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Abstract 

Background: Sleep apnea (OSA) is a common sleep disorder characterized by recur‑
ring breathing pauses during sleep caused by a blockage of the upper airway (UA). The 
altered UA structure or function in OSA speakers has led to hypothesize the auto‑
matic analysis of speech for OSA assessment. In this paper we critically review several 
approaches using speech analysis and machine learning techniques for OSA detection, 
and discuss the limitations that can arise when using machine learning techniques for 
diagnostic applications.

Methods: A large speech database including 426 male Spanish speakers suspected to 
suffer OSA and derived to a sleep disorders unit was used to study the clinical validity 
of several proposals using machine learning techniques to predict the apnea–hypo‑
pnea index (AHI) or classify individuals according to their OSA severity. AHI describes 
the severity of patients’ condition. We first evaluate AHI prediction using state‑of‑the‑
art speaker recognition technologies: speech spectral information is modelled using 
supervectors or i‑vectors techniques, and AHI is predicted through support vector 
regression (SVR). Using the same database we then critically review several OSA clas‑
sification approaches previously proposed. The influence and possible interference of 
other clinical variables or characteristics available for our OSA population: age, height, 
weight, body mass index, and cervical perimeter, are also studied.

Results: The poor results obtained when estimating AHI using supervectors or i‑vec‑
tors followed by SVR contrast with the positive results reported by previous research. 
This fact prompted us to a careful review of these approaches, also testing some 
reported results over our database. Several methodological limitations and deficiencies 
were detected that may have led to overoptimistic results.

Conclusion: The methodological deficiencies observed after critically reviewing previ‑
ous research can be relevant examples of potential pitfalls when using machine learn‑
ing techniques for diagnostic applications. We have found two common limitations 
that can explain the likelihood of false discovery in previous research: (1) the use of 
prediction models derived from sources, such as speech, which are also correlated with 
other patient characteristics (age, height, sex,…) that act as confounding factors; and 
(2) overfitting of feature selection and validation methods when working with a high 
number of variables compared to the number of cases. We hope this study could not 
only be a useful example of relevant issues when using machine learning for medical 
diagnosis, but it will also help in guiding further research on the connection between 
speech and OSA.
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Background
Sleep disorders are receiving increased attention as a cause of daytime sleepiness, 
impaired work, traffic accidents, and are associated with hypertension, heart failure, 
arrhythmia, and diabetes. Among sleep disorders, obstructive sleep apnea (OSA) is the 
most frequent one [1]. OSA is characterized by recurring episodes of breathing pauses 
during sleep, greater than 10 s at a time, caused by a blockage of the upper airway (UA) 
at the level of the pharynx.

The gold standard for sleep apnea diagnosis is the polysomnography (PSG) test [2]. 
This test requires an overnight stay of the patient at the sleep unit within a hospital to 
monitor breathing patterns, heart rhythm and limb movements. As a result of this test, 
the apnea–hypopnea index (AHI) is computed as the average number of apnea and 
hypopnea episodes (partial and total breath cessation episodes respectively) per hour of 
sleep. Because of its high reliability this index is used to describe the severity of patients’ 
condition: low AHI (AHI <10) indicates a healthy subject or mild OSA patient (10≤ 
AHI ≤30), while AHI above 30 is associated with severe OSA. Waiting lists for PSG may 
exceed 1 year in some countries as Spain [3]. Therefore, faster and less costly alternatives 
have been proposed for early OSA detection and severity assessment; and speech-based 
methods are among them.

The rationale of using speech analysis in OSA assessment can be found on early works 
such as the one by Davidson et al. [4] where the evolutionary changes in the acquisition 
of speech are connected to the appearance of OSA from an anatomical basis. Several 
studies have shown physical alterations in OSA patients such as craniofacial abnormali-
ties, dental occlusion, longer distance between the hyoid bone and the mandibular plane, 
relaxed pharyngeal soft tissues, large tongue base, etc. that generally cause a longer and 
more collapsible upper airway (UA). Consequently, abnormal or particular speech fea-
tures in OSA speakers may be expected from an altered structure or function of their 
UA.

Early approaches to speech-based OSA detection can be found in [5] and [6]. In [5] 
authors used perceptive speech descriptors (related to articulation, phonation and res-
onance) to correctly identify 96.3  % of normal (healthy) subjects, though only 63.0  % 
of sleep apnea speakers were detected. The use of acoustic analysis of speech for OSA 
detection was first presented in [7] and [8]. Fiz et al. [7] examined the harmonic struc-
ture of vowels spectra, finding a narrower frequency range for OSA speakers, which may 
point at differences in laryngeal behavior between OSA and non-OSA speakers. Later 
on, Robb et al. [8] presented an acoustic analysis of vocal tract formant frequencies and 
bandwidths, thus focusing on the supra-laryngeal level where OSA-related alterations 
should have larger impact according to the pathogenesis of the disorder.

These early contributions have driven recent proposals for using automatic speech 
processing in OSA detection such as [9–14]. Different approaches, generally using 
machine learning techniques, have been studied for Hebrew [9, 14] and Spanish [10–13] 
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languages. Results have been reported for different types of speech (i.e., sustained and/
or continuous speech) [9, 11, 13], different speech features [9, 12, 13], and modeling dif-
ferent linguistic units [11]. Also speech recorded from two distinct positions, upright or 
seated and supine or stretched, has been considered [13, 15].

