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Abstract

In this paper we consider the problem of the existence of higher derivatives of the function
t �→ �(A + tK), where � is a function on the real line, A is a self-adjoint operator, and K is
a bounded self-adjoint operator. We improve earlier results by Sten’kin. In order to do this, we
give a new approach to multiple operator integrals. This approach improves the earlier approach
given by Sten’kin. We also consider a similar problem for unitary operators.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Multiple operator integrals; Operator derivatives; Besov classes; Schur multipliers; Unitary
operators; Self-adjoint operators

1. Introduction

If A is a bounded self-adjoint operator on Hilbert space, the spectral theorem allows
one for a Borel function � on the real line R to define the function �(A) of A. We are
going to study in this paper smoothness properties of the map A �→ �(A). It is easy to
see that if this map is differentiable (in the sense of Gâteaux), then � is continuously
differentiable.

If K is another bounded self-adjoint operator, consider the function t �→ �(A+ tK),
t ∈ R. In [DK] it was shown that if � ∈ C2(R) (i.e., � is twice continuously
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differentiable), then the map t �→ �(A + tK) is norm differentiable and

d

ds

(
�(A + sK)

)∣∣∣
s=0

=
∫ ∫

�(�) − �(�)

� − �
dEA(�)K dEA(�), (1.1)

where EA is the spectral measure of A. Note that in the case � = � we assume that

�(�) − �(�)

� − �
= �′(�).

The expression on the right-hand side of (1.1) is a double operator integral. Later
Birman and Solomyak developed their beautiful theory of double operator integrals in
[BS1–BS3] (see also [BS4]); we discuss briefly this theory in §3.

Throughout this paper if we integrate a function on Rd (or Td ) and the domain of
integration is not specified, it is assumed that the domain of integration is Rd (or Td ).

Birman and Solomyak relaxed in [BS3] the assumptions on � under which (1.1)
holds. They also considered the case of an unbounded self-adjoint operator A. However,
it turned out that the condition � ∈ C1(R) is not sufficient for the differentiability of
the function t �→ �(A + tK) even in the case of bounded A. This can be deduced
from an explicit example constructed by Farforovskaya [F2] (in fact, this can also be
deduced from an example given in [F1]).

In [Pe1] a necessary condition on � for the differentiability of the function
t �→ �(A + tK) for all A and K was found. That necessary condition was deduced
from the nuclearity criterion for Hankel operators (see the monograph [Pe4]) and it
implies that the condition � ∈ C1(R) is not sufficient. We also refer the reader to
[Pe2] where a necessary condition is given in the case of an unbounded self-adjoint
operator A.

Sharp sufficient conditions on � for the differentiability of the function t �→
�(A+ tK) were obtained in [Pe1] in the case of bounded self-adjoint operators and in
[Pe2] in the case of an unbounded self-adjoint operator A. In particular, it follows from
the results of [Pe2] that if � belongs to the homogeneous Besov space B1∞1(R), 1 A

is a self-adjoint operator and K is a bounded self-adjoint operator, then the function
t �→ �(A + tK) is differentiable and (1.1) holds (see §5 of this paper for details). In
the case of bounded self-adjoint operators formula (1.1) holds if � belongs to B1∞1(R)

locally (see [Pe1]).
A similar problem for unitary operators was considered in [BS3] and later in [Pe1].

Let � be a function on the unit circle T. For a unitary operator U and a bounded self-
adjoint operator A, consider the function t �→ �(eitAU). It was shown in [Pe1] that if
� belongs to the Besov space B1∞1, then the function t �→ �(eitAU) is differentiable

1 See §2 for information on Besov spaces.
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and

d

ds

(
�(eisAU)

)∣∣∣
s=o

= i

(∫ ∫
�(�) − �(�)

� − �
dEU(�)A dEU(�)

)
U (1.2)

(earlier this formula was obtained in [BS3] under more restrictive assumptions on �).
We refer the reader to [Pe1] and [Pe2] for necessary conditions. We also mention here
the paper [ABF], which slightly improves the sufficient condition � ∈ B1∞1.

The problem of the existence of higher derivatives of the function t �→ �(A + tK)

was studied by Sten’kin in [S]. He showed that under certain conditions on � the
function t �→ �(A + tK) has m derivatives and

dm

dsm

(
�(As)

)∣∣∣
s=0

= m!
∫

· · ·
∫

︸ ︷︷ ︸
m+1

(Dm�)(�1, . . . , �m+1) dEA(�1)K · · · K dEA(�m+1),

(1.3)

where for a k times differentiable function � the divided differences Dk� of order k

are defined inductively as follows:

D0�
def= �;

if k�1, then

(Dk�)(�1, . . . , �k+1)
def=
⎧⎨
⎩

(Dk−1�)(�1,... ,�k−1,�k)−(Dk−1�)(�2,... ,�k−1,�k+1)

�k−�k+1
, �k �= �k+1,

�
�t

((
Dk−1�

)
(�1, . . . , �k−1, t)

)∣∣∣
t=�k

, �k = �k+1,

(the definition does not depend on the order of the variables). We are also going to
use the notation

D� = D1�.

The Birman–Solomyak theory of double operator integrals does not generalize to the
case of multiple operator integrals. In [Pa] multiple operator integrals

∫
· · ·
∫

︸ ︷︷ ︸
k

�(�1, . . . , �k) dE1(�1)T1 dE2(�2)T2 · · · Tk−1 dEk(�k),

were defined for bounded operators T1, T2, . . . , Tk−1 and sufficiently smooth
functions �.
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In [S], Sten’kin considered iterated integration and he defined multiple operator
integrals for a certain class of functions �. However, the approaches of [Pa] and [S] in
the case k = 2 lead to a considerably smaller class of functions � than the Birman–
Solomyak approach. In particular the function � identically equal to 1, is not integrable
in the sense of the approach developed in [S], while it is very natural to assume that

∫
· · ·
∫

︸ ︷︷ ︸
k

dE1(�1)T1 dE2(�2)T2 · · · Tk−1 dEk(�k) = T1T2 · · · Tk−1.

In §3 of this paper we use a different approach to the definition of multiple operator
integrals. The approach is based on integral projective tensor products. In the case
k = 2 our approach produces the class of integrable functions that coincides with the
class of so-called Schur multipliers, which is the maximal possible class of integrable
functions in the case k = 2 (see §4).

We also mention here the paper by Solomyak and Sten’kin [SS], in which the authors
found sufficient conditions for the existence of multiple operator integrals in the case
when

�(�1, . . . , �k) = (Dk−1�)(�1, . . . , �k).

