-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com EEESS
SGIENOE@DIREGT" JOURNAL OF

Algebra

A
ELSEVIER Journal of Algebra 285 (2005) 120-135 .
www.elsevier.com/locate/jalgebra

The K -theory of the flag variety
and the Fomin—Kirillov quadratic algebra

Cristian Lenart

Department of Mathematics and Statistics, State University of New York, Albany, NY 12222, USA
Received 24 February 2004
Available online 13 December 2004

Communicated by Georgia Benkart

Abstract

We propose a new approach to the multiplication of Schubert classes ki-theory of the flag
variety. This extends the work of Fomin and Kirillov in the cohomology case, and is based on the
quadratic algebra defined by them. More precisely, we defirtheoretic versions of the Dunkl
elements considered by Fomin and Kirillov, show that they commute, and use them to describe the
structure constants of thié-theory of the flag variety with respect to its basis of Schubert classes.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

An important open problem in algebraic combinatorics is to describe combinatorially
the structure constants for the cohomology of the flag vafigty(that is, the variety of
complete flagg0=VoCc Vs C--- C V,_1 C V, = C" in C") with respect to its basis
of Schubert classes. These structure constants are knowittlegzood—Richardson co-
efficients a subset of them, consisting of the structure constants for the cohomology of
a Grassmannian, are described by the classical Littlewood—Richardson rule. Fomin and
Kirillov [2] proposed a new approach to the Littlewood—Richardson problendifoiFl,, )
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based on a certain algebra with quadratic relations that they defined. In this paper, we
extend Fomin and Kirillov's approach to thé-theory ofFl,,.

It is well known that the integral cohomology ring*(Fl,,) and the Grothendieck
ring KO(Fl,) are both isomorphic t&[x1, ..., x,1/1,, wherel, is the ideal generated
by symmetric polynomials iy, ..., x, with constant term 0. In the cohomology case,
the elements; are identified with the Chern classes of the dual line bundlgsvhere
L; :=V;/V;_1 are tautological line bundles. In tHé-theory case, we identify; with the
K -theory Chern class X 1/y; of the line bundleL}, wherey; :=1/(1— x;) representg,;
in the Grothendieck ring.

One can define natural bases f&i(Fl,) and K°(Fl,) (over Z) based on the CW-
complex structure ofFl, given by the (oppositechubert varietiesThese are varieties
Xy, Which are indexed by permutatiomsin S,, and which have complex codimension
[(w) (that is, the number of inversions im). More precisely, if we think ofl,, asSL, /B,
we letX,, := B~wB/B, whereB and B~ are the subgroups &L, consisting of upper
and lower triangular matrices. Ti8chuberandGrothendieck polynomiaisdexed byw,
which are denoted b, (x) and &, (x), are certain polynomial representatives for the
cohomology and -theory classes correspondingXq,. These classes, which are denoted
by o, andw,,, form the mentioned natural bases ¢ (Fl,,) and K°(Fl,,). Schubert and
Grothendieck polynomials were defined by Lascoux and Schitzenberger [4,5], and were
studied extensively during the last two decades [3,6,8,10,11].

Both the Schubert polynomial$,,(x) and the Grothendieck polynomiats, (x), for
w in Seo, form bases oF[x1, x, .. .]; hereSs :=J, S, under the usual inclusiof}, —
S,+1. Hence we can write

G ()G, ()= Y dhGukx), B8, = > ch®,).
w: L(w)=I(u)+I(v) w: [(w) > (u)+ (v)

The notation is consistent since the structure constants corresponding to Schubert poly-
nomials, which are known to be nonnegative for geometric reasons, are a subset of the
structure constants corresponding to Grothendieck polynomials.

The simplest multiplication formula for Schubert polynomialslisnk’s formula which
can be stated as follows:

G == Y Gy, @+ Y Gy () (1.1)
1<i<p i>p
1(wtip)=1(v)+1 L(vtpi)=l(v)+1

herez;; is the transposition of, j, andv is an arbitrary element o§.. In fact, Monk’s
formula expresses the product®f (x) with a Schubert polynomial indexed by an adjacent
transposition, which is equivalent to (1.1).