Despite the positive results reported in these previous studies (including ours), as it 
will be presented in the section “Discussion”, we have found contradictory results when 
applying the proposed methods over our large clinical database composed of speech 
samples from 426 OSA male speakers. The next section describes a new method for 
estimating the AHI using state-of-the-art speaker’s voice characterization technologies. 
This same approach has been recently tested and demonstrated to be effective in the 
estimation of other characteristics in speakers’ populations such as age [16] and height 
[17]. However, as it can be seen in the section “Results”, only a very limited performance 
is found when this approach is used for AHI prediction. These poor results contrast 
with the positive results reported by previous research and motivated us to their careful 
review. The review (presented in the section “Discussion”) reveals some common limita-
tion and deficiencies when developing and validating machine learning techniques, as 
overfitting and false discovery (i.e., finding spurious or indirect associations) [18], that 
may have led to overoptimistic previous results. Therefore, our study can represent an 
important and useful example to illustrate the potential pitfalls in the development of 
machine learning techniques for diagnostic applications as it is being identified by the 
biomedical engineering research community [19].

As we conclude at the end of the paper, we not only hope that our study could be use-
ful to help in the development of machine learning techniques in biomedical engineer-
ing research, we also think it can help in guiding any future research on the connection 
between speech and OSA.

Methods
Subjects and experimental design

The population under study is composed by 426 male subjects presenting symptoms of 
OSA during a preliminary interview with a pneumonologist: such as excessive daytime 
sleepiness, snoring, choking during sleep, or somnolent driving. Several clinical variables 
were collected for each individual: age, height, weight, body-mass index (BMI, defined as 
the weight in kilograms divided by the square of the height in meters, kg/m2) and cer-
vical perimeter (CP, measure of the neck circumference, in centimeters, at the level of 
the cricothyroid membrane). This database has been recorded at the Hospital Quirón de 
Málaga (Spain) since 2010 and is, to the best of our knowledge, the largest database used 
in this kind of studies. The database contains 597 speakers: 426 males and 171 females. 
Our study had no impact on the diagnosis process of patients or on their possible medi-
cal treatment therefore the Hospital did not consider necessary to seek approval from 
their ethics committee. Before starting the study, participants were notified about the 
research and their informed consent obtained. Statistics of the clinical variables for the 
male population in this study are summarized in Table 1.

The diagnosis for each patient was confirmed by specialized medical staff through 
PSG, obtaining the AHI on the basis of the number of apnea and hypopnea episodes. 
Patients’ speech was recorded prior to PSG. All speakers read the same 4 sentences and 



Page 4 of 20Espinoza‑Cuadros et al. BioMed Eng OnLine  (2016) 15:20 

sustained a complete set of Spanish vowels [i.e., a, o, u]. Sentences were designed try-
ing to cover relevant linguistic/phonetic contexts related to peculiarities in OSA voices 
(see details in [12]). Recordings were made in a room with low noise and patients at 
an upright or seated position. Recording equipment was a standard laptop with an USB 
SP500 Plantronics headset. Speech was recorded at a sampling frequency of 50 kHz and 
encoded in 16 bits. Afterwards it was down-sampled to 16 kHz before processing.

Problem formulation

Our major aim is testing whether state-of-the-art speaker’s voice characterization tech-
nologies that have already demonstrated to be effective in the estimation of speaker’s 
characteristics such as age [16] and height [17] could be also effective in estimating the 
AHI. It is important to point out that, besides predicting the AHI from speech samples, 
we also tested the performance when using these same techniques to estimate the other 
clinical variables (age, height, weight, BMI and CP). We think this evaluation is relevant 
for two main reasons: firstly, to validate our methodology, by comparing our results esti-
mating age, height and BMI with those previously reported over general speaker popu-
lations (such as [16, 17, 20]); and secondly, to identify correlations between speech and 
other clinical variables that can increase the likelihood of false discovery based on spuri-
ous or indirect associations [18] between these clinical variables and AHI. This second 
aspect we will be relevant when presenting the critical review of previous approaches to 
OSA assessment in the section “Discussion”.

Consequently, our study can be formulated as a machine learning regression problem 
as follows: we are given a training dataset of speech recordings and clinical variables 
information Sjtr =

{

xn, y
j
n

}N

n=1
, where xn ∈ ℜp denotes the acoustic representation for 

the nth utterance of the training dataset and yjn ∈ ℜ denotes the corresponding value of 
the clinical variable for the speaker of that utterance; j corresponds to a particular vari-
able in the set of V clinical variables (j = 1, 2, …V; i.e., AHI, age, height, weight, BMI, 
CP).

The goal is to design an estimator function f j for each clinical variable, such that for an 
utterance of an unseen testing speaker xtst, the difference between the estimated value of 
that particular clinical variable ŷj = f j(xtst) and its actual value yj is minimized.

Once this regression problem has been formulated two main issues must be addressed: 
1) what acoustic representation and model will be used for a given utterance xn and 2) 
how to design the regression or estimator functions f j.

Table 1 Descriptive statistics on the 426 male subjects

AHI apnea–hypopnea index, BMI body mass index, SD standard deviation

Clinical variables Mean SD Range

AHI 22.5 18.1 0.0–102.0

Weight (kg) 91.7 17.3 61.0–162.0

Height (cm) 175.3 7.1 152.0–197.0

BMI (kg/m2) 29.8 5.1 20.1–52.1

Age (years) 48.8 12.5 20.0–85.0

Cervical perimeter (cm) 42.2 3.2 34.0–53.0
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Acoustic representation of OSA‑related sounds

Besides the linguistic message, speech signals carry important information about speak-
ers mainly related to their particular physical or physiological characteristics. This has 
been the basis for the development of automatic speaker recognition systems, automatic 
detection of vocal fold pathologies, emotional/psychological state recognition as well as 
age and weight (or BMI) estimation. In a similar vein, the specific characteristics of the 
UA in OSA individuals have led to hypothesize OSA detection using automatic acoustic 
analysis of speech sounds.

To represent OSA-specific acoustic information, speech records in our database 
include read speech of four sentences that were designed to contain specific distinctive 
sounds to discriminate between healthy and OSA speakers. The design of these four sen-
tences was done according to the reference research in [5] and [6], where Fox et al. iden-
tify a set of speech descriptors in OSA speakers related to articulation, phonation and 
resonance. For example, the third sentence in our corpus includes mostly nasal sounds 
to detect the expected resonance anomalies in OSA individuals (the details on the 
design criteria for this corpus can be found in [12]). Additionally, to exclude any acoustic 
factor not related to OSA discrimination, the speech signal acquisition was done in a 
room with low noise and using a single high quality microphone (USB SP500 Plantronics 
headset).