Our approach allows us to improve the results of [SS] and Sten’kin’s results on the
existence of higher order derivatives of the function t �→ �(A + tK). We prove in
§5 that formula (1.3) holds for functions � in the intersection Bm

∞1(R)
⋂

B1∞1(R) of
homogeneous Besov spaces.

Note that the Besov spaces B1∞1 and B1∞1(R) appear in a natural way when study-
ing the applicability of the Lifshits–Krein trace formula for trace class perturbations
(see [Pe1] and [Pe2]), while the Besov spaces B2∞1 and B2∞1(R) arise when study-
ing the applicability of the Koplienko–Neidhardt trace formulae for Hilbert–Schmidt
perturbations (see [Pe5]).

It is also interesting to note that the Besov class B2∞1(R) appears in a natural way
in perturbation theory in [Pe3], where the following problem is studied: in which case

�(Tf ) − T�◦f ∈ S1?

(Tg is a Toeplitz operator with symbol g.)
In §4 we obtain similar results in the case of unitary operators and generalize formula

(1.2) to the case of higher derivatives.
We collect in §3 basic information on Besov spaces.
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2. Besov spaces

Let 0 < p, q �∞ and s ∈ R. The Besov class Bs
pq of functions (or distributions)

on T can be defined in the following way. Let w be a C∞ function on R such that

w�0, supp w ⊂
[

1

2
, 2

]
, and

∞∑
n=−∞

w(2nx) = 1 for x > 0. (2.1)

Consider the trigonometric polynomials Wn, and W #
n defined by

Wn(z) =
∑
k∈Z

w

(
k

2n

)
zk, n�1, W0(z) = z̄ + 1 + z, and

W #
n (z) = Wn(z), n�0.

Then for each distribution � on T,

� =
∑
n�0

� ∗ Wn +
∑
n�1

� ∗ W #
n .

The Besov class Bs
pq consists of functions (in the case s > 0) or distributions � on T

such that

{‖2ns� ∗ Wn‖Lp

}
n�0 ∈ �q and

{‖2ns� ∗ W #
n ‖Lp

}
n�1 ∈ �q

Besov classes admit many other descriptions. In particular, for s > 0, the space Bs
pq

admits the following characterization. A function � belongs to Bs
pq , s > 0, if and

only if

∫
T

‖�n
�f ‖q

Lp

|1 − �|1+sq
dm(�) < ∞ for q < ∞

and

sup
��=1

‖�n
�f ‖Lp

|1 − �|s < ∞ for q = ∞,

where m is normalized Lebesgue measure on T, n is an integer greater than s and ��
is the difference operator: (��f )(�) = f (��) − f (�), � ∈ T.
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To define (homogeneous) Besov classes Bs
pq(R) on the real line, we consider the

same function w as in (2.1) and define the functions Wn and W #
n on R by

FWn(x) = w
( x

2n

)
, FW #

n (x) = FWn(−x), n ∈ Z,

where F is the Fourier transform. The Besov class Bs
pq(R) consists of distributions �

on R such that

{‖2ns� ∗ Wn‖Lp }n∈Z ∈ �q(Z) and {‖2ns� ∗ W #
n ‖Lp }n∈Z ∈ �q(Z).

According to this definition, the space Bs
pq(R) contains all polynomials. However, it is

not necessary to include all polynomials.
In this paper we need only Besov spaces Bd

∞1, d ∈ Z+. In the case of functions on
the real line it is convenient to restrict the degree of polynomials in Bd

∞1(R) by d. It
is also convenient to consider the following seminorm on Bd

∞1(R):

‖�‖Bd∞1(R) = sup
x∈R

|�(d)(x)| +
∑
n∈Z

2nd‖� ∗ Wn‖L∞ +
∑
n∈Z

2nd‖� ∗ W #
n ‖L∞ .

The classes Bd
∞1(R) can be described as classes of function on R in the following

way:

� ∈ Bd
∞1(R) ⇐⇒ sup

t∈R

|�(d)(t)| +
∫

R

‖�d+1
t �‖L∞

|t |d+1
dt < ∞,

where �t is the difference operator defined by (�t�)(x) = �(x + t) − �(x).
We refer the reader to [Pee] for more detailed information on Besov classes.

3. Multiple operator integrals

In this section we define multiple operator integrals using integral projective tensor
products of L∞-spaces. However, we begin with a brief review of the theory of double
operator integrals that was developed by Birman and Solomyak in [BS1–BS3]. We
state a description of the Schur multipliers associated with two spectral measures in
terms of integral projective tensor products. This suggests the idea to define multiple
operator integrals with the help of integral projective tensor products.

Double operator integrals. Let (X , E) and (Y, F ) be spaces with spectral measures
E and F on a Hilbert space H. Let us first define double operator integrals

∫
X

∫
Y

�(�, �) dE(�)T dF (�), (3.1)
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for bounded measurable functions � and operators T of Hilbert Schmidt class S2.
Consider the spectral measure E whose values are orthogonal projections on the Hilbert
space S2, which is defined by

E(� × �)T = E(�)T F (�), T ∈ S2,

� and � being measurable subsets of X and Y . Then E extends to a spectral measure
on X × Y and if � is a bounded measurable function on X × Y , by definition,

∫
X

∫
Y

�(�, �) dE(�)T dF (�) =
( ∫

X×Y
� dE

)
T .

Clearly, ∥∥∥∥
∫
X

∫
Y

�(�, �) dE(�)T dF (�)

∥∥∥∥
S2

�‖�‖L∞‖T ‖S2 .

If ∫
X

∫
Y

�(�, �) dE(�)T dF (�) ∈ S1

for every T ∈ S1, we say that � is a Schur multiplier (of S1) associated with the
spectral measure E and F . In this case by duality the map

T �→
∫
X

∫
Y

�(�, �) dE(�)T dF (�), T ∈ S2, (3.2)

extends to a bounded linear transformer on the space of bounded linear operators on
H. We denote by M(E, F ) the space of Schur multipliers of S1 associated with the
spectral measures E and F . The norm of � in M(E, F ) is, by definition, the norm of
the transformer (3.2) on the space of bounded linear operators.

In [BS3] it was shown that if A is a self-adjoint operator (not necessarily bounded),
K is a bounded self-adjoint operator and if � is a continuously differentiable function
on R such that the divided difference D� is a Schur multiplier of S1 with respect to
the spectral measures of A and A + K , then

�(A + K) − �(A) =
∫ ∫

�(�) − �(�)

� − �
dEA+K(�)K dEA(�) (3.3)

and

‖�(A + K) − �(A)‖�const‖�‖M(EA,EA+K)‖K‖,

i.e., � is an operator Lipschitz function.



