

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 429 (2008) 841-848

www.elsevier.com/locate/laa

Wielandt type theorem for Cartesian product of digraphs^{\ddagger}

Byeong Moon Kim^a, Byung Chul Song^a, Woonjae Hwang^{b,*}

^a Department of Mathematics, Kangnung National University, Kangnung 210-702, Republic of Korea ^b Department of Information and Mathematics, Korea University, Jochiwon 339-700, Republic of Korea

eni of information and Mathematics, κότεα Οπίνετsity, σοετίνοι 559-766, κεράδιε ο

Received 10 May 2007; accepted 8 April 2008

Submitted by R.A. Brualdi

Abstract

We show that mn - 1 is an upper bound of the exponent of the Cartesian product $D \times E$ of two digraphs D and E on m, n vertices, respectively and we prove our upper bound is extremal when (m, n) = 1. We also find all D and E when the exponent of $D \times E$ is mn - 1. In addition, when m = n, we prove that the extremal upper bound of $\exp(D \times E)$ is $n^2 - n + 1$ and only the Cartesian product, $Z_n \times W_n$, of the directed cycle and Wielandt digraph has exponent equals to this bound. \bigcirc 2008 Elsevier Inc. All rights reserved.

Keywords: Exponent; Cartesian product; Digraphs

1. Introduction

Let D = (V, A) be a digraph on *n* vertices. Throughout this paper, we assume that *D* has no loops and multiple arcs. For each pair (u, v) of vertices on *D*, we define a $u \to v$ walk, or a walk from *u* to *v*, in *D* by a sequence of vertices on $D, u = u_0, u_1, \ldots, u_p = v$, and a sequence of arcs of *D*, $(u, u_1), (u_1, u_2), \ldots, (u_{p-1}, v)$ where the vertices (arcs) are not necessarily distinct. The *length* of a $u \to v$ walk is the length of the sequence of arcs within it. A digraph D = (V, A) is *primitive* if there is a positive integer, *k*, such that for any given pair of vertices, *u*, *v*, there is a $u \to v$ walk of length *k*. We say that the smallest such value of *k* is the *exponent* of *D*, denoted

^{*} This work (for Woonjae Hwang) was supported by a Korea University grant.

^{*} Corresponding author. Tel.: +82 41 860 1318; fax: +82 41 866 9091.

E-mail addresses: kbm@kangnung.ac.kr (B.M. Kim), bcsong@kangnung.ac.kr (B.C. Song), woonjae@korea.ac.kr (W. Hwang).

^{0024-3795/\$ -} see front matter $_{\odot}$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.04.029

by $\exp(D)$. The exponent of a primitive digraph *D* is equal to the minimal *k* such that all entries of A^k is positive for the adjacency matrix *A* of *D*. See book [2] for more details. Wielandt [10] found that the maximum exponent of a primitive digraph on *n* vertices is $n^2 - 2n + 2$. Motivated by Wielandt, many results have been appeared on the upper and lower bounds for the exponents of digraphs [3–6,8,9,11].

Let $D = (V_D, A_D)$ and $E = (V_E, A_E)$ be digraphs such that $|V_D| = n$, $|V_E| = m$. The Cartesian product $D \times E = (V, A)$ of D and E is defined as $V = V_D \times V_E$ and $A = \{((u_1, v_1), (u_2, v_2))|((u_1, u_2) \in A_D \text{ and } v_1 = v_2) \text{ or } (u_1 = u_2 \text{ and } (v_1, v_2) \in A_E)\}$. Lamprey and Barnes [7] showed

$$\exp(D \times E) \leqslant (n+m)^2 - 4(n+m) + 5.$$

We improve this upper bound more sharply. That is,

$$\exp(D \times E) \leqslant mn - 1. \tag{1}$$

We also show that the upper bound (1) is extremal when (m, n) = 1. And we characterize all digraphs *D* and *E* which satisfy (1). Moreover, we prove that

 $\exp(D \times E) \leqslant n^2 - n + 1$

when D and E are digraphs on n vertices.

