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Abstract

We propose a new approach to the multiplication of Schubert classes in theK-theory of the flag
variety. This extends the work of Fomin and Kirillov in the cohomology case, and is based o
quadratic algebra defined by them. More precisely, we defineK-theoretic versions of the Dunk
elements considered by Fomin and Kirillov, show that they commute, and use them to desc
structure constants of theK-theory of the flag variety with respect to its basis of Schubert class
 2004 Elsevier Inc. All rights reserved.

1. Introduction

An important open problem in algebraic combinatorics is to describe combinato
the structure constants for the cohomology of the flag varietyFln (that is, the variety o
complete flags(0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = C

n) in C
n) with respect to its basi

of Schubert classes. These structure constants are known asLittlewood–Richardson co
efficients; a subset of them, consisting of the structure constants for the cohomolo
a Grassmannian, are described by the classical Littlewood–Richardson rule. Fom
Kirillov [2] proposed a new approach to the Littlewood–Richardson problem forH ∗(Fln)
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based on a certain algebra with quadratic relations that they defined. In this pap
extend Fomin and Kirillov’s approach to theK-theory ofFln.

It is well known that the integral cohomology ringH ∗(Fln) and the Grothendiec
ring K0(Fln) are both isomorphic toZ[x1, . . . , xn]/In, whereIn is the ideal generate
by symmetric polynomials inx1, . . . , xn with constant term 0. In the cohomology ca
the elementsxi are identified with the Chern classes of the dual line bundlesL∗

i , where
Li := Vi/Vi−1 are tautological line bundles. In theK-theory case, we identifyxi with the
K-theory Chern class 1− 1/yi of the line bundleL∗

i , whereyi := 1/(1− xi) representsLi

in the Grothendieck ring.
One can define natural bases forH ∗(Fln) and K0(Fln) (over Z) based on the CW

complex structure ofFln given by the (opposite)Schubert varieties. These are varietie
Xw, which are indexed by permutationsw in Sn, and which have complex codimensi
l(w) (that is, the number of inversions inw). More precisely, if we think ofFln asSLn/B,
we letXw := B−wB/B, whereB andB− are the subgroups ofSLn consisting of uppe
and lower triangular matrices. TheSchubertandGrothendieck polynomialsindexed byw,
which are denoted bySw(x) andGw(x), are certain polynomial representatives for
cohomology andK-theory classes corresponding toXw. These classes, which are deno
by σw andωw, form the mentioned natural bases forH ∗(Fln) andK0(Fln). Schubert and
Grothendieck polynomials were defined by Lascoux and Schützenberger [4,5], an
studied extensively during the last two decades [3,6,8,10,11].

Both the Schubert polynomialsSw(x) and the Grothendieck polynomialsGw(x), for
w in S∞, form bases ofZ[x1, x2, . . .]; hereS∞ := ⋃

n Sn under the usual inclusionSn ↪→
Sn+1. Hence we can write

Su(x)Sv(x) =
∑

w: l(w)=l(u)+l(v)

cw
uvSw(x), Gu(x)Gv(x) =

∑
w: l(w)�l(u)+l(v)

cw
uvGw(x).

The notation is consistent since the structure constants corresponding to Schube
nomials, which are known to be nonnegative for geometric reasons, are a subse
structure constants corresponding to Grothendieck polynomials.

The simplest multiplication formula for Schubert polynomials isMonk’s formula, which
can be stated as follows:

xpSv(x) = −
∑

1�i<p
l(vtip)=l(v)+1

Svtip (x) +
∑
i>p

l(vtpi )=l(v)+1

Svtpi
(x); (1.1)

heretij is the transposition ofi, j , andv is an arbitrary element ofS∞. In fact, Monk’s
formula expresses the product ofSv(x) with a Schubert polynomial indexed by an adjac
transposition, which is equivalent to (1.1).

Similar formulas for Grothendieck polynomials were derived in [7]. Define the
Πp(v) to consist of all permutations

w = vti1p . . . tirptpir+1 . . . tpir+s ,
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in S∞ such thatr, s � 0, r + s � 1, the length increases by precisely 1 upon multiplica
by each transposition, and

ir < · · · < i1 < p < ir+s < · · · < ir+1.

Given a permutationw in Πp(v), let σp(w,v) := (−1)s+1.

Theorem 1.2 [7]. We have

xpGv(x) =
∑

w∈Πp(v)

σp(w,v)Gw(x).