Similar formulas for Grothendieck polynomials were derived in [7]. Define the set
IT,(v) to consist of all permutations

w= vtil]’ t tirptpir+l T tPir+s’
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in S such that, s > 0,r +s > 1, the length increases by precisely 1 upon multiplication
by each transposition, and

I < o <1 <P <lpgs <+ <Ipyl.
Given a permutatiom in IT,(v), leto, (w, v) := (=1)s*+1,
Theorem 1.2 [7]. We have

xpBy(x) = Z op(w, )Gy (x).
well,(v)

Motivated by the Littlewood—Richardson problem for Schubert polynomials, Fomin and
Kirillov [2] defined thequadratic algebrat, (of type A, —1) as the associative algebra with
generatorsij] for 1 <i # j < n, which satisfy the following relations:

(i) [ij1+[ji]=0,
(i) [ij1?=0,
(iii) [ij10jk]+ [jkl[ki]+ [killij]1=0,
(iv) [ij10kl] = [kL][if],

for all distincti, j, k,l. There is a natural grading of), given by deg[ij]) = 1. This
algebra provides a solution to the classical Yang—Baxter equation.

There is a natural representation of the quadratic algebra, call&tuhat representa-
tion. This is a representation on the group algebts,,) of the symmetric group, which
is identified (as a vector space) with the cohomology of the flag vadigtyFl, ), via
w — oy. The representation is defined by

Lo wt it H(wt;j) =1(w) +1,
[ijJw = { 0 otherwise,

forl<i<j<n.
Fomin and Kirillov defined théunkl element®, (in the quadratic algebra) fgy =
1,....,nby

Opi=— Y [lipl+ Y [pkl=— lipl.

1<i<p p<k<n i#p

These elements encode the multiplicative structuréZdtFl,). Indeed, with the above
notation, Monk’s formula (1.1) can be stated as

Opw =Xp - Oy;

this formula is to be understood under the standard vector space isomorphisms (mentioned
above and at the beginning of the section) betwggsy ), H*(Fl,,), andZ[x1, ..., x,1/1,.
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Fomin and Kirillov showed that the Dunkl elements commute (in the quadratic algebra).
Then, based on this fact, they present a new approach to the study of the multiplication of
Schubert classes in cohomology, which is outlined below.

Consider the evaluation of Schubert polynomials at Dunkl elements

Guw(@) =601, ...,0,-1).
As noted in [2], giveru, v, w in S, with [(w) =I(u) + I(v), the facts stated above imply

ey, = (coefficient ofw in &, (6)v) (1.3)
in the Bruhat representation. L&f" be the cone of all nonnegative linear combinations of
all noncommutative monomials in the generatay$, for i < j. Note that by applying the
defining relations of,,, this cone also contains some linear combinations of monomials
with negative coefficients.

Conjecture 1.4 (Nonnegativity conjecture [2]For anyw in S, the evaluatior,, (0) lies
in&r.

In Section 2, we defin& -theoretic Dunkl elements ifi, based on the& -theory ver-
sion of Monk’s formula in Theorem 1.2. We prove that these elements still commute in
&q, but the proof is vastly more complex than in the cohomology case, due to the ex-
ponential increase in the number of terms. In Section 3, we stat& ttieeory version
of the nonnegativity Conjecture 1.4, and extendkteheory the above approach to the
Littlewood—Richardson problem for Schubert polynomials. We also conjecture the realiza-
tion of K°(Fl,) as the commutative subalgebrasfgenerated by th& -theoretic Dunkl
elements, thus extending the similar result of Fomin and KirillovHoT(Fl,,).

