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Abstract

We prove practical formulas for the Reidemeister coincidence number, the Lefschetz
coincidence number and the Nielsen coincidence number of continuous maps
between oriented infra-nilmanifolds of equal dimension. In order to obtain these
formulas, we use the averaging formulas for the Lefschetz coincidence number and
for the Nielsen coincidence number and we develop an averaging formula for the
Reidemeister coincidence number. We also give a simple proof of the averaging
formula for the Lefschetz coincidence number.
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1. Introduction
In order to study the number of fixed points of a continuous selfmap f : M ® M on a

closed, connected manifold M, three homotopy invariant numbers are associated to f:

the Reidemeister number R(f), the Lefschetz number L(f) and the Nielsen number N(f).

The non-vanishing of the Lefschetz number of f implies the existence of a fixed point,

while the Nielsen number is a lower bound for the number of fixed points. The Niel-

sen number is of particular interest since a classical result by Wecken [1] states that

the Nielsen number coincides with the minimal number of fixed point in the homo-

topy class of the map when the dimension of M is at least three.

Because of the mixture of geometry and algebra that occur in the definition of the

Nielsen number, its computation is very hard in general and it is up to now the subject

of a great deal of research. Simple and practical formulas have only been obtained in

specific cases (for an overview, see for instance [2,3]) and one often turns the attention

to comparing the Nielsen number to other numbers that are relatively more easy to

compute, such as the Lefschetz number and the Reidemeister number (see for instance

[4] for an overview).

Closely related to fixed point theory is coincidence theory. A point x Î M1 is a coin-

cidence of a pair of continuous maps f, g : M1 ® M2 when f(x) = g(x). In the case

where M1 and M2 are both oriented and of equal dimension, the Reidemeister coinci-

dence number R(f, g), the Lefschetz coincidence number L(f, g) and the Nielsen coinci-

dence number N(f, g) are defined. The Nielsen coincidence number is particularly
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interesting since it is, just as in the fixed point case, a strong lower bound for the

number of coincidences. Unfortunately, the Nielsen coincidence number is usually at

least as hard to compute as the Nielsen number in fixed point theory.

In 1985, Anosov [5] shows that for nilmanifolds, the Nielsen number can easily be

computed via the Lefschetz number since N(f) = |L(f)| for any continuous selfmap f on

a nilmanifold. The result of Anosov was also proved by Fadell and Husseini [6]. This is

the beginning of the fruitful study of fixed point theory and coincidence theory for lar-

ger classes of manifolds, such as infra-nilmanifolds [7,8], solvmanifolds (see for

instance [9]) and infra-solvmanifolds (see for example [10]). In [11,12], formulas for

the Lefschetz (fixed point) number and the Nielsen (fixed point) number of continuous

selfmaps on infra-nilmanifolds have been proved. In coincidence theory however, only

recently a formula has been proved for the Lefschetz coincidence number and the

Nielsen coincidence number of a pair of continuous maps between solvmanifolds of

type (R) [13]. For infra-nilmanifolds however, formulas for the Lefschetz coincidence

number and the Nielsen coincidence number are still open for study.

In this article, we address this problem and we prove in Theorem 6.11 explicit and

practical formulas for the Reidemeister coincidence number, the Lefschetz coincidence

number and the Nielsen coincidence number of a pair of continuous maps between

oriented infra-nilmanifolds of equal dimension, generalizing [12] from fixed point the-

ory to coincidence theory and generalizing [13] from nilmanifolds to infra-nilmanifolds.

In order to prove these formulas, we use the averaging formulas for the Nielsen coinci-

dence number [14] and for the Lefschetz coincidence number (see [[9], p. 88] and [10])

and we develop an averaging formula for the Reidemeister coincidence number. We

also formulate a simple proof for the averaging formula for the Lefschetz coincidence

number.

2. Preliminaries
In this section, we fix notation and we give some definitions that will be needed to

prove our results.

Definition 2.1. If M̃ → M is a covering map, then we use A
(
M̃, p

)
or simply A

(
M̃
)

to denote the covering transformation group. If p1 : M̃1 → M1 and p2 : M̃2 → M2 are

covering maps, then we say that a continuous map f̃ : M̃1 → M̃2 is a homotopy lift of

a continuous map f : M1 ® M2 when f̃ is the lift of a map homotopic to f.

Definition 2.2. Let G be a group and g Î G. Then we use τg : G ® G : g’ ↦ gg’ g-1 to

denote the conjugation map lg : G ® G : g’ ↦ gg’ to denote the left multiplication

map. If �, ψ : G ® H are morphisms of groups, then we define coin(�, ψ) = {g Î G |

�(g) = ψ(g)}.

2.1. Coincidence theory

In this section, we introduce basic notions concerning coincidence theory. A reference

on coincidence theory is [15].

Let M1 and M2 be oriented, closed, connected manifolds of equal dimension. In

order to study the coincidence set Coin(f, g) = {x Î M1 | f(x) = g(x)} of a pair of con-

tinuous maps f, g : M1 ® M2, one splits the coincidence set into so-called coincidence

classes. In this article, we define coincidence classes by fixing lifts f̃ , g̃ : M̃1 → M̃2 of f
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and g, where p1 : M̃1 → M1 and p2 : M̃2 → M2 are universal covers. Remark that by

fixing a lift f̃ : M̃1 → M̃2 of f : M1 ® M2, the continuous map f : M1 ® M2 induces a

morphism f× : A
(
M̃1, p1

) → A
(
M̃2, p2

)
between the covering transformation groups as

follows.

Definition 2.3. Let A
(
M̃1, p1

)
be the covering transformation group of the cover

p1 : M̃1 → M1 and A
(
M̃2, p2

)
the covering transformation group of the cover

p2 : M̃2 → M2. For every α ∈ A
(
M̃1, p1

)
, let f×(a) be the unique covering transforma-

tion in A
(
M̃2, p2

)
that satisfies f̃α = f×(α)f̃ .

Fix a lift f̃ : M̃1 → M̃2 of f and a lift g̃ : M̃1 → M̃2 of g. Then for any α ∈ A
(
M̃2, p2

)
, the

set p1
(
Coin

(
αf̃ , g̃

))
is by definition a coincidence class of f, g. Now for any pair of cover-

ing transformations α,β ∈ A
(
M̃2, p2

)
, if p1

(
Coin

(
αf̃ , g̃

))
∩ p1

(
Coin

(
β f̃ , g̃

))
�= ∅, then

one can show that p1
(
Coin

(
αf̃ , g̃

))
= p1

(
Coin

(
β f̃ , g̃

))
and that there exists

γ ∈ A
(
M̃1, p1

)
such that b = g × (g)af × (g)-1. This is the motivation for the following

definitions.

Definition 2.4. Let G1 and G2 be groups and �, ψ : G1 ® G2 morphisms of groups.

Define an equivalence relation ~ on G2 by

α ∼ β ⇔ ∃γ ∈ G1 : β = ψ(γ )αϕ(γ )−1.

The equivalence classes are called coincidence Reidemeister classes or (doubly)

twisted conjugacy classes and R[ϕ,ψ] denotes the set of coincidence Reidemeister

classes. For any a Î G2, we use [a] to denote the coincidence Reidemeister class con-

taining a. The Reidemeister coincidence number R(�, ψ) of �, ψ is defined as the car-

dinality of R[ϕ,ψ].

Definition 2.5. The Reidemeister coincidence number R(f, g) of the continuous maps

f and g is defined as the Reidemeister coincidence number R(f×, g×) of the induced

morphisms f× and g×. For any coincidence Reidemeister class [α] ∈ R [f×, g×
]
, the set

p1
(
Coin

(
αf̃ , g̃

))
does not depend on the particular choice of the representative a of

the coincidence Reidemeister class and we call p1
(
Coin

(
αf̃ , g̃

))
the coincidence class

of f, g corresponding to [a].
Note that the Reidemeister coincidence number R(f, g) does not depend on the parti-

cular choice of the lifts f̃ , g̃. Also the coincidence classes do not depend on the choice

of lifts, although the corresponding coincidence Reidemeister classes may.