Once we have a set of speech utterances containing OSA-specific sounds and collected 
under a controlled recording environment, speech signals were processed at a sampling 
frequency of 16 kHz to have a precise wide-band representation all the relevant informa-
tion in the speech spectrum. As Fig. 1 illustrates, each sentence was analyzed in speech 
segments (i.e., frames) of 20 ms duration with an overlap of 10 ms; each speech frame 
was multiplied by a Hamming window. The spectral envelope of each frame was then 
represented using mel-frequency cepstral coefficients (MFCCs). MFCCs provide a spec-
tral envelope representation of speech sounds extensively used in automatic speech and 
speaker recognition [21, 22], pathological voice detection, age, height and BMI estima-
tion [16, 17, 20], etc. MFCCS have also been used in previous research on speech-based 
OSA detection [9–11] and [14].

In the MFCC representation the spectrum magnitude of each speech frame is first 
obtained as the absolute value of its DFT (discrete Fourier transform). Then a filterbank 
of triangular filters spaced in a frequency scale based on the human perception system 
(i.e., Mel-scale) is used to obtain a vector with the log-energies of each filter (see Fig. 1). 
Finally, a discrete cosine transform (DCT) is applied over the vector of log filterbank 
energies to produce a compact set of decorrelated MFCC coefficients. Additionally, in 
order to represent the spectral change over time, MFFCs are extended to their first order 
(velocity or delta ΔMFCCs) time derivatives (more details on MFCCs parametrization 
can be found in [23]). So far, in our experiments, in each speech frame i the acoustic 
information is represented by a D-dimensional vector Oi, called observation vector, that 
includes 19 MFFCs +19 ΔMFCCs parameters, thus D = 38. The extraction of MFCCs-
was performed using the HTK software (htk.eng.cam.ac.uk), see Table 2 for the details 
on DFT order, number of triangular filters, etc.
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Utterance modelling

Due to the natural variability in speech production different utterances corresponding to 
the same sentence will exhibit variable-duration and thus will be represented by a varia-
ble-length sequence O of observation vectors:

where Oi is the D-dimensional observation vector at frame i and NF is the number of 
frames, which will be variable due to the different durations when reading the same 
sentence. This variable-length sequence cannot be the input for a regression algorithm 
as support vector regression (SVR) that will be the estimator function f j to predict yj 
(being yj the AHI and the other clinical variables: age, height, weight, BMI and CP).

Consequently, the sequence of observations O must be mapped into a vector with 
fixed dimension. In our method, this has been done using two modeling approaches, 
referred to as supervectors and i-vectors, which have been successfully applied to 
speaker recognition [24], language recognition [25], speaker age estimation [16], speaker 

(1)O = [O1, O2 . . .ONF ]

Fig. 1 Acoustic representation of utterances
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height estimation [17] and accent recognition [26]. We think that their success in those 
challenging tasks were speech contains significant sources of interfering intra-speaker 
variability (speaker weight, height, etc.), is a reasonable guarantee for exploring its use in 
estimating the AHI and other clinical variables in our OSA population.

It is also important to point out that we have avoided the use of feature selection pro-
cedures because, as it will be commented in the section “Discussion”, we believe this has 
led to over-fitted results in several previous studies in this field. It is for that reason that 
in our approach we evaluate high-dimensional acoustic modelling provided by super-
vectors and low-dimensional i-vectors representations based on subspace projection. 
These two techniques are described below.

Supervectors

Both supervector and i-vector modelling approaches start by fitting a Gaussian mixture 
model (GMM) to the sequence of observations O. A GMM (see [23, 27]) consists of a 
weighted sum of K D-dimensional Gaussian components, where, in our case, D is the 
dimension of the MFFCs observation vectors. Each i-th Gaussian component is repre-
sented by a mean vector (µi) of dimension D and a D × D covariance matrix (Σi). Due to 
limited data, it is not possible to accurately fit a separate GMM for a short utterance, spe-
cially when using a high number of Gaussian components (i.e., large K). Consequently, 
GMMs are obtained using adaptation techniques from a universal background model 
(UBM), which is also a GMM trained on a large database containing speech from a large 
number of different speakers [23]. Therefore, as Fig.  2 illustrates, the variable-length 

Table 2 Implementation tools

a All the implementation tools were used under Linux Ubuntu 12.04 LTS Operating System
b Executed on Matlab 2014a

Toola Function name Function description Parameters

HTK HCopy Extract the MFCCs  
coefficients

No. DFT bins = 512

No. filters = 26

No. MFCC coeff. = 19

No. ΔMFCC coeff. = 19

MSR Identity ToolBoxb GMM_em GMM–UBM training No. mixtures = 512

No. of expectation maximization  
iteration = 10

Feature sub‑sampling factor = 1

MapAdapt GMM adaptation Adaptation algorithm = MAP

No. mixtures = 512

MAP relevance factor = 10

Train_tv_space Total variability matrix 
training

Dimension of total variability matrix = 
{400,300,200,100,50,30}

Number of iteration = 5

Extract_ivector I‑vector training Dimension of total variability matrix = 
{400,300,200,100,50,30}

LIBSVM SVM_train SVR training Grid search parameters:
C, model complexity = −20:20
∈, insensitive‑zone = 2−7:27

SVM_predict SVR regression Grid search parameters:
C, model complexity = −20:20 
∈, insensitive‑zone = 2−7:27
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sequence O of vectors of a given utterance is used to adapt a GMM–UBM generating an 
adapted GMM where only the means (µi) are adapted.

