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A Game Theoretic Approach to Robust Filtering* 

P. PAPANTONI-KAZAKOS 

The University of Connecticut, Storrs, Connecticut 06268 

A game theoretic approach to the filtering or smoothing problem is presented. A 
family of stationary information carrying processes and generalized models for the 
noise channel and the filter is considered. Sufficient conditions for the existence of 
saddle-point type solutions are stated. In addition, the solution for a special case of 
noise channel, a family of information carrying processes, and a nonlinear filter are 
found. © 1984 Academic Press, Inc. 

1. INTRODUCTION 

The general objective of filtering of smoothing is the extraction of infor- 
mation data from noisy observations. The filtering problem and its solution 
are well established, when the stochastic processes that generate the infor- 
mation data and the noise are parametrically described. The reader may refer 
in this case to the books by Wiener (1949) and Hannan (1970). In this 
paper, we are concerned with the formulation and the solution of the filtering 
and smoothing problems when the statistical description of the stochastic 
processes that generate the information data and the noise is nonparametric. 
In particular, we will consider certain compact classes of stochastic 
processes, and we will formulate the problem as a stochastic game with 
saddle-point solution. To do that, we will first introduce our notation and our 
general assumptions. 

We will name the stochastic process that generates the information data, 
information carrying process. We will denote this process by [/.t, A, X], where 
/~ is the measure, A is the alphabet of the process, and X is its name. We will 
assume that the process is discrete-time, and we will denote by x a given 
infinite sequence from this process. We will denote by x t a given length l 
subsequence from the process and by X t a sequence of I consequtive random 
variables from the process. Finally, we will denote X { =  {X i ..... Xj}; j>/i ,  
where X i the random variable indicating the ith datum from the process and 
we will denote by x{=  {xi,...,xj}, j>~i, a given sequence of j +  1 - i  data 
from the process. 
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We will represent the noisy environment by a stationary channel [A, v, R [, 
where A is the alphabet of the information carrying process I/z, A, X] and R 
is the real line indicating the alphabet of the process induced by [/t,A,X] 
and the channel. We will name the channel [A, v, R ], noise channel. We will 
denote by v x the measure induced by the channel and the infinite sequence x 
from the information carrying process [/~,A,X]. We will denote by 
[pv-l,R, Y] the process induced by the process [g,A,X] and the stationary 
channel [A, v, R ]. We will name [fly -1, R, Y], observation process, and we 
will denote by y, yl, yt, y~, y~ data sequences from this process, exactly as 
with the process [p,A,X]. 

Adopting a generalized approach, we will represent the operation whose 
objective is the extraction of the data generated by the information carrying 
process [g,A, X], by a stationary channel JR, a, B]. B denotes the output to 
the channel alphabet, and for any given sequence y from the process 
[pv-l,R, Y], the channel induces in general a measure ay. We will name the 
channel [R, a, B ], information channel We will denote by [~tv- l a -  1, B, Z] 
the stochastic process induced by the observation process [pv-l,R, Y] and 
the information channel [R, a, B ]. We will name the process [fly- l a -  1, B, Z], 
matching process. 

The system described above, is exhibited in Fig. 1. The overall system 
performance should be represented by some appropriate measure of closeness 
between the information carrying process [p, A, X] and the matching process 
[gv-la-l ,B,Z].  An appropriate such measure, applicable to arbitrary 
stochastic processes, is the rho-bar distance. Let p(xi,zi) be a distortion 
measure between the data values x~,zi. Given two sequences x n, z n, let us 
define a distortion measure p,(x ~, z ~) through the expression 

Pn(Xn, zn)=n -1 ~ P(Xi,Zi). (1) 
i = 1  

Given two stochastic processes [~t,A,X] and [2,A, Z], let p~, 2 n denote n 
dimensional restrictions of the measures p and 2, respectively. Let 3 ~ denote 
the family of all joint measures with marginals pn and 2 n. Then, the rho-bar 
distance /7~u, 2) between the processes [p,A,X] and [2,A,Z], and the 

information carrying noise-channel Observation infozmat~on channel matching process 
process process 

FIG. 1. Overall system. 
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Prohorov distance 1-lo.n(,un, )~") between the n dimensional restrictions/~" and 
~," are, respectively, defined as 

Xn if~, ~.) = sup inf p.( , Z n) dp"(X", Z") (2) 
n pnE,5 ~n n x A n  

H ~,," 2"a=  inf inf{6:p"(x",y":p.(x",y")>6)<~6}. 
o,rtV-" ' ; p n ~ 3  n 

If the distortion measure p(., .) is a metric on the real line, the rho-bar and 
Prohorov distances in (2) are also metrics on the corresponding sets of 
measures (Papantoni-Kazakos & Gray, 1979). 

We note that for the correct formalization of the rho-bar distance, we 
selected identical alphabets for both the processes involved. Therefore, to 
appropriately express the rho-bar distance between the stochastic processes 
[la, A,X] and [I.tv-la-l,B, Z], we will assume that the two alphabets A and 
B are identical. Then, we select as the performance measure of the overall 
system in Fig. 1, the rho-bar distance if~,#v-~tr-1). The choice of the 
distortion measure p(., .) is left arbitrary at this point. 

Assuming that the process [#,A,X] and the stationary channel [A, v,R] 
are given and that the distortion measure p(., .) has been selected a priori, 
the information channel [R, tr, B] that minimizes the rho-bar distance 
if(p, #v-aa-1)  can be found, at least theoretically. This is, in general, possible 
if an appropriate class Y of channels [R, a, B] is first selected. Then the 
channel ~r* in Y that minimizes the rho-bar distance if(p, #v-~a-1) is called 
the solution of the filtering or smoothing problem. A special such solution is, 
for example, the Wiener filter (Weiner, 1949). 

Our objective in this paper is the design of a robust overall system. We 
wish to achieve good performance for a variety of information carrying 
processes and possibly a variety of noise channels. Our measure of perform- 
ance is the rho-bar distance i(fl, flP-lo'-l). The variable in our control is the 
information channel [R,a,B]. We will formalize the problem as a saddle- 
point game, and we will search for a saddle-point solution. 