2. Some lemmas

From now on, *D* and *E* are digraphs on *n*, *m* vertices $(3 \le n \le m)$, respectively. And we assume that $D \times E$ is primitive. We use the notation $u_0 \xrightarrow{k_1} u_1 \xrightarrow{k_2} u_2 \xrightarrow{k_3} \cdots \xrightarrow{k_{p-1}} u_{p-1} \xrightarrow{k_p} u_p$ when there are $u_{i-1} \rightarrow u_i$ walks of length k_i for all i = 1, 2, ..., p. If $k_1 = \cdots = k_p = 1$, we write $u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_p$.

Definition 1. (1) The directed *n*-cycle $Z_n = (V, A)$ is defined by $V = \{z_0, z_1, ..., z_{n-1}\}$ and $A = \{(z_i, z_j) | j \equiv i + 1 \pmod{n}\}.$

(2) For m > n, define $Z_{m,n} = (V_1, A_1)$ by $V_1 = \{z_0, z_1, \dots, z_{m-1}\}$ and $A_1 = \{(z_i, z_j) | j \equiv i + 1 \pmod{m}$ or i > j, $i \equiv j - 1 \pmod{n}$.

Definition 2. The Wielandt digraph $W_n = (V, A)$ on *n* vertices is defined by $V = \{\omega_0, \omega_1, \ldots, \omega_{n-1}\}$ and $A = \{(\omega_i, \omega_{i+1}) | 0 \le i \le n-2\} \cup \{(\omega_{n-1}, \omega_0), (\omega_{n-1}, \omega_1)\}.$

The Frobenius number $g(l_1, l_2, ..., l_t)$ of the relatively prime positive numbers $l_1, ..., l_t$ is the largest number G such that the equation $l_1x_1 + \cdots + l_tx_t = G$ is not solvable for nonnegative integers $x_1, ..., x_t$. If H is a subgraph of a digraph F, we write $H \prec F$.

Lemma 1. Let C_i (i = 1, ..., t) be the directed l_i -cycles in $D \cup E$. Let k be the number of C_i such that $C_i \prec D$ and $(l_1, l_2, ..., l_t) = 1$. Then we have

$$\exp(D \times E) \leq g(l_1, l_2, \dots, l_t) - l_1 - \dots - l_t + (k+1)n + (t-k+1)m - 1.$$

Proof. Assume $C_1, C_2, \ldots, C_k \prec D$. Let $(u, v), (z, w) \in D \times E$. Since $D \times E$ is primitive, D and E are strongly connected. So there is a shortest path from u to a vertex of C_1 . Thus there is a vertex u_1 of C_1 such that $u = u_0 \xrightarrow{s_1} u_1$ for some $s_1 \leq n - l_1$. Similarly, $u = u_0 \xrightarrow{s_1} u_1 \xrightarrow{s_2} u_2 \xrightarrow{s_3} u_1$

 $\cdots \xrightarrow{s_k} u_k \xrightarrow{r_1} z \text{ and } v = v_0 \xrightarrow{s_{k+1}} v_1 \xrightarrow{s_{k+2}} v_2 \xrightarrow{s_{k+3}} \cdots \xrightarrow{s_t} v_{t-k} \xrightarrow{r_2} w \text{ where } u_i \text{ is a vertex of } C_i \text{ and } s_i \leq n-l_i, v_i \text{ is a vertex of } C_{k+i} \text{ and } s_{k+i} \leq m-l_{k+i}, r_1 \leq n-1 \text{ and } r_2 \leq m-1.$ If $\alpha > g(l_1, l_2, \dots, l_t) - l_1 - \cdots - l_t + (k+1)n + (t-k+1)m - 1$, then

$$\begin{aligned} \alpha - s_1 - \dots - s_t - r_1 - r_2 \\ \geqslant \alpha - (n - l_1) - \dots - (n - l_k) - (m - l_{k+1}) - \dots - (m - l_t) \\ - (n - 1) - (m - 1) \\ &= \alpha + l_1 + \dots + l_t - (k + 1)n - (t - k + 1)m + 2 \\ &> g(l_1, l_2, \dots, l_t). \end{aligned}$$