In the supervector modelling approach [21], the adapted GMM means (µi) are 
extracted and concatenated (appending one after the other) into a single high-dimen-
sional vector s that is called the GMM mean supervector:

The resulting fixed-length supervector, of size K ×  D, is now suitable to be used as 
input to a regression algorithm, such as SVR, to predict AHI and the other clinical 
variables.

As it is summarized in Table 2, in our experiments GMM–UBM training, GMM adap-
tation and supervector generation was done using the MSR Identity ToolBox for Mat-
lab™ [28] running over Matlab 2014a on Linux Ubuntu 12.04 LTS. As it is also shown 
in Table  2, to have a precise acoustic representation for each sentence a GMM with 
K  =  512 components was used, resulting in a high-dimensional supervector of size 
K × D = 19,456 = 38 × 512 (D = 38 is the dimension of MFFCs observation vectors Oi).

As mentioned before, training the GMM UBM requires a considerable amount of 
development data to represent a global acoustic space. Therefore, for development we 
used several large databases containing microphonic speech sampled at 16 kHz, cover-
ing a wide range of phonetic variability from continuous/read Spanish speech (see, for 
example, ALBAYZIN [29], as it was one the databases we used). The whole development 
dataset includes 25,451 speech recordings from 940 speakers. Among them 126 speakers 
certainly diagnosed with OSA, and not used for tests, were also included to reflect OSA-
specific characteristics of speech.

I‑vectors

Beyond the success of high-dimensional supervectors, a new paradigm called i-vector 
has been successfully and is widely used by the speaker recognition community [24]. The 

(2)s =









µ1

µ2

...
µK









Fig. 2 GMM and supervector modelling
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i-vector model relies on the definition of a low-dimensional total variability subspace 
and can be described in the GMM mean supervector space by:

where s is the GMM mean supervector representing an utterance and m is the mean 
supervector obtained from the UBM GMM–UBM, which can be considered a global 
acoustic representation independent from utterance, speaker, health and clinical con-
dition. T is a rectangular low rank matrix representing the primary directions of total 
acoustic variability observed in a large development speech database, and w is a low 
dimensional random vector having a standard normal distribution. In short, Eq. (3) can 
be viewed as a simple factor analysis for projecting the high-dimensional (in order of 
thousands) supervector s to the low-dimensional (in order of hundreds) factor vector, 
identity vector or i-vector w. T is named the total variability matrix and the components 
of i-vector w are the total factors that represent the acoustic information in the reduced 
total variability space. Compared to supervectors, the total variability modeling using 
i-vectors has the advantage of projecting the high dimensionality of GMM supervec-
tors into a low-dimensional subspace, where most of the speaker-specific variability is 
captured.

Automatic speech recognition systems typically use i-vectors with dimensionality of 
400. In our tests the total variability matrix T was estimated using the same develop-
ment data described before for training the GMM–UBM, and we evaluated subspace 
projections for i-vectors with different dimensions ranging from 30 to 400. Efficient pro-
cedure for training T and MAP adaptation of i-vectors can be found in [30]. In our tests 
we use the implementation provided by MSR Identity ToolBox for Matlab™ [28] running 
over Matlab 2014a on Ubunutu 12.04 LTS (see the details in Table 2).

Regression using SVR

Once an utterance is represented by a fixed-length vector, supervector or i-vector, SVR 
is employed as the estimator function f j to predict yj, i.e., the AHI and other clinical 
variables (age, height, weight, BMI and CP).

SVR is a function approximation approach developed as a regression version of the 
widely known Support Vector Machine (SVM) classifier [31]. When using SVR, the 
input variable (i-vector/supervector) is firstly mapped onto a high dimensional feature 
space by using a non-linear mapping. The mapping is performed by the kernel function. 
The kernel yields the new high dimensional feature by a similarity measure between the 
points from the original feature space. Once the mapping onto a high dimensional space 
is done then a linear model is constructed in this feature space by finding the optimal 
hyperplane in which most of the of the training samples lie within an ∈-margin (∈-insen-
sitive zone) around this hyperplane [31].

The generalization of SVR’s performance depends on a good setting of two hyperpa-
rameters (∈, C) and the kernel parameters. The parameter ∈ controls the width of the 
∈-insensitive zone, used to fit the training data. The width of the ∈-insensitive zone 
determines the level of accuracy of approximation function. It relies entirely on the tar-
get values of the training set. The parameter C determines the trade-off between the 
model complexity, controlled by ∈, and the degree to which deviations larger than the  

(3)s = m + Tw
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∈-insensitive zone are tolerated in the optimization of the hyperplane. Finally, the kernel 
parameters depend on the type similarity measure used.

In this paper, SVR is applied to estimate the clinical variables and linear and radial 
basis function (RBF) kernels were tested to approximate the estimator function f j. In 
our study, both linear and RBF kernels were tested for i-vectors, but only linear kernels 
were considered for supervectors because their large dimensionality makes it not advisa-
ble mapping them into a higher dimensional space. SVR training and testing were imple-
mented by using LIBSVM [32] running on Linux Ubuntu 12.04 LTS. Table 2 describes 
de details of use for this software together with all the parameters used in our tests.

Performance metrics

To evaluate the proposed method of using supervectors or i-vectors to predict or esti-
mate AHI and the other clinical variables (age, height, weight, BMI and CP) we meas-
ure both the mean absolute error (MAE) and the Pearson correlation coefficient (ρ). 
MAE provides the average absolute difference between actual and estimated values, 
while ρ evaluates their linear relationship. As we will see in the section “Results”, correla-
tion coefficients between estimated and actual AHI values were many times very small. 
Therefore, we considered informative to report p-values for correlation coefficients as 
the probability that they were in fact zero (null hypothesis).