To each isolated subset C of Coin(f, g), one associates an integer ind(f, g; C), called

the coincidence index, which generalizes the well-known fixed point index to Nielsen

coincidence theory in the setting of maps between oriented manifolds of the equal

dimension by Schirmer [16] (see also [17]). Each coincidence class is an isolated subset

of Coin(f, g). If the coincidence index of a coincidence class is non-zero, then we call

the coincidence class essential. One can prove that the number of essential coincidence

classes is finite. The Lefschetz coincidence number L(f, g) is by definition the sum of

the coincidence indices of the coincidence classes. If L(f, g) ≠ 0, then f and g have a

coincidence. The Nielsen coincidence number N(f, g) is defined as the number of
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essential coincidence classes of f, g. This number plays a central role in coincidence

theory since N(f, g) is a lower bound for the cardinality of Coin(f, g). The Nielsen coin-

cidence number, the Lefschetz coincidence number and the Reidemeister coincidence

numbers are homotopy invariants: if f’ is homotopic to f and g’ is homotopic to g, then

N(f’, g’) = N(f, g), L(f’, g’) = L(f, g) and R(f’, g’) = R(f, g). Schirmer [16] shows that when

the dimension of M1 and M2 is at least three, then for any pair of continuous maps f,

g : M1 ® M2, there exist maps f’ homotopic to f and g’ homotopic to g such that the

cardinality of Coin(f’, g’) is precisely N(f, g). In other words: when the dimension is at

least three, then the Nielsen number coincides with the minimal number of coinci-

dence points in the homotopy class of the map.

2.2. Infra-nilmanifolds

In this section, we shortly review infra-nilmanifolds. A reference is [18]. Let G be a

connected, simply connected, nilpotent Lie group and let C be a maximal compact

subgroup of Aut(G). A discrete and cocompact subgroup Π of G ⋊ C ⊂ Aff(G) = G ⋊
Aut(G) is called an almost-crystallographic group. Moreover, if Π is torsion free, then

Π is called an almost-Bieberbach group and the quotient space Π\G is a closed mani-

fold that we call an infra-nilmanifold. In particular, if Π ⊂ G, then Π\G is called a nil-

manifold. Recall from [19] that Γ = Π ∩ G is the maximal normal nilpotent subgroup

of Π with finite quotient group Π/Γ. The quotient Π/Γ is isomorphic to the group {A

Î Aut(G) | ∃a Î G such that (a, A) Î Π} which we call the holonomy group of the

infra-nilmanifold Π\G or of the almost-Bieberbach group Π.

Let us recall an important result on maps between infra-nilmanifolds.

Theorem 2.6. [[8], Corollary 1.2] Let G1 and G2 be connected, simply connected, nil-

potent Lie groups and M1 and M2 infra-nilmanifolds modeled on G1 and G2 respec-

tively. Let f : M1 ® M2 be a continuous map, then there exist d Î G2 and a morphism

of Lie groups D : G1 ® G2 such that ld ○ D : G1 ® G2 is a homotopy lift of f.

In fact, the result in [8] is only formulated for selfmaps, but it is straight forward to

generalize the proof to the setting in Theorem 2.6. There is a similar result for maps

between nilmanifolds, cf. [[6], Proposition 3.2] or [[9], Lemma 2.7]:

Theorem 2.7. Let G1 and G2 be connected, simply connected, nilpotent Lie groups

and N1 and N2 nilmanifolds modeled on G1 and G2 respectively. Let f : N1 ® N2 be a

continuous map. Then f has a homotopy lift D : G1 ® G2 that is a morphism of Lie

groups.

When D : G1 ® G2 is a morphism of Lie groups, then we will use D* to denote the

corresponding morphism of Lie algebras.

3. The Reidemeister coincidence number
Suppose we have a commutative diagram of groups:

1 −−−→ Γ1
i1−−−→ Π1

u1−−−→ Π1/Γ1 −−−→ 1

ϕ

⏐
⏐

ψ ϕ

⏐
⏐

ψ ϕ̄

⏐
⏐

ψ̄

1 −−−→ Γ2
i2−−−→ Π2

u2−−−→ Π2/Γ2 −−−→ 1

(3:1)
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where the top and bottom sequences are exact and where the quotient groups Π1/Γ1 and

Π2/Γ2 are finite. For each ᾱ ∈ �2/�2 and α ∈ u−1
2 (ᾱ), we have a commutative diagram

1 −−−→ Γ1
i1−−−→ Π1

u1−−−→ Π1/Γ1 −−−→ 1

ταϕ

⏐
⏐

ψ ταϕ

⏐
⏐

ψ τᾱϕ̄

⏐
⏐

ψ̄

1 −−−→ Γ2
i2−−−→ Π2

u2−−−→ Π2/Γ2 −−−→ 1

(3:2)

Moreover the following sequence of groups

1 → coin
(
ταϕ′,ψ ′) i1−→ coin (ταϕ,ψ)

u1−→ coin
(
τᾱϕ̄, ψ̄

)
is exact. Remark that i2 : Γ2 ® Π2 and u2 : Π2 ® Π2/Γ2 induce maps

îα2 : R [ταϕ′,ψ ′] → R [ταϕ,ψ] and ûα
2 : R [ταϕ,ψ] → R [τᾱϕ̄, ψ̄

]
such that ûα

2 is surjec-

tive and
(
ûα
2

)−1 ([1̄]) = im
(
îα2
)
. Define î2 = îId2 and û2 = ûId2 , where Id Î Π2 is the iden-

tity element.

With this notation:

Lemma 3.1. [[14], Lemma 2.1] Given the commutative diagram (3.1), we have for

each a Î Π2 that

#û−1
2 ([ᾱ]) = #

(
ûα
2

)−1 ([
1̄
])
, (1)

R (ϕ,ψ) =
∑

[ᾱ]∈R[ϕ̄,ψ̄]

#û−1
2 ([ᾱ]) =

∑
[ᾱ]∈R[ϕ̄,ψ̄]

#
(
ûα
2

)−1 ([1̄])
=

∑
[ᾱ]∈R[ϕ̄,ψ̄]

#im
(
îα2
)
,

(2)

R
(
ταϕ′,ψ ′) = ∑

[γ ]∈im
(
îα2
) #
(
îα2
)−1

([γ ]) ,
(3)

#
(
îα2
)−1

([γ ]) =
[
coin

(
τᾱϕ̄, ψ̄

)
: u1

(
coin

(
τγαϕ,ψ

))]
for each γ ∈ �2, (4)

R
(
ταϕ′,ψ ′) = ∑

[γ ]∈im
(
îα2
)
[
coin

(
τᾱϕ̄, ψ̄

)
: u1

(
coin

(
τγαϕ,ψ

))]
.

(5)

This lemma is stated in [[14], Lemma 2.1] as a straightforward extension of [[11],

Lemma 2.1] in which a topological proof of (4) is given. We will translate the topologi-

cal proof to algebra.

Proof. Choose arbitrary a Î Π2.

(1) Choose arbitrary g Î Π2 and define γ̄ = u2(γ ). Then

[γ ] ∈ û−1
2

(
[ᾱ]
) ⇔ [γ̄ ] = [ᾱ] in R[ϕ̄, ψ̄]

⇔ ∃δ̄ ∈ �1/�1 such that γ̄ ᾱ−1 = ψ̄(δ̄)ᾱϕ̄(δ̄)−1ᾱ−1

= ϕ̄(δ̄)1̄ (τᾱϕ̄) (δ̄)−1

⇔ ûα
2

([
γ α−1]) = [γ̄ ᾱ−1] = [1̄] in R [τᾱϕ̄, ψ̄

]
⇔ [

γ α−1] ∈ (ûα
2

)−1 ([
1̄
])
.
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(2) Because û2 is surjective, R[ϕ,ψ] equals the disjoint union

R[ϕ,ψ] =
∐

[ᾱ]∈R[ϕ̄,ψ̄]

û−1
2 ([ᾱ]) .

Hence the first equality follows. The second equality follows from (1) and the last

equality follows from the fact that
(
ûα
2

)−1 ([1̄]) = im
(
îα2
)
.

(3) This follows from the fact that R [ταϕ′,ψ ′] equals the disjoint union

R[ταϕ′,ψ ′] =
∐

[γ ]∈im
(
îα3
)
(
îα2
)−1

([γ ]) .

(4) Choose arbitrary g Î Γ2. Define

A : coin
(
τᾱϕ̄, ψ̄

) →
(
îα2
)−1

([γ ]) : δ̄ �→ A
(
δ̄
)
,

where

A(δ̄) =
[
ψ(δ)γ (ταϕ) (δ)−1

]
∈
(
îα2
)−1

([γ ]) ⊂ R [ταϕ′,ψ ′] ,
and where δ Î Π1 is chosen such that u1(δ) = δ̄.