522 V.V. Peller / Journal of Functional Analysis 233 (2006) 515–544

It is easy to see that if a function � on X × Y belongs to the projective tensor
product L∞(E)⊗̂L∞(F ) of L∞(E) and L∞(F ) (i.e., � admits a representation)

�(�, �) =
∑
n�0

fn(�)gn(�),

where fn ∈ L∞(E), gn ∈ L∞(F ), and

∑
n�0

‖fn‖L∞‖gn‖L∞ < ∞),

then � ∈ M(E, F ). For such functions � we have

∫
X

∫
Y

�(�, �) dE(�)T dF (�) =
∑
n�0

(∫
X

fn dE

)
T

(∫
Y

gn dF

)
.

More generally, � is a Schur multiplier of S1 if � belongs to the integral projective
tensor product L∞(E)⊗̂iL

∞(F ) of L∞(E) and L∞(F ), i.e., � admits a representation

�(�, �) =
∫

Q

f (�, x)g(�, x) d�(x), (3.4)

where (Q, �) is a measure space, f is a measurable function on X × Q, g is a
measurable function on Y × Q, and

∫
Q

‖f (·, x)‖L∞(E)‖g(·, x)‖L∞(F ) d�(x) < ∞. (3.5)

If � ∈ L∞(E)⊗̂iL
∞(F ), then∫

X

∫
Y

�(�, �) dE(�)T dF (�)

=
∫

Q

(∫
X

f (�, x) dE(�)

)
T

(∫
Y

g(�, x) dF (�)

)
d�(x).

Clearly, the function x �→ ( ∫
X f (�, x) dE(�)

)
T
( ∫

Y g(�, x) dF (�)
)

is weakly mea-

surable

∫
Q

∥∥∥∥
(∫

X
f (�, x) dE(�)

)
T

(∫
Y

g(�, x) dF (�)

)∥∥∥∥ d�(x) < ∞.
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It turns out that all Schur multipliers can be obtained in this way. More precisely,
the following result holds (see [Pe1]):

Theorem on Schur multipliers. Let � be a measurable function on X × Y . The
following are equivalent:

(i) � ∈ M(E, F );
(ii) � ∈ L∞(E)⊗̂iL

∞(F );
(iii) there exist measurable functions f on X × Q and g on Y × Q such that (3.4)

holds and

∥∥∥∥
∫

Q

|f (·, x)|2 d�(x)

∥∥∥∥
L∞(E)

∥∥∥∥
∫

Q

|g(·, x)|2 d�(x)

∥∥∥∥
L∞(F )

< ∞. (3.6)

Note that the implication (iii)⇒(ii) was established in [BS3]. Note also that in the
case of matrix Schur multipliers (this corresponds to discrete spectral measures of
multiplicity 1) the equivalence of (i) and (ii) was proved in [Be].

It is interesting to observe that if f and g satisfy (3.5), then they also satisfy (3.6),
but the converse is false. However, if � admits a representation of the form (3.4) with
f and g satisfying (3.6), then it also admits a (possibly different) representation of the
form (3.4) with f and g satisfying (3.5).

Note that in a similar way we can define the projective tensor product A⊗̂B and
the integral projective tensor product A⊗̂iB of arbitrary Banach functions spaces A

and B.
The equivalence of (i) and (ii) in the Theorem on Schur multipliers suggests an idea

how to define multiple operator integrals.
Multiple operator integrals. We can easily extend the definition of the projective

tensor product and the integral projective tensor product to three or more function
spaces.

Consider first the case of triple operator integrals.
Let (X , E), (Y, F ), and (Z, G) be spaces with spectral measures E, F , and G on

a Hilbert space H. Suppose that � belongs to the integral projective tensor product
L∞(E)⊗̂iL

∞(F )⊗̂i L
∞(G), i.e., � admits a representation

�(�, �, �) =
∫

Q

f (�, x)g(�, x)h(�, x) d�(x), (3.7)

where (Q, �) is a measure space, f is a measurable function on X × Q, g is a
measurable function on Y × Q, h is a measurable function on Z × Q, and

∫
Q

‖f (·, x)‖L∞(E)‖g(·, x)‖L∞(F )‖h(·, x)‖L∞(G) d�(x) < ∞. (3.8)

We define the norm ‖�‖L∞⊗̂iL
∞⊗̂iL

∞ in the space L∞(E)⊗̂iL
∞(F )⊗̂i L

∞(G) as the
infimum of the left-hand side of (3.8) over all representations (3.7).
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Suppose now that T1 and T2 be bounded linear operators on H. For a function � in
L∞(E)⊗̂iL

∞(F )⊗̂iL
∞(G) of the form (3.7), we put

∫
X

∫
Y

∫
Z

�(�, �, �) dE(�)T1 dF(�)T2 dG(�)

def=
∫

Q

(∫
X

f (�, x) dE(�)

)
T1

(∫
Y

g(�, x) dF (�)

)

×T2

(∫
Z

h(�, x) dG(�)

)
d�(x). (3.9)

The following lemma shows that the triple operator integral

∫
X

∫
Y

∫
Z

�(�, �, �) dE(�)T1 dF(�)T2 dG(�)

is well-defined.

Lemma 3.1. Suppose that � ∈ L∞(E)⊗̂iL
∞(F )⊗̂iL

∞(G). Then the right-hand side
of (3.9) does not depend on the choice of a representation (3.7) and

∥∥∥∥
∫
X

∫
Y

∫
Z

�(�, �, �) dE(�)T1 dF(�)T2 dG(�)

∥∥∥∥
�‖�‖L∞⊗̂iL

∞⊗̂iL
∞ · ‖T1‖ · ‖T2‖. (3.10)

Proof. To show that the right-hand side of (3.9) does not depend on the choice of a
representation (3.7), it suffices to show that if the right-hand side of (3.7) is the zero
function, then the right-hand side of (3.9) is the zero operator. Denote our Hilbert space
by H and let � ∈ H. We have

∫
Z

(∫
Q

f (�, x)g(�, x)h(�, x) d�(x)

)
dG(�) = 0 for almost all � and �,

and so for almost all � and �,∫
Q

f (�, x)g(�, x)T2

(∫
Z

h(�, x) dG(�)

)
� d�(x)

= T2

∫
Z

(∫
Q

f (�, x)g(�, x)h(�, x) d�(x)

)
dG(�)� = 0.
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Putting

	x = T2

(∫
Z

h(�, x) dG(�)

)
�,

we obtain

∫
Q

f (�, x)g(�, x)	x d�(x) = 0 for almost all � and �.