Although the main objective of our method is to evaluate the capability of using 
speech to predict or estimate AHI, in the section “Discussion” we also review previous 
research that aim at classify or discriminate between subjects with OSA (AHI ≥10) and 
without OSA (defined by an AHI <10). Therefore, we performed some additional tests 
using our estimated AHI values to classify subjects as OSA (predicted AHI ≥10) and 
non-OSA (predicted AHI <10). In these classification tests performance was measured 
in terms of sensitivity, specificity and the area under the ROC curve.

k‑fold cross‑validation and grid‑search

In order to train the SVR regression model (function f j) and predict yj variables (AHI 
and other clinical variables) we have employed k-fold cross-validation and grid-search 
for finding the optimal SVR parameters. The whole process is presented in Fig. 3. Firstly, 
to guarantee that all speakers are involved on the test, the dataset is split into k equal 
sized subsamples with no speakers in common. Then, of the k subsamples, a single sub-
sample is retained for testing and the remaining k−1 subsamples are used as training 
dataset. Results were reported for k = 10.

Furthermore, as Fig. 3 also illustrates, in each cross-validation loop the optimal hyper-
parameters (ϵ, C) of the SVR models are obtained through “grid search” using a five-
fold cross-validation on the training data. The ranges for this grid search are detailed in 
Table 2.

Results
Clinical variables estimation

Results in Tables  3 and 4 show performance when using speech to estimate age and 
height. As mentioned before, the purpose of these tests is to validate our procedure by 
comparing these results to those reported in recent references [16] and [17]. Table  3 



Page 11 of 20Espinoza‑Cuadros et al. BioMed Eng OnLine  (2016) 15:20 

shows that our estimation performance (both in terms of MAE and correlation coef-
ficient) for height are comparable, and better when using i-vectors, that those in [17]. 
However estimation results for age, Table  4, are slightly worse than [16]. A plausible 

Fig. 3 Representation of k‑fold cross‑validation and grid search for SVR regression and predicting clinical 
variables

Table 4 Speakers’ age estimation results

a These values are significant beyond the 0.01 level of confidence
b Level of confidence is not reported

Regression method Mean absolute error (years) Correlation coefficient (ρ)

I‑vector–WCCN–SVR [16] 6.0 0.77b

Supervector–SVR 7.75 0.66a

I‑vector–SVR 7.87 0.63a

Table 3 Speakers’ height estimation results

a These values are significant beyond the 0.01 level of confidence
b Level of confidence is not reported

Regression method Mean absolute error (cm) Correlation coefficient (ρ)

I‑vector–LSSVR [17] 6.2 0.41b

Supervector–SVR 5.37 0.34a

I‑vector–SVR 5.06 0.45a
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explanation is that the population in [16] includes a majority of young people, between 
20 and 30 years old, while most of our OSA speakers are well above 45 years old. Accord-
ing to [16] speech records from young speakers can be better discriminated than those 
from older ones. In any case, our results are very similar to results published previously 
by other authors, which is a good indicator of the validity of our methods.

Prediction results using i-vectors and supervectors for all our clinical variables are 
listed on Tables 5, 6 and 7.

As pointed out before, for supervectors (Table 5), only a linear kernel was evaluated 
because the very large supervector dimension (>1000) makes not advisable mapping this 
data into a higher dimensional space.

Tables 6 and 7 show that for i-vectors, estimation results using linear and RBF kernels 
are very similar. These tables also show that both i-vectors and supervectors reach simi-
lar results for almost all clinical variables.

AHI classification

Table  8 shows classification results in terms of sensitivity, specificity and area under 
the ROC curve when classifying our population as OSA subjects or healthy individuals 
based on the estimated AHI values. That is, first supervectors or i-vectors are used to 
estimate the AHI using SVR, and then subjects are classified as OSA individuals when 
their estimated AHI is above ten, otherwise they are classified as healthy. The results in 
Table 8 using i-vectors were obtained for i-vector dimensionality of 100 as this provided 
the best AHI estimation results (see Table 6).

Table 5 Speakers’ clinical variables estimation using supervector-SVR (linear kernel)

AHI apnea–hypopnea index, BMI body mass index, CP cervical perimeter

The correlation coefficients (ρ) are significant beyond the 0.01 level of confidence

Clinical variable MAE ρ

AHI 14.26 0.17

Height (cm) 5.37 0.34

Age (years) 7.75 0.66

Weight (kg) 12.58 0.31

BMI (kg/m2) 3.81 0.23

CP (cm) 2.29 0.42

Table 6 Speakers’ clinical variables estimation using i-vectors-SVR (linear kernel)

AHI apnea–hypopnea index, BMI body mass index, CP cervical perimeter

The correlation coefficients (ρ) are significant beyond the 0.01 level of confidence

Clinical variable I‑vector dimension

Mean absolute error (MAE) Correlation coefficient (ρ)

400 300 200 100 50 30 400 300 200 100 50 30

AHI 13.68 13.64 13.55 13.23 13.40 13.85 0.23 0.21 0.24 0.30 0.27 0.20

Height (cm) 5.21 5.23 5.11 5.06 5.29 5.38 0.40 0.41 0.43 0.45 0.36 0.34

Age (years) 8.16 7.87 8.11 8.29 8.77 9.16 0.61 0.63 0.61 0.59 0.52 0.44

Weight (kg) 12.31 12.23 12.25 11.86 12.16 12.31 0.34 0.35 0.36 0.39 0.35 0.31

BMI (kg/m2) 3.59 3.65 3.67 3.69 3.74 3.80 0.33 0.30 0.29 0.28 0.26 0.18

CP (cm) 2.28 2.26 2.20 2.26 2.31 2.42 0.44 0.45 0.49 0.47 0.44 0.32



Page 13 of 20Espinoza‑Cuadros et al. BioMed Eng OnLine  (2016) 15:20 

We are aware that better results could be obtained using supervectors or i-vectors as 
inputs to a classification algorithm such as SVM, however results in Table 8 were only 
obtained looking for some figures that will be used in the section “Discussion” to com-
pare our results with those from previous research (Table 9).