So there are nonnegative integers $x_1, \ldots x_t$ such that $l_1x_1 + \cdots + l_tx_t = \alpha - s_1 - \cdots - s_t - r_1 - r_2$. Then $(u, v) = (u_0, v_0) \xrightarrow{s_1} (u_1, v_0) \xrightarrow{l_1x_1} (u_1, v_0) \xrightarrow{s_2} \cdots \xrightarrow{s_k} (u_k, v_0) \xrightarrow{l_kx_k} (u_k, v_0) \xrightarrow{s_{k+1}} (u_k, v_1) \rightarrow l_{k+1}x_{k+1}(u_k, v_1) \xrightarrow{s_{k+2}} \cdots \xrightarrow{s_t} (u_k, v_{t-k}) \xrightarrow{l_tx_t} (u_k, v_{t-k}) \xrightarrow{r_1} (z, v_{t-k}) \xrightarrow{r_2} (z, w)$. Since $s_1 + l_1x_1 + s_2 + l_2x_2 + \cdots + s_t + l_tx_t + r_1 + r_2 = \alpha, (u, v) \xrightarrow{\alpha} (z, w)$. Thus $\exp(D \times E) \leq g(l_1, l_2, \ldots, l_t) - l_1 - \cdots - l_t + (k+1)n + (t-k+1)m - 1$.

Lemma 2. If $Z_m \prec E \prec Z_{m,n}$, then $\exp(Z_n \times E) \ge mn - 1$.

Proof. Suppose $(z_0, z_0) \xrightarrow{mn-2} (z_{n-1}, z_{m-1})$. Then, $(z_0, z_0) = (u_0, v_0) \longrightarrow (u_1, v_1) \longrightarrow \cdots \longrightarrow (u_{mn-2}, v_{mn-2}) = (z_{n-1}, z_{m-1})$ for some vertices (u_i, v_i) of $Z_n \times E$. Let

 $A = \{i | 1 \le i \le mn - 2, u_{i-1} \ne u_i\} \text{ and } B = \{i | 1 \le i \le mn - 2, v_{i-1} \ne v_i\}.$ Then,

 $A \cup B = \{i \mid 1 \leq i \leq mn - 2\}$ and $A \cap B = \phi$.

If $A = \{i_1 < i_2 < \cdots < i_s\}$ and $B = \{j_1 < j_2 < \cdots < j_t\}$, s + t = mn - 2. Let $i_0 = j_0 = 0$. Then, for each $0 \le h \le s - 1$, $u_{i_h} = u_{i_h+1} = \cdots = u_{i_{h+1}-1} \rightarrow u_{i_{h+1}}$. Thus, $z_0 = u_{i_0} \rightarrow u_{i_1} \rightarrow \cdots \rightarrow u_{i_s} = u_{i_s+1} = \cdots = u_{mn-2} = z_{n-1}$. Similarly, $z_0 = v_{j_0} \rightarrow v_{j_1} \rightarrow \cdots \rightarrow v_{j_t} = z_{m-1}$. For any h ($0 \le h \le s$), $u_{i_h} = t$ for some $t \equiv h \pmod{n}$. Since $z_{n-1} = u_{i_s}$, s = n - 1 + nx for some nonnegative integer x. If $z_0 = v_{j_p} \rightarrow v_{j_{p+1}} \rightarrow \cdots \rightarrow v_{j_q} = z_0$ and $v_{j_h} \neq z_0$ for all p < h < q, we can show that if $v_{j_h} = z_t$, $h - p \ge t$ and $h - p \equiv t \pmod{n}$. Since $v_{j_{q-1}} \rightarrow v_{j_q} = z_0$, $v_{j_{q-1}} = z_{m-1}$. If h = q - 1, then $q - p - 1 \ge m - 1$, $v_{j_{q-1}} = z_{m-1}$ and $m - 1 \equiv q - p - 1 \pmod{n}$. Thus, q - p = m + ny for some nonnegative integer y. If $e = |\{h|1 \le h \le t, v_{j_h} = z_0\}|$, since $v_t = z_{m-1}$, t = em + nz + m - 1 for some nonnegative integer z. From mn - 2 = s + t = em + n(x + z) + n - 1 + m - 1, we have mn - n - m = em + (x + z)n, which is impossible. Thus, $exp(Z_n \times E) \ge mn - 1$.