2. GAME FORMALIZATION 

Let us initially assume that the stationary noise channel [A, v, R] remains 
fixed. Then, let us consider the following game played between nature and 
the system designer. The game starts with certain information available to 
both players. This information includes two given sets ~g( and Y ,  as well as 
a given payoff function if~u,/~v-lit-l). The knowledge of the payoff function 
implies knowledge of the distortion measure p(., .). The sets ~ f  and Y are 
such that p ~ J f  and a ~ Y .  
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Based on the above common information, nature selects some/~ ~ ~¢'. The 
system designer selects independently a stationary channel tr E Y .  After 
those selections have been completed, both nature and the system designer 
announce their choices. Following this announcement, the system designer 
pays nature a penalty equal to ~(,u, ltv-~a-~). According to the rules of the 
game, whenever nature selects the measure/~, it guarantees for itself a gain 
equal to 

inf ~,#v-*a-~). (3) 

At the same time, the highest loss that the system designer may suffer 
whenever he selects the stationary channel a is equal to 

sup ~(tz,/.tv-~a-~). (4) 

It is clearly concluded from expressions (3) and (4) that the highest gain 
nature can guarantee for itself is 

sup inf ])(~/./, [./1;--10"--1), (5) 

The most optimistic loss that the system designer may expect is 

inf sup y(tz,#v-la-1). (6) 

If the expressions in (5) and (6) can be equal for some pair (~*, ~r*), then 
the change of either one of the members in the pair is of no advantage to 
either one of the players. If such a pair ~u*, a*) exists, it is called the saddle 
point of the game. The corresponding value ~ * ,  #*v-  ltr* - 1) is then called 
the saddle value of the game. Clearly, the following expression is also then 
satisfied: 

l) lo*-') -1) 

V/a ~,Z¢, Vo E Y .  (7) 

In our search for saddle-point solutions of the game stated above, we will 
use the notions of convexity, closeness, and compactness of sets of measures. 
Convexity is defined in the usual sense (Royden, 1963). The definitions of 
closeness and compactness require the use of metrics on measure spaces. Let 
7(', ") be a metric on the real line. Then, as we stated in the introduction, the 
distances ~(,u, 2) and H~,n(~n, 2 ~) in (2) are also metrics on the space of 
measures. We thus proceed with the following definition, that also includes 
the notion of zero-memory channels. 
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DEFINITION 1. Let ~ f  be a set of stationary measures/2. Let Y be a set 
of stationary channels a. Let 7(', ") be a metric on the real line. Then, 

(A) The set J~" is closed and compact, if it is closed and compact 
(Royden, 1963) with respect to the metric ~7(P, 2), ~ E~¢'. 

(B) The set ~9 ~ is closed, if it is closed (Royden, 1963) with respect to 
the metric /]r,l(O'lly,ely), Vy, 0"1, O" 2 ~ ~'~, where ely and e~y denote the 1- 
dimensional restrictions of the measures e~y and e2y, respectively. 

(C) The stationary channel JR, a, B] is zero memory, iff 

nfzn-  1 eyk~ 0 ~ B  0 X 91 X "'" X Bn_l)-~" H ely(zJ ~ n J )  
2=o  

Vn, V B j ~ , O < ~ j < ~ n - 1 .  (8) 

To simplify as well as generalize the presentation of some additional 
notions needed, we will denote by K ~ ,  a) some real valued nonnegative 
function on the measure # and the stationary channel a. Such a function 
represents the payoff in the game described in this section, and it may be the 
rho-bar distance if(#,/.tv-~e-~). Then, we proceed with 

DEFINITION 2. Let ~ "  and Y be two given sets, such that # E ~ "  and 
a E Y .  Let Y be a set of zero memory channels. Let K(p, a) be some real- 
valued nonnegative function between # E J "  and a C ~ .  Then 

(A) K(p, a) is finite on ~ '  × ~ ,  iff there exists some finite positive 
number a, such that 

KCu, a) ~< a V/~ ~ J / ,  Ve E Y.  

(B) K(p, a) is continuous on ~F X ~ ,  iff 

(i) K(u, e) is continuous in/ t  on ~¢" with respect to the metric ~; 
that is, iff: Given # 0 ~ " ,  given a ~ Y ,  given e > 0, there exists 
6(e,#0, e) > 0 such that 

u ~ " ,  ~(~o,~) < 6(~,~o,O)~ [K~o, G ) - K ~ . ,  o)l < c; 

(ii) K(#, e) is continuous in a on Y ,  with respect to the metric 
//r,~ ; that is, denoting by y infinite sequences of channel inputs, and given 
a o ~ y ,  given / tE~ , ' ,  given e > 0 ,  given r />0 ,  there exist set 
A(ao,~, e) E R ~ and 6(e,/t, e) > 0, such that 

u ( A ( e 0 , u ,  ~))  > 1 - ~, 
O E Y ,  1 1 n~.,(eoy, cry) < ~(~,u, co) 

Vy e a(e0,  ~, ~)-~ [K(~, Oo) - r (~ ,  G)I < ~. 
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(C) K(u, a) is concave-convex on ~¢'X Y ,  iff: 

(i) K(2#~ + (I -2)#z,a)>~2K~ut,a ) + (1 - 2 )K ( / . t 2 , a  ), V//./1,fi/2 ~ 
~ ' ,  V a C 3  p, V2:0 ~<)l. ~ 1, and [2/.tl + (1 -- 2)fl2] ~ / ,  

(ii) K(/.t, 2a~ + ( 1 - 2 ) a z )  < 2gO.t, o'1) + (1 - -2 )g ( f l ,  o'2) , V/.t E ~ / ,  
Va 1 , a z C y , a ~  ~ a  2 V 2 : 0 < 2 <  1 and [ 2 a ~ + ( 1 - 2 )  a 2 ] ~ Y .  

In part (C) of Definition 2, the conditions [2fl~ + (1 -2)/~2] E ~ /  and 
[2a~ + (1 - 2 ) a 2 ]  ~ 5 p for every 2, 0 ~< 2 < 1, are always satisfied if the sets 

and 5 ¢ are convex. 
Based on Definitions 1 and 2, we can now express Theorem 1 whose proof 

is in Appendix A. 

THEOREM 1. Let ~ "  be a set of measures /z. Let Y be a set of 
stationary, zero-memory channels. Let K ~ ,  a) be a real valued nonnegative 
function between # and a. 

Let ~ / a n d  Y be nonempty, convex, and closed sets. Let, in addition, the 
set J f  be compact. Let K(g, a) be finite, continuous, and concave-convex on 
~ "  × Y .  Then, there exists saddle point ~ * ,  a*) on J "  × J ,  that is, 

inf sup K~,a)=  sup inf K~,a)=K(u*,a*).  

In this section we laid the foundations for a game-oriented solution to the 
general problem stated in the Introduction. The appropriateness of any 
specific payoff function K(/.t, a) must be studied within the guidelines 
provided by Theorem 1. If, as initially suggested, the payoff function is the 
rho-bar distance fi~,ttv-la 1) then its properties must be studied on an 
appropriately selected set ~£/× Y .  This task will be undertaken in the 
following section. 

3. ANALYSIS-SUFFICIENT CONDITIONS 

Let us consider the overall system in Fig. 1. Let us assume that the noise 
channel [A,v,R] is fixed and it is stationary. Let us assume that the 
alphabets A and B are identical. Let us denote by ~ the family of all 
stationary processes whose alphabet is A. Let us consider this alphabet 
known to the system designer. Let #0 be some given measure in ~ .  Let ao be 
known to the system designer. Then, select a set ~ "  of measures/.t in ~ the 
following way: 

Select some metric ~(., -) on A, and some positive finite constant a. Then 
define ~¢" as 

/1 ~ ~ "  iff: It ~ ~ss and ~7~o,/~) ~< a. (A) 
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The set ~ "  defined above is nonempty and convex, as well as closed and 
compact, with respect to the metric ~7. Also, since the set Jr" is a set of 
stationary processes and the noise channel [A, v,R] is also stationary, the 
observation process [pv- 1, R, Y] is stationary for all g in ~e'. 