First we prove that A is well defined:

ψ(δ)g(τa�)(δ)-1 belongs to Γ2: This follows from the fact that

u2
(
ψ(δ)γ (ταϕ)(δ)−1

)
= ψ̄(δ̄) (τᾱϕ̄) (δ̄)−1 = 1 because δ̄ ∈ coin

(
τᾱϕ̄, ψ̄

)
.

[ψ(δ)g(τa�)(δ)-1] does not depend on the choice of δ:

Suppose that u1(δ) = u1(δ′) = δ̄ . Then there exists b Î Γ1 such that δ’ = bδ.

Then

ψ(δ′)γ (ταϕ) (δ′)−1 = ψ ′(β)
(
ψ(δ)γ (ταϕ)(δ)−1

)
(ταϕ′)(β)−1

so that[
ψ(δ′)γ (ταϕ)

(
δ′)−1

]
=
[
ψ(δ)γ (ταϕ) (δ)−1

]
.

Let us now prove that A is surjective. Choose arbitrary [β] ∈
(
îα2
)−1

([γ ]). Because(
îα2
)

([β]) = [γ ], there exists δ Î Π1 such that b = ψ(δ)g(τa�)(δ)-1. Because b, g Î Γ2, we

have that 1 = u2(β) = ψ̄(δ̄) (τᾱϕ̄) (δ̄)−1, where δ̄ = u2(δ) so that δ̄ ∈ coin
(
τᾱϕ̄, ψ̄

)
. Addi-

tionally, A(δ̄) = [β].

In order to prove statement (4), it is left to prove that for each δ̄, δ̄′ ∈ coin
(
τᾱϕ̄, ψ̄

)
,

we have that A(δ̄) = A(δ̄′) if and only if there exists b Î coin(τga�, ψ) such that

δ̄′ = δ̄u1(β). Choose arbitrary δ̄, δ̄′ ∈ coin
(
τᾱϕ̄, ψ̄

)
.

First assume that there exists b Î coin(τga�, ψ) such that δ̄′ = δ̄u1(β). Choose δ Î Π1

such that u1(δ) = δ̄ and define δ’ = δb, then u1(δ′) = δ̄′. Remark that because b Î coin

(τga�, ψ) we have that ψ(b) = g(τa�)(b)g-1 so that ψ(b)g(τa�)(b)-1 = g. Hence
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A(δ̄′) =
[
ψ(δ′)γ (ταϕ)(δ′)−1

]
=
[
ψ (δβ) γ (ταϕ)(δβ)−1

]
=
[
ψ(δ)ψ(β)γ (ταϕ)(β)−1(ταϕ)(δ)−1

]
=
[
ψ(δ)γ (ταϕ)(δ)−1

]
= A(δ̄).

Conversely suppose that A(δ̄) = A(δ̄′). It then suffices to prove that

δ̄−1δ̄′ ∈ u1
(
coin

(
τγαϕ,ψ

))
. Choose δ, δ’ Î Π1 such that u1(δ) = δ̄ and δ̄′ = δ̄u1(β). Then

because A(δ̄′) = A(δ̄), there exists h Î Γ1 such that

ψ(δ′)γ (ταϕ)(δ′)−1 = ψ(η)ψ(δ)γ (ταϕ)(δ)−1(ταϕ)(η)−1,

= ψ(ηδ)γ (ταϕ)(ηδ)−1

or

ψ
(
δ−1η−1δ′) γ = γ (ταϕ)

(
δ−1η−1δ′) .

Hence δ−1η−1δ′ ∈ coin
(
τγαϕ,ψ

)
and δ̄−1δ̄′ = u1

(
δ−1η−1δ′) ∈ (coin (τγαϕ,ψ

))
.

(5) This follows from (3) and (4).

Corollary 3.2. [[20], Corollary 2.1] Given the commutative diagram (3.1),

coin
(
τᾱϕ̄, ψ̄

)
= {1̄} for all a Î Π2 then

R(ϕ,ψ) =
∑

[ᾱ]∈R[ϕ̄,ψ̄]

R
(
ταϕ′,ψ ′).

Proof. By (2) of Lemma 3.1,

R(ϕ,ψ) =
∑

[ᾱ]∈R[ϕ̄,ψ̄]

#im
(
îα2
)
=

∑
[ᾱ]∈R[ϕ̄,ψ̄]

#îα2
(R [ταϕ′,ψ ′]).

By (4) of Lemma 3.1, îα2 is injective and hence the conclusion follows.

Remark 3.3. The group Π1/Γ1 acts on the set [ᾱ] ∈ R[ϕ̄, ψ̄] by the rule

ᾱ �→ ψ̄
(
β̄
)
ᾱϕ̄
(
β̄
)−1. This action is transitive. The isotropy subgroup is{

β̄|ψ̄ (β̄) ᾱϕ̄
(
β̄
)−1

= ᾱ
}
= coin

(
τᾱϕ̄, ψ̄

)
.

Hence [�1 : �1] = #[ᾱ] · #coin (τᾱϕ̄, ψ̄
)
.

Corollary 3.4. [[21], Proposition 3.8] Suppose we are given the commutative diagram

(3.1). Then R(�, ψ) is finite if and only if R(τa�’, ψ’) is finite for every a Î Π2.

Proof. Suppose that R(�, ψ) is finite. Choose arbitrary a Î Π2. By (2) of Lemma 3.1,

im
(
îα2
)

is finite. Because also
(
τᾱϕ̄, ψ̄

)
is finite, by (5) of Lemma 3.1, R(τa�’, ψ’) is

finite. The converse is also easy to check.

Furthermore, the Reidemeister coincidence numbers R(�, ψ) and R(τa�’, ψ’) are

directly related as follows:

Theorem 3.5. Suppose we have a commutative diagram of groups:

1 −−−→ Γ1
i1−−−→ Π1

u1−−−→ Π1/Γ1 −−−→ 1

ϕ

⏐
⏐

ψ ϕ

⏐
⏐

ψ ϕ̄

⏐
⏐

ψ̄

1 −−−→ Γ2
i2−−−→ Π2

u2−−−→ Π2/Γ2 −−−→ 1
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where the top and bottom sequences are exact and the quotient groups Π1/Γ1 and Π2/

Γ2 are finite. Then

R(ϕ,ψ) ≥ 1
[�1 : �1]

∑
ᾱ∈�2/�2

R
(
ταϕ′,ψ ′).

When either side of the inequality is finite, then equality occurs if and only if coin

(τa�, ψ)) ⊂ Γ1 for each a Î Π2.

Remark that R(τa�’, ψ’) depends only on ᾱ = u2(α). Indeed, suppose that u2(a) = u2
(b), then ab-1 Î Γ2 and ba-1 Î Γ2 and we can define

A : R [ταϕ′,ψ ′] → R [τβϕ′,ψ ′] : [γ ] �→ [γ αβ−1]

and

B : R [τβϕ′,ψ ′] → R [ταϕ′,ψ ′] : [γ ] �→ [γβα−1].

A and B are bijections that are each other’s inverse, hence R(τa�’, ψ’) = R(τb�’, ψ’).

Proof of Theorem 3.5. This follows from the following observations:∑
ᾱ∈�2/�2

R
(
ταϕ′,ψ ′)

=
∑

ᾱ∈�2/�2

∑
[γ ]∈im

(
îα2
)
[
coin

(
τᾱϕ̄, ψ̄

)
: u1

(
coin

(
τγαϕ,ψ

))]
by (5) of Lemma 3.1

= [�1 : �1]
∑

ᾱ∈�2/�2

∑
[γ ]∈im

(
îα2
)
[
coin

(
τᾱϕ̄, ψ̄

)
: u1

(
coin

(
τγαϕ,ψ

))]
#[ᾱ] · #coin (τᾱϕ̄, ψ̄

)
by Remark 3.3

= [�1 : �1]
∑

ᾱ∈�2/�2

1
#[ᾱ]

∑
[γ ]∈im(iα2)

1

#u1
(
coin

(
τγαϕ,ψ

))
≤ [�1 : �1]

∑
ᾱ∈�2/�2

1
#[ᾱ]

∑
[γ ]∈im

(
îα2
)1

= [�1 : �1]
∑

ᾱ∈R[ϕ̄,ψ̄]

#im
(
îα2
)

= [�1 : �1] · R(ϕ,ψ)

by (2) of Lemma 3.1.