Lemma 3 [1]. If $(l_1, l_2, ..., l_t) = 1$, then $g(l_1, l_2, ..., l_t) \leq l_2 \frac{d_1}{d_2} + l_3 \frac{d_2}{d_3} + \dots + l_t \frac{d_{t-1}}{d_t} - l_1 - l_2 - \dots - l_t$, where $d_1 = l_1, d_i = (l_1, ..., l_i)$.

Lemma 4. If $a_1, \ldots, a_t \ge 2$, then

(1) $a_1 + \dots + a_t \leq a_1 \dots a_t$, (2) $a_1 + \dots + a_t \leq \frac{a_1 \dots a_t}{2} + 2$. **Proof.** This can be shown easily. We omit the proof. \Box

3. Main theorems

Theorem 1. Let D and E be digraphs on n, m vertices $(n \leq m)$, respectively. Let $D \times E$ be primitive. Then

 $\exp(D \times E) \leqslant mn - 1.$

Proof. Let C_1 be a directed l_1 -cycle of D such that l_1 is the smallest among the lengths of all directed cycles of D. Let $d_1 = l_1$ and construct C_2, C_3, \ldots, C_k in D such that C_i is a directed cycle of D whose length l_i is the smallest among the lengths of all directed cycles of D which are not multiples of $d_{i-1} = (l_1, \ldots, l_{i-1})$ for $i \ge 2$ and $d_k = (l_1, \ldots, l_k)$ is the greatest common divisor of lengths of all directed cycles of D. Similarly, construct $C_{k+1}, C_{k+2}, \ldots, C_t$ in E such that for $1 \le i \le t - k$, C_{k+i} is a directed cycle of E whose length l_{k+i} is the smallest among the lengths of all directed cycles of E which are not multiples of $d_{k+i-1} = (l_1, \ldots, l_{k+i-1})$. Since $D \times E$ is primitive, $d_t = 1$. Then, $\frac{d_1}{d_2}, \frac{d_2}{d_3}, \ldots, \frac{d_{t-1}}{d_t} \ge 2$. By Lemmas 1 and 3,

$$\exp(D \times E) \leq g(l_1, l_2, \dots, l_t) - l_1 - \dots - l_t + (k+1)n + (t-k+1)m - 1$$

$$\leq l_2 \frac{d_1}{d_2} + l_3 \frac{d_2}{d_3} + \dots + l_t \frac{d_{t-1}}{d_t} - 2l_1 - 2l_2 - \dots$$

$$-2l_t + (k+1)n + (t-k+1)m - 1$$

$$\leq l_2 \left(\frac{d_1}{d_2} - 2\right) + l_3 \left(\frac{d_2}{d_3} - 2\right) + \dots + l_t \left(\frac{d_{t-1}}{d_t} - 2\right)$$

$$-2l_1 + (k+1)n + (t-k+1)m - 1.$$

Since $n \leq m$, $l_i \leq m$ for all *i*. Thus,

$$\exp(D \times E) \leq m \left(\frac{d_1}{d_2} - 2\right) + m \left(\frac{d_2}{d_3} - 2\right) + \dots + m \left(\frac{d_{t-1}}{d_t} - 2\right)$$
$$-2d_1 + (k+1)n + (t-k+1)m - 1$$
$$= m \left(\frac{d_1}{d_2} + \dots + \frac{d_{t-1}}{d_t}\right) - 2d_1 + (k+1)n - (t+k-3)m - 1.$$

By Lemma 4(1), we have

$$\exp(D \times E) \leq md_1 - 2d_1 + (k+1)n - (t+k-3)m - 1$$

$$\leq (m-2)n + (k+1)n - (t+k-3)m - 1$$

$$= mn + (k-1)n - (t+k-3)m - 1$$

$$\leq mn + (k-1)m - (t+k-3)m - 1$$

$$= mn - (t-2)m - 1$$

$$\leq mn - 1. \qquad \Box$$

Corollary 1. If $Z_m \prec E \prec Z_{m,n}$, then $\exp(Z_n \times E) = mn - 1$.