Let us denote by ~ts the family of all stationary, zero-memory channels 
whose input alphabet is R, whose output alphabet is B (identical with A), 
and which operate on input sequences of length l per channel output element. 
Let Q.t be a class contained in ~ts. Such a class QI includes members in ffls 
with possibly specific properties, where such properties will be identified 
later. The class Ql may include deterministic channels as well. Then, the 
measures @~ reduce to deterministic functions, and the Prohorov distance 
H~, l(a~yl, all) reduces to 7(a~/, @t). 

We have already selected a metric 7(', ") on the alphabet A. Let now 
~(., .) be some metric on the real line R. Let p(., .) and r(., .) be two 
distortion measures. Let p(., .) be used for information carrying processes 
g E ~ / ,  and for matching processes [flv-la-l,B,Z]. Let v(., .) be used for 
observation processes [#v- l ,R ,  Y]. Let p(., .)v(., . )be such that, given e > 0 
there exist 61 > O, 6 2 > O, 6 3 > O, 6 4 > O, such that 

p(x, y) < 

y(x, y) < 

~(x, y) < 

z(x, y) < 

61 ~ 7(x,y ) < e  

62-~ P(X,y ) < e 
(9) 

62 --, r(x, y) < e 

61-~ ~(x, y) < ~. 

One ~(., .), p(., .) combination that satisfies the conditions in (9) is 
7(x, y) = Ix - y], p(x, y) = (x - y)2. Similarly for ¢(., .) and r(., .). 

As  in (Papantoni-Kazakos & Gray, 1979; Papantoni-Kazakos, 1981), we 
need a definition of empirical measures. Given a sequence x n, we form an 
empirical measure/~x, through the operation 

/dxn(O) = 2 n - l '  D E zg  °°, (10) 
i:Tix~D 

where x = ( .... x",xn,...), T indicates one step shift in time, and d °° the 
infinite product of the a-algebra d of sets on the space on which each 
datum X; assumes values. The properties of the empirical measure in (10) 
can be found in (Papantoni-Kazakos & Gray, 1979). Now we need 

DEFINITION 3. (i) For given finite l, the stationary, zero-memory 
channel a I is continuous if given yt @ R t, e > 0, there exists 6 = 6(/,y t, e) > 0 
such that 

¢,(y',  x ~) < 6 --, r l , . , (al , , , ,  al,x,) < ~. 
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(ii) The sequence {at} of stationary, zero-memory channels is 
continuous at the measure 2 if given e > 0, r/> 0, there exist integers k, t 0, 
some ~ > 0, and for each l < l 0 some set E ~ E R  t with 2l(E l) > 1 -  r/, such 
that for each x t C E t, yl E R t with the property 

it is implied that 

Iz .(oL, ,  < 

In part (ii) of Definition 3, we have assumed that the measure 2 is defined 
on the alphabet R. The above definition is exactly Definition 3 in 
(Papantoni-Kazakos, 1981). The sequence {crl} is generated by varying I 
values. Also,/lxkt denotes k-dimensional restrictions of the empirical measure 
Itx~ defined by (10); //~,k denotes the Prohorov distance on k-dimensional 
restrictions of measures, where the metric ~ is used; 2 t denotes the l- 
dimensional restriction of the measure 2. 

A definition parallel to Definition 3 applies to the noise channel [A, v, R ], 
assuming that this channel is also a zero memory channel. Then, the metrics 
~(., .)  and ~(.,.) in Definition 3 should be reversed. Also, 2 should be then 
substituted by It, and R t should be substituted by At. 

The consideration of noise and information channels which are either 
continuous or continuous at some measure (Definition 3) will be valuable in 
securing properties which make our game approach meaningful. In the 
remainder of this section, we will present a number of theorems and lemmas. 
In the next section, we will discuss the implications in the statements of those 
theorems and lemmas. 

THEOREM 2. Let the alphabets A and B be identical. Let  the metric 
7(', ") be used on A. Let  the metric ~(., .) be used on R. Let  the distortion 
measure p(.,-)  be used on the measures It and I tv- lo -1. Let the distortion 
measure r(., .) be used on the measure Itv -1. Let  y(., .), ~(., .), p(., -), r(., .) 
satisfy the conditions in (9), and let p(., .), r(., .) be nonnegative. Let, in 
addition, either one of  the following two conditions be satisfied: 

(1) Both p(., .) and r(., .) are bounded. 

(2) r(., .) is bounded, p(., .) takes bounded values for bounded values 
of  its arguments, and the alphabet A is bounded. 

Let the channel [.4, v m, R ] be zero memory and stationary, operating on 
input sequences of some f ixed finite length m. Let  v be also continuous 
(Definition 3(i)). 

Let It E ~ ,  where ~ the class of  stationary measures. Let  the class Qt of  
stationary, zero-memory channels [R, a t ,B  ] be considered, which also 

643/60/1-3-12 
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operate on input sequences of  f ixed finite length l and which are, in addition, 
continuous ( Defnition 30) ). 

Then, the rho-bar distance /~(fl, flVmlO/1) is continuous on ~ x  Qt 
(Definition 2(B)), and it is continuous in ~t with respect to ~. 

The proof of Theorem 2 is included in Appendix A. We express some 
conclusions from Theorem 2 via a corollary. 

COROLLARY. Let the noise channel v,, be zero memory and stationary, 
operating on input sequences of  some f ixed finite length m. Let v be also 
continuous (Definition 3(i)). 

Let QI be the class of  stationary, zero-memory channels, which operate on 
input sequences of  f ixed finite length l, and which are also continuous 
(Definition 3(i)). Let ~ssb be the class of  stationary measures with bounded 
support (with bounded alphabets). Let ~¢  and ~ be two sets such that 

Let 7(', "), ~(', "), P(', "), r ( . , - )  be as in Theorem 2. Let z(., .) be bounded, 
and let p( . , . )  assume bounded values for  bounded values of  its arguments. 

Then, the rho-bar distance ~(/2, t2V~nlCr[ z) is continuous on A e X ~  
(Definition 2(B)) and it is continuous in t~ with respect to ft. 

As we will see in the next section, the conditions and conclusions 
expressed in the corollary are important for the design of overall systems 
with robust performance. Let us now consider the case of stationary channels 
JR, a,B] that operate on assymptotically long input sequences per single 
output element. Considering the metrics 7(', ") and ~(., .) as before, we first 
present the following definition. 