Moreover, when either side of the inequality is finite, then equality holds if and only

if for each a Î Π2, u1(coin(τa�, ψ)) is the trivial group.

4. Reidemeister coincidence numbers for covering spaces
Now we can translate the previous results on algebraic Reidemeister coincidence num-

bers to results on topological Reidemeister coincidence numbers.

Theorem 4.1. Let M1 and M2 be closed and connected manifolds with universal cov-

ers p1 : M̃1 → M1 and p2 : M̃2 → M2. Let (f, g) : M1 ® M2 be a pair of maps and let(
f̃ , g̃
)
: M̃1 → M̃2 be a pair of lifts of (f, g). Let �1 = A

(
M̃1, p1

)
and �2 = A

(
M̃2, p2

)
be
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the covering transformation groups and let f×, g× : Π1 ® Π2 be the morphisms of groups

induced by
(
f̃ , g̃
)
. Suppose Γ1 is a finite index normal subgroup of Π1 and Γ2 is a finite

index normal subgroup of Π2 such that f×(Γ1) ⊂ Γ2 and g×(Γ1) ⊂ Γ2. Let(
f̄ , ḡ
)
: �1\M̃1 → �2\M̃2 be a pair of lifts of (f, g) so that the following diagram com-

mutes

M1
f̃−−−→
g̃

M2

⏐
⏐

p1

⏐
⏐

p2

Γ1 M1
f̄−−−→
ḡ

Γ2 � M2

⏐
⏐

p̄1

⏐
⏐

p̄2

M
f−−−→
g

M

�

Then:

(1) If coin
(
τᾱ f̄×, ḡ×

)
= {1̄} for all a Î Π2, then

R(f , g) =
∑

[ᾱ]∈R[f̄×,ḡ×]

R
(
ᾱf̄ , ḡ

)
.

(2) R(f, g) is finite if and only if R
(
ᾱ f̄ , ḡ

)
is finite for every a Î Π2.

(3) We have

R(f , g) ≥ 1
[�1 : �1]

∑
ᾱ∈A(�2\M̃2,p̄2)

R
(
ᾱ f̄ , ḡ

)
.

When either side of the inequality is finite, then equality occurs if and only if coin

(τaf×, g×) ⊂ Γ1 for each a Î Π2.

Theorem 4.2 (Averaging Formula for the Reidemeister Coincidence Number). Let

M1 and M2 be orientable infra-nilmanifolds of equal dimension modeled on connected,

simply connected, nilpotent Lie groups G1 and G2 respectively. Let (f, g) : M1 ® M2 be

a pair of maps. Let Π1 = A(G1, p1) and Π2 = A(G2, p2) be the covering transformation

groups and let f×, g× : Π1 ® Π2 be the morphisms of groups induced by f, g respectively.

Let Γ1 and Γ2 be finite index normal subgroups of Π1 and Π2 respectively such that

f×(Γ1) ⊂ Γ2 and g×(Γ1) ⊂ Γ2 and such that N1 = Γ1\G1 and N2 = Γ2\G2 are nilmani-

folds. If
(
f̄ , ḡ
)
: N1 → N2 is a pair of lifts of (f, g), then

R(f , g) =
1

[�1 : �1]

∑
ᾱ∈A(N2,p̄2)

R
(
ᾱ f̄ , ḡ

)
.

Proof. Suppose f and g have an inessential coincidence class. Then from the proof of

[[21], Theorem 5.1], it follows that R(f, g) = ∞ and that there exists ᾱ ∈ A
(
N2, p̄2

)
such

that R
(
ᾱ f̄ , ḡ

)
= ∞. So without loss of generality, we may assume that all coincidence
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classes are essential. Choose arbitrary a Î Π2. Then by assumption, p1
(
Coin

(
αf̃ , g̃

))
is an essential coincidence class, where p1 : G1 ® M1 is the natural covering projec-

tion. By Theorem 4.1 (3), it suffices to show that coin(τa�, ψ) ⊂ Γ1. In fact, coin(τa�,

ψ) = {1} by [[14], Lemma 4.8] together with the proof of [[14], Theorem 4.9].

5. Averaging formula for the Lefschetz coincidence number
The averaging formula for the Lefschetz coincidence number relates the Lefschetz co-

incidence number of a pair of continuous maps f, g : M1 ® M2 to the Lefschetz coinci-

dence numbers of lifts of f and g to finite sheeted regular covers of M1 and M2. The

averaging formula for the Lefschetz coincidence number has been proved in [10] (see

also [[9], p. 88]). In this section, we formulate a simple proof.

Remark 5.1 (See [[21], Lemma 3.9], [10] or [[22], p. 37]). Let f, g : M1 ® M2 be con-

tinuous maps between closed oriented manifolds M1, M2 of equal dimension. Let M1

and M2 be covers of M1 and M2 respectively and suppose that the covering projections

p̄1 : M1 → M1 and p̄2 : M2 → M2 are orientation preserving. Let (f̄ , ḡ) : M1 → M2 be a

lifting pair of (f, g). Let x̄ ∈ Coin(f̄ , ḡ). Then x = p1(x̄) ∈ p1
(
Coin(f̄ , ḡ)

)
⊂ Coin(f , g).

Because the covering projections are orientation-preserving local diffeomorphisms,

ind
(
f , g; {x}) = ind

(
f̄ , ḡ; {x̄}

)
.

Theorem 5.2 (Averaging formula for the Lefschetz coincidence number). Let

p1 : M̃1 → M1 and p2 : M̃2 → M2 be universal covers, let p̄2 : M2 → M2 and

(f̄ , ḡ) : M1 → M2 be finite sheeted, regular covers and let p′
1 : M̃1 → M1 and

p′
2 : M̃2 → M2 be covers such that the diagrams

M1

p1

p1

M1

p̄1

M1

and

M2

p2

p2

M2

p̄2

M2

commute, where all spaces are connected oriented manifolds, where M1 and M2 are

closed manifolds of equal dimension and where all covering projections are orientation

preserving local diffeomorphisms. Suppose that f has a lift f̄ : M1 → M2 and g has a

lift ḡ : M1 → M2. Then

L(f , g) =
1

#A(M1, p̄1)

∑
ᾱ∈A(M2,p̄2)

L
(
ᾱ, f̄ , ḡ

)
.

Proof. It is well-known (cf. [[23], Theorem 3.1]) that there exists a pair of maps (f’, g’)

such that (f, g) is homotopic to (f’, g’) and Coin(f’, g’) is finite. Since the Lefschetz coin-

cidence number is a homotopy invariant, we may assume that Coin(f, g) is finite.
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Because every x Î Coin(f, g) has #A
(
M1, p̄1

)
preimages under p̄1,

L(f , g) =
∑

x∈Coin(f ,g)
ind(f , g; {x})

=
1

#A
(
M1, p̄1

) ∑
x̄∈p−1

1 (Coin(f ,g))

ind(f , g; {p̄1(x̄)}).

Now

p̄−1
1

(
Coin(f , g)

)
=

∐
ᾱ∈A(M2,p̄2)

Coin
(
ᾱ f̄ , ḡ

)
.

Indeed, x̄ ∈ Coin(ᾱf̄ , ḡ) ∩ Coin(β̄ f̄ , ḡ) implies that ᾱ(f̄ (x̄)) = ḡ(x̄) = β̄(f̄ (x̄)), such that

ᾱ = β̄. Hence

L(f , g) =
1

#A
(
M1, p̄1

) ∑
ᾱ∈A(M2,p̄2)

∑
x̄∈Coin(ᾱf̄ ,ḡ)

ind
(
f , g; {p̄1(x̄)}

)
=

1

#A
(
M1, p̄1

) ∑
ᾱ∈A(M2,p̄2)

∑
x̄∈Coin(ᾱf̄ ,ḡ)

ind
(
ᾱf̄ , ḡ; {x̄}

)

because of Remark 5.1. Hence

L(f , g) =
1

#A
(
M1, p̄1

) ∑
ᾱ∈A(M2,p̄2)

ind
(
ᾱ f̄ , ḡ; Coin

(
ᾱ f̄ , ḡ

))
=

1

#A
(
M1, p̄1

) ∑
ᾱ∈A(M2,p̄2)

L(ᾱ f̄ , ḡ).

