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Abstract

Background: Self-complementary adeno-associated virus (scAAV) vectors have become a desirable vector for
therapeutic gene transfer due to their ability to produce greater levels of transgene than single-stranded AAV
(ssAAV). However, recent reports have suggested that scAAV vectors are more immunogenic than ssAAV. In this
study, we investigated the effects of a self-complementary genome during gene therapy with a therapeutic protein,
human factor IX (hF.IX).

Methods: Hemophilia B mice were injected intramuscularly with ss or scAAV1 vectors expressing hF.IX. The
outcome of gene transfer was assessed, including transgene expression as well as antibody and CD8+ T cell
responses to hF.IX.

Results: Self-complementary AAV1 vectors induced similar antibody responses (which eliminated systemic hF.IX
expression) but stronger CD8+ T cell responses to hF.IX relative to ssAAV1 in mice with F9 gene deletion. As a
result, hF.IX-expressing muscle fibers were effectively eliminated in scAAV-treated mice. In contrast, mice with F9
nonsense mutation (late stop codon) lacked antibody or T cell responses, thus showing long-term expression
regardless of the vector genome.

Conclusions: The nature of the AAV genome can impact the CD8+ T cell response to the therapeutic transgene
product. In mice with endogenous hF.IX expression, however, this enhanced immunogenicity did not break
tolerance to hF.IX, suggesting that the underlying mutation is a more important risk factor for transgene-specific
immunity than the molecular form of the AAV genome.
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Background
Hemophilia B is the X-linked monogenetic disorder
caused by the loss of functional coagulation factor IX
(F.IX), resulting in a deficiency in the ability of blood to
clot. In addition to increased propensity for bleeding
after trauma or injury, spontaneous bleeds can occur in
capillaries, particularly in the joints, resulting in tissue
damage over time. Bleeds into critical closed spaces can
be life-threatening. Currently, hemophilia B is treated
by intravenous administration of F.IX concentrate,
either plasma-derived or recombinant, in order to
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restore hemostasis. Because of the short half-life of the
protein in circulation, frequent injections are required
to provide prophylaxis or to treat patients with severe
disease on demand. Gene therapy represents an attrac-
tive alternative to protein replacement therapy, as it
would involve a single injection to provide long-term in-
trinsic production of F.IX.
Among potential gene therapies for hemophilia B, the

use of adeno-associated virus (AAV) as a gene delivery
vector has shown the most success to date [1]. AAV is a
dependovirus, a parvovirus that is unable to replicate in
the absence of a helper virus (typically adenovirus). For
use as a gene therapy vector, all viral genes are removed,
leaving only the inverted terminal repeats required for
packaging around the transgenic construct. The various
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serotypes of AAV have different tropisms, which allow
for gene transfer to numerous target tissues [2]. For in-
stance, AAV1 can effectively transduce skeletal muscle,
while AAV8 has strong tropism for liver tissue. Pre-
clinical studies in animals established that the risk of
immune responses to F.IX is substantially affected by
the route of vector administration and by the underlying
genetic defect. F9 null mutations (complete absence of
protein, for example resulting from a gene deletion) are
most likely associated with strong immune response,
while mutations preserving some level of endogenous,
albeit non-functional F.IX expression, reduce the risk
for immune responses [3-6].
Recent clinical trials are based on liver-directed gene

transfer. Hepatocytes are the normal site of F.IX syn-
thesis. Furthermore, high levels of antigen expression in
hepatocytes promote induction of regulatory T cells,
resulting in immune tolerance induction to the trans-
gene product. This approach is even able to reverse an
ongoing antibody response against F.IX [4,7,8]. Sustained
expression of F.IX by hepatic gene transfer has now been
demonstrated in hemophilia B patients, following suc-
cesses in large animals model, including non-human
primates and hemophilia B dogs [9-11].
AAV vectors traditionally contain a single-stranded