DEFINITION 4. The sequence {at} of stationary, zero-memory channels 
operating on the input alphabet R is assymptotically continuous, if given 
e > 0, there exist integers k, l 0, some ~ > 0, and for each l > I 0 some set 
E t E R t, such that for each x ~ E E l, yt C R t with the property 

it is implied that 
1 1 Gl,yl) ~V/7, I(O'/,X/, < ~. 

The notation in Definition 4 is as in Definition 3. We notice that a 
sequence {at} which is asymptotically continuous is not matched to any 
particular measure. This is in contrast to continuity at some measure in 
Definition 3. We now proceed with a theorem and a lemma. The proof of the 
theorem is in Appendix A. 
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THEOREM 3. Given a f ixed channel v m as in Theorem 2, given nonempty, 
convex, and compact with respect to the metric ~ set ~ "  o f  stationary 
measures ~, there exists an asymptotically continuous (Definition 4) sequence 
{el} of  stationary zero-memory channels, which is also continuous at every 
m e a s u r e  f l p m  I (Definition 3(ii)) such that t~ E ~ / .  This sequence {el} is then 
called continuous at the set ~ / .  

LEMMA 1. Let  the channel 1~ m as well as y(., .), ~(., .), p(., .), and r(., -) 
be as in the corollary. Let  J "  be a nonempty, convex, and compact with 
respect to ~ set of  stationary measures, with bounded support. Let  5 ~ be a set 
of  stationary, zero-memory sequences {el} of  channels which are also 
continuous at the set ~ "  (Theorem 3). Then, the rho-bar distance 
~(p,#v~la -1) is continuous on J /  X Y .  

The proof of Lemma 1 is as the proof of Theorem 2, where the result in 
Theorem 2 of (Papantoni-Kazakos, 1981) is used to guarantee rho-bar 
stability of the measures #v m l e -  1. 

LEMMA 2. Let the noise channel v m as well as 7(', "), (( ' ,  "), P(', "), and 
r(., -) be as in Theorem 2. Let  either one of  the following conditions be true: 

(1) ~ /  is a nonempty convex set of  stationary measures. I f  p(., .) is 
not bounded, assume that the measures in ~ /  also have bounded support. Y 
is a nonempty convex set of  stationary, zero-memory channels operating on 
input sequences of  f ixed finite length I. 

(2) ~ "  is a nonempty, convex, and compact with respect to ~ set of  
stationary measures. I f  p(., ,) is unbounded, assume that the measures in d /  
have bounded support. Y is a nonempty convex set of  stationary, zero- 
memory sequences {at} of  channels that are also continuous at the set ~ /  
(Theorem 3). 

Then, the Prohorov distance IIo,l~,ltVmle -1) is concave-convex on 
~ g / × Y  (Definition 2(C)). Also, the distances Ho, l~, l tv; , le  -~) and 
fi(tt, /Jv ~ le -  1 ) are then equivalent. 

The proof of Lemma 2 is in Appendix A. We complete the major part of 
this section by expressing a final theorem. The theorem basically summarizes 
the results from Theorem 1, Section 2, in conjuction with the results from the 
theorems and lemmas in this section. 

THEOREM A. Let the alphabets A and B be identical. Let  the metric 
y(., .) be used on A. Let  the metric ~(., .) be used on R. Let  the distortion 
measure p(., .) be used on the measures II and IJv- la -  1. Let  the distortion 
measure r(., .) be used on the measure izv -1. Let  7(', "), ~(', "), P(', "), and 
r( . , - )  satisfy the condition (9). Let p(., .) and r(., .) be nonnegative. 
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Let the channel [A, Vm,R ] be considered. Let v m be stationary and zero 
memory, operating on input sequences of f ixed finite length m. Let v m be also 
continuous (Definition 3(i)). 

Let ~¢" be a nonempty and convex, as well as closed and compact w.r.t. 
set of  stationary measures p. I f  p(., .) unbounded, let the measures p in ~¢" 
also have bounded support. 

Let ~ be a nonempty, convex, and closed w.r.t. HT, 1 set of stationary, 
zero-memory channels at that operate on input sequences of f ixed finite 
length l and  that are also continuous (Definition 3(i)). I f  p(., .)unbounded, 
also let the output alphabet of  each channel 171 in ~ll be bounded. 

Let Y be a nonempty, convex, and closed w.r.t. Hr, 1 set of  stationary, 
zero-memory channel sequences {17l}, that are also continuous at the set 
(Theorem 3). 

Then, the rho-bar distance fi(u, ¢tv~ 117-1) is finite, continuous (Definition 
2(B)), and concave-convex (Definition 2(C)) on ~ × ~ and on ~ × Y .  
Therefore, there exist then saddle-point pairs (~*, 17") and ~*,  {17"}), and 
corresponding saddle values ~(~ *,/~*v~117 * -1) and g~u*, /~*V m117 * -1), where 
17,-  {17.}. 

From the analysis and derivations in the present section, it is clear that a 
game formalization is meaningful only under certain conditions. Such 
restrictive conditions are mainly imposed on the noise and information 
channels. In particular, continuity of both channels (Definition 3) is essential 
for the guarantee of saddle-point solutions. We must point out here that the 
consideration of stationary information channels clearly includes such deter- 
ministic channels as well. Indeed, the preceeding analysis carries through 
then, where in the definitions of channel continuity (Definition 3), the 
Prohorov distance lI,.l(al.y~,17~J ) reduces to 7(o~(xl),17~(yl)); 17~(x I) 
represents then some deterministic function. 

Until now we assumed that the noise channel [A, v, R ] is given and fixed. 
However, deviations from such a given description are possible and realistic. 
It is desirable, therefore, to study the behavior of our game approach in the 
presence of such deviations. We first proceed with 

DEFINITION 5. Let Qm be the class of zero-memory stationary channels 
that operate on input sequences of fixed finite length m, per output element. 
Let the input alphabet of the channels in Qm be A. Let the output alphabet be 
R. Let yore be some given channel in Q,~. Let J r ,  ~ ,  ~ be sets as in 
Theorem A. Let (p*, 17") be the saddle-point solution for the noise channel 
l~0m and for p ~ " ,  a t @ 8 .  Let (/1", {a*}) be the saddle-point solution for 
v0,~,/~ ~ J / ,  {at} E Y .  

Then, the solutions * * ~0 ,  am), ~u0*, {a* }) are called robust at Yore iff: Given 
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e > 0 ,  there exist numbers ~ l > 0 ,  {6t}: c~1>0; ¥ l > l o ,  and some set 
Am E A m, such that, respectively, 

_+ - :~ :~ - 1  ~ - /  ( ] )  "¢m ~ Q,~, l 1 IIT, l(Vm,xm, POm,xm) < t~l, vxm ~z~ m IpQ.to,[do VomOol ) 

(2) for each l >  10, 

Vm ~ Qm, I 1 POm,x rn) "( IP~O ,flO VOmGOI ) l~,l(Vm,xm, (~1, vxm ~z~m--)" - :~ :~ -1 * - I  

It is clear that A m can be selected as a high probability set for the m- 
dimensional restriction of the measure It*, and that then the conditions (1) 
and (2) in Definition 5 imply continuity of the measure/10*v~ 1 at v0m. This 
continuity carries then over to the rho-bar distances #~u*,~*v~,la*-1), as 
exhibited in the proofs of Theorem 2 and Lemma 1. Therefore, the following 
proposition holds. 