2. K-theoretic Dunkl elements

A. Yong [13] suggested extending the definition of Dunkl elements in [2], by construct-
ing K -theoretic versions of them based on Theorem 1.2. More precisely, we define the
K-theoretic Dunkl element, in &, by

kp:=1—(1+[p—1p)(L+Ip—2pl)...(1+[1p])(1+[np])(1+[n—1, p])...
(1+1[p+1 pl).
Clearly, the degree one componenkgfis 6,,.
It is useful to give an expanded version of the above definition. Gjesith 1 <

p<nandasetA C[n]\ {p} (Where[n] denoted, ..., n}), order the elements of =
{i1, ..., ir4s} SUCh that

< <1< P <ipgs <--- <ipgl.
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oo}

ir2 ir+l

Fig. 1.

This can be thought of as a circular order (see Fig. 1). We use the predigGate. ., i, s, p)
to indicate that the elements dfare in the above order. Let

n(p, A) = (=D°liapl...[i; pllpir+l. . . [pir+s] = lirp] .. . lir4sp]
in the quadratic algebra. Then we have

kp=— Y 7(p.A),
pEACN(p)

for p=1,...,n. Note that these elements have 2— 1 terms with degrees between 1 and
n — 1, compared to just — 1 terms of degree 1 for the Dunkl elements in the cohomology
case.

Example 2.1. The K -theoretic Dunkl elements for=3 are

k1 =[12] + [13] — [13][12],
k2 =—[12] +[23] + [12][23],
x3 = —[13] - [23] — [23][13].

Forn =4, they are

k1 =[12]+ [13] + [14] — [13][12] — [14][12] — [14][13] + [14][13][12],

k2 = —[12] + [23] + [24] 4 [12][23] + [12][24] — [24][23] — [12][24][23],
k3 = —[13] — [23] 4 [34] + [13][34] — [23][13] + [23][34] + [23][13][34],
ka4 = —[14] — [24] — [34] — [24][14] — [34][14] — [34][24] — [34][24][14].



C. Lenart/ Journal of Algebra 285 (2005) 120-135 125

Let us identify the Bruhat representati@s,) with K9(Fl,) via w — w,,; also re-
call the ring isomorphism betwedn®(Fl,)) and Z[x1, ..., x,1/1, mentioned in Section 1.
Given these isomorphisms, we have

KpW = Xp - Oy,

based on Theorem 1.2. Thus, tRetheoretic Dunkl elements encode the multiplicative
structure of thek -theory of the flag variety. According to the above observation, the im-
ages of Dunkl elements in the Bruhat representation commute, but this is not a faithful
representation of the quadratic algebra. Nevertheless, we have the stronger result below.

Theorem 2.2. The K -theoretic Dunkl elements commute pairwisethe quadratic alge-
bra).

In fact, a stronger statement holds, involving the “restriction” of fixed degree of the
commutator to an arbitrary set

B#X < [nl\{p.q}.

Givend with | X| < d < 2|X| + 2, we define

lkg.kplxa:= Y _ [7(p.A).7(q.B)] (2.3)
(4.B)

where the summation ranges over all pairs of $atsB) satisfying

e XCAUBCXU{p,q);
o |A|+|B|=d,
e AZ(#£Bandp¢A,q¢B.

We will show that
[qu Kp]X,d =0.

Furthermore, we claim that only commutations betwégr] and [ig] are needed (not
betweer(ip] and[jp], or [ig] and[jq]).

Before presenting the proof, we simplify the notation. Given theXsabove, we con-
sider the free associative algebra of words over the alph&hetX’ U {p’, ¢, *}, where
X' :={i": i € X}. The letteri corresponds to the generafop] of the quadratic algebra,
whereas’ corresponds tig]. We impose the following relations on the new generators,
which come from the corresponding relations (i)—(iv) defining the quadratic algebra:

() ii' =xi —i'%,i'i =ix—*i’,
@) ij =j',
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forall i # j in X. Let us denote by¥x the new algebra. Let
7(A):=1iy...i, 7'(B):=ji...Ji,

where A = {i1,...,is}, B =1{j1,..., j;} are subsets ok U {p, ¢}, andC(i1, ..., is, p),
C(,---,Jt,q)- Theorem 2.2 will follow from the lemma below.

Lemma 2.4. We have

> [x(4).7'(B)] =0 iné&x,

(A,B)
where the summation ranges over the same pairs of(4etB) as the ones if2.3).