DNA genome (ssAAV) with a packaging limit of ap-
proximately 5 kb. By modifying one of the inverted
terminal repeats, it is possible to force the virus to pac-
kage a self-complementary double-stranded DNA ge-
nome (scAAV), thereby bypassing the need to for
second-strand synthesis, one of the rate-limiting steps in
AAV transduction [12]. A disadvantage of this strategy is
the further reduced packaging limit. Nonetheless, scAAV
vectors expressing F.IX from liver-specific promoters
have been optimized and are currently used in clinical
trials [9]. In addition to more rapid transgene expres-
sion, scAAV vectors often produce higher transgene
levels than ssAAV with an equivalent input dose [11]. At
the same time, we found that scAAV vectors elicited
stronger innate immune responses in the liver than
ssAAV, likely because of enhanced toll-like receptor
9 (TLR9) signaling. Consistent with prior studies by
others, hepatic innate immune responses to AAV vectors
were dependent on TLR9, an endosomal receptor that
recognizes unmethylated CpG DNA motifs [13-15]. In
our hepatic gene transfer model, the heightened innate
response did not increase adaptive immune responses to
the F.IX transgene product but caused modest increases
in B and T cell responses to the capsid antigens of the
vector.
Skeletal muscle represents an alternative target tissue

for AAV-F.IX gene transfer. Upon gene transfer myo-
fibers are capable of producing biologically active mate-
rial, and the first clinical trial on AAV-F.IX gene transfer
utilized intramuscular injections at multiple skeletal
muscle sites as the route of vector administration
[16-19]. F.IX-expressing muscle fibers may persist in
humans for at least 10 years after initial gene transfer
[20]. However, a concern about muscle-directed gene
transfer is the increased risk of immune responses
against F.IX. Hence, in this study we chose the more im-
munogenic intramuscular route to assess the potential
for B and T cell responses against F.IX as a function of
the vector genome (scAAV vs ssAAV) and the under-
lying F9 gene mutation. The results show a stronger and
more destructive CD8+ T cell response using scAAV in
mice with a F9 gene deletion, while mice expressing
truncated hF.IX remained tolerant to F.IX regardless of
vector genome conformation.
Methods
Animal strains and experiments
Hemophilia B mice with targeted deletion of murine F9
(‘HB’) had been bred on C3H/HeJ background for >10
generations [21]. Mice transgenic for truncated hF.IX
(human F9 complementary DNA including a 0.3-kb por-
tion of intron I expressed from liver‐specific transthy-
retin promoter) were as published [22]. These animals
express hF.IX with late stop codon at amino acid residue
338 (‘LS’). This line was originally numbered as LS-37
and contains 6 copies of the hF.IX gene [22]. The line
was repeatedly backcrossed onto C3H/HeJ background
(>10 generations), and finally crossed with HB mice in
order to eliminate endogenous murine F.IX expression
[3]. Animals were housed under specific pathogen-free
conditions at the University of Florida and treated under
Institutional Animal Care and Use Committee-approved
protocols. All animals were male and 6–8 weeks old at
the onset of the experiments; all cohorts contained at
least 4 mice per group.
AAV vectors were administered intramuscularly into

two sites: quadriceps and tibialis anterior of one hind limb,
as previously described [23]. Plasma samples were col-
lected by tail bleed into citrate buffer as described [21].
AAV vectors
ssAAV vector expressing human F.IX cDNA (including
a 1.4-kb portion of intron I) from the CMV IE en-
hancer/promoter was as published [19]. For construction
of scAAV, the human F.IX coding sequence (lacking
intronic or 3′ untranslated sequences) was cloned into
an scAAV-CMV-GFP construct, replacing the GFP se-
quence. This construct contains a small β-globin/IgG
chimeric intron. Vector genomes were packaged into
AAV serotype 1 capsid by triple transfection of HEK-293
cells. Vector particles were purified by iodixanol gradient
centrifugation, and vector titers determined by dot blot



Rogers et al. Journal of Translational Medicine 2014, 12:25 Page 3 of 10
http://www.translational-medicine.com/content/12/1/25
hybridization and confirmed by Western blot using a
reference standard of known titer for comparison.