PROPOSITION 1. Given Qm as in Definition 5, given %m ~ Qm, given Jr', 
8 ,  Y as in Theorem A, the saddle-point solutions (~*, a't)  and (#*, {a*}) 
(as in Definition 5) are robust at Vom. 

The conclusion from Proposition 1 is that continuity (Definition 3, 
Theorem 3) of both the noise and information channels, in addition to 
guaranteeing the existence of saddle-point solution at some noise channel 
YOre, it also guarantees robustness at Vom. The implications behind the 
conclusions in Theorem A deserve special focusing. They will be discussed in 
the next section. 

4. INTERPRETATION OF SOME ASSUMPTIONS AND CONCLUSIONS 

In Theorem A, the consideration of noise channels v m that are zero 
memory and that operate on input sequences of fixed, finite length m, has 
special meaning. It means that the noisy environment is represented by 
distortions which are influenced by the values of a whole sequence of data 
from the information-carrying process. This generalizes the noise notion. A 
special case with m = 1 is the case of an additive, memoryless noise channel. 

If the alphabet A is such that A c R, representing a bounded interval on 
the real line R, bandwidth expansion caused by the noise channel is in 
general implied. A bounded distortion measure T(., .) on R represents then 
elimination of extreme values. Such values are representing just noise rather 
than information-carrying data. 

If the distortion measure p(., .) on A is unbounded (such as the mean 
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square such measure), boundness of A is required. That implies that the 
information channel maps unbounded input sequences onto bounded 
intervals on the real line, if A mR. That is, the information channel 
eliminates then extreme values, performing some jackknifing type of 
operation. Clearly, deterministic information channels that perform linear 
operations on input data are then excluded. 

In the case that the information channel operates on asymptotically long 
input sequences, continuity at the whole set ~ /  of information carrying 
processes is required. This continuity is projected through empirical 
measures on data sequences. This projection presents another reason why 
information channels that operate on linear transformations of input data 
should be excluded. 

As a conclusion from the above discussion, the set 5~t in Theorem A 
includes no linear deterministic channels. The set Y in Theorem A includes 
no linear channels in the sense of operation on linear transformations of 
input data sequences. 

5. A SPECIAL CASE 

Let A be a finite subinterval of the real line R. Let/.t o be a given measure 
determining the stationary stochastic process [/x0,A,X ]. Let 7(x,y)A= 
~(x, y) A= r(x, y) a= Ix--y]. Let p(x,y)A= (x--y)  z. For this p(., .), let a be a 
known positive constant and let 

~ ' : f f (g0,~)~<a.  (11) 

Let the noise channel [A, v m, R] be memoryless, additive, and Gaussian. 
That is, V~m LX v~, and 

Pr l Y ° ~ y  Xo_=_xI=f~oo exp{-(u-x)2/2ty2} 

Let g(.) be a deterministic, nonlinear operation, defined as 

g(u)= B1; - -~  < u ~ b 1, 

= B k ;  bk_ j < u ~< b k, (13) 

= B,;  bn_ 1 < u < oo, 

where B 1 ) 0, B k < Bk+x, and bk < bk_x, Vk, B,, < ~ .  
Let the nonlinear operation g(.) be applied on the infinite observation 
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sequence .... Y-1, Y0, Yl ,..., to generate the infinite sequence ..., g(y_ 1), g(Y0), 

g(YO ..... 
Then, due to the noise channel model in (12), we have 

1". ") X j ~ - x  k=2 

It can be easily seen that the function G(x) in (14) is strictly monotone 
and bounded, since B 1 <~ G(x) <~ B, ,  Vx. Defining 

c ~  B.--B1 
v ~  ' (15) 

we easily conclude that 

d6(x) 
- - ~ c ,  Vx, 

dx 

and therefore 

I t ( x )  - a(y)l  4 c Ix - y r ,  Vx, y. (16) 

Let us consider the nonlinearity in (13) fixed and known. We define then a 
convex and closed w.r.t. H~, 1 set Y of zero-memory sequences {a~} of deter- 
ministic information channels in the following way: 

5P: for each l, the observation sequence yS] is first transformed to the 
sequence { g(yj), - l  ~<j ~< - 1 }. Then, the linear transformation 

-1 

E 
j = - l  

atjg(yj) is performed to map G(xo), where {a l j ; - l  ~<j~<-1 }; 

--1 

atj= 1, ati~> 0, vj. 
j=--I 

03) 

Furthermore, given e > 0 there exists positive integer 

- 1  

Io: ~ a ~ < ~ ,  VI>I  o. 
j = - I  

At this point we should observe that since the function G(x) in (14) is 
strictly monotone, if G(Xo) is estimated, X o can be recovered uniquely from 
this estimate. Also, in (B) we have selected arbitrarily a class of predictive 
filters in G(xo). We now proceed with 
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LEMMA 3. The sequence {ol} of deterministic channels in (B) is 
asymptotically continuous (Definition 4). 

The proof of Lemma 3 is in Appendix B. The sequence {tyl} is 
asymptotically continuous on R t for each l larger than some l 0. Let p be 
some measure in the set ~¢" defined by expression (11). Let us then denote by 
P,0~), -7~ ~ £ ~< zc the spectral density of the process [p, A, X]. Let pG-  z 
denote the measure induced by the measure ~ in J¢" and the strictly 
monotone nonlinearity G(.) defined by expression (14). Let us denote by 
P~,0,), -7r ~ ~, ~< zc the spectral density of the process [/~G- 1, B, W], where 
W= G(X) and B = [B 1, B~]. Let us denote by ~¢" the convex, closed, and 
compact set of spectral densities 

~(,,: (27C)-1 [p1/2 (2.~ 1/2 2 (17) - .  t c.0~ I - P ~ . ( ; 0 ]  d;~<~ca, 

where Po.0(2) the spectral density induced by the given measure/~o, and the 
nonlinearity G(.), and c the constant in (15). 

We can now express Lemma 4, whose proof is in Appendix B. 

LEMMA 4. Let p(x,y) A (x _ y)Z. Let J{" be the set of measures given by 
(11). Let G(.) be defined by (14). Let ~¢" be the set of spectral densities 
given by (17). Then, the set J¢" is contained in the set ~/'; that is, ~ /  c ~ / ' .  