Proof. This follows from Lemma 2 and Theorem 1. \Box

Lemma 5. *If* $t \ge 3$, we have

$$\exp(D \times E) \leqslant \frac{mn}{2} + m - 1.$$

Proof. Let C_1, \ldots, C_t and l_1, \ldots, l_t be the same notations as in the proof of Theorem 1. From the proof of Theorem 1 and Lemma 4(2), we have

$$\exp(D \times E) \leq m \left(\frac{d_1}{d_2} + \dots + \frac{d_{t-1}}{d_t}\right) - 2l_1 + (k+1)n - (t+k-3)m - 1$$
$$\leq m \left(\frac{d_1}{2} + 2\right) - 2d_1 + 2n + (k-1)n - (t+k-3)m - 1$$
$$\leq d_1 \left(\frac{m}{2} - 2\right) + 2n - (t-4)m - 1$$
$$\leq \frac{mn}{2} + (4-t)m - 1$$
$$\leq \frac{mn}{2} + m - 1. \qquad \Box$$

Theorem 2. Let D and E be digraphs on n, m vertices $(n \leq m)$, respectively. Let $D \times E$ be primitive. Then

$$\exp(D \times E) = mn - 1$$
 if and only if $(m, n) = 1, D \cong Z_n$ and $Z_m \prec E \prec Z_{m,n}$.

Proof. Let C_1, \ldots, C_t and l_1, \ldots, l_t be the same notations as in the proof of Theorem 1. If $\exp(D \times E) = mn - 1$ and $t \ge 3$, $mn - 1 \le \frac{mn}{2} + n - 1$ by Lemma 5, which is impossible. So t = 2. Thus

$$mn - 1 = \exp(D \times E)$$

$$\leq g(l_1, l_2) - l_1 - l_2 + 2n + 2m - 1$$

$$= l_1 l_2 - 2l_1 - 2l_2 + 2n + 2m - 1.$$

Therefore,

$$(m-2)(n-2) = mn - 2m - 2n + 4$$

$$\leq l_1 l_2 - 2l_1 - 2l_2 + 4$$

$$= (l_1 - 2)(l_2 - 2)$$

$$\leq (m-2)(n-2).$$

This implies $l_1 = n$ and $l_2 = m$. Since $C_1 : u_0 \to u_1 \to \cdots \to u_{n-1} \to v_0$ is a directed cycle of $D, V_D = \{u_0, \dots, u_{n-1}\}$. If $u_i \to u_j$ and $j > i + 1, u_i \to u_j \to u_{j+1} \to \cdots \to u_{n-1} \to u_0 \to \cdots \to u_i$ is a cycle of D with length $n + i - j + 1 \leq n - 1$. This gives rise to a contradiction. If $u_i \to u_j, i > j$ and $(i, j) \neq (n - 1, 0), u_i \to u_{i+1} \to \cdots \to u_j \to u_i$ is a cycle of D with length $j - i + 1 \leq n - 1$. This gives rise to a contradiction. Thus $D = C_1 \simeq Z_n$. Let $C_2 : v_0 \to v_1 \to \cdots \to v_{m-1} \to v_0$ be a directed cycle of E. Then $V_E = \{v_0, \dots, v_{m-1}\}$. Since $\exp(D \times E) = mn - 1$, there are $(u, v), (z, w) \in D \times E$ such that $(u, v) \stackrel{mn-2}{\to} (z, w)$. We may assume that $v = v_0$. If $u \stackrel{r}{\longrightarrow} z$ and $r \leq n - 2$ or $v \stackrel{s}{\longrightarrow} w$ and $s \leq m - 2$, since $r + s \leq n + m - 3$,

$$mn - 2 - r - s \ge mn - m - n + 1$$

> mn - m - n = g(m, n)