6. Formulas for the Reidemeister, Lefschetz and Nielsen co-incidence number
of maps between infra-nilmanifolds
In this section, we give practical formulas for the Reidemeister coincidence number,

the Lefschetz coincidence number and the Nielsen coincidence number of a pair of

continuous maps between oriented infra-nilmanifolds of equal dimension. First we give

some definitions and recall some useful results.

Definition 6.1. Let G be an n-dimensional oriented, connected, simply connected,

nilpotent Lie group and Λ a uniform lattice in G. Let {a1, ..., an} be a set of generators

of Λ and write bi = log ai, then {b1, ..., bn} is a basis for the Lie algebra g corresponding

to G. Suppose additionally that the basis {b1, ..., bn} is positively oriented. Then we

refer to {b1, ..., bn} as a preferred basis of Λ.

Definition 6.2. Let V and W be finite dimensional vector spaces and L : V ® W a

linear map. Let bV be a basis for V and bW a basis for W, then we use LβV
βW

to denote

the matrix corresponding to L, where this matrix is expressed with respect to the bases

bV and bW.
Let G1 and G2 be oriented, connected, simply connected, nilpotent Lie groups of

equal dimension with associated Lie algebras g1 and g2. Let Λ1 be a uniform lattice in

G1 and Λ2 a uniform lattice in G2. Let L : g1 → g2 be a linear map. Let b1 be a pre-

ferred basis of Λ1 and b2 a preferred basis of Λ2. Then det
(
Lβ1

β2

)
does not depend on
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the particular choice of the preferred bases b1 of Λ1 and b2 of Λ2 (see [[24], p. 253]).

Hence we can define

�1

det
�2

(L) = det
(
Lβ1

β2

)
for any choice of preferred bases b1 of Λ1 and b2 of Λ2.

The following theorem gives a formula for the Lefschetz coincidence number of a

pair of continuous maps between nilmanifolds of equal dimension.

Theorem 6.3. [[13], Theorem 3.1] Let G1, G2 be oriented, connected, simply con-

nected, nilpotent Lie groups of equal dimension. Let Λ1 be a uniform lattice in G1 and

Λ2 a uniform lattice in G2. Let N1 = Λ1\G1 and N2 = Λ2\G2 be the corresponding nil-

manifolds. Let f, f’ : N1 ® N2 be continuous maps. Let D, D’ : G1 ® G2 be morphisms

of Lie groups such that D is a homotopy lift of f and D’ is a homotopy lift of f’. Then

L(f , f ′) =
�1

det
�2

(
D′∗ − D∗

)
.

Remark that Theorem 2.7 guarantees the existence of morphisms of Lie groups D, D’

: G1 ® G2 that are homotopy lifts of f, f’ : N1 ® N2.

Lemma 6.4. [[24], Lemma 3.2] Let G be an oriented, connected, simply connected,

nilpotent Lie group and Λ a uniform lattice in G. Let �̂ be a finite index subgroup of

Λ. Then

�̂

det
�
(Id) =

[
� : �̂

]
.

Proof. Define N = Λ\G and N̂ = �̂\G and give N and N̂ orientations so that the cov-

ering projections G ® N and G → N̂ are orientation preserving. Then Id : G ® G : g

↦ g induces an orientation preserving map f ′ : N̂ → N and O : G ® G : g ↦ 1G

induces a constant map f : N̂ → N. By Theorem 6.3,

L(f , f ′) =
�̂

det
�
(Id).

On the other hand, by [[7], Lemma 3.10], every essential coincidence class is a sin-

gleton and has coincidence index sign
(
det�̂�(Id)

)
. Remark that sign

sign
(
det�̂�(Id)

)
= 1. So it suffices to show that #Coin(f , f ′) =

[
� : �̂

]
. Now

Coin(f , f ′) =
{
�̂g ∈ N̂|f (�̂g) = f ′(�̂g)

}
=
{
�̂g ∈ N̂|�g = �

}
=
{
�̂g ∈ N̂|g = �

}
.

Hence #Coin(f , f ′) =
[
� : �̂

]
.

Corollary 6.5. Let G be an oriented, connected, simply connected, nilpotent Lie group

and Λ a uniform lattice in G. Let �̂ be a finite index subgroup of Λ. Then
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�̂

det
�
(Id) =

1[
� : �̂

] .
Proof. Let b be a preferred basis of Λ and β̂ a preferred basis of �̂ . Then

�̂

det
�
(Id)

�

det
�̂

(Id) = det
(
Idβ̂

β Id
β

β̂

)
= det

(
Idβ

β

)
= 1

and the corollary follows from the previous lemma.

Corollary 6.6. Let G1 and G2 be oriented, connected, simply connected, nilpotent Lie

groups with associated Lie algebras g1 and g2. Let Λ1 be a uniform lattice of G1 and Λ2

a uniform lattice of G2. Let �̂1 be a finite index subgroup of Λ1 and �̂2 a finite index

subgroup of Λ2. Then for any linear map L : g1 → g2,

�̂1

det
�̂2

(L) =

[
�1 : �̂1

]
[
�2 : �̂2

] �1

det
�2

(L).

Proof. This follows from a short calculation:

�̂1

det
�̂2

(L) =
�2

det
�̂2

(Id)
�1

det
�2

(L)
�̂1

det
�1

(Id) =

[
�1 : �̂1

]
[
�2 : �̂2

] �1

det
�2

(L).

In order to prove the main formulas of this article, we will prove the following tech-

nical theorem, which generalizes [[12], Lemma 3.2].

Theorem 6.7. Let G1 and G2 be connected, simply connected, nilpotent Lie groups of

equal dimension with associated Lie algebras g1 and g2 respectively. Let D, D’ : G1 ®
G2 be morphisms of Lie groups inducing morphisms of Lie algebras D*, D′

∗ : g1 → g2.

Then for any g Î G2,

det
(
D′∗ − D∗

)
= det

(
D′∗ − Ad(g)D∗

)
.

The proof of this theorem expresses the right hand side of the equality as a polyno-

mial. Then we use the following lemma to prove that either this polynomial is the zero

polynomial or it has no roots.

Lemma 6.8. [[21], Lemma 3.5] Let G1 and G2 be connected, simply connected, nilpo-

tent (complex) Lie groups with associated (complex) Lie algebras g1 and g2 respectively.

Let D, D’ : G1 ® G2 be morphisms of Lie groups inducing morphisms of Lie algebras

D*, D′
∗ : g1 → g2. Then for any g Î G2, D′

∗ − D∗ is surjective if and only if

D′
∗ − Ad(g)D∗ is surjective.
In fact, this lemma was only proved in the real case, but its proof is also valid in the

complex case. Now we can prove Theorem 6.7.

Proof of Theorem 6.7. Let GC
1 and GC

2 be the complexifications of the real Lie groups

G1 and G2 respectively with canonical maps αi : Gi → GC
i . Since Gi is simply con-

nected, ai is injective. Let gi and gCi denote the respective Lie algebras. Then

gCi
∼= gi⊗RC.
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The morphism D : G1 ® G2 extends uniquely to a morphism DC : GC
1 → GC

2 of

complex Lie groups so that
(
DC
)
∗ = DC

∗ . Similarly, we define

D′C : GC
1 → GC

2 , D′∗C : gC1 → gC2 and Ad(g)ℂ for any g Î G2.

Let
{
X1
1, ...,X

n
1

}
be a basis for g1 and

{
X1
2, ...,X

n
2

}
a basis for g2. Write Yi

1 = (α1)∗
(
Xi
1

)
and Yi

2 = (α2)∗
(
Xi
2

)
, then

{
Y1
1 ...,Y

n
1

}
is a basis for the complex vector space gC1 and{

Y1
2 ...,Y

n
2

}
is a basis for the complex vector space gC2 . Now

det
(
D′∗ − Ad(g)D∗

)
= det

(
D′C∗ − Ad

(
α2(g)

)
DC

∗
)
,

where on the left hand side, the matrices are expressed with respect to the bases{
X1
1, ...,X

n
1

}
and

{
X1
2, ...,X

n
2

}
and on the right hand side, the matrices are expressed with

respect to the bases
{
Y1
1 ...,Y

n
1

}
and

{
Y1
2 ...,Y

n
2

}
.

Now we consider the function f : gC2 → C defined by

f (Y) = det
(
D′C∗ − Ad

(
exp(Y)

)
DC

∗
)
.

