji},s +t =mn —2.Letiyg = jo = 0.
Then, foreach0 < h < s — 1, uj, = uj41 =+ = ujy—1 — Ujy,,- Thus, 7o = ujy — uj —

S U = U] = = Upp—2 = Zp—1.Similarly,zo = vjy — vj; = --- = vj, = zz—1.For
any h (0 < h < 5), u;, =t for some t = h (mod n). Since z,—1 = u;,, s =n — 1 + nx for some
nonnegative integer x. If zo = vj, — vj,,, — --- = v, =zoand v, # zo forall p < h < ¢,
we can show thatifv;, = z;,h — p > tandh — p =t (mod n). Since Vj, = Vj, =20,Vj, , =
Zm-1. lfh=q—1,theng—p—-1>2m—1,vj  =zz—1andm—-1=gqg — p—1 (mod n).
Thus, g — p = m + ny for some nonnegative integer y. If e = |{h|1 < h <1, v}, = z0}|, since
Vr = Zm—1,t = em + nz + m — 1 for some nonnegative integer z. Frommn —2 = s +t = em +
nx+z)+n—1+4+m—1,wehave mn —n —m = em + (x + z)n, which is impossible. Thus,
exp(Z, x E) Z2mn—1. 0O

Lemma3 [1]. If (1,0, ...,1l;) = 1, then

il ... 1) <12ﬂ+13d—2+--~+l,d"1
b d

t
wheredy =11, d; = (I, ..., 1;).

—h—h— =,

Lemmad. Ifay,...,a; > 2, then

WHa+--+a<ar---a,
@) ay+-+a < UFY 42,
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Proof. This can be shown easily. We omit the proof. [J
3. Main theorems

Theorem 1. Let D and E be digraphs on n, m vertices (n < m), respectively. Let D x E be
primitive. Then

exp(D x E) <mn — 1.

Proof. Let C; be a directed /;-cycle of D such that /; is the smallest among the lengths of all
directed cycles of D. Let d| = [ and construct C», C3, ..., Cx in D such that C; is a directed
cycle of D whose length /; is the smallest among the lengths of all directed cycles of D which
are not multiples of dj_; = (I1,...,lj—1) fori > 2 and dy = (I1, ..., ;) is the greatest common
divisor of lengths of all directed cycles of D. Similarly, construct Cy1, Ci42, ..., C; in E such
that for 1 <i <t —k, Cy4; is a directed cycle of E whose length [;; is the smallest among the
lengths of all directed cycles of E which are not multiples of diy;—1 = (1, ..., lx+i—1). Since

D x E is primitive, d; = 1. Then, %’ j—;, el dil—:' > 2. By Lemmas 1 and 3,

exp(Dx EY< glly,lo, ...l -1 —--—L+k+Dn+(t—k+1m—1
d; dr di—1
<b—4+b—+ - +L— =21 =2lp) —---
2d2+ 3d3+ + 1 4, 1 2

2+ k+Dn+ @ —k+1)m—1

<in(B )i (2a) e (4
X 2 d2 3 d3 t d[

2L +*k+Dn+ Gt —k+1Dm—1.

Since n < m, [; < m forall i. Thus,

d d dr_
exp(DxE)gm(é—2)+m<d—z—2)+u-+m< 21,1 —2>

—2dy + (k+ Dn + (t —k+ Dm — 1
d d;_
:m<_1+...+ i 1)—2d1+(k+l)n—(t+k—3)m—l.

dz d;
By Lemma 4(1), we have

exp(D x Ey<mdy —2d1+k+Dn—(t+k—3)m—1
<m—=2n+Gk+Dn—-@C+k—-3)m—1
=mn+k—-1n—©t+k—3)m-—1
<mn+Gk—Dm—(G¢+k—3m—1
=mn—(t —2)m—1
<mn-—1. O

Corollary 1. If Z,, < E < Z,,, ,, thenexp(Z, x E) = mn — 1.

Proof. This follows from Lemma 2 and Theorem 1. [
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Lemma 5. Ift > 3, we have

mn
exp(D x E) < 7+m—1.

Proof. Let Cy,...,C;and [y, ..., [; be the same notations as in the proof of Theorem 1. From
the proof of Theorem 1 and Lemma 4(2), we have
dy di—1
exp(D x E)< m d—+---+ d 2L +k+Dn—-—@C+k—-3m—1
2 t

d
<m<71+2>—2d1+2n+(k—1)n—(t+k—3)m—1
m
< - _ —_(f — _
\dl(z 2)+2n (t —dm — 1
<?+(4—t)m—l

mn
< — — 1. O
) +m

Theorem 2. Let D and E be digraphs on n, m vertices (n < m), respectively. Let D x E be
primitive. Then

exp(D x E) =mn — 1ifandonlyif (m,n) =1,D =2, and Z, <E <Zy,.