We can realize the Hilbert space H as a space of vector functions so that integration
with respect to the spectral measure F corresponds to multiplication. It follows that

∫
Q

f (�, x)T1

(∫
Y

g(�, x) dF (�)

)
	x d�(x)

= T1

∫
Y

∫
Q

f (�, x)g(�, x)	x d�(x) dF (�) = 0

for almost all �. Let now


x = T1

(∫
Y

g(�, x) dF (�)

)
	x.

We have

∫
Q

f (�, s)
x d�(x) = 0 for almost all �.

Now we can realize H as a space of vector functions so that integration with respect
to the spectral measure E corresponds to multiplication. It follows that

∫
Q

(∫
X

f (�, x) dE(�)

)

x d�(x) =

∫
X

∫
Q

f (�, x)
x d�(x) dE(�) = 0.

This exactly means that the right-hand side of (3.9) is the zero operator.
Inequality (3.10) follows immediately from (3.9). �

In a similar way we can define multiple operator integrals

∫
· · ·
∫

︸ ︷︷ ︸
k

�(�1, . . . , �k) dE1(�1)T1 dE2(�2)T2 · · · Tk−1 dEk(�k)
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for functions � in the integral projective tensor product L∞(E1)⊗̂i · · · ⊗̂iL
∞(Ek)︸ ︷︷ ︸

k

(the

latter space is defined in the same way as in the case k = 2).

4. The case of unitary operators

Let U be a unitary operator and A a bounded self-adjoint on Hilbert space. For
t ∈ R, we put

Ut = eitAU.

In this section we obtain sharp conditions on the existence of higher operator derivatives
of the function t �→ �(Ut ).

Recall that it was proved in [Pe1] that for a function � in the Besov space B1∞1
the divided difference D� belongs to the projective tensor product C(T)⊗̂C(T), and
so for arbitrary unitary operators U and V the following formula holds:

�(V ) − �(U) =
∫ ∫

�(�) − �(�)

� − �
dEV (�)(V − U) dEU(�). (4.1)

First we state the main results of this section for second derivatives.

Theorem 4.1. If � ∈ B2∞1, then

(D2�) ∈ C(T)⊗̂C(T)⊗̂C(T).

Theorem 4.2. Let � be a function in the Besov class B2∞1, then the function
t �→ �(Ut ) has second derivative and

d2

ds2

(
�(Us)

)∣∣∣
s=0

= −2

(∫ ∫ ∫
(D2�)(�, �, �) dEU(�)A dEU(�)A dEU(�)

)
U2. (4.2)

Note that by Theorem 4.1, the right-hand side of (4.2) makes sense and determines
a bounded linear operator.

First we prove Theorem 4.1 and then we deduce from it Theorem 4.2.

Proof of Theorem 4.1. It is easy to see that

(D2�)(z1, z2, z3) =
∑

i,j,k �0

�̂(i + j + k + 2)zi
1z

j

2zk
3

+
∑

i,j,k �0

�̂(i + j + k − 2)zi
1z

j

2zk
3, (4.3)
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where �̂(n) is the nth Fourier coefficient of �. We prove that

∑
i,j,k �0

�̂(i + j + k + 2)zi
1z

j

2zk
3 ∈ C(T)⊗̂C(T)⊗̂C(T).

The fact that

∑
i,j,k �0

�̂(i + j + k − 2)zi
1z

j

2zk
3 ∈ C(T)⊗̂C(T)⊗̂C(T)

can be proved in the same way. Clearly, we can assume that �̂(j) = 0 for j < 0.
We have∑

i,j,k �0

�̂(i + j + k + 2)zi
1z

j

2zk
3 =

∑
i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3

+
∑

i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3

+
∑

i,j,k �0


ijk�̂(i + j + k + 2)zi
1z

j

2zk
3,

where

�ijk =
{

1
3 , i = j = k = 0,

i
i+j+k

, i + j + k �= 0,

�ijk =
{

1
3 , i = j = k = 0,

j
i+j+k

, i + j + k �= 0,

and


ijk =
{

1
3 , i = j = k = 0,

k
i+j+k

, i + j + k �= 0.

Clearly, it suffices to show that

∑
i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3 ∈ C(T)⊗̂C(T)⊗̂C(T). (4.4)
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It is easy to see that

∑
i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3 =

∑
j.k �0

⎛
⎝(((S∗)j+k+2�

) ∗
∑
i �0

�ijkz
i
)
(z1)

⎞
⎠ z

j

2zk
3,

where S∗ is backward shift, i.e., (S∗)k� = P+z̄k� (P+ is the orthogonal projection
from L2 onto the Hardy class H 2). Thus,

∥∥∥∥∥∥
∑

i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3

∥∥∥∥∥∥
L∞⊗̂L∞⊗̂L∞

�
∑

j,k �0

∥∥∥∥∥∥
(
(S∗)j+k+2�

) ∗
∑
i �0

�ijkz
i

∥∥∥∥∥∥
L∞

.

Put

Qm(z) =
∑
i �m

i − m

i
zi, m > 0 and Q0(z) = 1

3
+
∑
i �1

zi .

Then it is easy to see that

∥∥∥∥∥∥
(
(S∗)j+k+2�

) ∗
∑
i �0

�ijkz
i

∥∥∥∥∥∥
L∞

= ‖� ∗ Qj+k‖L∞ ,

where � = (S∗)2�, and so∥∥∥∥∥∥
∑

i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3

∥∥∥∥∥∥
L∞⊗̂L∞⊗̂L∞

�
∑

j,k �0

‖� ∗ Qj+k‖L∞

=
∑
m�0

(m + 1)‖� ∗ Qm‖L∞ .

Consider the function r on R defined by

r(x) =
{

1, |x|�1,
1
|x| , |x|�1.
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It is easy to see that the Fourier transform Fr of h belongs to L1(R). Define the
functions Rn, n�1, on T by

Rn(�) =
∑
k∈Z

r

(
k

n

)
�k.

Lemma 4.3.

‖Rn‖L1 �const.

Proof. For N > 0 consider the function 	N defined by

	N(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, |x|�N,

2N−|x|
N

, N � |x|�2N,

0, |x|�2N.