Discussion
Overall, results in Tables 5–7 indicate a poor performance when estimating AHI from 
acoustic speech information; the best results are obtained using SVR after i-vectors 
acoustic representation with dimensionality 100 (ρ  =  0.30). Better performance is 
obtained when predicting the other clinical variables: best results were for i-vectors and 
SVR linear kernel (see Table 6) with correlation coefficient ρ = 0.63 for age followed by 
CP (ρ = 0.49), height (ρ = 0.45), weight (ρ = 0.39) and BMI (ρ = 0.33).

Nevertheless, the most interesting discussion arises when comparing these results 
with those reported in previous research.

As stated before our results when estimating age and height are comparable to those 
previously published in [16] and [17]. Previous research has also demonstrated moder-
ate results (similar to ours) when estimating speakers’ weight and CP from speech (for 
example, see [33] and [34]). The less success when estimating BMI has also been reported 
in [35]. Only more positive results have been recently presented in [20], although they 
have been questioned for possible overfitting by their authors, as they used machine 
learning after feature selection over a large set of acoustic features.

However, our AHI estimation results contrast markedly with those reported in pre-
vious research connecting speech and OSA. Therefore we decided to address a criti-
cal review of previous studies (including ours) that led us to identify possible machine 
learning issues similar to those reported in [19].

Table 7 Speakers clinical variables estimation using i-vectors-SVR (RBF kernel)

AHI apnea–hypopnea index, BMI body mass index, CP cervical perimeter

The correlation coefficients (ρ) are significant beyond the 0.01 level of confidence

Clinical variable I‑vector dimension

Mean absolute error (MAE) Correlation coefficient (ρ)

400 300 200 100 50 30 400 300 200 100 50 30

AHI 14.04 13.91 13.63 13.48 13.84 14.12 0.00 0.17 0.25 0.26 0.18 0.02

Height (cm) 5.28 5.23 5.16 5.24 5.46 5.43 0.40 0.41 0.42 0.41 0.29 0.32

Age (years) 9.46 9.22 8.29 8.68 9.10 9.53 0.42 0.51 0.61 0.57 0.50 0.41

Weight (kg) 12.39 12.82 12.18 12.11 12.27 12.59 0.29 0.18 0.32 0.35 0.34 0.24

BMI (kg/m2) 3.73 3.70 3.66 3.68 3.72 3.77 0.20 0.18 0.27 0.27 0.21 0.14

CP (cm) 2.38 2.42 2.32 2.34 2.42 2.44 0.31 0.26 0.42 0.40 0.31 0.26

Table 8 OSA Classification using estimated AHI values

Feature Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC

Supervectors 68 89 18 0.58

I‑vectors (dim 100) 71 92 20 0.64
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A first discrepancy, though not related with machine learning issues, was addressed 
in our research [36] were we found notable differences with the seminal work by Robb 
et al. [8]. In [8] statistical significant differences between OSA and non-OSA speakers 
were found for several formants frequencies and bandwidths extracted from sustained 
vowels, while our study in [36] only revealed very weak correlations with two formant 
bandwidths. In this case, the discrepancy can be mainly attributed to the small and 
biased sample in Robb’s exploratory analysis (10 OSA and 10 no-OSA subjects, includ-
ing extreme AHI differences between individuals); while in our study [36] we explored a 
larger sample of 241 male subjects representing a wide range of AHI values.

Table  9 summarizes the most relevant existing research proposals using automatic 
speech analysis and machine learning for OSA assessment.

We start by reviewing our own previous positive results presented in [10–12]. In 
[10] and [11] speech samples from control (AHI <10) and OSA (AHI >30) individu-
als were used to train a binary machine learning classifier for severe OSA detection. 
Healthy and OSA speakers were thus classified using two models: one trained to repre-
sent OSA voices and the other to model healthy voices. Two different approaches were 
researched: (1) a text-independent approach using two GMMs [10], and (2) through two 
text-dependent Hidden Markov Models (HMMs) [11]. Correct classification rates were 
80 and 85 %, for GMMs and HMMs respectively. These promising results contrast with 
both the weak correlation between speech and AHI and the low OSA classification per-
formance we have found in this study. Consequently, we repeated experiments in [10] 

Table 9 Test characteristics of previous research using speech analysis and machine learn-
ing for AHI classification and regression

a Results using speech features plus age and BMI

Study Population  
characteristics

Classification Regression

Correct classification 
rate (%)

Sensitivity 
(%)

Specificity 
(%)

Correlation 
coefficient

GMMs [10] 80 male subjects
(AHI <10: 40 men, AHI 

>30: 40 men)

81 77.5 85 _

HMMs [11] 80 male subjects
(AHI <10: 40 men, AHI 

>30: 40 men)

85 _ _ _

Several feature 
selection and 
classification 
schemes [13]

248 subjects
(AHI ≤5: 48 male, 79 

women; AHI ≥30: 101 
male, 20 women)

82.85 81.49 84.69 _

Feature selection 
and GMMs [9]

93 subjects
(AHI ≤5: 14 female; AHI 

>5: 19 female)
(AHI ≤10: 12 male; AHI 

>10: 48 male)

_ 86
83

84
79

_

Feature selection 
and GMMs [41]

103 male subjects
(AHI ≤10: 25 male; AHI 

>10: 78 male)

80 80.65 80 _

Feature selection, 
supervectors 
and SVR [14]

131 males _ _ _ 0.67a

I‑vectors/super‑
vectors and SVR 
this study

426 males
(AHI <10: 125 male; AHI 
≥10: 301 male)

