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Abstract

We show that mn − 1 is an upper bound of the exponent of the Cartesian product D × E of two digraphs
D and E on m, n vertices, respectively and we prove our upper bound is extremal when (m, n) = 1. We also
find all D and E when the exponent of D × E is mn − 1. In addition, when m = n, we prove that the extremal
upper bound of exp(D × E) is n2 − n + 1 and only the Cartesian product, Zn × Wn, of the directed cycle
and Wielandt digraph has exponent equals to this bound.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let D = (V , A) be a digraph on n vertices. Throughout this paper, we assume that D has no
loops and multiple arcs. For each pair (u, v) of vertices on D, we define a u → v walk, or a walk
from u to v, in D by a sequence of vertices on D, u = u0, u1, . . . , up = v, and a sequence of arcs
of D, (u, u1), (u1, u2), . . . , (up−1, v) where the vertices (arcs) are not necessarily distinct. The
length of a u → v walk is the length of the sequence of arcs within it. A digraph D = (V , A) is
primitive if there is a positive integer, k, such that for any given pair of vertices, u, v, there is a
u → v walk of length k. We say that the smallest such value of k is the exponent of D, denoted
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by exp(D). The exponent of a primitive digraph D is equal to the minimal k such that all entries
of Ak is positive for the adjacency matrix A of D. See book [2] for more details. Wielandt [10]
found that the maximum exponent of a primitive digraph on n vertices is n2 − 2n + 2. Motivated
by Wielandt, many results have been appeared on the upper and lower bounds for the exponents
of digraphs [3–6,8,9,11].

Let D = (VD, AD) and E = (VE, AE) be digraphs such that |VD| = n, |VE | = m. The Carte-
sian product D × E = (V , A) of D and E is defined as V = VD × VE and A = {((u1, v1),

(u2, v2))|((u1, u2) ∈ AD and v1 = v2) or (u1 = u2 and (v1, v2) ∈ AE)}. Lamprey and Barnes
[7] showed

exp(D × E) � (n + m)2 − 4(n + m) + 5.

We improve this upper bound more sharply. That is,

exp(D × E) � mn − 1. (1)

We also show that the upper bound (1) is extremal when (m, n) = 1. And we characterize all
digraphs D and E which satisfy (1). Moreover, we prove that

exp(D × E) � n2 − n + 1

when D and E are digraphs on n vertices.

2. Some lemmas

From now on, D and E are digraphs on n, m vertices (3 � n � m), respectively. And we

assume that D × E is primitive. We use the notation u0
k1−→ u1

k2−→ u2
k3−→ · · · kp−1−→ up−1

kp−→ up

when there are ui−1 → ui walks of length ki for all i = 1, 2, . . . , p. If k1 = · · · = kp = 1, we
write u0 → u1 → · · · → up.

Definition 1. (1) The directed n-cycle Zn = (V , A) is defined by V = {z0, z1, . . . , zn−1} and
A = {(zi, zj )|j ≡ i + 1 (mod n)}.

(2) For m > n, define Zm,n = (V1, A1) by V1 = {z0, z1, . . . , zm−1} and A1 = {(zi, zj )|j ≡
i + 1 (mod m) or i > j, i ≡ j − 1 (mod n}.

Definition 2. The Wielandt digraph Wn = (V , A) on n vertices is defined by V = {ω0, ω1, . . . ,

ωn−1} and A = {(ωi, ωi+1)|0 � i � n − 2} ∪ {(ωn−1, ω0), (ωn−1, ω1)}.

The Frobenius number g(l1, l2, . . . , lt ) of the relatively prime positive numbers l1, . . . , lt is
the largest number G such that the equation l1x1 + · · · + lt xt = G is not solvable for nonnegative
integers x1, . . . , xt . If H is a subgraph of a digraph F , we write H ≺ F .

Lemma 1. Let Ci (i = 1, . . . , t) be the directed li-cycles in D ∪ E. Let k be the number of Ci

such that Ci ≺ D and (l1, l2, . . . , lt ) = 1. Then we have

exp(D × E) � g(l1, l2, . . . , lt ) − l1 − · · · − lt + (k + 1)n + (t − k + 1)m − 1.