It is easy to see that F	N ∈ L1(R) and ‖F	N‖L1(R) does not depend on N . Let

RN,n(�) =
∑
k∈Z

r

(
k

n

)
	N

(
k

n

)
�k, � ∈ T.

It was proved in Lemma 2 of [Pe1] that ‖RN,n‖L1 �‖F(r	N)‖L1(R). Since

‖F(r	N)‖L1(R) �‖Fr‖L1(R)‖F	N‖L1(R) = const,

it follows that the L1-norms of RN,n are uniformly bounded. The result follows from
the obvious fact that

lim
N→∞ ‖Rn − RN,n‖L2 = 0. �

Let us complete the proof of Theorem 4.1.
For f ∈ L∞, we have

‖f ∗ Qm‖L∞ = ‖f − f ∗ Rm‖L∞ �‖f ‖L∞ + ‖f ∗ Rm‖L∞ �const‖f ‖L∞ .
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Thus,

∑
m�0

(m + 1)‖� ∗ Qm‖L∞ =
∑
m�0

(m + 1)

∥∥∥∥∥∥
∑
n�0

� ∗ Wn ∗ Qm

∥∥∥∥∥∥
L∞

�
∑

m,n�0

(m + 1)‖� ∗ Wn ∗ Qm‖L∞

=
∑
n�0

∑
0�m�2n+1

(m + 1)‖� ∗ Wn ∗ Qm‖L∞

�const
∑
n�0

∑
0�m�2n+1

(m + 1)‖� ∗ Wn‖L∞

�const
∑
n�0

22n‖� ∗ Wn‖L∞ �const‖�‖B2∞1
,

where the Wn are defined in §3.
This proves that

∑
i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3 ∈ L∞⊗̂C(T)⊗̂C(T)

and ∥∥∥∥∥∥
∑

i,j,k �0

�ijk�̂(i + j + k + 2)zi
1z

j

2zk
3

∥∥∥∥∥∥
L∞⊗̂C(T)⊗̂C(T)

�const‖�‖B2∞1
. (4.5)

To prove (4.4), it suffices to represent � as

� =
∑
n�0

� ∗ Wn.

Then we can apply the above reasoning to each polynomial � ∗ Wn. Since

⎛
⎝((S∗)j+k+2� ∗ Wn

) ∗
∑
i �0

�i+j+kz
i

⎞
⎠

is obviously a polynomial, the above reasoning shows that

∑
i,j,k �0

�ijk
̂� ∗ Wn(i + j + k + 2)zi

1z
j

2zk
3 ∈ C(T)⊗̂C(T)⊗̂C(T)
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and by (4.5),∥∥∥∥∥∥
∑

i,j,k �0

�ijk
̂� ∗ Wn(i + j + k + 2)zi

1z
j

2zk
3

∥∥∥∥∥∥
C(T)⊗̂C(T)⊗̂C(T)

�const‖� ∗ Wn‖B2∞1

�const22n‖� ∗ Wn‖L∞ .

The result follows now from the fact that

∑
n�0

22n‖� ∗ Wn‖L∞ �const‖�‖B2∞1

(see §3). �

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. It follows from the definition of the second order divided
difference (see §1) that

(� − �)(D2�)(�, �, �) = (D�)(�, �) − (D�)(�, �). (4.6)

By (4.1), we have

1

t

(
d

ds

(
�(Us)

)∣∣∣
s=t

− d

ds

(
�(Us)

)∣∣∣
s=0

)

= i

t

(∫ ∫
(D�)(�, �) dEUt (�)A dEUt (�)Ut

−
∫ ∫

(D�)(�, �) dEU(�)A dEU(�)U

)

= i

t

(∫ ∫
(D�)(�, �) dEUt (�)A dEUt (�)−

∫ ∫
(D�)(�, �) dEU(�)A dEUt (�)

)
Ut

+ i

t

(∫ ∫
(D�)(�, �) dEU(�)A dEUt (�)Ut

−
∫ ∫

(D�)(�, �) dEU(�)A dEUt (�)U

)
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+ i

t

(∫ ∫
(D�)(�, �) dEU(�)A dEUt (�)

−
∫ ∫

(D�)(�, �) dEU(�)A dEU(�)

)
U.

By (4.6), we have∫ ∫
(D�)(�, �) dEUt (�)A dEUt (�) −

∫ ∫
(D�)(�, �) dEU(�)A dEUt (�)

=
∫ ∫ ∫

(D�)(�, �) dEUt (�) dEU(�)A dEUt (�)

−
∫ ∫ ∫

(D�)(�, �) dEUt (�) dEU(�)A dEUt (�)

=
∫ ∫ ∫

(D2�)(�, �, �)(� − �) dEUt (�) dEU(�)A dEUt (�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEUt (�)Ut dEU(�)A dEUt (�)

−
∫ ∫ ∫

(D2�)(�, �, �) dEUt (�)U dEU(�)A dEUt (�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEUt (�)(eitA − I )U dEU(�)A dEUt (�).

Similarly,∫ ∫
(D�)(�, �) dEU(�)A dEUt (�) −

∫ ∫
(D�)(�, �) dEU(�)A dEU(�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEU(�)A dEU(�)(eitA − I )U dEUt (�).

Thus,

1

t

(
d

ds

(
�(Us)

)∣∣∣∣
s=t

− d

ds

(
�(Us)

)∣∣∣∣
s=0

)

= i

t

(∫ ∫ ∫
(D2�)(�, �, �) dEUt (�)(eitA − I )U dEU(�)A dEUt (�)

)
Ut

+ i

t

(∫ ∫
(D�)(�, �) dEU(�)A dEUt (�)Ut

−
∫ ∫

(D�)(�, �) dEU(�)A dEUt (�)U

)

+ i

t

(∫ ∫ ∫
(D2�)(�, �, �) dEU(�)A dEU(�)(eitA − I )U dEUt (�)

)
U.
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Since limt→0 ‖Ut − U‖ = 0, to complete the proof it suffices to show that

lim
t→0

1

t

∫ ∫ ∫
(D2�)(�, �, �) dEUt (�)(eitA − I )U dEU(�)A dEUt (�)

= i
∫ ∫ ∫

(D2�)(�, �, �) dEU(�)A dEU(�)A dEU(�)U, (4.7)

lim
t→0

∫ ∫
(D�)(�, �) dEU(�)A dEUt (�) =

∫ ∫
(D�)(�, �) dEU(�)A dEU(�),

(4.8)

and

lim
t→0

1

t

∫ ∫ ∫
(D2�)(�, �, �) dEU(�)A dEU(�)(eitA − I )U dEUt (�)