Let us denote the above summation BYX,d). The lemma clearly holds when
|X| =d. On the other hand, wheh= 2| X| + 2, there is just one commutator Bi(X, d),
and its terms are both 0. Indeed, we have

*i1iy ... Q0% =0, *iqi1...i4igk =0, (2.5)

which are easily seen by expanding all produ'(;t'§ andi;.i.,- using the relations (3). So
we assume thaiX| + 1 <d < 2|X| + 1. Let us first consider the special case whes-
{k1,.... k. }andC(ka, ..., k-, p,q).

Proof of the special case of Lemma 2.4. The idea is to apply the following four-step
procedure:

(1) expressr(A)x’(B) andn’(B)r(A) as a concatenation of two types of blocks, called
expansion blockandintermediate blocks

(2) define one or two bhinary labels for each expansion block;

(3) expand¥ (X, d) by replacing each expansion block with a certain sum of terms, based
on the labeling;

(4) group the terms obtained after expansion into classes, and show that the sum within
each class is 0.

Step 1 (Preparatior). Note that the only positions in which the letkecan appear in a term
7 (A)7'(B) are the first and the last. As far as the term&B) (A) are concerned, the letter
% can appear either at the end of the subwef@B) or at the beginning of the subword
(A), but not in both positions. I& appears in one of the two positions amt{ B) # x*,
respectivelyr (A) # —x, then the corresponding terni(B)m(A) can be cancelled with
the one obtained by moving thefrom one subword to the other (according to relation (1)
in the definition offx). So we will only consider terms’(B)n (A) containing nox, plus
the termskz (X) and—n'(X)x* if d = | X| + 1. The last two terms will not be expanded, so
they are excluded from the discussion in Steps 2—3 below.



C. Lenart/ Journal of Algebra 285 (2005) 120-135 127

b

=1
lk:ov

r=1 r=0
d

Fig. 2.

We use the trivial commutation (4) in the definition&f in order to express (A)z'(B)
as a concatenation of blocks of the fo[m]ili/l ...isi;[*], with s > 0, and blocks contain-
ing only letters in(A \ (BU{g})) U (B \ (AU{p}))’; here[«] indicates the fact that * might
or might not appear. The blocks of the first type are the expansion blocks, and the others are
the intermediate ones. Far (B)r(A), the expansion blocks are of the foriys ... j/ ji,
with ¢ > 1, and the intermediate blocks are defined in the same way. Note that at most one
x can appear in the expansion blockswgfd )=’ (B), according to (2.5).

Step 2 (Labeling. We consider the terms(A)7’(B) andx’(B)n(A) of X (X, d) sepa-
rately.

Step 2.1 (Labeling forz (A)z’(B)). Consider such a term, and assume it iaasxpansion
blocks. If thekth such block is of the formyi] ... ii;, we will associate to it a left labéj

and a right labet;, both of which are 0 or 1. For expansion blocks containing *, we define
only one label; more precisely, if theis at the beginning, we define a right lake¢] and

if the x is at the end, we define a left laldgl.

Let us now explain how;, andr; are defined (see Fig. 2). If the corresponding expansion
block does not start with, we set/; := 1 in the following two cases: (1) the intermediate
block preceding théth expansion block ends b’ and C(a, b, i1); (2) the mentioned
intermediate block consists entirely of letters(i \ (A U {p}))’ or is empty. Otherwise,
we setl; := 0. Similarly, if thekth expansion block does not endsinthe right label is
defined to be 1 in the following two cases: (1) the intermediate block aftétithexpansion
block starts withed” andC (is, ¢, d); (2) the mentioned intermediate block consists entirely
of letters inA \ (B U {g}) or is empty. Otherwise, we set:=0.