Proof. Assume C1, C2, . . . , Ck ≺ D. Let (u, v), (z, w) ∈ D × E. Since D × E is primitive, D

and E are strongly connected. So there is a shortest path from u to a vertex of C1. Thus there is a ver-

tex u1 of C1 such that u = u0
s1−→ u1 for some s1 � n − l1. Similarly, u = u0

s1−→ u1
s2−→ u2

s3−→
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· · · sk−→ uk
r1−→ z and v = v0

sk+1−→ v1
sk+2−→ v2

sk+3−→ · · · st−→ vt−k
r2−→ w where ui is a vertex of Ci

and si � n − li , vi is a vertex of Ck+i and sk+i � m − lk+i , r1 � n − 1 and r2 � m − 1. If
α > g(l1, l2, . . . , lt ) − l1 − · · · − lt + (k + 1)n + (t − k + 1)m − 1, then

α − s1 − · · · − st − r1 − r2

� α − (n − l1) − · · · − (n − lk) − (m − lk+1) − · · · − (m − lt )

−(n − 1) − (m − 1)

= α + l1 + · · · + lt − (k + 1)n − (t − k + 1)m + 2

> g(l1, l2, . . . , lt ).

So there are nonnegative integersx1, . . . xt such that l1x1 + · · · + lt xt = α − s1 − · · · − st − r1 −
r2. Then (u, v) = (u0, v0)

s1−→(u1, v0)
l1x1−→(u1, v0)

s2−→ · · · sk−→(uk, v0)
lkxk−→(uk, v0)

sk+1−→(uk,

v1) → lk+1xk+1(uk, v1)
sk+2−→ · · · st−→(uk, vt−k)

lt xt−→(uk, vt−k)
r1−→(z, vt−k)

r2−→(z, w). Since
s1 + l1x1 + s2 + l2x2 + · · · + st + lt xt + r1 + r2 = α, (u, v)

α−→(z, w). Thus

exp(D × E) � g(l1, l2, . . . , lt ) − l1 − · · · − lt + (k + 1)n + (t − k + 1)m − 1. �

Lemma 2. If Zm ≺ E ≺ Zm,n, then exp(Zn × E) � mn − 1.

Proof. Suppose (z0, z0)
mn−2−→ (zn−1, zm−1). Then, (z0, z0) = (u0, v0) −→ (u1, v1) −→ · · · −→

(umn−2, vmn−2) = (zn−1, zm−1) for some vertices (ui, vi) of Zn × E. Let

A = {i|1 � i � mn − 2, ui−1 /= ui} and B = {i|1 � i � mn − 2, vi−1 /= vi}.
Then,

A ∪ B = {i|1 � i � mn − 2} and A ∩ B = φ.

If A = {i1 < i2 < · · · < is} and B = {j1 < j2 < · · · < jt }, s + t = mn − 2. Let i0 = j0 = 0.
Then, for each 0 � h � s − 1, uih = uih+1 = · · · = uih+1−1 → uih+1 . Thus, z0 = ui0 → ui1 →
· · · → uis = uis+1 = · · · = umn−2 = zn−1. Similarly, z0 = vj0 → vj1 → · · · → vjt = zm−1. For
any h (0 � h � s), uih = t for some t ≡ h (mod n). Since zn−1 = uis , s = n − 1 + nx for some
nonnegative integer x. If z0 = vjp → vjp+1 → · · · → vjq = z0 and vjh

/= z0 for all p < h < q,
we can show that if vjh

= zt , h − p � t and h − p ≡ t (mod n). Since vjq−1 → vjq = z0, vjq−1 =
zm−1. If h = q − 1, then q − p − 1 � m − 1, vjq−1 = zm−1 and m − 1 ≡ q − p − 1 (mod n).
Thus, q − p = m + ny for some nonnegative integer y. If e = |{h|1 � h � t, vjh

= z0}|, since
vt = zm−1, t = em + nz + m − 1 for some nonnegative integer z. From mn − 2 = s + t = em +
n(x + z) + n − 1 + m − 1, we have mn − n − m = em + (x + z)n, which is impossible. Thus,
exp(Zn × E) � mn − 1. �

Lemma 3 [1]. If (l1, l2, . . . , lt ) = 1, then

g(l1, l2, . . . , lt ) � l2
d1

d2
+ l3

d2

d3
+ · · · + lt

dt−1

dt

− l1 − l2 − · · · − lt ,

where d1 = l1, di = (l1, . . . , li ).

Lemma 4. If a1, . . . , at � 2, then

(1) a1 + · · · + at � a1 · · · at ,

(2) a1 + · · · + at � a1···at

2 + 2.
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Proof. This can be shown easily. We omit the proof. �

3. Main theorems

Theorem 1. Let D and E be digraphs on n, m vertices (n � m), respectively. Let D × E be
primitive. Then

exp(D × E) � mn − 1.