= i
∫ ∫ ∫

(D2�)(�, �, �) dEU(�)A dEU(�)A dEU(�)U. (4.9)

Let us prove (4.7). Since D2� ∈ C(T)⊗̂C(T)⊗̂C(T), it suffices to show that for
f, g, h ∈ C(T),

lim
t→0

1

t

∫ ∫ ∫
f (�)g(�)h(�) dEUt (�)(eitA − I )U dEU(�)A dEUt (�)

= i
∫ ∫ ∫

f (�)g(�)h(�) dEU(�)A dEU(�)A dEU(�)U. (4.10)

We have

1

t

∫ ∫ ∫
f (�)g(�)h(�) dEUt (�)(eitA − I )U dEU(�)A dEUt (�)

= f (Ut )

(
1

t
(eitA − I )U

)
g(U)Ah(Ut )

and ∫ ∫ ∫
f (�)g(�)h(�) dEU(�)A dEU(�)A dEU(�)U = f (U)Ag(U)Ah(U)U.

Since f and h are in C(T), it follows that

lim
t→0

‖f (Ut ) − f (U)‖ = lim
t→0

‖h(Ut ) − h(U)‖ = 0
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(it suffices to prove this for trigonometric polynomials f and h which is evident). This
together with the obvious fact

lim
t→0

(
1

t
(eitA − I )

)
= iA

proves (4.10) which in turn implies (4.7).
The proof of (4.9) is similar. To prove (4.8), we observe that B2∞1 ⊂ B1∞1 and use

the fact that D� ∈ C(T)⊗̂C(T) (this was proved in [Pe1]). Again, it suffices to prove
that for f, g ∈ C(T),

lim
t→0

∫ ∫
f (�)g(�) dEU(�)A dEUt (�) =

∫ ∫
f (�)g(�) dEU(�)A dEU(�)

which follows from the obvious equality:

lim
t→0

‖g(Ut ) − g(U)‖ = 0. �

The proofs of Theorems 4.1 and 4.2 given above generalize easily to the case of
higher derivatives.

Theorem 4.4. Let m be a positive integer. If � ∈ Bm
∞1, then

Dm� ∈ C(T)⊗̂ · · · ⊗̂C(T)︸ ︷︷ ︸
m+1

.

Theorem 4.5. Let m be a positive integer and let � be a function in the Besov class
Bm

∞1, then the function t �→ �(Ut ) has mth derivative and

dm

dsm

(
�(Us)

)∣∣∣
s=0

= imm!

⎛
⎜⎜⎜⎝
∫

· · ·
∫

︸ ︷︷ ︸
m+1

(Dm�)(�1, . . . , �m+1) dEU(�1)A · · · A dEU(�m+1)

⎞
⎟⎟⎟⎠Um.

5. The case of self-adjoint operators

In this section we consider the problem of the existence of higher derivatives of the
function

t �→ �(At ) = �(A + tK).
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Here A is a self-adjoint operator (not necessarily bounded), K is a bounded self-adjoint

operator, and At
def= A + tK .

In [Pe2] it was shown that if � ∈ B1∞1(R), then D� ∈ B(R)⊗̂iB(R), where B(R)

is the space of bounded Borel functions on R equipped with the sup-norm, and so

‖�(A + K) − �(A)‖�const‖�‖B1∞1
‖K‖. (5.1)

In fact, the construction given in [Pe2] shows that for � ∈ B1∞1(R), the function
t �→ �(A + tK) is differentiable and

d

ds

(
�(As)

)∣∣∣
s=0

=
∫ ∫

(D�)(�, �) dEA(�)K dEA(�). (5.2)

For completeness, we show briefly how to deduce (5.2) from the construction given in
[Pe2]. We are going to give a detailed proof in the case of higher derivatives.

We need the following notion.

Definition. A continuous function � on R is called operator continuous if

lim
s→0

‖�(A + sK) − �(A)‖ = 0

for any self-adjoint operator A and any bounded self-adjoint operator K .

It follows from (5.1) that functions in B1∞1(R) are operator continuous. It is also
easy to see that the product of two bounded operator continuous functions is operator
continuous.

Proof of (5.2). The construction given in [Pe2] shows that if � ∈ B1∞1(R), then D�
admits a representation

(D�)(�, �) =
∫

Q

f (�, x)g(�, x) d�(x),

where (Q, �) is a measure space, f and g are measurable functions on R × Q such
that ∫

Q

‖fx‖B(R)‖gx‖B(R) d�(x) < ∞,

and for almost all x ∈ Q, and fx and gx are operator continuous functions where

fx(�)
def= f (�, x) and gx(�)

def= g(�, x). Indeed, it is very easy to verify that the
functions fx and gx constructed in [Pe2] are products of bounded functions in B1∞1(R).
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By (3.3), we have

1

s

(
�(As) − �(A)

) = 1

s

∫ ∫
(D�)(�, �) dEAs (�)sK dEA(�)

=
∫

Q

fx(As)Kgx(A) d�(x).

Since fx is operator continuous, we have

lim
s→0

‖fx(As) − fx(A)‖ = 0.

It follows that∥∥∥∥
∫

Q

fx(As)Kgx(A) d�(x) −
∫

Q

fx(A)Kgx(A) d�(x)

∥∥∥∥
�‖K‖

∫
Q

‖fx(As) − fx(A)‖ · ‖gx(A)‖ d�(x) → 0 as s → 0,

which implies (5.2). �

Consider first the problem of the existence of the second operator derivative. First
we prove that if f ∈ B2∞1(R), then D2� ∈ B(R)⊗̂iB(R)⊗̂iB(R). Actually, to prove
the existence of the second derivative, we need the following slightly stronger result.

Theorem 5.1. Let � ∈ B2∞1(R). Then there exist a measure space (Q, �) and measur-
able functions f, g, and h on R × Q such that

(D2�)(�, �, �) =
∫

Q

f (�, x)g(�, x)h(�, x) d�(x), (5.3)

fx, gx , and hx are operator continuous functions for almost all x ∈ Q, and

∫
Q

‖fx‖B(R)‖gx‖B(R)‖hx‖B(R) d�(x)�const‖�‖B2∞1(R). (5.4)

As before, fx(�) = f (�, x), gx(�) = g(�, x), and hx(�) = h(�, x).

Theorem 5.1 will be used to prove the main result of this section.