Analysis of plasma samples
Plasma was analyzed for hF.IX expression, anti-hF.IX
IgG1, and anti-AAV1 IgG2a by enzyme-linked immuno-
sorbent assay (ELISA) as previously described [13,21].
For the anti-capsid antibody ELISAs, sample wells were
coated with 2.5 × 109 vg/well intact AAV1 particles. The
assay for anti-hF.IX IgG1 was sensitive to ~200 ng/mL.
Anti-hF.IX inhibitory activity was assessed using the
Bethesda assay, as previously described [3]. One Bethesda
unit (BU) represents the inhibition of 50% of clotting
activity. Clotting assays were performed on a STart®
Hemostasis Analyzer (Diagnostica Stago, Parsippany, NJ).

ELISPOT assays
Enzyme-linked immunosorbent spot (ELISPOT) assays
were performed to enumerate hF.IX-specific CD8+ T
cells in mouse spleens, as previously described [3,24].
Briefly, splenocytes were plated at 1 × 106 cells/well, and
stimulated with media alone, staphylococcal enterotoxin
B (Toxin Technologies, Sarasota, FL; 1 ug/mL), or the
immunodominant CD8 epitope of hF.IX for the C3H-
HeJ background (p74, Anaspec, San Jose, CA; 10 ug/mL)
[3]. Analyses were performed in triplicate on indivi-
dual mice. After stimulation for 20 hours, plates were
harvested and IFN-γ spot-forming units (SFU) were
detected and counted using the ImmunoSpot Analyzer
(Cellular Technology, Shaker Heights, OH). Results were
calculated as spot-forming units per 106 total cells.

Immunohistochemistry
Immunohistochemistry was performed using fluorescent
antibodies on frozen and cryosectioned tissue, as pre-
viously described [25]. Briefly, muscle tissue was har-
vested and frozen in liquid N2-cooled 2-methylbutane.
Cryosections (10 μm) of tissue were fixed in acetone
at room temperature, blocked with 5% donkey serum
(Sigma, St. Louis, MO), and stained with rat anti-CD8α
(eBioscience, San Diego, CA) and goat anti-hF.IX
(Affinity Biologicals, Ontario, Canada). Secondary anti-
body donkey anti-rat Alexa Fluor 488 and donkey anti-
goat Alexa Fluor 568 (Life Technologies, Eugene, OR)
were used for detection. Fluorescence microscopy was
performed with a Nikon E800 microscope (Nikon,
Tokyo, Japan).

Statistics
Results are reported as means ± SEM. Significant dif-
ferences between groups were determined with unpaired
Student’s t-test. P values of <0.05 were considered sig-
nificant. Analyses were performed using GraphPad
Prism (San Diego, CA).
Results
The vector genome affects the CD8+ T cell response to
F.IX in null mutation mice
To assess the effect of a scAAV genome on the immune
response to F.IX, we injected hemophilia B (HB) C3H/HeJ
mice intramuscularly (i.m.) with 1011 vector genomes (vg)
of ss or scAAV serotype 1 vectors expressing human F.IX
(hF.IX) under the control of a cytomegalovirus promoter
(AAV1-CMV-hF.IX). These HB mice have a targeted dele-
tion of the murine F9 gene and therefore lack tolerance to
F.IX antigen. In previous studies, we found that ssAAV2-
CMV-hF.IX (serotype 2 vector) induced neutralizing anti-
body and CD8+ T cell responses against hF.IX upon i.m.
injection in this strain [3]. Here, we used serotype 1 vec-
tor, because it is superior for muscle gene transfer and
is hence in clinical trial/use for muscle gene transfer for
α1-antitrypsin deficiency and for lipoprotein lipase defi-
ciency [26-29].
Plasma was then collected 1, 2, and 4 weeks post-

injection to assess circulating expression of hF.IX as well
as antibody responses to the transgene product. One
week after vector injection, expression of hF.IX was de-
tected in mice that received ss or scAAV1 (Figure 1A).
At two weeks and thereafter, though, circulating hF.IX
was not detected in either group of animals.
Corresponding with the loss of hF.IX expression in