Remark. Let us explain the point of the labeling. Assume thét)7'(B) = ...ab'i1i; ....
Upon expansion, we get a term of the formad’ x i1.... This can also be obtained by
expansion from..abb’i1 ... and...b'a’aiy ... (see below for the second expansion). But
precisely one of two situations can occur: either the first word is of the foi@®) =’ (D) in

Ex, which happens ify = 1, or the second word is of the foral(D)x (C) in £x, which
happens if; = 0; here,(C, D) is a pair of sets appearing in the summation (2.3). There is
an analogous situation involving the right label.
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Step 2.2 (Labeling forz’(B)x (A)). Similarly, we associate a left label and a right label to
the expansion blocks in such a term. The left Idpalf thekth expansion block is defined

to be 1 in the following two cases: (1) the intermediate block precedingtthexpansion
block ends inb’a andC (b, a, j1); (2) the mentioned intermediate block is nonempty and
consists entirely of letters id \ (B U {q}). Otherwise, we sdj, := 0. Similarly, the right
labelr, is defined to be 1 in the following two cases: (1) the intermediate block after the
kth expansion block starts witffc andC(j;, d, c); (2) the mentioned intermediate block

is nonempty and consists entirely of letterg b\ (A U {p}))’. Otherwise, we set; := 0.

Step 3 (Expansiol. Again, we consider the terms(A)x’(B) andn’(B)m (A) of X (X, d)
separately.

Step 3.1 (Expanding the termg (A)x’(B)). Consider such a term written in the block
form described above, and assume therenaexpansion blocks. Let thieth such block
beiii]...isi;. Based on the labelg, r; defined in Step 2 and the first relation (3) in the
definition of £y, we express the considered blockiast vy, whereu; andv; are given
by the rules below.

e Case 1: Ifly =0 andr; = 1 then
U = —ili/l...isfli;_li;*, U i= ki1 ... %I,
e Case 2: Ifly =1 andr; =0 then
Up := *ilizié...isi;, Vg = (—l)si/l*...i;*.
e Case 3: Ifly, =1 andr;, =1 then
Uj i= *i1iDiy . . igiy — 107 ... Ig—10y_qig% 4+ *i1ioiy. . . ig_10;_qi %, v =0
if s =1, then the third term im is missing.
e Case 4: Ifly =0 andr, = 0 then

s
wee=0,  wei= Y (=D sy il gk ik,
j=0

The fact thalz‘li’1 ...Isi; = uy + vx in the four cases above can be proved by induction
on s; the base case=1 is just the first relation (3) in the definition &f, whence all
four identities are generalizations of the mentioned relation. For instance, in the last case,
assuming the identity far — 1, we have

N

s—i . . Y
Z(—l) ’*11...*11-1]-“*...%*
j=0
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s—1
=iy ... %y — (Z(—l)s_l_j*il il g i;_l*) il
j=0

= ki1, kg — Q18] .. D10l _qipk =010 .. Qsil;
the last equality is just the identity to be proved in the first case, which is straightforward
(again, by induction on).

If the first expansion block isili’l ...Isi, andr; =1, we let

iy = {*ilii...is_li;_li;* fs>1,
—x its =0,

Note that this definition can be obtained from Case 1 above by multiplying the corre-
sponding terms by = —x on the left. In a similar way, we deduce the definitionuaf
andvi from Case 2 when; = 0, and definet,, andv,, when the last expansion block is
i1iy ...isi;*. Furthermore, it is again clear that, in each situation, the corresponding expan-
sion block can be expressedias+ v1, respectivelyu,, + vy,.

In order to define the expansion of the whole product)=’(B), we need the following
lemma.

Lemma 2.6. Consider elements, = uy + v, for k=1, ..., m in a noncommutative alge-
bra. The following identity holds

X1.. . Xy =V1...0p + Z (—1)|[|+1y1...ym,

P#IS[m]
where
up ifkel,
Yk = {xk otherwise.
fork=1,...,m.

Proof. Fix a setK with @ # K C [m], and let

) uk if ke K,
= vr  otherwise.

Consider the expansion of the produgt .. x,, in the left-hand side of the identity to be
proved. The number of times the tegn. .. z,, appears in the expansion of the right-hand
side is

Z -plf+t=1. o

PAICK
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Clearly, Lemma 2.6 can be generalized by considering extra factors (corresponding to
the intermediate blocks) between the factors in the noncommutative products above. Now
let x; in this more general form of the lemma be the expansion blocks i)z’ (B) (with
the appropriate expansiong + vi), and expandr (A)z’(B) as indicated by the lemma.