Theorem 5.2. Suppose that A is a self-adjoint operator, K is a bounded self-adjoint
operator. If � ∈ B2∞1(R)

⋂
B1∞1(R), then the function s �→ �(As) has second derivative

that is a bounded operator and

d2

ds2

(
�(As)

)∣∣∣
s=0

= 2
∫ ∫

(D2�)(�, �, �) dEA(�)K dEA(�)K dEA(�). (5.5)
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Note that by Theorem 5.1, the right-hand side of (5.5) makes sense and is a bounded
linear operator.

For t > 0 and a function f , we define S∗
t f by

(F(S∗
t f )

)
(s) =

{
(Ff )(s − t), t �s,

0, t > s.

We also define the distributions qt and rt , t > 0, by

(Fqt )(s) =
{

s
s+t

, s�0,

0, s < 0,

and

(Frt )(s) =
{

1, |s|� t,
t
s
, |s| > t.

It is easy to see that rt ∈ L1(R) (see §4) and ‖rt‖L1(R) does not depend on t .
To prove Theorem 5.1, we need the following lemma.

Lemma 5.3. Let M > 0 and let � be a bounded function on R such that
supp F� ⊂ [M/2, 2M]. Then

(D2�)(�, �, �) = −
∫ ∫

R+×R+

(
(S∗

t+u�) ∗ qt+u

)
(�)eit�eiu� dt du

−
∫ ∫

R+×R+

(
(S∗

s+u�) ∗ qs+u

)
(�)eis�eiu� ds du

−
∫ ∫

R+×R+

(
(S∗

s+t�) ∗ qs+t

)
(�)eis�eit� ds dt. (5.6)

Proof. Let us first assume that F� ∈ L1(R). We have∫ ∫
R+×R+

(
(S∗

t+u�) ∗ qt+u

)
(�)eit�eiu� d� d�

=
∫ ∫ ∫

R+×R+×R+
(F�)(s + t + u)

s

s + t + u
eis�eit�eiu� ds dt du.

We can write similar representations for the other two terms on the right-hand side of
(5.6), take their sum and reduce (5.6) to the verification of the following identity:

(D2�)(�, �, �) = −
∫ ∫ ∫

R+×R+×R+
(F�)(s + t + u)eis�eit�eiu� ds dt du.
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This identity can be verified elementarily by making the substitution a = s + t + u,
b = t + u, and c = u.

Consider now the general case, i.e., � ∈ L∞(R) and supp F� ⊂ [M/2, 2M]. Con-
sider a smooth function � on R such that ��0, supp � ⊂ [−1, 1], and ‖�‖L1(R) = 1.
For ε > 0 we put �ε(x) = �(x/ε)/ε and define the function �ε by F�ε = (F�)∗�ε.
Clearly,

F�ε ∈ L1(R), lim
ε→0

‖�ε‖L∞(R) = ‖�‖L∞(R),

and

lim
ε→0

�ε(x) = �(x) for almost all x ∈ R.

Since we have already proved that (5.6) holds for �ε in place of �, the result follows
by passing to the limit as ε → ∞. �

Proof of Theorem 5.1. Suppose that supp F� ⊂ [M/2, 2M]. Let us show that each
summand on the right-hand side of (5.6) admits a desired representation. Clearly, it
suffices to do it for the first summand. Put

�(�, �, �) =
∫ ∫

R+×R+

(
(S∗

t+u�) ∗ qt+u

)
(�)eit�eiu� dt du

=
∫ ∫

R+×R+
ft+u(�)gt (�)hu(�) dt du,

where

fv(�) = ((S∗
v �) ∗ qv

)
(�), gt (�) = eit� and hu(�) = eiu�.

Clearly, ‖gt‖B(R) = 1 and ‖hu‖B(R) = 1. Since

‖fv‖B(R) = ‖fv‖L∞ = ‖� − � ∗ rv‖L∞ �
{

(1 + ‖rv‖L1)‖�‖L∞ , v�2M,

0, v > 2M,

we have

‖�‖B(R)⊗̂iB(R)⊗̂iB(R) �const‖�‖L∞
∫ ∫

t,u>0,t+u�2M

dt du�const · M2‖�‖L∞ .

In the same way we can treat the case when supp F� ⊂ [−2M, −M/2]. If � is a
polynomial of degree at most 2, the result is trivial.
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Let now � ∈ B2∞1(R) and

� =
∑
n∈Z

� ∗ Wn +
∑
n∈Z

� ∗ W #.

It follows from the above estimate that

‖D2�‖B(R)⊗̂iB(R)⊗̂iB(R) � const

(∑
n∈Z

22n‖� ∗ Wn‖L∞ +
∑
n∈Z

22n‖� ∗ W #
n ‖L∞

)
.

To complete the proof of Theorem 5.1, we observe that the functions � �→ eit� are
operator continuous, because they belong to B1∞1(R). On the other hand, it is easy to
see that if supp � ⊂ [M/2, 2M], then the function (S∗

v �) ∗ qv is the product of eitv

and a bounded function in B1∞1(R). �

To prove (5.2), we need the following lemma.

Lemma 5.4. Let A be a self-adjoint operator and let K be a bounded self-adjoint
operator. Suppose that � is a function on R such that D� ∈ L∞(R)⊗̂iL

∞(R) and
D2� ∈ L∞(R)⊗̂iL

∞(R)⊗̂iL
∞(R). Then∫ ∫

(D�)(�, �) dEA+K(�)K dEA+K(�) −
∫ ∫

(D�)(�, �) dEA+K(�)K dEA(�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEA+K(�)K dEA+K(�)K dEA(�).

Proof. Put

Pn=EA

([−n, n]), Qn=EA+K

([−n, n]), A[n]=PnA and B[n]=Qn(A + K).

We have∫ ∫
(D�)(�, �) dEA+K(�)K dEA+K(�) −

∫ ∫
(D�)(�, �) dEA+K(�)K dEA(�)

=
∫ ∫ ∫

(D�)(�, �) dEA+K(�)K dEA+K(�) dEA(�)

−
∫ ∫ ∫

(D�)(�, �) dEA+K(�)K dEA+K(�) dEA(�).
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Thus,

Qn

(∫ ∫
(D�)(�, �) dEA+K(�)K dEA+K(�)

−
∫ ∫

(D�)(�, �) dEA+K(�)K dEA(�)

)
Pn

=
∫ n

−n

∫ n

−n

∫ n

−n

(D�)(�, �) dEA+K(�)K dEA+K(�) dEA(�)

−
∫ n

−n

∫ n

−n

∫ n

−n

(D�)(�, �) dEA+K(�)K dEA+K(�) dEA(�)

=
∫ ∫ ∫

(� − �)(D2�)(�, �, �) dEB[n](�)K dEB[n](�) dEA[n](�),

since

(D�)(�, �) − (D�)(�, �) = (� − �)(D2�)(�, �, �).