By Lemma 6.8, either f is the zero map or f has no roots.

Choose arbitrary Y ∈ gC2 . With respect to the complex basis
{
Y1
2 ...,Y

n
2

}
of gC2 . ad(Y)

is regarded as a matrix [zij (Y)] where all zij : gC2 → C are complex-valued functions.

Now there exist complex numbers ckji such that[
Yk
2,Y

j
2

]
=
∑
i

ckji Y
i
2.

Writing Y =
∑

k λkYk
2, we remark that∑

i

zij(Y)Yi
2 = ad(Y)

(
Yi
2

)
=
[
Y,Yj

2

]
=
∑
k

λk

[
Yk
2,Y

j
2

]
=
∑
k

∑
i

λkc
kj
i Y

i
2 =

∑
i

(∑
k

λkc
kj
i

)
Yi
2.

So the entries zij(Y) =
∑

k c
kj
i λk of ad(Y) depend linearly on the lk, and hence the

entries of Ad(exp(Y)) = exp(ad(Y)) depend polynomially on the lk. Consequently,

f (Y) = det
(
D′C∗ − exp

(
ad(Y)

)
DC

∗
)

is a polynomial in Y.

If f is not the zero map, then f has no roots and from the fundamental theorem of

algebra, it follows that f is a constant polynomial. Hence, regardless of whether f is the

zero map or not, f is constant and for any g Î G2,

det
(
D′∗ − Ad(g)D∗

)
= det

(
D′C∗ − Ad

(
α2(g)

)
DC

∗
)
= f
(
log

(
α2(g)

))
does not depend on g. This proves the theorem.

Now we generalize [[12], Lemma 3.1], in which the existence of a fully invariant sub-

group of finite index in an almost-Bieberbach group is proved. The proof consists
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merely of a straightforward adaptation of that of [[12], Lemma 3.1] to this more

general, but very analogous situation.

Lemma 6.9. Let Π1 and Π2 be almost-crystallographic groups and let Γi be the maxi-

mal normal nilpotent subgroup of Πi or, more generally, let Πi ⊂ Si ⋊ Aut(Si) be a finite

extension of the lattice Γi of a connected, and simply connected solvable Lie group Si.

Then there exist fully invariant subgroups Λi ⊂ Γi of Πi, which are of finite index, so that

any morphism Π1 ® Π2 maps Λ1 into Λ2.

Proof. Let k be the least common multiple of the orders of the holonomy groups Π1/

Γ1 and Π2/Γ2. Let Λ1 be the subgroup of Π1 generated by the set{
xk|x ∈

∏
1

}
.

Clearly, the generating set is a subset of Γ1 so that Λ1 is a subgroup of Γ1. Similarly,

the subgroup Λ2 of Π2 generated by {yk | y Î Π2} is a subgroup of Γ2. Obviously, any

morphism θ : Π1 ® Π2 sends the generating set {xk | x Î Π1} of Λ1 into the generating

set {yk | y Î Π2} of Λ2. Thus θ maps Λ1 into Λ2.

We claim that Λ1 has finite index in Γ1 (and hence in Π1). Consider the subgroup

Γ(k) generated by the set {xk | x Î Γ1}. Since Γ1 is a lattice in the connected and sim-

ply connected solvable Lie group S1, it is a (strongly) polycyclic group. Then Γ(k) has

finite index in Γ1, see [[25], Lemma 4.4]. Since Γ(k) ⊂ Λ1, we find that Λ1 has finite

index in Γ1. Similarly, Λ2 has finite index in Γ2 and hence in Π2.

By taking S1 = S2 and Π1 = Π2, we see that any morphism on Πi maps Λi into Λi

itself. Hence Λi is a fully invariant subgroup of Πi.

Let us recall the averaging formula for the Nielsen coincidence number in the special

case of maps between infra-nilmanifolds.

Theorem 6.10. [[14], Theorem 4.9] Let M1 and M2 be closed oriented infra-nilmani-

folds of equal dimension and f, g : M1 ® M2 continuous maps. Suppose there exist

finite sheeted regular covers p̄1 : N1 → M1 and p̄2 : N2 → M2, where N1 and N2 are nil-

manifolds. Suppose that f̄ : N1 → N2 is a lift of f and ḡ : N1 → N2 is a lift of g. Then

N(f , g) =
1

#A
(
N1, p̄1

) ∑
ᾱ∈A(N2,p̄2)

N
(
ᾱ f̄ , ḡ

)
.

Now we prove practical formulas for the Reidemeister coincidence number, the Lef-

schetz coincidence number and the Nielsen coincidence number of a pair of continu-

ous maps between oriented infra-nilmanifolds of equal dimension.

Theorem 6.11. Let G1 and G2 be connected, simply connected, nilpotent Lie groups of

equal dimension. Let Π1 and Π2 be almost-Bieberbach groups modeled on G1 and G2,

respectively and suppose that the corresponding infra-nilmanifolds M1 = Π1\G1 and M2

= Π2\G2 are oriented. Let F1 ⊂ Aut(G1) be the holonomy group of M1 and F2 ⊂ Aut(G2)

the holonomy group of M2. Let f, g : M1 ® M2 be continuous maps. Let D, D’ : G1 ® G2

be morphisms of Lie groups and d, d’ Î G2 such that ld○D : G1 ® G2 is a homotopy lift

of f and ld’○D’ : G1 ® G2 is a homotopy lift of g. (Recall that ld : G2 ® G2 : g’ ↦ dg’ is

the left multiplication map.) Then
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L(f , g) =
1

#F1

∑
A∈F2

det
(
D′∗ − A∗D∗

)
,

N(f , g) =
1

#F1

∑
A∈F2

∣∣det (D′∗ − A∗D∗
)∣∣ ,

and

R(f , g) =
1

#F1

∑
A∈F2

σ
(
det

(
D′∗ − A∗D∗

))
,

where the morphisms of Lie groups D*, D′∗ and A* induced by D, D’ and A are

expressed with respect to preferred bases of Π1 ∩ G1 and Π2 ∩ G2 and where s : ℝ ® ℝ

∪ {∞} is defined by s(0) = ∞ and s(x) = |x| for all x ≠ 0.

Remark that by Theorem 2.6, there exist d, d’ Î G2 and morphisms of Lie groups D,

D’ : G1 ® G2 such that ld ○ D : G1 ® G2 is a homotopy lift of f and ld’ ○ D’ : G1 ®
G2 is a homotopy lift of g.

Proof of Theorem 6.11. Without loss of generality, we may assume that ld ○ D is a

lift of f and ld’ ○ D’ is a lift of g. Define Γ1 = Π1 ∩ G1 and Γ2 = Π2 ∩ G2. By Lemma

6.9, there exist uniform lattices Λ1 ⊂ G1 and Λ2 ⊂ G2 such that Λi is a fully invariant

subgroup of Πi, Λi is a finite index subgroup of Γi and such that θ(Λ1) ⊂ Λ2 ⊂ Γ2 for

every morphism of groups θ : Π1 ® Π2. Define N1 = Λ1\G1 and N2 = Γ2\G2. Let

p̄2 : N2 → M2, p̄2 : N2 → M2, p′
1 : G1 → N1 and p′

2 : G2 → N2 be natural projections.

Then f, g lift to continuous maps f̄ , ḡ : N1 → N2 so that the following diagram com-

mutes up to homotopy

G1

λd◦D

λd ◦Dp1

G2
p2

N1

f̄

ḡp̄1

N2

p̄2

M1

f

g
M2

By Theorem 5.2, the averaging formula for the Lefschetz coincidence number,

L(f , g) =
1[∏

1 : �1
] ∑

ᾱ∈A(N2,p̄2)

L
(
ᾱf̄ , ḡ

)
.

By [[9], Theorem 1.1], N
(
ᾱf̄ , ḡ

)
=
∣∣∣L(ᾱf̄ , ḡ)∣∣∣ for every ᾱ ∈ A

(
N2, p̄2

)
. Hence by The-

orem 6.10, the averaging formula for the Nielsen coincidence number,

N(f , g) =
1[∏

1 : �1
] ∑

ᾱ∈A(N2,p̄2)

N
(
ᾱf̄ , ḡ

)
=

1[∏
1 : �1

] ∑
ᾱ∈A(N2,p̄2)

∣∣∣L(ᾱ f̄ , ḡ)∣∣∣.
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By the main result of [26], R
(
ᾱf̄ , ḡ

)
= σ

(
L(ᾱf̄ , ḡ)

)
for every ᾱ ∈ A

(
N2, p̄2

)
. Hence by

Theorem 4.2, the averaging formula for the Reidemeister coincidence number,

R(f , g) =
1[∏

1 : �1
] ∑

ᾱ∈A(N2,p̄2)

R
(
ᾱf̄ , ḡ

)
=

1[∏
1 : �1

] ∑
ᾱ∈A(N2,p̄2)

σ
(
L
(
ᾱf̄ , ḡ

))
.