Motivated by the Littlewood–Richardson problem for Schubert polynomials, Fomin
Kirillov [2] defined thequadratic algebraEn (of typeAn−1) as the associative algebra wi
generators[ij ] for 1� i �= j � n, which satisfy the following relations:

(i) [ij ] + [ji] = 0,
(ii) [ij ]2 = 0,

(iii) [ij ][jk] + [jk][ki] + [ki][ij ] = 0,
(iv) [ij ][kl] = [kl][ij ],

for all distinct i, j, k, l. There is a natural grading onEn given by deg([ij ]) = 1. This
algebra provides a solution to the classical Yang–Baxter equation.

There is a natural representation of the quadratic algebra, called theBruhat representa
tion. This is a representation on the group algebraZ〈Sn〉 of the symmetric group, whic
is identified (as a vector space) with the cohomology of the flag varietyH ∗(Fln), via
w 	→ σw. The representation is defined by

[ij ]w =
{

wtij it l(wtij ) = l(w) + 1,
0 otherwise,

for 1� i < j � n.
Fomin and Kirillov defined theDunkl elementsθp (in the quadratic algebra) forp =

1, . . . , n by

θp := −
∑

1�i<p

[ip] +
∑

p<k�n

[pk] = −
∑
i �=p

[ip].

These elements encode the multiplicative structure ofH ∗(Fln). Indeed, with the abov
notation, Monk’s formula (1.1) can be stated as

θpw = xp · σw;

this formula is to be understood under the standard vector space isomorphisms (me
above and at the beginning of the section) betweenZ〈Sn〉, H ∗(Fln), andZ[x1, . . . , xn]/In.
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Fomin and Kirillov showed that the Dunkl elements commute (in the quadratic alge
Then, based on this fact, they present a new approach to the study of the multiplica
Schubert classes in cohomology, which is outlined below.

Consider the evaluation of Schubert polynomials at Dunkl elements

Sw(θ) := Sw(θ1, . . . , θn−1).

As noted in [2], givenu,v,w in Sn with l(w) = l(u) + l(v), the facts stated above imply

cw
uv = 〈

coefficient ofw in Su(θ)v
〉

(1.3)

in the Bruhat representation. LetE+
n be the cone of all nonnegative linear combinations

all noncommutative monomials in the generators[ij ], for i < j . Note that by applying the
defining relations ofEn, this cone also contains some linear combinations of monom
with negative coefficients.

Conjecture 1.4 (Nonnegativity conjecture [2]). For anyw in Sn, the evaluationSw(θ) lies
in E+

n .

In Section 2, we defineK-theoretic Dunkl elements inEn based on theK-theory ver-
sion of Monk’s formula in Theorem 1.2. We prove that these elements still commu
En, but the proof is vastly more complex than in the cohomology case, due to th
ponential increase in the number of terms. In Section 3, we state theK-theory version
of the nonnegativity Conjecture 1.4, and extend toK-theory the above approach to t
Littlewood–Richardson problem for Schubert polynomials. We also conjecture the re
tion of K0(Fln) as the commutative subalgebra ofEn generated by theK-theoretic Dunkl
elements, thus extending the similar result of Fomin and Kirillov forH ∗(Fln).

2. K-theoretic Dunkl elements

A. Yong [13] suggested extending the definition of Dunkl elements in [2], by const
ing K-theoretic versions of them based on Theorem 1.2. More precisely, we defin
K-theoretic Dunkl elementκp in En by

κp := 1− (
1+ [p − 1,p])(1+ [p − 2,p]) . . .

(
1+ [1p])(1+ [np])(1+ [n − 1,p]) . . .(

1+ [p + 1,p]).
Clearly, the degree one component ofκp is θp.

It is useful to give an expanded version of the above definition. Givenp with 1 �
p � n and a setA ⊆ [n] \ {p} (where[n] denotes{1, . . . , n}), order the elements ofA =
{i1, . . . , ir+s} such that

ir < · · · < i1 < p < ir+s < · · · < ir+1.
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This can be thought of as a circular order (see Fig. 1). We use the predicateC(i1, . . . , ir+s ,p)

to indicate that the elements ofA are in the above order. Let

π(p,A) := (−1)s[i1p] . . . [irp][pir+1] . . . [pir+s] = [i1p] . . . [ir+sp]

in the quadratic algebra. Then we have

κp = −
∑

∅�=A⊆[n]\{p}
π(p,A),

for p = 1, . . . , n. Note that these elements have 2n−1−1 terms with degrees between 1 a
n − 1, compared to justn − 1 terms of degree 1 for the Dunkl elements in the cohomol
case.