Proof. Let C1 be a directed l1-cycle of D such that l1 is the smallest among the lengths of all
directed cycles of D. Let d1 = l1 and construct C2, C3, . . . , Ck in D such that Ci is a directed
cycle of D whose length li is the smallest among the lengths of all directed cycles of D which
are not multiples of di−1 = (l1, . . . , li−1) for i � 2 and dk = (l1, . . . , lk) is the greatest common
divisor of lengths of all directed cycles of D. Similarly, construct Ck+1, Ck+2, . . . , Ct in E such
that for 1 � i � t − k, Ck+i is a directed cycle of E whose length lk+i is the smallest among the
lengths of all directed cycles of E which are not multiples of dk+i−1 = (l1, . . . , lk+i−1). Since
D × E is primitive, dt = 1. Then, d1

d2
, d2

d3
, . . . ,

dt−1
dt

� 2. By Lemmas 1 and 3,

exp(D × E) � g(l1, l2, . . . , lt ) − l1 − · · · − lt + (k + 1)n + (t − k + 1)m − 1

� l2
d1

d2
+ l3

d2

d3
+ · · · + lt

dt−1

dt

− 2l1 − 2l2 − · · ·
−2lt + (k + 1)n + (t − k + 1)m − 1

� l2

(
d1

d2
− 2

)
+ l3

(
d2

d3
− 2

)
+ · · · + lt

(
dt−1

dt

− 2

)

−2l1 + (k + 1)n + (t − k + 1)m − 1.

Since n � m, li � m for all i. Thus,

exp(D × E) � m

(
d1

d2
− 2

)
+ m

(
d2

d3
− 2

)
+ · · · + m

(
dt−1

dt

− 2

)

−2d1 + (k + 1)n + (t − k + 1)m − 1

= m

(
d1

d2
+ · · · + dt−1

dt

)
− 2d1 + (k + 1)n − (t + k − 3)m − 1.

By Lemma 4(1), we have

exp(D × E) � md1 − 2d1 + (k + 1)n − (t + k − 3)m − 1

� (m − 2)n + (k + 1)n − (t + k − 3)m − 1

= mn + (k − 1)n − (t + k − 3)m − 1

� mn + (k − 1)m − (t + k − 3)m − 1

= mn − (t − 2)m − 1

� mn − 1. �

Corollary 1. If Zm ≺ E ≺ Zm,n, then exp(Zn × E) = mn − 1.

Proof. This follows from Lemma 2 and Theorem 1. �
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Lemma 5. If t � 3, we have

exp(D × E) � mn

2
+ m − 1.

Proof. Let C1, . . . , Ct and l1, . . . , lt be the same notations as in the proof of Theorem 1. From
the proof of Theorem 1 and Lemma 4(2), we have

exp(D × E) � m

(
d1

d2
+ · · · + dt−1

dt

)
− 2l1 + (k + 1)n − (t + k − 3)m − 1

� m

(
d1

2
+ 2

)
− 2d1 + 2n + (k − 1)n − (t + k − 3)m − 1

� d1

(m

2
− 2

)
+ 2n − (t − 4)m − 1

� mn

2
+ (4 − t)m − 1

� mn

2
+ m − 1. �

Theorem 2. Let D and E be digraphs on n, m vertices (n � m), respectively. Let D × E be
primitive. Then

exp(D × E) = mn − 1 if and only if (m, n) = 1, D ∼= Zn and Zm ≺ E ≺ Zm,n.

Proof. Let C1, . . . , Ct and l1, . . . , lt be the same notations as in the proof of Theorem 1. If
exp(D × E) = mn − 1 and t � 3, mn − 1 � mn

2 + n − 1 by Lemma 5, which is impossible. So
t = 2. Thus

mn − 1 = exp(D × E)

� g(l1, l2) − l1 − l2 + 2n + 2m − 1

= l1l2 − 2l1 − 2l2 + 2n + 2m − 1.

Therefore,

(m − 2)(n − 2) = mn − 2m − 2n + 4

� l1l2 − 2l1 − 2l2 + 4

= (l1 − 2)(l2 − 2)

� (m − 2)(n − 2).