Choose arbitrary ᾱ ∈ A
(
N2, p̄2

)
. Then there exist a Î G2 and A in the holonomy

group F2 ⊂ Aut(G2) such that la ○ A : G2 ® G2 is a lift of ᾱ. We now claim that

L
(
ᾱf̄ , ḡ

)
= [�1 : �1]

�1

det
�2

(
D′∗ − A∗D∗

)
.

First remark that f̄ : N1 → N2 induces a morphism f̄× : A
(
G1, p′i

) → A
(
G2, p′2

)
defined by

f̄×(λ) ◦ (λd ◦ D) = (λd ◦ D) ◦ λ for every λ ∈ A
(
G1, p′

1

)
.

If we apply both sides of this equality to the identity element 1G1 of G1, then we see

that f̄×(λ) = (τd ◦ D) (λ). Hence (τd ○ D)(Λ1) ⊂ Γ2 and τd ○ D : G1 ® G2 induces a

continuous map h : N1 ® N2. A similar calculation shows that h× = τd ◦ D = f̄×.

Because N1 and N2 are aspherical, f̄ and h are homotopic and we see that τd ○ D is a

homotopy lift of f̄ .

Similarly, one can show that τd’ ○ D’ is a homotopy lift of ḡ and that τa ○ A is a

homotopy lift of ᾱ. Then by Theorem 6.3,

L(ᾱf̄ , ḡ) =
�1

det
�2

((
τd′ ◦ D′)

∗ − (τa ◦ A ◦ τd ◦ D)∗
)

=
�1

det
�2

(
(τd′)∗D

′∗ − (
τaA(d)

)
∗A∗D∗

)
.

By applying Theorem 6.7 twice, we see that

L
(
ᾱf̄ , ḡ

)
=

�1

det
�2

(
(τd′)∗D

′∗ − (
τaA(d)

)
∗A∗D∗

)
=

�1

det
�2

(
D′∗ − A∗D∗

)
.

By Corollary 6.6,

L
(
ᾱf̄ , ḡ

)
=

�1

det
�2

(
D′∗ − A∗D∗

)
= [�1 : �1]

�1

det
�2

(
D′∗ − A∗D∗

)
.

Since ᾱ was chosen arbitrarily, this equality holds for every ᾱ, where A Î F2 is such

that la ○ A is a lift of ᾱ for some a Î G2. Hence

L(f , g) =
1

[�1 : �1]

∑
ᾱ∈A(N2,p̄2)

L
(
ᾱ, f̄ , ḡ

)

=
1

[�1 : �1]

∑
A∈F2

[�1 : �1]
�1

det
�2

(D′∗ − A∗D∗)

=
1

[�1 : �1]

∑
A∈F2

�1

det
�2

(D′∗ − A∗D∗)

=
1

#F1

∑
A∈F2

�1

det
�2

(D′∗ − A∗D∗).
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Similar calculations show that

N(f , g) =
1

#F1

∑
A∈F2

∣∣∣∣ �1

det
�2

(
D′∗ − A∗D∗

)∣∣∣∣
and that

R(f , g) =
1

#F1

∑
A∈F2

σ

(
�1

det
�2

(
D′∗ − A∗D∗

))
.

The following generalizes [[8], Theorem 2.2] from the fixed point version to the

coincidence version.

Corollary 6.12. Let G1 and G2 be connected, simply connected, nilpotent Lie groups of

equal dimension. Let M1 and M2 be oriented infra-nilmanifolds modeled on G1 and G2

respectively. Let F2 ⊂ Aut(G2) be the holonomy group of M2. Let f, g : M1 ® M2 be con-

tinuous maps. Let D, D’ : G1 ® G2 be morphisms of Lie groups and d, d’ Î G2 such

that ld○D : G1 ® G2 is a homotopy lift of f and ld’○D’ :G1 ® G2 is a homotopy lift of

g. Then N(f, g) = L(f, g) if and only if det
(
D′∗ − A∗D∗

) ≥ 0 for every A Î F2 and N(f, g)

= -L(f, g) if and only if det
(
D′∗ − A∗D∗

) ≤ 0 for every A Î F2, where D*, D′∗ and A*

are the morphisms of Lie algebras induced by D, D’ and A respectively, expressed with

respect to positively oriented bases of the Lie algebras associated to G1 and G2.

7. Examples
In this section we illustrate, by some examples, how practical the averaging formulas

on infra-nilmanifolds are. For this purpose we will consider maps from a 3-dimen-

sional flat Riemannian manifold to an infra-nilmanifold modeled on the Heisenberg

group Nil.

Let Nil be the 3-dimensional Heisenberg group defined by

Nil =

⎧⎨⎩
⎡⎣1 x z
0 1 y
0 0 1

⎤⎦ |x, y, z ∈ R

⎫⎬⎭ .

Then it is a connected and simply connected 2-step nilpotent Lie group. The corre-

sponding Lie algebra is

nil =

⎧⎨⎩
⎡⎣0 x z
0 0 y
0 0 0

⎤⎦ |x, y, z ∈ R

⎫⎬⎭ .

It is easy to see that (cf. [[27], Proposition 2.2])

Aut(Nil) =
{[

det(A) p
0 A

]
|A ∈ GL(2,R), p ∈ R2is a row vector

}
and an element[

det(A) p
0 A

]
∈ Aut(Nil) with p =

[
u v
]
, A =

[
p q
r s

]
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acts on Nil as follows:⎡⎣1 x z
0 1 y
0 0 1

⎤⎦ �→
⎡⎣1 px + qy z′

0 1 rx + sy
0 0 1

⎤⎦ ,

where

z′ = (ps − qr)z +
1
2

(
prx2 + 2qrxy + qsy2

)
+ ux + vy.

Example 7.1. Let Π1 be the Bieberbach group generated by the standard basis {e1, e2,

e3} of ℝ
3. Let M1 = Π1\ℝ

3 be the corresponding infra-nilmanifold, the 3-dimensional

flat torus, with the trivial holonomy group.

Consider the almost Bieberbach group Π2 given by

�2 =
〈
s1, s2, s3,α

∣∣∣∣ [s2, s1] = s23, [s3, s1] = [s3, s2] = 1,
α2 = s1αs1α−1 = s1,αs2 = s−1

2 αs−1
3

〉
.

This is a 3-dimensional orientable almost Bieberbach group π3 with Seifert bundle

type 3 ( [[28], Proposition 6.1], or the list of [[29], p. 800]). We can embed Π2 into Aff

(Nil) = Nil ⋊ Aut(Nil) by taking

s1 =

⎛⎝⎡⎣1 1 0
0 1 0
0 0 1

⎤⎦ , I

⎞⎠ , s2 =

⎛⎝⎡⎣1 0 0
0 1 1
0 0 1

⎤⎦ , I

⎞⎠ ,

s3 =

⎛⎝⎡⎣1 0 − 1
2

0 1 0
0 0 1

⎤⎦ , I

⎞⎠ , α =

⎛⎝⎡⎣1 1
2 0

0 1 0
0 0 1

⎤⎦ ,

⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦⎞⎠ .

Then the translation lattice is

�2 = �2 ∩ Nil = 〈s1, s2, s3〉 =
⎧⎨⎩
⎡⎣1 p r

2
0 1 q
0 0 1

⎤⎦ |p, q, r ∈ Z

⎫⎬⎭
and the holonomy group of Π2 is F2 = Π2/Γ2 ≅ ℤ2, which is generated by the image

A of a under the natural map Aff(Nil) ® Aut(Nil). Thus, A is the automorphism on

Nil defined by

A =

⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦ :

⎡⎣1 x z
0 1 y
0 0 1

⎤⎦ �→
⎡⎣1 x −z
0 1 −y
0 0 1

⎤⎦ .

Let M2 = Π2\Nil be the corresponding infra-nilmanifold.