Example 2.1. TheK-theoretic Dunkl elements forn = 3 are

κ1 = [12] + [13] − [13][12],
κ2 = −[12] + [23] + [12][23],
κ3 = −[13] − [23] − [23][13].

Forn = 4, they are

κ1 = [12] + [13] + [14] − [13][12] − [14][12] − [14][13] + [14][13][12],
κ2 = −[12] + [23] + [24] + [12][23] + [12][24] − [24][23] − [12][24][23],
κ3 = −[13] − [23] + [34] + [13][34] − [23][13] + [23][34] + [23][13][34],
κ4 = −[14] − [24] − [34] − [24][14] − [34][14] − [34][24] − [34][24][14].
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Let us identify the Bruhat representationZ〈Sn〉 with K0(Fln) via w 	→ ωw; also re-
call the ring isomorphism betweenK0(Fln) andZ[x1, . . . , xn]/In mentioned in Section 1
Given these isomorphisms, we have

κpw = xp · ωw,

based on Theorem 1.2. Thus, theK-theoretic Dunkl elements encode the multiplicat
structure of theK-theory of the flag variety. According to the above observation, the
ages of Dunkl elements in the Bruhat representation commute, but this is not a f
representation of the quadratic algebra. Nevertheless, we have the stronger result b

Theorem 2.2. TheK-theoretic Dunkl elements commute pairwise(in the quadratic alge-
bra).

In fact, a stronger statement holds, involving the “restriction” of fixed degree o
commutator to an arbitrary set

∅ �= X ⊆ [n] \ {p,q}.
Givend with |X| � d � 2|X| + 2, we define

[κq, κp]X,d :=
∑

(A,B)

[
π(p,A),π(q,B)

]
(2.3)

where the summation ranges over all pairs of sets(A,B) satisfying

• X ⊆ A ∪ B ⊆ X ∪ {p,q};
• |A| + |B| = d ;
• A �= ∅ �= B andp /∈ A, q /∈ B.

We will show that

[κq, κp]X,d = 0.

Furthermore, we claim that only commutations between[ip] and [iq] are needed (no
between[ip] and[jp], or [iq] and[jq]).

Before presenting the proof, we simplify the notation. Given the setX above, we con
sider the free associative algebra of words over the alphabetX ∪ X′ ∪ {p′, q,∗}, where
X′ := {i′: i ∈ X}. The letteri corresponds to the generator[ip] of the quadratic algebra
whereasi′ corresponds to[iq]. We impose the following relations on the new generat
which come from the corresponding relations (i)–(iv) defining the quadratic algebra:

(1) p′ = −q = ∗,
(2) i2 = i′2 = ∗2 = 0,
(3) ii′ = ∗i − i′∗, i′i = i∗ − ∗i′,
(4) ij ′ = j ′i,
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for all i �= j in X. Let us denote byEX the new algebra. Let

π(A) := i1 . . . is , π ′(B) := j ′
1 . . . j ′

t ,

whereA = {i1, . . . , is}, B = {j1, . . . , jt } are subsets ofX ∪ {p,q}, andC(i1, . . . , is ,p),
C(j1, . . . , jt , q). Theorem 2.2 will follow from the lemma below.

Lemma 2.4. We have ∑
(A,B)

[
π(A),π ′(B)

] = 0 in EX,

where the summation ranges over the same pairs of sets(A,B) as the ones in(2.3).

Let us denote the above summation byΣ(X,d). The lemma clearly holds whe
|X| = d . On the other hand, whend = 2|X| + 2, there is just one commutator inΣ(X,d),
and its terms are both 0. Indeed, we have

∗i1i
′
1 . . . is i

′
s∗ = 0, ∗i′1i1 . . . i′s is∗ = 0, (2.5)

which are easily seen by expanding all productsij i
′
j and i′j ij using the relations (3). S

we assume that|X| + 1 � d � 2|X| + 1. Let us first consider the special case whenX =
{k1, . . . , kr} andC(k1, . . . , kr ,p, q).

Proof of the special case of Lemma 2.4. The idea is to apply the following four-ste
procedure:

(1) expressπ(A)π ′(B) andπ ′(B)π(A) as a concatenation of two types of blocks, cal
expansion blocksandintermediate blocks;

(2) define one or two binary labels for each expansion block;
(3) expandΣ(X,d) by replacing each expansion block with a certain sum of terms, b

on the labeling;
(4) group the terms obtained after expansion into classes, and show that the sum

each class is 0.