Proof. Let Cy,...,C; and [y, ...,I; be the same notations as in the proof of Theorem 1. If
exp(Dx E)y=mn —1landt >3, mn—1< % + n — 1 by Lemma 5, which is impossible. So
t = 2. Thus

mn —1=exp(D x E)
<gli,b)—l—h+2n+2m—1
=1l =2l =2l +2n +2m — 1.

Therefore,

m—-2)y(n—2)=mn—2m—2n+4
<hily =20 =2, +4
=l —2(—-2)
< (m—=2)(n-2).

This implies /[ = n and [, = m. Since Cy : ug — u; — --- — u,—1 — vo is adirected cycle
of D, Vp ={ug,...,up1}. fu; > ujand j>i+1,u; > uj—>ujp1— - = uy_1 —>
ug — --- — u; is a cycle of D with length n +i — j + 1 < n — 1. This gives rise to a con-
tradiction. If u; — u;, i > jand (i, j) # (n — 1,0), u; — ujy1 — --- — u; — u; is a cycle
of D with length j —i + 1 < n — 1. This gives rise to a contradiction. Thus D = C; ~ Z,.
Let Cy : v9 = v1 — -+ — vy—1 — Vo be a directed cycle of E. Then Vg = {vo, ..., v—1}.

Since exp(D x E) = mn — 1, there are (u, v), (z, w) € D x E such that (u, v) mf/:z(z, w). We
may assume that v = vyg. Ifu—r>z andr <n—2or v—> w and s <m—2,since r +s5 <
n—+m-—3,
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mn—2—r—s>mn—m-—n-+1

>mn—m—n=g(m,n).

o there are x,y such that nx +my =mn —2 —r —s. en, u,vgu,vni)u,v—r>
So th h th 2 Then, (u,v) "> (u, v) ™ (u, v)

(z,v) —s>(z, w). Thus (u, v) mn—;z(z, w). This gives rise to a contradiction. Therefore w = vy, 1.
Ifv; — v; forsome j>i + L,vg = V] = +++ = U = Vj = Vjq] —> -+ — vm,l.Sovomﬂ;]
V-1 and m +i — j < m — 2. This gives rise to a contradiction. If v; — v; for some i > j and
@i, j)# @m—1,0,v; > vj > vjy1 — --- — v; isadirected cycle of E withlengthi — j + 1.
Since the length of a directed cycle in E is a multiple of n or equals to m, nli — j + 1 or
i—j+1l=mlfi—j+1=m,i =m—1and j =0. Thus,

Ac, CAg CAc, U{(vj,vj)li > jandnli — j + 1}.
Therefore,

Zy <E<Zpyny. U

Lemma 6. exp(Z, x W) > n?—n+1.

2_
Proof. Suppose (zo, wo)n—f(zn_l, wp). By a similar method used in Lemma 2, there are «

and B such that zg = Zn—1 and wo i) wo where o + 8 = n? —n. In the proof of Lemma

2, it is proved that « =n — 1 (modn). So @ = nx +n — 1 for some nonnegative integer x.
Since woimoo, let g =vop — vi--- —> vg =wo. Let iy <ip <--- < i be all i such that
0<i < Bandv; = w,—1. Since vy = wp, v1 = wi. We can prove vy = w; forall 1 <t < iy by
induction. Since v;;_1 = w,—2,i1 =n — L. Forall 1 <s <k — 1, since v;;, = w,_1, Vi;4+1 1S wp
orwi. Ifvi 11 = wo,is41 =iy +nandif v 11 = wy,is41 =iy +n — 1.Since vj 41 = wp = vg,
ix =B —1.Sinceizy) —igisn — 1l orn,

k—1

B=n—1+) (1 —i)+1=n+ny+ -1z

s=1
for some nonnegative integers y and z. We have n®> —3n +1=n’> —n+ (-2n+ 1) =a + 8 +
(—2n+ 1) =nx+y)+n—1)z.So (n — 1)z =1 (modn). Thus z = —1 (mod n). Therefore
z>n—1.Then (n — D2 < (n—1)z<n?—=3n+1 < (n— 1)2. This is a contradiction. Thus
exp(Zy x W) =n?>—n+1. O

Theorem 3. Let D, E be digraphs on n vertices and D x E be primitive. Then,
exp(D x E) <n?—n+1.
Moreover, exp(D x E) =n* —n + 1 ifand only if D x E is isomorphic to Z, x W,,.