On the other hand,

Qn

(∫ ∫ ∫
(D2�)(�, �, �) dEA+K(�)K dEA+K(�)K dEA(�)

)
Pn

=
∫ n

−n

∫ n

−n

∫ n

−n

(D2�)(�, �, �) dEA+K(�)K dEA+K(�)
(
(A + K)−A

)
dEA(�)

=
∫ n

−n

∫ n

−n

∫ n

−n

(D2�)(�, �, �) dEA+K(�)K dEA+K(�)Qn

×
(
(A+K) − A

)
Pn dEA(�)

=
∫ n

−n

∫ n

−n

∫ n

−n

(D2�)(�, �, �) dEA+K(�)K dEA+K(�)

× (B[n]Pn − QNA[n]) dEA(�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEB[n](�)K dEB[n](�)(B[n]Pn − QnA[n]) dEA[n](�).

It is easy to see that this is equal to∫ ∫ ∫
(D2�)(�, �, �) dEB[n](�)K dEB[n](�)B[n]Pn dEA[n](�)

−
∫ ∫ ∫

(D2�)(�, �, �) dEB[n](�)K dEB[n](�)QnA[n] dEA[n](�)
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=
∫ ∫ ∫

�(D2�)(�, �, �) dEB[n](�)K dEB[n](�) dEA[n](�)

−
∫ ∫ ∫

�(D2�)(�, �, �) dEB[n](�)K dEB[n](�) dEA[n](�)

=
∫ ∫ ∫

(� − �)(D2�)(�, �, �) dEB[n](�)K dEB[n](�) dEA[n](�).

The result follows now from the fact that

lim
n→∞ Pn = lim

n→∞ Qn = I

in the strong operator topology. �

Proof of Theorem 5.2. It follows from Lemma 5.4 that
1

t

(∫ ∫
(D�)(�, �) dEAt (�)K dEAt (�) −

∫ ∫
(D�)(�, �) dEAt (�)K dEA(�)

)

=
∫ ∫ ∫

(D2�)(�, �, �) dEAt (�)K dEAt (�)K dEA(�).

Similarly,

1

t

(∫ ∫
(D�)(�, �) dEAt (�)K dEA(�) −

∫ ∫
(D�)(�, �) dEA(�)K dEA(�)

)

=
∫ ∫ ∫

(D2�)(�, �, �) dEAt (�)K dEA(�)K dEAt (�).

Thus,

1

t

(
d

ds
�(As)

∣∣∣
s=t

− d

ds
�(As)

∣∣∣
s=0

)

=
∫ ∫ ∫

(D2�)(�, �, �) dEAt (�)K dEAt (�)K dEA(�)

+
∫ ∫ ∫

(D2�)(�, �, �) dEAt (�)K dEA(�)K dEA(�).

The fact that

lim
t→0

∫ ∫ ∫
(D2�)(�, �, �) dEAt (�)K dEAt (�)K dEA(�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEA(�)K dEA(�)K dEA(�)

follows immediately from (5.3) and (5.4) and from the fact that the functions fx , gx ,
and hx in (5.3) are operator continuous.
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Similarly,

lim
t→0

∫ ∫ ∫
(D2�)(�, �, �) dEAt (�)K dEA(�)K dEA(�)

=
∫ ∫ ∫

(D2�)(�, �, �) dEA(�)K dEA(�)K dEA(�),

which completes the proof. �

Remark. In the case of functions on the real line the Besov space B2∞1(R) is not con-
tained in the space B1∞1(R). In the statement of Theorem 5.2 we impose the assumption
that � ∈ B1∞1(R) to ensure that the function t �→ �(At ) has the first derivative. How-
ever, we can define the second derivative of this function in a slightly different way.

Suppose that � ∈ B2∞1(R) and

� =
∑
n∈Z

� ∗ Wn +
∑
n∈Z

� ∗ W #
n .

Then the functions �n
def= � ∗ Wn and �#

n
def= � ∗ W #

n belong to B2∞1(R)
⋂

B2∞1(R) and
by Theorems 5.1 and 5.2, the series

∑
n∈Z

d2

ds2

(
�n(As)

)∣∣∣
s=0

+
∑
n∈Z

d2

ds2

(
�#

n(As)
)∣∣∣

s=0

converges absolutely and we can define the second derivative of the function t �→ �(At )

by

d2

ds2

(
�(As)

)∣∣∣
s=0

def=
∑
n∈Z

d2

ds2

(
�n(As)

)∣∣∣
s=0

+
∑
n∈Z

d2

ds2

(
�#

n(As)
)∣∣∣

s=0
.

With this definition the function the function t �→ �(At ) can possess the second
derivative without having the first derivative!

The proofs of Theorems 5.1 and 5.2 given above easily generalize to the case of
derivatives of an arbitrary order.

Theorem 5.5. Let m be a positive integer and let � ∈ Bm
∞1(R). Then there exist a

measure space (Q, �) and measurable functions f1, . . . , fm+1 on R × Q such that

(Dm�)(�1, . . . , �m+1) =
∫

Q

f1(�1, x)f2(�2, x) · · · fm+1(�m+1, x) d�(x),
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the functions f1(·, x), . . . , fm+1(·, x) are operator continuous for almost all x ∈ Q,
and ∫

Q

‖f1(·, x)‖B(R) · · · ‖fm+1(·, x)‖B(R) d�(x)�const‖f ‖Bm∞1(R).

Theorem 5.6. Let m be a positive integer. Suppose that A is a self-adjoint operator
and K is a bounded self-adjoint operator. If � ∈ Bm

∞1(R)
⋂

B1∞1(R), then the function
s �→ �(As) has mth derivative that is a bounded operator and

dm

dsm

(
�(As)

)∣∣∣
s=0

= m!
∫

· · ·
∫

︸ ︷︷ ︸
m+1

(Dm�)(�1, . . . , �m+1) dEA(�1)K · · · K dEA(�m+1).

Remark. It is easy to see that in case A is a bounded self-adjoint operator for the
existence of the mth derivative of the function s �→ �(As), it suffices to assume that
� belongs to Bm

∞1 locally, i.e., for each finite interval I there exists a function � in
Bm

∞1(R) such that �
∣∣I = �

∣∣I .
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