Define � : Π1 ® Π2 by

ϕ(e1) = α and ϕ(e2) = ϕ(e3) = 1�2 .

Define the morphism of Lie groups D : ℝ3 ® Nil by

D(x, y, z) =

⎡⎣1 x
2 0

0 1 0
0 0 1

⎤⎦ .
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Define d = 1Nil, then one can verify that �(g) ○ ld ○ D = ld ○ D ○ g for g = e1, e2, e3
and hence for all g Î Π1. Thus ld ○ D : ℝ3 ® Nil induces a map f : M1 ® M2 so that

f× = �.

Define ψ : Π1 ® Π2 by

ψ(e1) = 1Nil, ψ(e2) = s2 and ψ(e3) = s−1
3 .

Define d’ = 1Nil Î Nil and define the morphism of Lie groups D’ : ℝ3 ® Nil by

D′(x, y, z) =

⎡⎣1 0 − z
2

0 1 y
0 0 1

⎤⎦ .

Then one can verify that ψ(g) ○ ld’ ○ D’ = ld’ ○ D’ ○ g for g = e1, e2, e3 and hence

for all g Î Π1. This implies that ld’ ○ D’ : ℝ3 ® Nil induces a map f’ : M1 ® M2 so

that f ′
× = ψ.

Since Γ1 = Π1 ∩ ℝ3 is generated by {e1, e2, e3} and Γ2 = Π2 ∩ Nil is generated by {s1,

s2, s3}, the basis {log(e1), log(e2), log(e3)} is a preferred basis for Γ1 and {log(s1), log(s2),

log(s3)} is a preferred basis for Γ2. With respect to these preferred bases, the matrices

corresponding to the induced morphisms of Lie algebras D∗,D′∗ : R3 → nil and

A∗ : nil → nil are

D∗ =

⎡⎣ 1
2 0 0
0 0 0
0 0 0

⎤⎦ , D′
∗ =

⎡⎣0 0 0
0 1 0
0 0 1

⎤⎦ , A∗ =

⎡⎣1 0 0
0 −1 0
0 0 −1

⎤⎦ .

Hence by Theorem 6.11

L(f , f ′) = det(D′∗ − D∗) + det
(
D′∗ − A∗D∗

)
= −1

2
− 1

2
= −1,

N(f , f ′) =
∣∣det (D′∗ − D∗

)∣∣ + ∣∣det (D′∗ − A∗D∗
)∣∣ = 1,

R(f , f ′ ) = σ
(
det

(
D′∗ − D∗

))
+ σ

(
det

(
D′∗ − A∗D∗

))
= 1.

Example 7.2. In this example we will consider a 3-dimensional orientable flat Rie-

mannian manifold M1 and a 3-dimensional orientable infra-nilmanifold M2.

We consider first a 3-dimensional orientable flat Riemannian manifold M1 = Π1\ℝ
3

where Π1 is the 3-dimensional orientable Bieberbach group G2 [[30], Theorem 3.5.5]:

�1 =
〈
t1, t2, t3,α|[ti, tj] = 1, α2 = t1, αt2α−1 = t−1

2 , αt3α−1 = t−1
3

〉
.

We can embed this group into Aff(ℝ3) by taking {e1, e2, e3} as the standard basis for

ℝ3 and

ti = (ei, I)(i = 1, 2, 3), α =

⎛⎝⎡⎣ 1
2
0
0

⎤⎦ ,

⎡⎣1 0 0
0 −1 0
0 0 −1

⎤⎦⎞⎠ .

Then the translation lattice is

�1 = �1 ∩ R3 = 〈t1, t2, t3〉 = 〈e1, e2, e3〉 = Z3

and the holonomy group is F1 = Π1/Γ1 ≅ ℤ2. The holonomy group F1 ⊂ Aut(ℝ3) is

generated by A : ℝ3 ® ℝ3 : (x, y, z) ↦ (x, -y, -z). With respect to the preferred basis

{e1, e2, e3}, the differential A* : ℝ
3 ® ℝ3 can be expressed as a matrix as follows:
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A∗ =

⎡⎣1 0 0
0 −1 0
0 0 −1

⎤⎦ .

Next we consider an infra-nilmanifold M2 = Π2\Nil where Π2 is a 3-dimensional

orientable almost Bieberbach group π5,3 with Seifert bundle type 5 ( [[28], Proposition

6.1], or the list of [[29], p. 800]):

�2 =
〈
s1, s2, s3,β

∣∣∣∣ [s2, s1] = s43, [s3, s1] = [s3, s2] = 1,
β4 = s3βs1β−1 = s2,βs2β−1 = s−1

1

〉
.

Now we can embed Π2 into Aff(Nil) = Nil ⋊ Aut(Nil) by taking

s1 =

⎛⎝⎡⎣1 1 0
0 1 0
0 0 1

⎤⎦ , I

⎞⎠ , s2 =

⎛⎝⎡⎣1 0 0
0 1 1
0 0 1

⎤⎦ , I

⎞⎠ ,

s3 =

⎛⎝⎡⎣1 0 − 1
4

0 1 0
0 0 1

⎤⎦ , I

⎞⎠ , β =

⎛⎝⎡⎣1 0 − 1
16

0 1 0
0 0 1

⎤⎦ ,

⎡⎣1 0 0
0 0 −1
0 1 0

⎤⎦⎞⎠ .

Then the translation lattice is

�2 = �2 ∩ Nil = 〈s1, s2, s3〉 =
⎧⎨⎩
⎡⎣1 p r

4
0 1 q
0 0 1

⎤⎦ |p, q, r ∈ Z

⎫⎬⎭
and the holonomy group of Π2 is F2 = Π2/Γ2 ≅ ℤ4. The holonomy group F2 ⊂ Aut

(Nil) is generated by the image B of b under the natural map Aff(Nil) ® Aut(Nil).

Thus, B is the automorphism on Nil defined by

B =

⎡⎣1 0 0
0 0 −1
0 1 0

⎤⎦ :

⎡⎣1 x z
0 1 y
0 0 1

⎤⎦ �→
⎡⎣1 −y −xz
0 1 x
0 0 1

⎤⎦ .

Hence the differential B* of B is given by

B∗ :

⎡⎣0 u w
0 0 v
0 0 0

⎤⎦ �→
⎡⎣0 −v w
0 0 u
0 0 0

⎤⎦ .

With respect to the preferred basis {log s1, log s2, log s3} of nil, the differential B* can

be written as a matrix as follows:

B∗ =

⎡⎣0 −1 0
1 0 0
0 0 1

⎤⎦ .

Now define a morphism of groups � : Π1 ® Π2 by

ϕ(t1) = s3,ϕ(t2) = s2,ϕ(t3) = 1Nil,ϕ(α) = β2.

Also define d = 1Nil and define the morphism of Lie groups D by

D : R3 → Nil : (x, y, z) �→
⎡⎣1 0 −x/4
0 1 y
0 0 1

⎤⎦ .
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Then �(g) ○ ld ○ D = ld ○ D ○ g for g = t1, t2, t3, a. Hence this equation holds for

every g Î Π1 and ld ○ D : ℝ3 ® Nil induces a continuous map f : M1 ® M2 so that f×
= �. With respect to the preferred bases chosen above, the differential D* can be writ-

ten as a matrix as follows:

D∗ =

⎡⎣0 0 0
0 1 0
1 0 0

⎤⎦ .

Similarly, by defining the morphism of groups ψ : Π1 ® Π2 by

ψ(t1) = s−1
3 , ψ(t2) = 1, ψ(t3) = s1, ψ(α) = β−2,

one can show that ld’ ○ D’ : ℝ3 ® Nil induces a continuous map f’ : M1 ® M2 so

that f ′
× = ψ, where

d’ = 1Nil,

D′ = R3 → Nil : (x, y, z) �→
⎡⎣1 z x/4
0 1 0
0 0 1

⎤⎦ .

With respect to the same preferred bases, D′∗ can be written as a matrix as follows:

D′∗ =

⎡⎣ 0 0 1
0 0 0

−1 0 0

⎤⎦ .

Hence det
(
D′∗ − D∗

)
= −2, det

(
D′∗ − B∗D∗

)
= 0, det

(
D′∗ − B2

∗D∗
)
= 2 and

det
(
D′∗ − B3

∗D∗
)
= 0. From the formulas in Theorem 6.11, it follows that

L(f , f ′) = 0, N(f , f ′) = 2, R(f , f ′) = ∞.
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