Proof. LetCy,...,C;andly, ..., be the same notations as in the proof of Theorem 1. Suppose
exp(D x E) > n2—n+1.1ft > 3, from Lemma 5,
2

exp(DXE)<%+n—1<n2—n+l.

This is a contradiction. So t = 2. We may assume that /] < l». If [} < n — 2, from Lemma 1,
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exp(Dx E)< g(l1,h) -1 —lh+4n—1
=l —-2l1 —-2b+4n—-1=U; —2)(p, —2)+4n -5
<(n—4)(n—2)+4n—5:n2—2n—|—3<n2—n+1.

This is a contradiction. So/;y = n — 1 and/, = n. From Lemma 1, exp(D x E) < n2—n+1.
Soexp(D x E) = n% — n + 1. Thus there are vertices (x1, y1) and (x2, y2) on D x E such that

2_ . . .
(x1, y1) "—Hn(xz, ¥2). Assume C is a directed cycle ug — uy — -+ — uy—3 — ugin D and C;

is adirected cycle vop — v; — -+ — v,—1 — vp. Since D and E are strongly connected, without
loss of generality, we may assume that £ has a directed cycle of length n. Let w be a vertex of
D different from ug, uy, ..., u,—>. Since D is strongly connected, there are 0 < i, j <n —2
such that u; — w — u;. We may assume i = 0. Ifj>3 w-— Wj—> Ujp] —> ---Up —> W is
a directed cycle of length n —i 4+ 1 (< n — 2). This is a contradiction. If j =0, w - ug - w

. . . . -1
is a cycle of length 2. This is a contradiction. If j = 2, v 255 v for any vertex v of D. There are
integers s1 and s, such that x| LN X2, V1 22 v and 0 < 51,52 < n — 1. Since

n—n—si—sa=>nt-n—m—-1)—m-1
=n®—3n+2>m—-1n—-2)—1=gn—1,n),

2

there are nonnegative integers p and g such that (n — 1)p +ng = n° —n — s; — s2. Since

(n—1)p ng ) J
(1, 1) " (1 Y1) = (X1, Y1) — (52, Y1) —> (x2, ¥2)

and pmn — 1) +gn+s1 + 52 = n?—n, (x1, yl)nz—_g(xz, ¥2). This is a contradiction. So j = 1
and there is no other arc starting from w. Similarly there is no arc ending at w except (ug, w). If
F is the union of C; and a path ug — w — ug, F is a subgraph of D and isomorphic to Wielandt
digraph W,, on n-vertices.

If D # F, there is an arc (u;, u;) of D which is not an arc of F. If j > i, j > i+ 2. So
there is a directed cycle u; — u; — uj1 — -+ — Up—1 = g — Uy — --- — u; of length
n — j+i < n—2.Thisis acontradiction. If j < i, thereisadirectedcycleu; — u; — uj1 —

-— y;oflengthi — j+1.Ifi — j4+1>n—1,i =n —1land j = 0. But this is an arc of F.
This is a contradiction. So D = F.

If E # Cy,thereisanarc (v;, v;) of E whichisnotan arc of C. We may assumei = 0.1f j > 3,
there is a directed cycle vo — v; = vj41 = -+ = v,—1 = vo of lengthn — j +1<n -2,

.. . . . . r r
This is a contradiction. If j = 2, there are integers ry, ro such that xi —1>x2, Y1 2 y2 and
0<ri,mn <n—1.Since

n—n—ri—nznt—-n—m-1)—m-1)

:n2—3n—|—2>(n—l)(n—2)—1=g(n—1,n),

2 _n —r] — ry. Note that

-1 . h —h
Y1 BN y1 and y; i y1 except y; = vy. So there is a vertex y’ of E such that y; —> y’ = i

there are nonnegative integers p and ¢ such that (n — 1)p +ng =n

and y’ i3 y'. If g = 0, since

(n—=1)p
(1, y1) " @ty Y1) = (X2, Y1) —> (X2, ¥2)

2

2_
and p(n — 1) 4+ 51 + s = n* —n, (x1, yl)n—;'(xz, y2). This is a contradiction. If ¢ > 1, since
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(n—1)p h n(g—1) —h
(1, y1) " (1, y1) == (1, YY) (e, ) 2 (e ) 4 (02, 1) — (62, ¥2)

2_
and pn — D +h+n(@g—1)+n—h+r+r=n*—n, (x, yl)U(xz, y2). This is a con-
tradiction. So E = C,. Thus D x E is isomorphic to W,, x Z,. From Lemma 6, exp(D x E) =
2
n-—n+1. O
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