So there are x, y such that nx + my = mn - 2 - r - s. Then, $(u, v) \xrightarrow{nx} (u, v) \xrightarrow{my} (u, v) \xrightarrow{r} (z, v) \xrightarrow{s} (z, w)$. Thus $(u, v) \xrightarrow{mn-2} (z, w)$. This gives rise to a contradiction. Therefore $w = v_{m-1}$. If $v_i \rightarrow v_j$ for some $j > i + 1, v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_i \rightarrow v_j \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{m-1}$. So $v_0 \xrightarrow{m+i-j} v_{m-1}$ and $m + i - j \leq m - 2$. This gives rise to a contradiction. If $v_i \rightarrow v_j$ for some i > j and $(i, j) \neq (n - 1, 0), v_i \rightarrow v_j \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_i$ is a directed cycle of E with length i - j + 1. Since the length of a directed cycle in E is a multiple of n or equals to m, n|i - j + 1 or i - j + 1 = m. If i - j + 1 = m, i = m - 1 and j = 0. Thus,

$$A_{C_2} \subset A_E \subset A_{C_2} \cup \{(v_i, v_j) | i > j \text{ and } n | i - j + 1\}.$$

Therefore,

 $Z_n \prec E \prec Z_{m,n}$.

Lemma 6. $\exp(Z_n \times W_n) \ge n^2 - n + 1.$

Proof. Suppose $(z_0, \omega_0) \xrightarrow{n^2 - n} (z_{n-1}, \omega_0)$. By a similar method used in Lemma 2, there are α and β such that $z_0 \xrightarrow{\alpha} z_{n-1}$ and $\omega_0 \xrightarrow{\beta} \omega_0$ where $\alpha + \beta = n^2 - n$. In the proof of Lemma 2, it is proved that $\alpha \equiv n - 1 \pmod{n}$. So $\alpha = nx + n - 1$ for some nonnegative integer x. Since $\omega_0 \xrightarrow{\beta} \omega_0$, let $\omega_0 = v_0 \rightarrow v_1 \cdots \rightarrow v_\beta = \omega_0$. Let $i_1 < i_2 < \cdots < i_k$ be all i such that $0 \leq i \leq \beta$ and $v_i = \omega_{n-1}$. Since $v_0 = \omega_0$, $v_1 = \omega_1$. We can prove $v_t = \omega_t$ for all $1 \leq t < i_1$ by induction. Since $v_{i_1-1} = \omega_{n-2}$, $i_1 = n - 1$. For all $1 \leq s \leq k - 1$, since $v_{i_s} = \omega_{n-1}$, $v_{i_s+1} = i_s + n$ and if $v_{i_s+1} = \omega_1$, $i_{s+1} = i_s + n - 1$. Since $v_{i_k+1} = \omega_0 = v_\beta$, $i_k = \beta - 1$. Since $i_{s+1} - i_s$ is n - 1 or n,

$$\beta = n - 1 + \sum_{s=1}^{k-1} (i_{s+1} - i_s) + 1 = n + ny + (n-1)z$$

for some nonnegative integers y and z. We have $n^2 - 3n + 1 = n^2 - n + (-2n + 1) = \alpha + \beta + (-2n + 1) = n(x + y) + (n - 1)z$. So $(n - 1)z \equiv 1 \pmod{n}$. Thus $z \equiv -1 \pmod{n}$. Therefore $z \ge n - 1$. Then $(n - 1)^2 \le (n - 1)z \le n^2 - 3n + 1 < (n - 1)^2$. This is a contradiction. Thus $\exp(Z_n \times W_n) \ge n^2 - n + 1$. \Box

Theorem 3. Let D, E be digraphs on n vertices and $D \times E$ be primitive. Then,

$$\exp(D \times E) \leqslant n^2 - n + 1.$$

Moreover, $\exp(D \times E) = n^2 - n + 1$ if and only if $D \times E$ is isomorphic to $Z_n \times W_n$.