Step 1 (Preparation). Note that the only positions in which the letter∗ can appear in a term
π(A)π ′(B) are the first and the last. As far as the termsπ ′(B)π(A) are concerned, the lette
∗ can appear either at the end of the subwordπ ′(B) or at the beginning of the subwor
π(A), but not in both positions. If∗ appears in one of the two positions andπ ′(B) �= ∗,
respectivelyπ(A) �= −∗, then the corresponding termπ ′(B)π(A) can be cancelled with
the one obtained by moving the∗ from one subword to the other (according to relation
in the definition ofEX). So we will only consider termsπ ′(B)π(A) containing no∗, plus
the terms∗π(X) and−π ′(X)∗ if d = |X| + 1. The last two terms will not be expanded,
they are excluded from the discussion in Steps 2–3 below.
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Fig. 2.

We use the trivial commutation (4) in the definition ofEX in order to expressπ(A)π ′(B)

as a concatenation of blocks of the form[∗]i1i′1 . . . is i
′
s[∗], with s � 0, and blocks contain

ing only letters in(A\ (B ∪{q}))∪ (B \ (A∪{p}))′; here[∗] indicates the fact that * migh
or might not appear. The blocks of the first type are the expansion blocks, and the oth
the intermediate ones. Forπ ′(B)π(A), the expansion blocks are of the formj ′

1j1 . . . j ′
t jt ,

with t � 1, and the intermediate blocks are defined in the same way. Note that at mo
∗ can appear in the expansion blocks ofπ(A)π ′(B), according to (2.5).

Step 2 (Labeling). We consider the termsπ(A)π ′(B) andπ ′(B)π(A) of Σ(X,d) sepa-
rately.

Step 2.1 (Labeling forπ(A)π ′(B)). Consider such a term, and assume it hasm expansion
blocks. If thekth such block is of the formi1i′1 . . . is i

′
s , we will associate to it a left labellk

and a right labelrk , both of which are 0 or 1. For expansion blocks containing *, we de
only one label; more precisely, if the∗ is at the beginning, we define a right labelr1, and
if the ∗ is at the end, we define a left labellm.

Let us now explain howlk andrk are defined (see Fig. 2). If the corresponding expan
block does not start with∗, we setlk := 1 in the following two cases: (1) the intermedia
block preceding thekth expansion block ends inab′ andC(a, b, i1); (2) the mentioned
intermediate block consists entirely of letters in(B \ (A ∪ {p}))′ or is empty. Otherwise
we setlk := 0. Similarly, if thekth expansion block does not end in∗, the right labelrk is
defined to be 1 in the following two cases: (1) the intermediate block after thekth expansion
block starts withcd ′ andC(is, c, d); (2) the mentioned intermediate block consists entir
of letters inA \ (B ∪ {q}) or is empty. Otherwise, we setrk := 0.

Remark. Let us explain the point of the labeling. Assume thatπ(A)π ′(B) = . . . ab′i1i′1 . . . .

Upon expansion, we get a term of the form. . . ab′ ∗ i1 . . . . This can also be obtained b
expansion from. . . abb′i1 . . . and. . . b′a′ai1 . . . (see below for the second expansion). B
precisely one of two situations can occur: either the first word is of the formπ(C)π ′(D) in
EX, which happens iflk = 1, or the second word is of the formπ ′(D)π(C) in EX , which
happens iflk = 0; here,(C,D) is a pair of sets appearing in the summation (2.3). The
an analogous situation involving the right label.
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Step 2.2 (Labeling forπ ′(B)π(A)). Similarly, we associate a left label and a right labe
the expansion blocks in such a term. The left labellk of thekth expansion block is define
to be 1 in the following two cases: (1) the intermediate block preceding thekth expansion
block ends inb′a andC(b, a, j1); (2) the mentioned intermediate block is nonempty a
consists entirely of letters inA \ (B ∪ {q}). Otherwise, we setlk := 0. Similarly, the right
label rk is defined to be 1 in the following two cases: (1) the intermediate block afte
kth expansion block starts withd ′c andC(jt , d, c); (2) the mentioned intermediate bloc
is nonempty and consists entirely of letters in(B \ (A ∪ {p}))′. Otherwise, we setrk := 0.