Step 3.2 (Expanding the terms’(B)r (A)). Similar expansions are defined for the expan-
sion blocks in such a term. Assume thererarexpansion blocks, and let ttéh such block
be jij1-..j;j:- Based on the labelg, r; defined in Step 2 and the second relation (3) in
the definition of€x, we express the considered block@st vy, whereu, andvy are given

by the rules below.

Case 1 If [, =0 andry =1 then

Uk = j1J1- - Ji_1jt—1]r% vk = (=) %1

Case 2 If I, =1 andr, =0 then

ug = —*jijajz- - jiji: Uk 1= ke ek

e Case 3 If [, =1 andry =1 then

U = —%jyjoj2. . Jlji ¥ J1J1- - Ji_adi—1iek F*jyjaje . j{_1ji—1ji*,

v =0

if + =1, then the third term im; is missing.
e Case 4 If [, =0 andr, =0 then

t
ug =0, v = Z(—l)'*ji...*jl-/ji+1*...],*.
i=0

Again, the four ways to expand a block all generalize the second relation (3).
The whole product’(B)m(A) is expanded based on Lemma 2.6, in the same way as
the productr (A)x'(B).

Step 4 (Cancellatior). We claim that, when all terms ix' (X, d) (which we call parents)
are expanded in the way shown above, the resulting terms (called sons) cancel out. Note
first that there are three types of sons:

(1) the terms coming from the expansion.ofyi...yz2......... Ym ... In Lemma 2.6
which correspond to terms of the fora{A)z’(B) in X (X, d) (the intermediate blocks
are indicated by. .);

(2) the similar terms which correspond to terms of the farttB)z (A);

(3) the terms coming from the expansion.ofvy...v2... ... ... U ... INn Lemma 2.6.
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In the first class of terms we also include (X) and—='(X)* if d = |X| + 1. We claim
the cancellation takes place within the three classes of terms.

Step 4.1 (Cancellation in clasg1)). Fix a term of the formw (A)z’(B) in X (X, d), and
assume it has expansion blocks. Fix a s@t£ I C [m] of blocks which are expanded by
Lemma 2.6, meaning that those blocks are replaced by the correspondiAgsuming
ur # 0 forallk in I, each of them is a sum of at most three terpmsio, 13 (cf. Cases 1,
2, and 3 in Step 3). Note that, in all possible cases, the sign of arfemwithin uy is
(—1)left)+1 where leftz.) is 1 or 0, depending on whethar starts with a« or not; to
be more specific in the special cage= £, we set leftx) := 0 if % is at the beginning
of m(A)x’(B), and lef{x) := 1 if % is at the end. Upon expandimg A)=’(B), we obtain
sons which are concatenations of three types of blagk®or & € 1, the expansion blocks
which are not expanded (i.e., those indexedcbi [m] \ I), and the intermediate blocks.
The sign of such a son is

(_1)|I\+l(_1)zk€1(|eft(lk)+l) — (_1)1+Zk61 |eﬂ(lk.); (27)

here we took into account the sign contribution from Lemma 2.6 as well.
A typical term in the first class is of the form

[...04]*a1.. . bhoxan... ... ... b.xlas...], (2.8)
where the subwords enclosed by square brackets might or might not appear. Let us count
how many times this term appears and let us figure out its signs, by examining the parents
7 (A)7’(B) in X (X, d) which can give rise to it upon expansion. Thh symbolx can
combine with another letter in one of the following two ways.

e Case A: It combines with the letter after it, if any.
e Case B: It combines with the lettéf before it, if any.

Assuming the mentioned letters exist, the corresponding parents, written in block form,
contain the adjacent paifa;, respectively; b;. If b] is absent, we have the following two
cases.

e Case A: The firs combines withuq, as explained above.
o Case B: The firstx remains unchanged, as that the beginning of a parent (see also
the remarks below).