Adopting the noise channel described in the beginning of this section, 
considering the nonlinearity g(.) in (13), and a subsequent linear predictive 
filter described by the coefficients {aj,j ~<-1 }, let us use the transformation 
Y~j<_lajg(Yj) to map G(Xo), where G(.) is given by (14). Let the set 
{aj,j <~ -1} be in 5 ~, where Y is descriped by conditions (B). For some/~ in 
~¢', it is easy to see that the mean square error (corresponding to p(x,y)A 
(x _y)2)  then takes the form 

l I E, G(Xo)- ~ ajG(Xj) (18) 
j < -a 

Considering now the monotone function G(.) fixed and given by (14), 
considering the larger convex and closed set ~ '  in (17) rather than the 
original set Jr ' ,  and adopting the set 5 ~ of information channels in (B), we 
have defined a new concave--convex problem which is determined by the 
payoff function in (18) and which satisfies all the conditions in Theorem A. 
Specifically, 

1 12 sup inf Eu G ( X o ) - - ~  ajG(Xj) 
U G- l~ , / f f '  're'9"~ j < ~ - I  

(19) 

= inf sup E. G(Xo)-- ~ ajG(Xj) 
~ e S  ~ uG leJ]?" j ~ - - I  
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We will first fix the measure ¢z and we will find the optimal linear filter at 
/1; that is, the optimal set {aj}. Denoting b y / / . ( 2 )  the transfer function of the 
filter at /~, we have the well-known optimal result (Hannan, 1970) for 
predictive filtering, 

I : I II 1 - H,(2)112 = 2~rPo,~(2) • exp (2~)- '  log Po,(2)  d)l 
--7t 

for almost all 2 in [-7r, 7r], (20) 

I ; I e~u, G ) =  (270 exp (27r) -~ logPo,()t)dJ, . (21) 
-re 

In (20) and (21) Pa,(2)  is the spectral density induced by the measure/1 and 
the nonlinearity G(.), and e(/z, G) is the value of the payoff function in (18) 
for the linear predictive filter in (20). Due to expressions (20) and (21), the 
saddle-point solution on ~" '  × 5 p, for the payoff function in (18) will be 
specified by the measure /aG-1 which satisfies the supremum of e(/a, G) in 
(21) on J / '  and the corresponding filter in (20). We express the above 
conclusions in 

PROPOSITION 2. Let G(. ) be the nonlinearity in (14). Let the sets Jd", Y 
be as in (17) and (B), respectively. Then, the payoff  function 
E , { G ( X o ) -  ~ :<_ ,  a:G(Xj)} z has a saddle-point solution on ~ '  X Y .  This 
solution is satisfied by the pair ~u*, H*)  such that 

fZt i-Zg log Pc. . (2)  d2 = sup log Pa.(2)  d2, 

I : 1 II1 -H*0 t ) l f  2=27rPg , ( , t ) .  exp (27r)-' logP~,.(~.)d,~ 

a.e. 2 E [-zr, zc]. 

The pair ~u*, H*)  is equivalently the saddle-point solution on ~ "  × Y for  
the payoff  function E. , .{X 0 -  G - I ( ~ j < _ 1  a: g( Y~) ) } 2, where v the additive 
Gaussian noise channel o f  this section and g(.) the nonlinearity in (13). 

As it is clear from Proposition 2, the problem has now been reduced to the 
investigation of the spectrum PG.(2) in 

f~r ~,,,: (270-1 1/z 1/2 2 [P~.o(;t) - ?~.(-~)1 d,~ ~ ca -rl, 

that satisfies the supremum of f ~  log Pa.(.:t) d~. We thus express Lemma 5 
whose proof is in Appendix B. 
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LEMMA 5. The pair ~u*, H*) in Proposition 2 is 

g*: P6,,(2) =- ?* + 2-1P~o(2)[ 1 + 4y*PG2o(2)] 112 + 2-1PGuo(2 ) 

H*:t11-/-/*(2)112=(2~)P2,(2).exp (2~) -1. log PG.,(2)d2 

a.e. 2 C  [-n,  n], 

: H ( 0 )  = 1, 

where 7* is the unique positive constant which satisfies the expression 

~r 7< 7'* 

(Z~) -1 f {~ + 2-'Pauo(2 ) -  2-1Pauo(2)[1 + 47P~,~o(2)] '/2} d2 ~ ca. 
--~r y> y* 

The only restriction Pauo(2) for the existence of the solution in Lemma 6 is 
that Pau0(2):# 0, V2. The result in Lemma 5 was obtained without any 
energy restrictions on the spectral densities Pa~,(2). Indeed, even if the 
spectral densities of the original measures # have fixed common energy, this 
does not hold for the transformed measures :G-1 .  

We will conclude by observing that we can always define B n = 1 and 
B 1 = 0, in (13). Then the constant c in (15) is equal to (27c) -1/2, and the 
sphere ~¢" of spectral densities Pa~(2) in (17) has smaller radius than the 
sphere ~z  in (11). In general therefore, the solution in Lemma 5 induces then 
smaller mismatch errors. This introduces an additional advantage presented 
by the nonlinearity G(.). The other advantage is, as already stated, 
asymptotic continuity, thus the existence of saddle-point-saddle-value 
solution. 

A P P E N D I X  A 

Proof of Theorem 1. Let us define 

K(p) A= inf K(,u, o), ~t C S¢', 
a ~ Y  

K(p,,,cr)~ sup K(,u,o), ( r@Y.  

Due to the convexity of the set Y ,  its closeness with respect to the metric 
H~,1, and due to the continuity of K ~ ,  a) with respect to Hr, 1 and its strict 
convexity in a on Y ,  the function K ~ )  above exists and it is unique. Due to 
the convexity of ~ ' ,  its closeness and compactness with respect to the metric 
~, and due to the continuity of K(ct, a) with respect to the metric ~ and its 
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concavity in/1 on J / ,  the function K(go, o) above exists and it is unique. Let 
now #1,/~2 ~ Jg', and 2 : 0  < 2 < 1. Then, 

K(2/fi + (1 - 2 ) # 2 ) ~  inf K(2#~ + (1 - 2 ) # 2 ,  o) 

>2 inf K(UlO)+ (1 -2 )  inf K%o) 
o e Y  oEY 

= 2KO.tl)  + ( l  - 2 )  K(fl2).  

Thus K(u) is concave on ,Z/. It is also continuous in/l on Jr" with respect to 
the metric y, and ~ "  is closed and compact with respect to ~. Thus, the 
following supremum exists and it is unique. 

K(u*)=  sup K(u)= sup inf K(u,a). 
uc.~Y u~,~" a~5 ~ 

We now obtain 

inf sup K(u, o) = inf K(u~, a) ~< inf K(u,,, o °) = K(uo) 
u E Y  ,u E.~¢" o E J  o~°~Y 

~<K(p*)~ sup inf K~u,(~). 

But it is always true that 

K(#*)& sup inf K~,o)~< inf sup K ~ , o ) .  