Step 3 (Expansion). Again, we consider the termsπ(A)π ′(B) andπ ′(B)π(A) of Σ(X,d)

separately.

Step 3.1 (Expanding the termsπ(A)π ′(B)). Consider such a term written in the blo
form described above, and assume there arem expansion blocks. Let thekth such block
be i1i

′
1 . . . is i

′
s . Based on the labelslk, rk defined in Step 2 and the first relation (3) in t

definition ofEX, we express the considered block asuk + vk , whereuk andvk are given
by the rules below.

• Case 1: Iflk = 0 andrk = 1 then

uk := −i1i
′
1 . . . is−1i

′
s−1i

′
s∗, vk := ∗i1 . . . ∗is .

• Case 2: Iflk = 1 andrk = 0 then

uk := ∗i1i2i
′
2 . . . is i

′
s , vk := (−1)s i′1∗ . . . i′s∗.

• Case 3: Iflk = 1 andrk = 1 then

uk := ∗i1i2i
′
2 . . . is i

′
s − i1i

′
1 . . . is−1i

′
s−1i

′
s∗ + ∗i1i2i

′
2 . . . is−1i

′
s−1i

′
s∗, vk := 0;

if s = 1, then the third term inuk is missing.
• Case 4: Iflk = 0 andrk = 0 then

uk := 0, vk :=
s∑

j=0

(−1)s−j∗i1 . . .∗ij i
′
j+1∗ . . . i′s∗.

The fact thati1i′1 . . . is i
′
s = uk + vk in the four cases above can be proved by induc

on s; the base cases = 1 is just the first relation (3) in the definition ofEX, whence all
four identities are generalizations of the mentioned relation. For instance, in the las
assuming the identity fors − 1, we have

s∑
(−1)s−j∗i1 . . .∗ij i

′
j+1∗ . . . i′s∗
j=0
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= ∗i1 . . .∗is −
(

s−1∑
j=0

(−1)s−1−j∗i1 . . .∗ij i
′
j+1∗ . . . i′s−1∗

)
i′s∗

= ∗i1 . . .∗is − i1i
′
1 . . . is−1i

′
s−1i

′
s∗ = i1i

′
1 . . . is i

′
s;

the last equality is just the identity to be proved in the first case, which is straightfor
(again, by induction ons).

If the first expansion block is∗i1i
′
1 . . . is i

′
s andr1 = 1, we let

u1 :=
{∗i1i

′
1 . . . is−1i

′
s−1i

′
s∗ if s � 1,

−∗ it s = 0,
v1 := 0.

Note that this definition can be obtained from Case 1 above by multiplying the c
sponding terms byq = −∗ on the left. In a similar way, we deduce the definition ofu1
andv1 from Case 2 whenr1 = 0, and defineum andvm when the last expansion block
i1i

′
1 . . . is i

′
s∗. Furthermore, it is again clear that, in each situation, the corresponding e

sion block can be expressed asu1 + v1, respectivelyum + vm.
In order to define the expansion of the whole productπ(A)π ′(B), we need the following

lemma.

Lemma 2.6. Consider elementsxk = uk + vk for k = 1, . . . ,m in a noncommutative alge
bra. The following identity holds:

x1 . . . xm = v1 . . . vm +
∑

∅�=I⊆[m]
(−1)|I |+1y1 . . . ym,

where

yk :=
{

uk if k ∈ I ,
xk otherwise.

for k = 1, . . . ,m.

Proof. Fix a setK with ∅ �= K ⊆ [m], and let

zk :=
{

uk if k ∈ K,
vk otherwise.

Consider the expansion of the productx1 . . . xm in the left-hand side of the identity to b
proved. The number of times the termz1 . . . zm appears in the expansion of the right-ha
side is ∑

(−1)|I |+1 = 1. �

∅�=I⊆K
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Clearly, Lemma 2.6 can be generalized by considering extra factors (correspond
the intermediate blocks) between the factors in the noncommutative products abov
let xk in this more general form of the lemma be the expansion blocks inπ(A)π ′(B) (with
the appropriate expansionsuk + vk), and expandπ(A)π ′(B) as indicated by the lemma.

Step 3.2 (Expanding the termsπ ′(B)π(A)). Similar expansions are defined for the exp
sion blocks in such a term. Assume there arem expansion blocks, and let thekth such block
be j ′

1j1 . . . j ′
t jt . Based on the labelslk, rk defined in Step 2 and the second relation (3

the definition ofEX, we express the considered block asuk +vk , whereuk andvk are given
by the rules below.