The situation in whichu, is absent is similar, leading to Casesahd B. Hence, there are

2% parents of the forme (A)7/(B); indeed, the labeling ensures that the order of the letters
is the correct one in all cases. Furthermore, according to (2.7), each ofpibstions in
which expansion occurs has a sign contribution-Gf (in Cases A and 4, respectively 1

(in Cases B and B. Hence, by summing up the total sign contributions of thg&ents
(obtained by taking the product of the sign contributions ofsthesitions where expansion
occurs), we get 0.
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Remark. First, note that two consecutiwes in (2.8) might come from the same expansion
block in the parent, which is the reason for the third term in the definition af Case 3 of
Step 3. Secondly, note that the terms(X) and—x'(X)*, which appear with a negative
sign in ¥ (X,d) whend = |X| + 1, are also needed in the cancellation process above.
Indeed, these words are special cases of (2.8), cf. CdsasdB above.

Step 4.2 (Cancellation in clasg2)). The terms in the second class can be cancelled by a
procedure similar to the one in Step 4.1. In fact, this case is easier because no expansion
blocks containing: are involved.

Step 4.3 (Cancellation in clas€3)). We show that the terms in the third class cancel in
pairs. A son ofr (A)z’(B) in the third class is obtained by replacing all expansion blocks
i1iq ... igi; With siy . ..*iji/.H*...i;* for some;j with 0 < j < s (cf. Cases 1, 2, and 4 in
Step 3). Furthermore, the labeling ensures thatlf 1, then the first is preceded by a
lettera, and if j < s, then the lask is followed by a letted’. If there is an initial expansion
blocki1i] ...iiy, it will be replaced by« . . .i}*; again, the last has to be followed by

a letterd’. Similarly for a possible expansion block ending«inLet us now replace each
adjacent paiki’ in the son byi’i and eachj* by j’;j (cf. Cases ] 2/, and 4 in Step 3).

We obtain a word of the form’ (D)= (C) with no*’s, up to trivial commutations given by
relation (4) in the definition ofx; indeed, the labeling ensures that the order of the letters
is the correct one. Hence(A)w’(B) andn’ (D)7 (C) have two identical sons (which we
pair up); furthermore, their signs are the same, nameli)*, wherek is the number of
adjacent pairsi’ in the sons. Finally, it is easy to see that all sons in the third class of
a typical termz’(D)x (C) containing nox’s arise in the way mentioned above, and are
paired up uniquely. O

Proof of thegeneral caseof Lemma2.4. This follows from the special case of the lemma.
Let X = X1 U X, with X1 = {i1,...,is}, X2 ={j1,..., ji}, andC (1, ..., ig, p, j1,- .-,
Ji»q). Assume that botlx1 and X» are nonempty, because otherwise we are in the special
case above. We have

TX,d= Y = w(Adr(A)r' (B (B)
(A1,B1,A2,B2)
- Y. a(Dyr(Dr(Cm(Ca), (2.9)

(C1,D1,C2,D)

where the first summation ranges over all quadruples of(gatsB1, A2, B) satisfying

e X1 CA1UB1C X1U{p,q}, A2U By = Xp;
o |A1| +|B1| + |A2| + |B2| =d;
e AfUA»# 0B # B1UByandp ¢ A1, q ¢ Ba;

the second summation ranges over all quadruples of @&tsD1, C2, D) satisfying
the conditions obtained from the ones above upon substitutiaasB1) — (C2, D>),
(A2, B2) — (C1, D1), X1 < X2.
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Applying the special case of the lemma, and assuming4bhat @ # B are fixed, we
have that

~ ~

Y. wAn7'(By= Y x'(Bi)w(A1);

(A1,B1) (ANJ_,E]_)

here the first summation ranges over @, By) satisfying the conditions above, and
the second summation ranges O(lﬂﬁ Bl) sat|sfy|ngA1 U Bl = X; and |A1| + |Bl|

|A1] + | B1|. Taking into account the case whdn = ¢ or B, = @, we can write the first
summation in (2.9) as