plasma, antibodies against hF.IX were first detected 2
weeks post-injection by ELISA (Figure 1B). Consistent
with prior findings, these were of the IgG1 subclass,
whereas levels of IgG2a and IgG2b were comparatively
very low or nonexistent (data not shown) [3,30,31].
Average anti-hF.IX titers were nearly identical for both
ss and scAAV vectors. To assess the functionality of this
humoral immune response, we performed the Bethesda
assay, which measures the ability of hF.IX-specific anti-
bodies (inhibitors) to prevent plasma clotting activity.
Inhibitor titers lagged behind the detection of anti-hF.
IX IgG1, with no little or no inhibition of clotting
detected after two weeks (Figure 1C). After 4 weeks,
average titers of ~20 BU were measured regardless
whether mice received ss or scAAV1.
Two and four weeks post-injection, splenocytes were

harvested to measure the CD8+ T cell response to hF.IX
by ELISPOT. Both vectors induced a measurable antigen-
specific response. However, mice that received scAAV1
had a significantly higher number of IFN-γ spot-forming
units (SFU) when stimulated with the immunodominant
CD8 epitope of hF.IX at 2 weeks (Figure 1D). Four weeks
post-injection, all animals still showed a response, which
was similar for ss and scAAV1-treated mice at this later
time point (Figure 1E). Background SFU (media and SEB
treatments) were higher at 2 weeks, possibly due to ele-
vated immune activity at this time point. In order to assess
whether activated hF.IX-specific CTLs infiltrated the
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Figure 1 Outcome of gene transfer with ss or scAAV1 in HB mice. HB mice were injected i.m. with 1011 vg of ss or scAAV1-CMV-hF.IX
(n = 4/group). Plasma was collected 1, 2, and 4 weeks post-injection. (A) Circulating hF.IX levels were measured by ELISA. (B) Anti-hF.IX IgG1
levels in plasma were measured by ELISA. (C) Bethesda titer. One BU represents the inhibition of 50% of clotting activity. (D-E) Splenocytes were
harvested and restimulated with media alone, the CD8 epitope of hF.IX, or SEB, and IFN-γ spot-forming units (per 106 cells) were measured by
ELISPOT. Measurements were performed on individual animals two weeks (D) or four weeks (E) post-injection. Data points are averages ± SEM.
Results are representative of at least two independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001, ns = not significant.
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transduced tissue, immunohistochemical analyses of
injected muscles were performed. Two weeks post-
injection, mice that received either ss or scAAV1 had
significant CD8+ T cell infiltration, though there was
more evidence of local hF.IX production in ssAAV1-
treated mice (Figure 2A-B, E-F). At four weeks post-
injection, muscle transduced with ssAAV1 maintained
hF.IX expression concomitant with continued CD8+ T
cell infiltrates, whereas mice that received scAAV1 had
very few transduced skeletal muscle cells remaining,
and CD8+ T cell infiltration had subsided (Figure 2C-D,
G-H).

Mice with a nonsense mutation fail to mount an immune
response against F.IX regardless of the AAV genome
With the indication that scAAV vectors may induce a
stronger CD8+ T cell response to hF.IX, we next sought
to determine whether they could induce a response in
hemophilic mice with a mutation that results in non-
functional hF.IX expression. We had previously esta-
blished hemophilic mice carrying F9 missense mutations
or a nonsense mutation. When injected i.m. with AAV2-
CMV-hF.IX vector, none of the mice of either of these
lines showed a CD8+ T cell response to F.IX; however,
mice with a late stop codon mutation (at amino acid
residue 338 of F.IX, “LS” line) produced antibodies
against hF.IX, indicating that these mice were not fully
tolerant to hF.IX [3]. Thus, we chose the LS line of
hemophilic mice to test whether i.m. administration of
an scAAV1 vector could break CD8+ T cell tolerance to
hF.IX.
One week after gene transfer with either sc or ssAAV1

vectors, circulating hF.IX was detected at levels similar
to those reported above for HB null mutation mice. At 2
and 4 weeks post-injection, hF.IX expression increased
and persisted, with expression levels in ssAAV1-treated
mice about 3-fold higher than scAAV1-injected mice
after 4 weeks (Figure 3A). None of the LS mice deve-
loped antibodies/inhibitors against hF.IX over the course
of the experiment (Figure 3B-C). After 4 weeks, spleno-
cytes were once again harvested to measure the CD8+