• Case 1′: If lk = 0 andrk = 1 then

uk := j ′
1j1 . . . j ′

t−1jt−1jt∗, vk := (−1)t∗j ′
1 . . .∗j ′

t .

• Case 2′: If lk = 1 andrk = 0 then

uk := −∗j ′
1j

′
2j2 . . . j ′

t jt , vk := j1∗ . . . jt∗.

• Case 3′: If lk = 1 andrk = 1 then

uk := −∗j ′
1j

′
2j2 . . . j ′

t jt + j ′
1j1 . . . j ′

t−1jt−1jt∗ + ∗j ′
1j

′
2j2 . . . j ′

t−1jt−1jt∗,

vk := 0;

if t = 1, then the third term inuk is missing.
• Case 4′: If lk = 0 andrk = 0 then

uk := 0, vk :=
t∑

i=0

(−1)i∗j ′
1 . . .∗j ′

i ji+1∗ . . . jt∗.

Again, the four ways to expand a block all generalize the second relation (3).
The whole productπ ′(B)π(A) is expanded based on Lemma 2.6, in the same wa

the productπ(A)π ′(B).

Step 4 (Cancellation). We claim that, when all terms inΣ(X,d) (which we call parents
are expanded in the way shown above, the resulting terms (called sons) cancel ou
first that there are three types of sons:

(1) the terms coming from the expansion of. . . y1 . . . y2 . . . . . . . . . ym . . . in Lemma 2.6
which correspond to terms of the formπ(A)π ′(B) in Σ(X,d) (the intermediate block
are indicated by. . .);

(2) the similar terms which correspond to terms of the formπ ′(B)π(A);
(3) the terms coming from the expansion of. . . v1 . . . v2 . . . . . . . . . vm . . . in Lemma 2.6.
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In the first class of terms we also include∗π(X) and−π ′(X)∗ if d = |X| + 1. We claim
the cancellation takes place within the three classes of terms.

Step 4.1 (Cancellation in class(1)). Fix a term of the formπ(A)π ′(B) in Σ(X,d), and
assume it hasm expansion blocks. Fix a set∅ �= I ⊆ [m] of blocks which are expanded b
Lemma 2.6, meaning that those blocks are replaced by the correspondinguk . Assuming
uk �= 0 for all k in I , each of them is a sum of at most three termstk1, tk2, tk3 (cf. Cases 1
2, and 3 in Step 3). Note that, in all possible cases, the sign of a termtk· within uk is
(−1)left(tk·)+1, where left(tk·) is 1 or 0, depending on whethertk· starts with a∗ or not; to
be more specific in the special caseuk = ±∗, we set left(∗) := 0 if ∗ is at the beginning
of π(A)π ′(B), and left(∗) := 1 if ∗ is at the end. Upon expandingπ(A)π ′(B), we obtain
sons which are concatenations of three types of blocks:tk· for k ∈ I , the expansion block
which are not expanded (i.e., those indexed byk in [m] \ I ), and the intermediate block
The sign of such a son is

(−1)|I |+1(−1)
∑

k∈I (left(tk·)+1) = (−1)1+∑
k∈I left(tk·); (2.7)

here we took into account the sign contribution from Lemma 2.6 as well.
A typical term in the first class is of the form[

. . . b′
1

]∗a1 . . . b′
2∗a2 . . . . . . . . . b′

s∗[as . . .], (2.8)

where the subwords enclosed by square brackets might or might not appear. Let u
how many times this term appears and let us figure out its signs, by examining the p
π(A)π ′(B) in Σ(X,d) which can give rise to it upon expansion. Theith symbol∗ can
combine with another letter in one of the following two ways.

• Case A: It combines with the letterai after it, if any.
• Case B: It combines with the letterb′

i before it, if any.

Assuming the mentioned letters exist, the corresponding parents, written in block
contain the adjacent pairaia

′
i , respectivelybib

′
i . If b′

1 is absent, we have the following tw
cases.

• Case A: The first∗ combines witha1, as explained above.
• Case B′: The first∗ remains unchanged, as the∗ at the beginning of a parent (see a

the remarks below).