> m(Apn'(Br)w (A1) (B2)

(A1,B1,A2,Bp)

n {JT(XQ)*JT(X]_) 7’ (X)xn'(X2) ifd=|X|+1,
otherwise

= Z 7' (B1)w(A)w' (Ba) (A1)

(A1,B1,A2,B2)

(X)) (X1) — ' (X)*n/(X2) ifd=|X|+1,
+ .
0 otherwise;

here the summations range over quadruples B1, A», By) satisfying
° A]_UB]_—X]_, A2UBZ—X2,
o |A1| + 1Bl + |A2| + |B2| =
° A1UA275VJ7€B1U32
By a similar procedure, the second summation in (2.9) can be written in the same way,
whenceX (X,d)=0. O

3. A new approach to computing the K-theory structure constants

We now present th& -theory versions of (1.3) and Conjecture 1.4.
Consider the evaluation of Grothendieck polynomial& atheoretic Dunkl elements

Gy(K) =8y, ..., kn-1).
Corallary 3.1. Givenu, v, w in S,, with I(w) > I(«) + I(v), we have
e, = (coefficient ofw in &, (x)v)

uv

in the Bruhat representation.
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Conjecture 3.2 (K-theoretic nonnegativity conjecture [13for any w in S, the kth
graded piece in the evaluation

(=D&, (0)
lies in the coneg;t.

Remarks 3.3. (1) Corollary 3.1 is a new approach to the study of Kheory structure
constants') , which is superior to the one based only on Theorem 1.2. Indeed, note first
that the Littlewood—Richardson problem krtheory is reduced to simplifying,, («), by

using the relations of the quadratic algebra. Let us also note that, essentially, we are si-
multaneously deriving the rules for multiplyirg, (x) by all Grothendieck polynomials.

In order to better understand this fact, let us label a caverwt;; in Bruhat order by the

pair (i, j), and, based on Corollary 3.1, let us thinkd{f as counting certain saturated
chains fromv to w, which are determined by. The above procedure has the advantage
that we are considering the saturated chains with the same sequences of labels just once,
rather than for each relevant Grothendieck polynomialy) by which we multiply®,, (x).

The importance of Corollary 3.1 is also underlined by the next remark, as well as by Con-
jecture 3.2, as discussed in the fourth remark below.

(2) Working in the quadratic algebra rather than in its Bruhat representation makes
sense, because its relations are simpler (the complete list of relations for the Bruhat repre-
sentation is not even known), and stronger results are revealed, such as Theorem 2.2 and,
possibly, Conjecture 3.2.

(3) Conjecture 3.2 implies that-1)/ (")~ =1®cw > 0, as proved by Brion in [1]. But
the conjecture does not appear to follow from Brion’s result. A. Yong [13] checked the
conjecture forss.

(4) If Conjecture 3.2 is true, then a combinatorial descriptiothpfx ) as an alternating
linear combination of monomials ifij] with i < j would immediately lead to a combi-
natorial description of th& -theory structure constantg),, for all v andw. Note that a
similar approach led to a proof of the Pieri-type formula for the cohomology of the flag
variety in [12].

Fomin and Kirillov proved in [2] that the subalgebra of the quadratic alg€prgen-
erated by the Dunkl elements is isomorphic #5° (Fl,,). The author and A. Yong [9]
conjectured thak °(Fl,,) can be realized in a similar way, as a different commutative sub-
algebra of thesamequadratic algebra, based on tkietheoretic Dunkl elements.

Conjecture 3.4 [9]. The ring K (Fl,,) is isomorphic to the commutative subalgebrafpf
generated by the elemenis fori =1, ..., n.

We have checked this conjecture foK 4. Clearly, the main result of this paper is a
step in this direction. On the other hand, we have proved other related results, including
the fact that theK -theoretic Dunkl elements sum to 0. However, completing the proof of
the conjecture will require much more effort. Indeed, its cohomology counterpart in [2] is
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already somewhat complex, while passage from cohomology-tioeory seems to involve
a dramatic increase in complexity, as suggested by the proof of Theorem 2.2.
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