Proof. Let C_1, \ldots, C_t and l_1, \ldots, l_t be the same notations as in the proof of Theorem 1. Suppose $\exp(D \times E) > n^2 - n + 1$. If $t \ge 3$, from Lemma 5,

$$\exp(D \times E) \le \frac{n^2}{2} + n - 1 < n^2 - n + 1.$$

This is a contradiction. So t = 2. We may assume that $l_1 < l_2$. If $l_1 \le n - 2$, from Lemma 1,

846

$$\exp(D \times E) \leq g(l_1, l_2) - l_1 - l_2 + 4n - 1$$

= $l_1 l_2 - 2l_1 - 2l_2 + 4n - 1 = (l_1 - 2)(l_2 - 2) + 4n - 5$
 $\leq (n - 4)(n - 2) + 4n - 5 = n^2 - 2n + 3 < n^2 - n + 1.$

This is a contradiction. So $l_1 = n - 1$ and $l_2 = n$. From Lemma 1, $\exp(D \times E) \leq n^2 - n + 1$. So $\exp(D \times E) = n^2 - n + 1$. Thus there are vertices (x_1, y_1) and (x_2, y_2) on $D \times E$ such that $(x_1, y_1) \stackrel{n^2 - n}{\to} (x_2, y_2)$. Assume C_1 is a directed cycle $u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{n-2} \rightarrow u_0$ in D and C_2 is a directed cycle $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_0$. Since D and E are strongly connected, without loss of generality, we may assume that E has a directed cycle of length n. Let w be a vertex of D different from $u_0, u_1, \ldots, u_{n-2}$. Since D is strongly connected, there are $0 \leq i, j \leq n - 2$ such that $u_i \rightarrow w \rightarrow u_j$. We may assume i = 0. If $j \geq 3$, $w \rightarrow u_j \rightarrow u_{j+1} \rightarrow \cdots u_0 \rightarrow w$ is a directed cycle of length n - i + 1 ($\leq n - 2$). This is a contradiction. If $j = 0, w \rightarrow u_0 \rightarrow w$ is a cycle of length 2. This is a contradiction. If $j = 2, v \stackrel{n-1}{\rightarrow} v$ for any vertex v of D. There are integers s_1 and s_2 such that $x_1 \stackrel{s_1}{\longrightarrow} x_2, y_1 \stackrel{s_2}{\longrightarrow} y_2$ and $0 \leq s_1, s_2 \leq n - 1$. Since

$$n^{2} - n - s_{1} - s_{2} \ge n^{2} - n - (n - 1) - (n - 1)$$

= $n^{2} - 3n + 2 > (n - 1)(n - 2) - 1 = g(n - 1, n),$

there are nonnegative integers p and q such that $(n-1)p + nq = n^2 - n - s_1 - s_2$. Since

$$(x_1, y_1) \xrightarrow{(n-1)p} (x_1, y_1) \xrightarrow{nq} (x_1, y_1) \xrightarrow{s_1} (x_2, y_1) \xrightarrow{s_2} (x_2, y_2)$$

and $p(n-1) + qn + s_1 + s_2 = n^2 - n$, $(x_1, y_1) \xrightarrow{n^2 - n} (x_2, y_2)$. This is a contradiction. So j = 1 and there is no other arc starting from w. Similarly there is no arc ending at w except (u_0, w) . If F is the union of C_1 and a path $u_0 \to w \to u_0$, F is a subgraph of D and isomorphic to Wielandt digraph W_n on n-vertices.

If $D \neq F$, there is an arc (u_i, u_j) of D which is not an arc of F. If $j > i, j \ge i + 2$. So there is a directed cycle $u_i \rightarrow u_j \rightarrow u_{j+1} \rightarrow \cdots \rightarrow u_{n-1} \rightarrow u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_i$ of length $n - j + i \le n - 2$. This is a contradiction. If j < i, there is a directed cycle $u_i \rightarrow u_j \rightarrow u_{j+1} \rightarrow \cdots \rightarrow u_i$ of length i - j + 1. If $i - j + 1 \ge n - 1$, i = n - 1 and j = 0. But this is an arc of F. This is a contradiction. So D = F.