The situation in whichas is absent is similar, leading to Cases A′ and B. Hence, there ar
2s parents of the formπ(A)π ′(B); indeed, the labeling ensures that the order of the le
is the correct one in all cases. Furthermore, according to (2.7), each of thes positions in
which expansion occurs has a sign contribution of−1 (in Cases A and A′), respectively 1
(in Cases B and B′). Hence, by summing up the total sign contributions of the 2s parents
(obtained by taking the product of the sign contributions of thes positions where expansio
occurs), we get 0.
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Remark. First, note that two consecutive∗’s in (2.8) might come from the same expans
block in the parent, which is the reason for the third term in the definition ofuk in Case 3 of
Step 3. Secondly, note that the terms∗π(X) and−π ′(X)∗, which appear with a negativ
sign in Σ(X,d) when d = |X| + 1, are also needed in the cancellation process ab
Indeed, these words are special cases of (2.8), cf. Cases A′ and B′ above.

Step 4.2 (Cancellation in class(2)). The terms in the second class can be cancelled
procedure similar to the one in Step 4.1. In fact, this case is easier because no ex
blocks containing∗ are involved.

Step 4.3 (Cancellation in class(3)). We show that the terms in the third class cance
pairs. A son ofπ(A)π ′(B) in the third class is obtained by replacing all expansion blo
i1i

′
1 . . . is i

′
s with ∗i1 . . .∗ij i

′
j+1∗ . . . i′s∗ for somej with 0 � j � s (cf. Cases 1, 2, and 4 i

Step 3). Furthermore, the labeling ensures that ifj � 1, then the first∗ is preceded by a
lettera, and ifj < s, then the last∗ is followed by a letterb′. If there is an initial expansio
block∗i1i

′
1 . . . is i

′
s , it will be replaced by∗i′1∗ . . . i′s∗; again, the last∗ has to be followed by

a letterb′. Similarly for a possible expansion block ending in∗. Let us now replace eac
adjacent pair∗i′ in the son byi′i and eachj∗ by j ′j (cf. Cases 1′, 2′, and 4′ in Step 3).
We obtain a word of the formπ ′(D)π(C) with no∗’s, up to trivial commutations given b
relation (4) in the definition ofEX; indeed, the labeling ensures that the order of the le
is the correct one. Henceπ(A)π ′(B) andπ ′(D)π(C) have two identical sons (which w
pair up); furthermore, their signs are the same, namely(−1)k , wherek is the number of
adjacent pairs∗i′ in the sons. Finally, it is easy to see that all sons in the third clas
a typical termπ ′(D)π(C) containing no∗’s arise in the way mentioned above, and
paired up uniquely. �
Proof of the general case of Lemma 2.4. This follows from the special case of the lemm
Let X = X1 ∪ X2, with X1 = {i1, . . . , is}, X2 = {j1, . . . , jt }, andC(i1, . . . , is ,p, j1, . . . ,

jt , q). Assume that bothX1 andX2 are nonempty, because otherwise we are in the sp
case above. We have

Σ(X,d) =
∑

(A1,B1,A2,B2)

π(A2)π(A1)π
′(B1)π

′(B2)

−
∑

(C1,D1,C2,D2)

π ′(D1)π
′(D2)π(C2)π(C1), (2.9)

where the first summation ranges over all quadruples of sets(A1,B1,A2,B2) satisfying

• X1 ⊆ A1 ∪ B1 ⊆ X1 ∪ {p,q}, A2 ∪ B2 = X2;
• |A1| + |B1| + |A2| + |B2| = d ;
• A1 ∪ A2 �= ∅ �= B1 ∪ B2 andp /∈ A1, q /∈ B1;

the second summation ranges over all quadruples of sets(C1,D1,C2,D2) satisfying
the conditions obtained from the ones above upon substitutions(A1,B1) → (C2,D2),
(A2,B2) → (C1,D1), X1 ↔ X2.



C. Lenart / Journal of Algebra 285 (2005) 120–135 133

d

t

e way,
Applying the special case of the lemma, and assuming thatA2 �= ∅ �= B2 are fixed, we
have that ∑

(A1,B1)

π(A1)π
′(B1) =

∑
(Ã1,B̃1)

π ′(B̃1
)
π

(
Ã1

);
here the first summation ranges over all(A1,B1) satisfying the conditions above, an
the second summation ranges over(Ã1, B̃1) satisfyingÃ1 ∪ B̃1 = X1 and |Ã1| + |B̃1| =
|A1| + |B1|. Taking into account the case whenA2 = ∅ or B2 = ∅, we can write the firs
summation in (2.9) as∑

(Ã1,B̃1,A2,B2)

π(A2)π
′(B̃1

)
π

(
Ã1

)
π ′(B2)