This implies l1 = n and l2 = m. Since C1 : u0 → u1 → · · · → un−1 → v0 is a directed cycle
of D, VD = {u0, . . . , un−1}. If ui → uj and j > i + 1, ui → uj → uj+1 → · · · → un−1 →
u0 → · · · → ui is a cycle of D with length n + i − j + 1 � n − 1. This gives rise to a con-
tradiction. If ui → uj , i > j and (i, j) /= (n − 1, 0), ui → ui+1 → · · · → uj → ui is a cycle
of D with length j − i + 1 � n − 1. This gives rise to a contradiction. Thus D = C1 
 Zn.
Let C2 : v0 → v1 → · · · → vm−1 → v0 be a directed cycle of E. Then VE = {v0, . . . , vm−1}.
Since exp(D × E) = mn − 1, there are (u, v), (z, w) ∈ D × E such that (u, v)

mn−2
� (z, w). We

may assume that v = v0. If u
r−→ z and r � n − 2 or v

s−→ w and s � m − 2, since r + s �
n + m − 3,
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mn − 2 − r − s � mn − m − n + 1

> mn − m − n = g(m, n).

So there are x, y such that nx + my = mn − 2 − r − s. Then, (u, v)
nx→(u, v)

my→(u, v)
r→

(z, v)
s→(z, w). Thus (u, v)

mn−2→ (z, w). This gives rise to a contradiction. Therefore w = vm−1.

If vi →vj for some j >i + 1, v0 → v1 → · · · → vi → vj → vj+1 → · · · → vm−1. So v0
m+i−j→

vm−1 and m + i − j � m − 2. This gives rise to a contradiction. If vi → vj for some i > j and
(i, j) /= (n − 1, 0), vi → vj → vj+1 → · · · → vi is a directed cycle of E with length i − j + 1.
Since the length of a directed cycle in E is a multiple of n or equals to m, n|i − j + 1 or
i − j + 1 = m. If i − j + 1 = m, i = m − 1 and j = 0. Thus,

AC2 ⊂ AE ⊂ AC2 ∪ {(vi, vj )|i > j and n|i − j + 1}.
Therefore,

Zn ≺ E ≺ Zm,n. �

Lemma 6. exp(Zn × Wn) � n2 − n + 1.

Proof. Suppose (z0, ω0)
n2−n−→(zn−1, ω0). By a similar method used in Lemma 2, there are α

and β such that z0
α−→ zn−1 and ω0

β−→ ω0 where α + β = n2 − n. In the proof of Lemma
2, it is proved that α ≡ n − 1 (mod n). So α = nx + n − 1 for some nonnegative integer x.

Since ω0
β−→ ω0, let ω0 = v0 → v1 · · · → vβ = ω0. Let i1 < i2 < · · · < ik be all i such that

0 � i � β and vi = ωn−1. Since v0 = ω0, v1 = ω1. We can prove vt = ωt for all 1 � t < i1 by
induction. Since vi1−1 = ωn−2, i1 = n − 1. For all 1 � s � k − 1, since vis = ωn−1, vis+1 is ω0
or ω1. If vis+1 = ω0, is+1 = is + n and if vis+1 = ω1, is+1 = is + n − 1. Since vik+1 = ω0 = vβ ,
ik = β − 1. Since is+1 − is is n − 1 or n,

β = n − 1 +
k−1∑
s=1

(is+1 − is) + 1 = n + ny + (n − 1)z

for some nonnegative integers y and z. We have n2 − 3n + 1 = n2 − n + (−2n + 1) = α + β +
(−2n + 1) = n(x + y) + (n − 1)z. So (n − 1)z ≡ 1 (mod n). Thus z ≡ −1 (mod n). Therefore
z � n − 1. Then (n − 1)2 � (n − 1)z � n2 − 3n + 1 < (n − 1)2. This is a contradiction. Thus
exp(Zn × Wn) � n2 − n + 1. �

Theorem 3. Let D, E be digraphs on n vertices and D × E be primitive. Then,

exp(D × E) � n2 − n + 1.

Moreover, exp(D × E) = n2 − n + 1 if and only if D × E is isomorphic to Zn × Wn.

Proof. Let C1, . . . , Ct and l1, . . . , lt be the same notations as in the proof of Theorem 1. Suppose
exp(D × E) > n2 − n + 1. If t � 3, from Lemma 5,

exp(D × E) � n2

2
+ n − 1 < n2 − n + 1.

This is a contradiction. So t = 2. We may assume that l1 < l2. If l1 � n − 2, from Lemma 1,
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exp(D × E) � g(l1, l2) − l1 − l2 + 4n − 1

= l1l2 − 2l1 − 2l2 + 4n − 1 = (l1 − 2)(l2 − 2) + 4n − 5

� (n − 4)(n − 2) + 4n − 5 = n2 − 2n + 3 < n2 − n + 1.