T cell responses to hF.IX by ELISPOT. As with the



Figure 2 Local hF.IX expression and CD8 infiltration in HB mice. Skeletal muscle from HB mice injected i.m. with 1011 vg ss or scAAV1
(n = 4/group) was harvested, cryosectioned, and stained for hF.IX (red) and CD8 (green). Nuclei were visualized with DAPI (blue). Two weeks
post-injection, tissue was analyzed from mice injected with ssAAV1 (A-B) or scAAV1 (E-F). After four weeks, skeletal muscle was stained from mice
injected with ssAAV1 (C-D) or scAAV1 (G-H). Representative images from two mice are shown for each condition. The scale bar represents
100 μm. Results are representative of at least two independent experiments.
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humoral immune response, there was no evidence of
splenic hF.IX-specific CD8+ T cells in LS mice treated
with either vector (Figure 3D). The situation within the
muscle itself reflected what had been observed systemi-
cally. Mice injected with either ss or scAAV1 showed
similar transduction of skeletal muscle without evidence
of infiltrating CD8+ T cells (Figure 4). In summary, use
of scAAV vector did not increase the risk for humoral or
cellular immune responses to the hF.IX transgene pro-
duct in the context of the LS nonsense mutation.
Since LS mice displayed higher hF.IX expression levels

from ssAAV1 vectors compared to scAAV1 in the
absence of an immune response, we wanted to verify the
functionality of the self-complementary vector on an-
other background. Thus, RAG-deficient C57BL/6 mice
that lack B and T cells were injected intramuscularly
with 1011 vg of either vector. In these mice, circulating
hF.IX levels were significantly higher in animals treated
with scAAV1, suggesting that the inversion in expression
levels observed in the LS mice may be a strain-specific
effect (Figure 3E).

Anti-capsid antibodies are not altered by scAAV vectors
Finally, we investigated whether the vector genome may
alter antibody responses against AAV capsid. Four weeks
after i.m. injection of ss or scAAV1, we measured the
formation of AAV1-specific antibodies (which are ty-
pically of a Th1 associated subclass such as IgG2a) in
plasma by ELISA [13,32]. At this time point, levels of
anti-AAV1 IgG2a were comparable whether mice re-
ceived ss or scAAV1 (Figure 5). As with the transgene,
capsid-specific antibody formation was not enhanced by
scAAV vectors relative to ssAAV.

Discussion
A major concern in gene replacement therapy is the po-
tential for adaptive immune responses to the therapeutic
transgene product, which may be recognized by the
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Figure 3 Outcome of gene transfer with ss or scAAV1 in LS mice. LS mice were injected i.m. with 1011 vg of ss or scAAV1-CMV-hF.IX
(n = 4/group). Plasma was collected 1, 2, and 4 weeks post-injection. (A) Circulating hF.IX levels were measured by ELISA. (B) Anti-hF.IX IgG1 levels in
plasma were measured by ELISA. (C) Bethesda titer. One BU represents the inhibition of 50% of clotting activity. (D) Splenocytes were harvested four
weeks post-injection and restimulated with media alone, the CD8 epitope of hF.IX, or SEB, and IFN-γ spot-forming units (per 106 cells) were measured
by ELISPOT. Measurements were performed on individual animals. (E) Circulating hF.IX levels in C57BL/6 RAG−/− mice 2 weeks post-injection with ss or
scAAV1-CMV-hF.IX (n = 4/group). Data points are averages ± SEM. Results are representative of at least two independent experiments. * P < 0.05,
*** P < 0.001, ns = not significant.