+
{

π(X2)∗π(X1) − π ′(X1)∗π ′(X2) if d = |X| + 1,
0 otherwise

=
∑

(Ã1,B̃1,A2,B2)

π ′(B̃1
)
π(A2)π

′(B2)π
(
Ã1

)
+

{
π(X2)∗π(X1) − π ′(X1)∗π ′(X2) if d = |X| + 1,
0 otherwise;

here the summations range over quadruples(Ã1, B̃1,A2,B2) satisfying

• Ã1 ∪ B̃1 = X1, A2 ∪ B2 = X2;
• |Ã1| + |B̃1| + |A2| + |B2| = d ;
• Ã1 ∪ A2 �= ∅ �= B̃1 ∪ B2.

By a similar procedure, the second summation in (2.9) can be written in the sam
whenceΣ(X,d) = 0. �

3. A new approach to computing the K-theory structure constants

We now present theK-theory versions of (1.3) and Conjecture 1.4.
Consider the evaluation of Grothendieck polynomials atK-theoretic Dunkl elements

Gw(κ) := Gw(κ1, . . . , κn−1).

Corollary 3.1. Givenu,v,w in Sn with l(w) � l(u) + l(v), we have

cw
uv = 〈

coefficient ofw in Gu(κ)v
〉

in the Bruhat representation.
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Conjecture 3.2 (K-theoretic nonnegativity conjecture [13]). For any w in Sn, the kth
graded piece in the evaluation

(−1)k−l(w)Gw(κ)

lies in the coneE+
n .

Remarks 3.3. (1) Corollary 3.1 is a new approach to the study of theK-theory structure
constantscw

uv , which is superior to the one based only on Theorem 1.2. Indeed, not
that the Littlewood–Richardson problem inK-theory is reduced to simplifyingGu(κ), by
using the relations of the quadratic algebra. Let us also note that, essentially, we
multaneously deriving the rules for multiplyingGu(x) by all Grothendieck polynomials
In order to better understand this fact, let us label a coverw < wtij in Bruhat order by the
pair (i, j), and, based on Corollary 3.1, let us think ofcw

uv as counting certain saturate
chains fromv to w, which are determined byu. The above procedure has the advant
that we are considering the saturated chains with the same sequences of labels ju
rather than for each relevant Grothendieck polynomialGv(x) by which we multiplyGu(x).
The importance of Corollary 3.1 is also underlined by the next remark, as well as by
jecture 3.2, as discussed in the fourth remark below.

(2) Working in the quadratic algebra rather than in its Bruhat representation m
sense, because its relations are simpler (the complete list of relations for the Bruha
sentation is not even known), and stronger results are revealed, such as Theorem
possibly, Conjecture 3.2.

(3) Conjecture 3.2 implies that(−1)l(w)−l(u)−l(v)cw
uv � 0, as proved by Brion in [1]. Bu

the conjecture does not appear to follow from Brion’s result. A. Yong [13] checked
conjecture forS3.

(4) If Conjecture 3.2 is true, then a combinatorial description ofGu(κ) as an alternating
linear combination of monomials in[ij ] with i < j would immediately lead to a comb
natorial description of theK-theory structure constantscw

uv , for all v andw. Note that a
similar approach led to a proof of the Pieri-type formula for the cohomology of the
variety in [12].

Fomin and Kirillov proved in [2] that the subalgebra of the quadratic algebraEn gen-
erated by the Dunkl elements is isomorphic toH ∗(Fln). The author and A. Yong [9
conjectured thatK0(Fln) can be realized in a similar way, as a different commutative
algebra of thesamequadratic algebra, based on theK-theoretic Dunkl elements.

Conjecture 3.4 [9]. The ringK(Fln) is isomorphic to the commutative subalgebra ofEn

generated by the elementsκi , for i = 1, . . . , n.

We have checked this conjecture forn � 4. Clearly, the main result of this paper is
step in this direction. On the other hand, we have proved other related results, inc
the fact that theK-theoretic Dunkl elements sum to 0. However, completing the proo
the conjecture will require much more effort. Indeed, its cohomology counterpart in



C. Lenart / Journal of Algebra 285 (2005) 120–135 135

e

59.
eome-

.
(1982)

eau de

in. 20

ppl.

/

tic

théma-

nogr.,
s, 2001.
l. 172,
already somewhat complex, while passage from cohomology toK-theory seems to involv
a dramatic increase in complexity, as suggested by the proof of Theorem 2.2.
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