71.06 92.92 20.6 0.30
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and [11] on the same database used in this paper, and found that performance has now 
been significantly degraded only achieving correct classification rates of 63 % for GMMs 
and 67 % for HMMs. This important reduction in performance can again be attributed 
to the very limited database (40 controls and 40 OSA speakers with AHI >30) used in 
[10] and [11], while now we have 125 controls (AHI <10) and 118 OSA subjects (AHI 
>30). As pointed out in [19] the size of training and evaluation sets are important factors 
to gain a reasonable understanding of the performance of any classifier. Furthermore, 
another relevant factor that can explain this degradation in performance is that those 
40 controls in [10] and [11] were asymptomatic individuals, selected trying to have both 
control and OSA populations as matched as possible in terms of age and BMI. While in 
our new database all individuals (i.e., controls and OSA) are suspected to suffer from 
OSA as they have been referred to a sleep disorders unit (as indicated before control 
population was defined by AHI <10), so, for example, most of them are heavy snorers. A 
third possible cause to explain previous over-optimistic results can be traced consider-
ing possible indirect influences of speech and AHI mediated through other clinical vari-
ables (see correlation coefficients between AHI and other clinical variables in Table 10). 
More specifically, as it was discussed in [9] speech acoustic features can be less corre-
lated with AHI than with some clinical variables as age or BMI that are good predictors 
of AHI [37]. Therefore, a population of controls and OSA speakers with significant dif-
ferences in these confounding variables can be prone to false discovery of discrimination 
results due to the underlying differences in these confounders and not in AHI. This fact 
was reported in our research [12] were OSA detection results using 16 speech features 
(many of them similar to those traditionally used in detecting voice pathologies, such as 
HNR, Jitter, Shimmer,…) were degraded when tested on a database designed to avoid 
statistically significant differences in age and BMI.

Same critical demands to explore and report on significant differences in confounding 
speaker’s features such as age, height, BMI, etc., must be extended to any other factor 
that could affect speech such as speakers’ dialect, gender, mood state, and so forth. In 
fact we believe this is an issue that can explain the good discrimination results when 
detecting severe OSA reported in [13]. The study by Solan-Casals et al. [13] analyzes both 
sustained and connected speech and recordings from two distinct positions, upright or 
seated and supine or stretched. The reason for recording two distinct uttering positions, 
which was also preliminary explored in [15], is that due to anatomical and functional 
abnormalities in OSA individuals different body positions can affect differently their 
vocal tract, therefore presenting more discriminative acoustic features. Solan-Casals 
et al. evaluate several feature selection, feature combination (i.e., PCA) and classification 

Table 10 Spearman’s correlation between clinical variables

a The correlation coefficients (ρ) are significant beyond the 0.01 level of confidence

Feature AHI Weight Height BMI Age CP

AHI 1 0.41a −0.007 0.44a 0.16a 0.40a

Weight 0.41a 1 0.40a 0.89a −0.11a 0.71a

Height −0.007 0.40a 1 −0.02 −0.35a 0.13a

BMI 0.44a 0.89a −0.02 1 0.04 0.72a

Age 0.16a −0.11a −0.35a 0.04 1 0.16a

CP 0.40a 0.71a 0.13a 0.72a 0.16a 1
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schemes (Bayesian Classifiers, KNN, Support Vector Machines, Neural Networks, Ada-
boost). Best results are achieved when using a genetic algorithm for feature selection. An 
interesting result in [13] is that positive discrimination results, i.e., Correct Classifica-
tion Rate, Sensitivity and Specificity, all above 80 %, were only obtained when classifying 
between extreme cases: severe OSA (AHI ≥30) and controls (AHI ≤5). While a nota-
ble reduction in performance was obtained when trying to classify “in-between cases”, 
i.e., cases with AHI between 5 and 30. Solan-Casals et al. conclude that “for intermedi-
ate cases where upper-airway closure may not be so pronounced (thus voice not much 
affected), we cannot rely on voice alone for making a good discrimination between OSA 
and non-OSA.”

At first glance, this conclusion of [13] could be linked to our weak estimation and 
classification results for the broad range of AHI values using acoustic speech informa-
tion. However, there are two critical issues that can be identified in this study. First, 
feature selection is applied over a high number of features (253) compared to the num-
ber of cases (248). Though authors report the use of cross-validation for the develop-
ment and evaluation of different classification algorithms there is no clear indication on 
what data was used for feature selection. At this point, it is worth noting that i-vectors 
subspace projection in our study was trained using a development database completely 
different from the one used for training and testing our SVR regression model. Without 
this precaution, as discussed in several studies [19, 38], feature selection can lead to 
over-fitted results based on a set of “ad-hoc” selected features. A second highly relevant 
issue in [13] is that when evaluating the classification performance between extreme 
cases (see Table 7 in [13]), OSA and control groups contain very different percentages 
of male and female speakers: 48 men/79 women in control vs. 101 men/20 women in 
OSA. This notable imbalance between female and male percentages in control and OSA 
groups is clearly due to the significantly lower prevalence of OSA in women compared 
to men [39]. Consequently, considering the important acoustic differences between 
female and male voices [40], this makes gender a strong confounding factor that could 
also explain the good classification results. To illustrate these issues, we have studied 
the best discriminative feature reported in [13] which is the mean value of the Harmon-
ics to Noise Ratio (HNR) measured for sustained vowel/a/recorded in seated position 
(MEAN_HNR_VA_A in [13]). A small p value, p < 0.0001, was reported in [13] using a 
Wilcoxon two-sampled test of difference in medians for MEAN_HNR_VA_A values in 
control and OSA groups. As our database also contains speech records of sustained/a/
recorded in seated position for both 426 male individuals and 171 female speakers, we 
have made Wilcoxon two-sampled tests for MEAN_HNR_VA_A values contrasting: a) 
a group of male speakers vs a group of female speakers, and b) a group of extreme OSA 
male speakers (AHI ≥30) with another of male controls (AHI ≤5). Results presented in 
Table 11, clearly reveal that while significant differences (p < 0.0001) appear contrasting 
female and male voices (which has already been reported in other studies such as [40]), 
no significant differences are found between extreme OSA groups including only male 
speakers (p = 0.06). This is therefore an illustrative example on how gender can act as a 
strong confounding factor.