From the last two inequalities, we thus obtain 

inf sup K(u,a)= sup inf K(u,a)=K(u*,a*), 
o-E,5~ Ia~,.K ttE~# a ~ Y  

where 

/l*:K~u*) = sup K ~ )  

o*: K ~ * ,  •*) = inf K(~*, or). 
a E Y  

Proof of Theorem 2. (i) Directly from Theorem 1 in (Papantoni- 
Kazakos, 1981) we have that if the conditions stated in the present theorem 
are satisfied, then: For any stationary/~, and for given e > 0, we have: 

There exists 6(e, p) > 0 such that 

/t' stationary and fi~, g ' )  < 6(e, g) ~ f~vL 1, g,v£ 1) < ~. 
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Similarly, for any given/~v~n 1 stationary, and given 8 > 0, we have: 
There exists 6(e,/~Vm 1) > 0 such that 

~./tlPml stationary and f(PVml,~'v;,, 1) < 6(e,~v~l)~ff(Pvmltr?l , /- t 'v~lo{ 1) < e. 

Therefore, for any given ~t and given % > 0 ,  there exists some 
6 = 6(e o,/~, %, v,~) > 0 such that 

~t' stationary and g(p,/~') < 6-*//(PVmltr~-l,/~'Vmla[ 1) < %. (A. 1) 

Using now the metric 7(. , . )  we have 

Y,~, UVm 1%-1) < y(~, ~,) + y(~,, ~v;ltri  1) <<. y,(~, U') 

+ 7~',~'VmlO{ ') + 7'~U'V;,la/1,~V;ltr; -1) 

-" Y(~, ~Vm ItrF 1) _ 7'(~', ~'v~ ltr/1) 
~(~/, /./t) ..}_ ~Qjiym ltr/1,/./Vm ltr/1). (m.2) 

Due to the symmetry of expression (A.2), we obtain 

I ~(/./,/./Vm ltr / 1) -- ~Q.//, fl/l)m ltr/1)1 < ~0J, fit) + ~O./llYm ltr/I,/./~m ltr/1 ). (A.3) 

Utilizing now (A.1), (A.3), and the conditions in (9), we have: Given e 1 > 0, 
there exists 61 > 0 such that 

] Y(U,/~vT~ 1% -1) - Y(,U',~'Vm1%-I)I < 61-' [~(P,~UV~ltr{ 1) 

--P~u',p'vmltrU1)l < ~1. (A.4) 

Given e 2 > 0, there exists 62 > 0 such that 

~ ,  ~') + ~(~'Vm ltr?,, pV~ lrr? 1) < 6~ --, f,(p, ~') 

+ y:~'Vmltril,t.tVmltr1-1) < e 2. (A.5) 

So, given e > 0, find 61(8 ) in (A.4) and select e 2 = 61(e ), where e 2 given in 
(A.5). Then find 62 = 62(e2)= 62(61(e)), where 62 is given in (A.5). Then 
select the eo in (A.1) such that e 0 = 6 2 ( 6 1 ( e ) ) / 2 .  Denote 6(Co) the 6 in (A.1). 
Select 

6' = m i n  (e o - 62(62(e)2, 6(Co)=6 ( 6 2 ( ?  e))-) ) .  

Then ff0t, p ' )  < 6'-~ I~(,u,/av~ltr{ 1) --ff(,u',/.t'v~,ltr;1)] < e and continuity 
with respect to the measure p has been proved. 

(ii) Let p be fixed. Let trot, trt ~ Qt. For given x t, let p~  denote th~ 
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joint measure with marginals aot,~ , 1  a~.~,l which satisfies the Prohorov 
distance//~,l(a01t,~,, a],x,). 

Let w, z denote outcomes generated by the stationary processes lZVmlOot 1 
and g v ~ l a [  1, respectively. Denote by p '  some joint measure with marginals 
the 1-dimensional restrictions of the measures gv mla~ ,  gv mla~ 1. Let E t be 
such that E ~ ~ R  ~ and gv~l (E  ~) > 1 - dl, for some 0 < d 1 < 1. Let 

1 1 x l E E l ~ Hy, l(o0/,xt, < at,~,) d0. 

Then 

p' (w,  z: y(w, z) >~ do) =fR/2v~l (x ' )p l , (w ,  z: y(w, z) >~ d0) ~< d o + dt. (A.6) 

Given e 1 > 0, select d I = el /2  and d o = el/2. Then, from (A.6) we conclude 

H~,, 1Q2pm IO.o11 -1 -1 (A.7) , / dP  m a l ) < e I , 

where in (A.7) we express the Prohorov distance between the 1-dimensional 
restrictions of the measures gvm lcr~ and fly m 1or[ 1. 

Due to the properties of y(., .) and p(., .) in the theorem, given e 2 > 0, 
there exists d > 0 such that 

I, gv-  l a -  la i a -  1 By- to-  1~ (A.8) 117. l~vg ,  l a ~  ,,, t J < d - - ,  p ~ v ~ ,  ol ,,, l J < ~2. 

Thus, select el = d and c~ 0 = d/2 and conclude 

d 1 1 

O,,x,) T H~,,l(Ool,xt, < Vx I EE'--+ fi(uvT, lo~ l , tav~lo( l )  < e 2. (A.9) 

Now, due to 

~(J-/, ~Vm 1GO/1) ~ ~(//-/, flPm 10"/1) + ~(]21)m 10"0/1, ~Vm 1(7/1) 

) ~(~, 1,v;, la~; 1) - ~7(u, ~,v;, la/1)h 

7Q/Pro 10"0/1, flFm 10"/1 ) 

as well as (A.4) and condition (similar to (A.5)): Given e 3 > 0, there exists 
63 > 0 such that 

/9(~/])m 10"O/1, ~'/]~m 10"/-1) <~ 63 --') ~(fl/Vm 10"O/1, ~/])m 10"/ 1) < ~3' 

we conclude: Given e > 0, there exists d(e) > 0 such that 

t~(~v;, ~o~ ,  uv;, lo ;  1) < a(e)-~ Ip(~, #v~, lab 1) - tEu, uv#, lo~- 1)1 < e. (A.10) 

543/60/1 3-13 
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Select in (A.8) ez = 8(e) and thus 8 = (8(~)), e 1 = 8, 80 = 8/2, and continuity 
with respect to the channel o; has been proven. 

Proof of  Theorem 3. Due to the compactness of  the set ~ ( ,  given r />  0, 
a finite coverage of the set ~¢" can be found consisting of N(r//2) spheres 
~7~i v -  1,/~v- ~ ) < r//2, each centered at the measure/1 i v-  1, 1 ~< i ~< N(r//2). 

Given l, if E l E R; and is such that U;i(EI) > 1 -- (r//2), then ~(E~) > 1 -- r/; 
V~z: f~ tv - l , l zv  -1) < ~//2. Then, given ~/, l, select E l =  ~I<;<.<N~,/z)EI for the 
asymptotically continuous sequence {o;}. Clearly {at} is then also continuous 
at every ~tv- t,/~ ~ j , , .  

Proof of Lemma 2. (i) Given fixed / ~ C ~ ' ,  the distance 
Ilp.l~U,/~v~lo -1) is strictly convex with respect to o because it is strictly 
convex with respect to pv~ lo-1. 