This is a contradiction. So l1 = n − 1 and l2 = n. From Lemma 1, exp(D × E) � n2 − n + 1.

So exp(D × E) = n2 − n + 1. Thus there are vertices (x1, y1) and (x2, y2) on D × E such that

(x1, y1)
n2−n
� (x2, y2). Assume C1 is a directed cycle u0 → u1 → · · · → un−2 → u0 in D and C2

is a directed cycle v0 → v1 → · · · → vn−1 → v0. Since D and E are strongly connected, without
loss of generality, we may assume that E has a directed cycle of length n. Let w be a vertex of
D different from u0, u1, . . . , un−2. Since D is strongly connected, there are 0 � i, j � n − 2
such that ui → w → uj . We may assume i = 0. If j � 3, w → uj → uj+1 → · · · u0 → w is
a directed cycle of length n − i + 1 (� n − 2). This is a contradiction. If j = 0, w → u0 → w

is a cycle of length 2. This is a contradiction. If j = 2, v
n−1−→ v for any vertex v of D. There are

integers s1 and s2 such that x1
s1−→ x2, y1

s2−→ y2 and 0 � s1, s2 � n − 1. Since

n2 − n − s1 − s2 � n2 − n − (n − 1) − (n − 1)

= n2 − 3n + 2 > (n − 1)(n − 2) − 1 = g(n − 1, n),

there are nonnegative integers p and q such that (n − 1)p + nq = n2 − n − s1 − s2. Since

(x1, y1)
(n−1)p−→ (x1, y1)

nq−→(x1, y1)
s1−→(x2, y1)

s2−→(x2, y2)

and p(n − 1) + qn + s1 + s2 = n2 − n, (x1, y1)
n2−n−→(x2, y2). This is a contradiction. So j = 1

and there is no other arc starting from w. Similarly there is no arc ending at w except (u0, w). If
F is the union of C1 and a path u0 → w → u0, F is a subgraph of D and isomorphic to Wielandt
digraph Wn on n-vertices.

If D /= F , there is an arc (ui, uj ) of D which is not an arc of F . If j > i, j � i + 2. So
there is a directed cycle ui → uj → uj+1 → · · · → un−1 → u0 → u1 → · · · → ui of length
n − j + i � n − 2. This is a contradiction. If j < i, there is a directed cycle ui → uj → uj+1 →
· · · → ui of length i − j + 1. If i − j + 1 � n − 1, i = n − 1 and j = 0. But this is an arc of F .
This is a contradiction. So D = F .

If E /= C2, there is an arc (vi, vj ) of E which is not an arc of C2. We may assume i = 0. If j � 3,
there is a directed cycle v0 → vj → vj+1 → · · · → vn−1 → v0 of length n − j + 1 � n − 2.

This is a contradiction. If j = 2, there are integers r1, r2 such that x1
r1−→ x2, y1

r2−→ y2 and
0 � r1, r2 � n − 1. Since

n2 − n − r1 − r2 � n2 − n − (n − 1) − (n − 1)

= n2 − 3n + 2 > (n − 1)(n − 2) − 1 = g(n − 1, n),

there are nonnegative integers p and q such that (n − 1)p + nq = n2 − n − r1 − r2. Note that

y1
n−→ y1 and y1

n−1−→ y1 except y1 = v1. So there is a vertex y′ of E such that y1
h−→ y′ n−h−→ y1

and y′ n−1−→ y′. If q = 0, since

(x1, y1)
(n−1)p−→ (x1, y1)

s1−→(x2, y1)
s2−→(x2, y2)

and p(n − 1) + s1 + s2 = n2 − n, (x1, y1)
n2−n−→(x2, y2). This is a contradiction. If q � 1, since
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(x1, y1)
(n−1)p−→ (x1, y1)

h−→(x1, y
′) n(q−1)−→ (x1, y

′) n−h−→(x1, y1)
r1−→(x2, y1)

r2−→(x2, y2)

and p(n − 1) + h + n(q − 1) + n − h + r1 + r2 = n2 − n, (x1, y1)
n2−n−→(x2, y2). This is a con-

tradiction. So E = C2. Thus D × E is isomorphic to Wn × Zn. From Lemma 6, exp(D × E) =
n2 − n + 1. �
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