If $E \neq C_2$, there is an arc (v_i, v_j) of E which is not an arc of C_2 . We may assume i = 0. If $j \ge 3$, there is a directed cycle $v_0 \rightarrow v_j \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_0$ of length $n - j + 1 \le n - 2$. This is a contradiction. If j = 2, there are integers r_1, r_2 such that $x_1 \xrightarrow{r_1} x_2, y_1 \xrightarrow{r_2} y_2$ and $0 \le r_1, r_2 \le n - 1$. Since

$$n^{2} - n - r_{1} - r_{2} \ge n^{2} - n - (n - 1) - (n - 1)$$

= $n^{2} - 3n + 2 > (n - 1)(n - 2) - 1 = g(n - 1, n),$

there are nonnegative integers p and q such that $(n-1)p + nq = n^2 - n - r_1 - r_2$. Note that $y_1 \xrightarrow{n} y_1$ and $y_1 \xrightarrow{n-1} y_1$ except $y_1 = v_1$. So there is a vertex y' of E such that $y_1 \xrightarrow{h} y' \xrightarrow{n-h} y_1$ and $y' \xrightarrow{n-1} y'$. If q = 0, since

$$(x_1, y_1) \xrightarrow{(n-1)p} (x_1, y_1) \xrightarrow{s_1} (x_2, y_1) \xrightarrow{s_2} (x_2, y_2)$$

and $p(n-1) + s_1 + s_2 = n^2 - n$, $(x_1, y_1) \xrightarrow{n^2 - n} (x_2, y_2)$. This is a contradiction. If $q \ge 1$, since

$$(x_1, y_1) \xrightarrow{(n-1)p} (x_1, y_1) \xrightarrow{h} (x_1, y') \xrightarrow{n(q-1)} (x_1, y') \xrightarrow{n-h} (x_1, y_1) \xrightarrow{r_1} (x_2, y_1) \xrightarrow{r_2} (x_2, y_2)$$

and $p(n-1) + h + n(q-1) + n - h + r_1 + r_2 = n^2 - n$, $(x_1, y_1) \xrightarrow{n^2 - n} (x_2, y_2)$. This is a contradiction. So $E = C_2$. Thus $D \times E$ is isomorphic to $W_n \times Z_n$. From Lemma 6, $\exp(D \times E) = n^2 - n + 1$. \Box

References

- [1] A. Brauer, On a problem of partitions, Amer. J. Math. 64 (1942) 299–312.
- [2] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
- [3] J. Cai, B. Wang, The characterization of symmetric primitive matrices with exponent n 1, Linear Algebra Appl. 364 (2003) 135–145.
- [4] J. Cai, L. Jun, K.M. Zhang, The characterization of symmetric primitive matrices with exponent $2n 2r (\ge n)$, Linear and Multilinear Algebra 39 (4) (1995) 391–396.
- [5] B.M. Kim, B.C. Song, W. Hwang, Nonnegative primitive matrices with exponent 2, Linear Algebra Appl. 407 (2005) 162–168.
- [6] B.M. Kim, B.C. Song, W. Hwang, Primitive graphs with given exponents and minimum number of edges, Linear Algebra Appl. 420 (2007) 648–662.
- [7] R. Lamprey, B. Barnes, Primitivity of products of digraphs, in: Proc. 10th Southeastern Conf. on Combinatorics, Graph Theory and Computing (Florida Atlantic University, Boca Raton, FL, Congress. Numer., XXIII–XXIV), 1979, pp. 637–644.
- [8] M. Lewin, On exponents of primitive matrices, Numer. Math. 18 (1971) 154-161.
- [9] B. Liu, B.D. McKay, N.C. Wormald, K. Zhang, The exponent set of symmetric primitive (0, 1) matrices with zero trace, Linear Algebra Appl. 133 (1990) 121–131.
- [10] H. Wielandt, Unzerleghare, nicht negative Matrizen, Math. Z. 52 (1950) 642-645.
- [11] K. Zhang, On Lewin and Vitek's conjecture about the exponent set of primitive matrices, Linear Algebra Appl. 96 (1987) 101–108.