(ii) Given fixed o E 5 ~, le t / l  I , ~t 2 ~ ~ / .  Form the measure/1 = e/~l + 
(1 - e)/~2, for any given e: 0 < e < 1. Then,/~ E J ' .  

The measure /~ induces the matching process measure e~tlV~,to-~+ 
(1 - e)lu2v~,ta -1. L e t p  1 be the joint measure which has for marginals the 1- 
dimensional restrictions of  the measures e/~l + ( i -  e)l~2 and e~qv~,to-l+ 
(1 -e)l~zV~lO -1, and which also satisfies the Prohorov distance 11o,l(e~t1 + 
(1 - e)~t z, el~lV~lO -~ + (1 - e)l~aVmlO-t). 

Let w,z  be realizations from the processes + / ~ 1 + ( 1 - e ) / ~  and 
e/~lV~lo- l+(1-+) /~zv~la  -1, respectively. Let p ~ ,  p~+ be the joint 
measures satisfying, respectively, the Prohorov distances 11o, 1(tl 1, ~ 1 v mt°-  1) 
and 11o.j(pz,/.t2VmlO-1). Then, for any 8 > 0, we have 

pl(w, z: p(w, z) >1 8) 

= ep~,(w, z: p(w, z) >/6) + (1 - 5) p~(w, z: p(w, z) >/8). (A. 11) 

But 

Hp.l~Ul,t~lV~,lo-t)=inf{6:p~,(w,z:p(w,z)>/6) < 6} (A.12) 

and sinailarly f o r / / o ,  1 ~u 2,/~ z v m 1° - 1 ). 
Let 

111~1,~1v[,lo-~)= 6~ 
(A.13) 

II 0,1(~2,~2Vml0 -1) = 62. 

Then, it is clear that in (A.11) the infinum 6 such that 
pt(w, z: p(w, z) >/6)  < 6, cannot be less than e61 + (1 - e) 62. Therefore 

/~0,1(~/,./1 ~- (1 -- e)~-/2, /~]./1Pm 10"--1 "}- (1 -- e)]./2 V m 10"--1) 

6//O,1(~/1,/./ll~n la-- 1) -~ (1 -- g) //O,IQ-/2,/-/2Pm la-- 1). 
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(iii) Equivalence between IIo,~(,u, ctvT,~a -1) and fi(,u, lwT,,~a -1) is due to 
stationarity of both measures /, and ~v~,~a -1 in conjuction with p(., .) 
boundness. 

A P P E N D I X  B 

Proof of Lemma 3. The nonlinearity g(.) clearly maps probability 
masses per datum. Thus, we only have to show that given e > 0, there exists 
some l such that for any finite k and for any two disjoint selections {a/j; 
l<~j<~k}, {am~;l<~j<~k } of k filter coefficients, we have: * I Ei=, % -  

s=l a,~:[ < g. But 

Z aij-- am] 
j = l  '=  

k 

k ~ (a ij - ar,) 2 
j = l  

~< k ~ [max(aq, am)] 2 - ~ [min(ab, amj)] 2 
j = l  j = l  

k 

< k 2 [max(%, 
j = l  

l --1 2 But, given g/k > 0, there exists 0:~2s=-taj  < elk; Vl> 1 o So, then 
- -  a 2 {Z)=I aij Z~=~ mj} ( e, and the lemma is proved. 

Proof of Lemma 4. Let p E ~ ' ,  where J¢" as in (11). Let 
p(x,y)kx (x-y)2 .  Let p be the joint measure that satisfies the rho-bar 
distance fi(u0,/a ). Let G(.) be as in (14). Then, 

fi(~oG-',pG - ' )  <~ f [G(X) - G(Y)] 2 clp(X, Y) 

<.of [ x -  Y]: dp(x, Y)=cp(Uo,.), (B.1) 

where the second inequality in (B.1) is due to (16). From (B.1) we have 

/z E ~ f ' ~  fi(u0 G-X,/aG-~) ~ ca. 

Defining the set ~ "  as 

~" " : .5(,Uo G- l, /.tG-1) ~ ca, 

(B.2) 

(B.3) 
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we have, due to (B.2), ~ / c ~ [ " .  But for p(x,y) z5 (x _y)2, we have directly 
from (Gray, Neuhoff, & Shields, 1975), 

It 

f i~oG-' , /2G- ')  >~ (2~t)-' f [P~G/z~o()Q-P~(,~)] 2 d2 + [mGuo-- mG~] z, 
- - i t  

where mG. = E .  G(X). Therefore, 

; ~ o G - l , : t G - ' ) ~ e a ~  (2n)- '  f [P2o(2)-P1/2(2~12 d2 <.ca. 

Defining 

We have, 
~"  c J ," .  

7~ 

~ ' :  2(n)- ~ ~ |p1/2 r:'~ _ p1/2rL'd 2 d). <~ ca. 
t Gtto k'~] G u t  21 

(B.4) 

(B.5) 

(B.6) 

due to (B.5), ~ ' "  c~¢".  Since also ~¢ 'c~ / ' : ,  we finally have 

1 / 2  ~ - -  1 / 2  [P*~,()0]-' + vPG.o('~)[Pa~,()O] -- v ---- 0 

_+ [ p G * u ( j . ) ] - l / 2 =  1 1/2 4V11/2}, 1: ~{--vPGuo(2 ) + [vP6,0(2 ) + > 0. (B.7) 

From (B.7) we obtain in a straight forward manner, 

e* . (2 )=y+2- 'P~uo(2)+2- 'P6 .o (2 ) [1  + 4yP~-2o(2)]'/2, y>0 ,  (B.8) 

So, 

Proof of  Lemma 5. Fixing temporarily the constraint to 
(27t)-1 f ~  p1/2 I/z 2 [ G.0()') - -Pc .  0.)] d;t--fl, we formalize the variational problem 

It 

f(e) = f  log[P'u0. ) + 8P,(~.)] d). 
- i t  

It 

- -  v f [P~/Jo()Q - {P*~,0Q + eP,(X)} ,/2]2 d)~, v > 0, 
- i t  

where v is the Langrange multiplier. 
If P*.0~) is the solution of the concave problem under the fixed constraint, 

t henf ' (0 )=  0 for all P~(2). But 

It 
f I / 2  ~ --  1 / 2  f '  (0) = P,0"){ [P~*.(2)] -1 + vpauo(2)[pau()~) ] - v} d,~ = O. 

- z r  
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where ~, some constant  which will be determined through the appropr ia te  
constraint .  F r o m  expression (B.8) we easily find 

~t 

( 2 . ) - I f  I/2 ,/2 
- - z t  

z t  

= y +  (2 , )  -1 f {2-1P~uo(2)--2-1p~,o(2)[l +4rPa2o(2)]l/2}d~.. 

(B.9) 

It is easi ly seen that  both the expressions in (B.8) and (B.9) are 
monotonica l ly  increasing with increasing positive parameter  ?~. Thus, the 
conclusion in the lemma. 
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