Figure 4 Local hF.IX expression and CD8 infiltration in LS mice. Skeletal muscle from LS mice injected i.m. with 1011 vg ss or scAAV1
(n = 4/group) was harvested, cryosectioned, and stained for hF.IX (red) and CD8 (green). Nuclei were visualized with DAPI (blue). Four weeks
post-injection, tissue was harvested from mice injected with ssAAV1 (A-B) or scAAV1 (C-D). Representative images from two mice are shown
for each condition. The scale bar represents 100 μm. Results are representative of at least two independent experiments.
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immune system as a foreign antigen. Our previous stu-
dies with hemophilic mice and dogs have clearly docu-
mented a major role for the underlying F.IX mutation
on the risk of B and T cell responses to the transgene
product in gene therapy for hemophilia B [3,17,23,33].
However, immune responses require activation signals,
which may be derived from innate immune recognition
of the vector. Hence, there are a number of additional
factors that influence the likelihood, strength, and cha-
racteristics of an immune response. Among others, these
include the choice and design of the vector, dose, and
route of administration [4,21,34-38].

Self-complementary vectors may increase immune
responses to the transgene product depending on the
route of vector administration
Self-complementary AAV vectors have been optimized
for F.IX gene expression and have gathered growing
enthusiasm because of the potential for improved gene
transfer and expression [11,39,40]. At the same time,
using scAAV instead of ssAAV may change innate im-
munity as well as the kinetics and magnitude of trans-
gene expression. Here, we address how this change in
vector genome conformation may influence immune
responses to F.IX during muscle-directed gene transfer.
Innate immune responses to AAV vectors are typically

weak and transient, resulting in limited inflammatory
signals [13,41,42]. Nonetheless, we previously found that
scAAV enhanced TLR9-dependent innate immune re-
sponses, resulting in stronger NF-κB dependent inflam-
mation of tissue and expression of IFN I [13,43]. This
increased immunogenicity, however, did not affect F.IX-
specific immune responses and only modestly increased
antibody formation against the vector in liver-directed
gene transfer [13]. Hepatic transgene expression occurs
in an environment characterized by active down-
regulation of immune responses, thereby favoring in-
duction of regulatory T cells and establishment of im-
mune tolerance [8,44-49].
On the other hand, expression of a well-characterized

vaccine antigen (HIV gag) in skeletal muscle yielded stron-
ger and more functional CD8+ T cell responses, which
was characterized by greater expression of cytokines and
effector markers as well as increased lytic capability
in vivo. Additionally, stronger antibody responses were
observed when using scAAV compared to ssAAV vectors
[50]. In hemophilia B mice with a F9 gene deletion, we
reconstituted some of these findings: the CD8+ T cell re-
sponses against hF.IX was more robust and also more
functional using the scAAV vector, with infiltrating T cells
rapidly eliminating hF.IX expressing muscle fibers. In the
context of ssAAV gene transfer, the ensuing CD8+ T cell
response results in chronic infiltration of transduced
muscle without elimination of expression. These observa-
tions are consistent with out previous findings with ssAAV
vectors [6]. CD8+ T cells induced by ssAAV have reduced
cytotoxic and proliferative capacity that cannot be rescued
by secondary immunization, most likely due to T cell ex-
haustion and apoptosis [50-52]. Additionally, it has been
suggested that regulatory T cells induced by persistent
AAV capsids in skeletal muscle were able to prevent eli-
mination of transduced myocytes by chronically infiltrat-
ing CTLs in a clinical trial for α1-antitrypsin deficiency
[27]. It is therefore possible that regulatory T cells could
also be involved in our model. Although not addressed
here, we previously found that administration of scAAV
also increases CD8+ T cell responses to capsid compared
to ssAAV [13].
In contrast, antibody responses against vector or trans-

gene product seem less consistently affected by use of
scAAV genomes. This may be explained by a greater de-
pendence of CD8+ T cell responses than of antibody re-
sponses on TLR9 activation by AAV vectors [47,53].
Innate immune sensing of AAV vectors depends on
TLR9 and is increased with scAAV due to increased
TLR9 signaling from these vectors [13,15]. Interestingly,
removal of CpG motifs from AAV vector genomes sub-
stantially reduces CD8+ T cell activation but has little
effect on antibody formation [47]. Our results concur
with these findings, as antibody responses to both trans-
gene and capsid were not elevated with scAAV vectors.

The underlying mutation is a greater determinant of the
risk of immune responses to F.IX than the vector genome
conformation
Previously, we bred hemophilia B mice onto the C3H/HeJ
background, which gives higher antibody/inhibitor and
CD8+ T cell responses to hF.IX than other common back-
grounds. Mice with a null mutation (F9 gene deletion)
showed such responses to hF.IX in muscle gene transfer
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and suboptimal hepatic gene transfer [3,30,31,54]. These
mice also form inhibitors and IgE responses during factor
replacement therapy, resulting in anaphylaxis after re-
peated intravenous injections of F.IX protein [4,55].
However, optimal hepatic gene transfer with AAV vectors
induces tolerance to hF.IX in this strain despite the gene
deletion mutation [4,56,57]. Among the 3 other mutations
that we examined (with endogenous non-functional hF.IX
expression in hepatocytes; 2 missense and 1 nonsense
mutation), the LS mutation (late stop codon) was the least
tolerant and was still prone to antibody responses to
hF.IX after muscle gene transfer using an ssAAV2 vector.
Interestingly, no CD8+ T cell response was observed des-
pite lack of expression of the C-terminus of hF.IX that
contains the immunodominant CD8+ T cell epitope for
this strain [3]. Given that our novel and published data
demonstrated an increased ability of scAAV vectors to
generate vigorous transgene product-specific CD8+ T cell
responses, we hypothesized that a more potent scAAV1
vector may yield such a response in the LS strain. In spite
of this, no CD8+ T cell response or antibody response was
observed regardless of whether ss or scAAV1 vector was
used. Together, results in null and LS mutations show that
the underlying mutation is a stronger determining factor
in the risk of immune responses to hF.IX than the type of
AAV vector genome. The increased immunogenicity of
the scAAV vector did not break tolerance to hF.IX in the
LS mice, which do express the dominant CD4+ T cell epi-
tope and may therefore exhibit tolerance in the T helper
cell compartment. A comparison to our published data
further suggests that use of AAV1 vector reduces antibody
responses to hF.IX, at least in mice, when compared to
AAV2 [3]. At least equally and perhaps more important
than the underlying mutation is the route of vector ad-
ministration/target tissue, with optimized hepatic gene
transfer resulting in tolerance induction even for null
mutations.
A somewhat curious result of the experiments in the

tolerant LS strain were the higher levels of circulating
hF.IX achieved with the ssAAV vector. Using the identi-
cal dose and vector preparations, scAAV vector outper-
formed ssAAV upon muscle gene transfer in immune
deficient mice (RAG-deficient C57BL/6), which however
were not available on a strain-matched C3H/HeJ genetic
background. It is possible that the increased innate
immune responses induced by scAAV vectors could be
silencing expression of the transgene, which may be
strain-specific. It is known that the activity of the CMV
enhancer/promoter used in these vectors can be inhi-
bited by inflammatory cytokines [58,59]. IL-12-mediated
inflammation at the time of gene transfer has also been
shown to inhibit transgene production [60]. Similarly,
the expression of HIV gag p24 and induction of gag-
specific CD8+ T cells was previously shown to be lower
at a dose of 1011 than 1010 vg, a phenomenon which
may have also been related to silencing of the CMV pro-
moter, or saturation of the transduction capacity of the
injected muscle at a dose of 1010 vg [50]. Although we
previously found that IFN I induced by recombinant
adenovirus but not by scAAV caused transgene silencing,
a transthyretin rather than a CMV promoter was used in
the scAAV vectors in that study [61]. Clearly, there are
still factors affecting transgene expression from scAAV
vectors that remain to be elucidated.

Conclusion
In summary, when performing gene transfer with AAV
vectors via a route of administration that is more prone
to immune responses to the transgene product, the un-
derlying genetic defect is an important determinant of
the risk of B and T cell responses. Should an immune re-
sponse ensue, which may be more likely to occur when
treating in the context of a null mutation, scAAV vectors
are likely to cause a more potent CD8+ T cell response
than ssAAV, thereby increasing the risk of loss of trans-
duced cells. These observations likely apply to gene the-
rapies for other genetic diseases and should be taken
into consideration during clinical trial design.
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