The connection between OSA and speech analysis has also been studied for Hebrew 
language, mainly in [9] and [14]. Following the same approach previously described for 
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[10], the work in [9] uses two GMMs to classify between OSA and non-OSA speakers. 
However, differently from [10] acoustic feature selection is made before GMM mod-
elling. The experimental protocol presented by Goldshtein et  al. in [9] properly sepa-
rates female and male speakers. Different AHI thresholds are used to define OSA and 
non-OSA groups: an AHI threshold of 5 is used for women and 10 for men. Reported 
results achieved specificity of 83 % and sensitivity of 79 % for OSA detection in males 
and 86 and 84 % for females (see Table 9). A major limitation in this study is again the 
small number of cases under study: a total number of 60 male speakers (12 controls/48 
OSA) and 33 female subjects (14 controls/19 OSA). Besides the low reliability with such 
small samples, again a critical issue, both in [9] and [14], is the use of feature selection 
techniques from a large number of acoustic parameters (sometimes on the order of 
hundreds) when only very limited training data is available. The same research group 
reported in [41] a decrease in performance using the same techniques as in [9] but over 
a different database with 103 males. According to Kriboy et  al. in [41], this mismatch 
could be explained by the use of a different database with more subjects and with a dif-
ferent balance in terms of possible confounding factors BMI, age, etc.

Also particularly relevant can be to analyze the good results estimating AHI reported 
by Kriboy et al. in [14] because they used a prediction scheme very close to the one we 
have presented in this paper: GMM supervectors are used in combination with SVR to 
estimate AHI. Nevertheless, differently from our study, again feature selection is firstly 
used to select the most five discriminative features from a set of 71 acoustic features, and 
then GMM mean supervectors are trained for that small number of features. Although 
the experimental protocol in [14] separates training and validation data to avoid over-fit-
ting, the set of selected features was composed by five high-order cepstral and LPC coeffi-
cients (a15, ΔΔc9, a17, ΔΔc12, c16) which are difficult to interpret or justify. Both cepstral 
and LPC coefficients are commonly used to represent the acoustic spectral information 
in speech signals, but higher order coefficients are generally less informative and noisy. 
Another notable limitation to validate results in [14] is that SVR regression is applied 
after adding two clinical variables, age and BMI, to the speech supervector generated 
from the five selected features. These two clinical variables are well known predictors of 
AHI [37]. So it should had been advisable first to report AHI estimation results only using 
supervectors representing speech acoustic features, then to present results only using age 
and BMI, and finally give results extending supervectors with age and BMI.

Trying to contribute to review these results we have applied the same estimation proce-
dure described in [14] to our database. First row in Table 12 shows prediction results for 
AHI using only speech supervectors including the same set of five selected features in [14]. 

Table 11 Wilcoxon two-sampled test for MEAN_HNR_VA_A contrasting gender and group 
of extreme OSA male speakers

Mean_HNR_VA_A (Gender) Mean_HNR_VA_A (extreme OSA male speakers)

Female Male p value Male (AHI ≤5) Male (AHI ≥30) p value

Median 19.43 17.07 <0.0001 17.46 16.38 0.06

SD 3.98 4.23 3.89 4.32

# Samples 171 426 69 129



Page 18 of 20Espinoza‑Cuadros et al. BioMed Eng OnLine  (2016) 15:20 

Second row presents estimation performance when using only BMI and age. Third row 
includes the results using the supervector of acoustic features extended with BMI and age.

As it can be seen in Table 12, estimation results are mainly driven by the presence of 
BMI and age, and very poor correlation (ρ = 0.12) is obtained when only the set of 5 
selected speech features is used. Therefore, it is reasonable to conclude that the well-
known correlation between AHI and BMI and age [37, 42] together with possible over-
fitting from feature selection on a high number of features compared to the number of 
cases can cause the optimistic results presented in [14].

We acknowledge several limitations in our work that should be addressed in future 
research. Results presented in this paper are limited to speech from Spanish speakers, 
so comparisons with other languages will require a more careful analysis of language-
dependent acoustic traits in OSA voices. Another limitation in our study is that it has 
only considered male speakers. As our database now includes an important number of 
female speakers the extension of this study on female voices could be especially interest-
ing as apnea disease is still not well researched in women. Considering also some recent 
studies as [43], we should also acknowledge the limitation of i-vectors to represent rel-
evant segmental (non-cepstral) and supra-segmental speaker information. Therefore, 
subspace projection techniques could also be explored over other speech acoustic fea-
tures previously related to OSA as: nasality [9, 10], voice turbulence [13, 44] or specific 
co-articulation trajectories. Finally, a comparative analysis of results for both different 
recording positions (as proposed in [15]) should be addressed.

Conclusions
This study can represent an important and useful example to illustrate the potential pit-
falls in the development of machine learning techniques for diagnostic applications. The 
contradictory results using state-of-the-art speech processing and machine learning for 
OSA assessment over, to the best of our knowledge, the largest database used in this kind 
of studies, led us to address a critical review of previous studies reporting positive results 
in connecting OSA and speech. As it is being identified in different fields by the bio-
medical research community, several limitations in the development of machine learn-
ing techniques were observed and, when possible, experimentally studied. In line with 
other similar studies on these pitfalls [19, 38] main detected deficiencies are: the impact 
of a limited size of training and evaluation datasets in performance evaluation, the like-
lihood of false discovery or spurious associations due to the presence of confounding 
variables, and the risk for overfitting when feature selection techniques are applied over 
large numbers of variables when only limited training data is available.

Table 12 Speakers’ AHI estimation using supervector generated by  five high-order ceps-
tral and LPC coefficients [14]

p values are given for correlation coefficient (ρ)

Set of clinical variables MAE Correlation coefficient (ρ) p value

a15, ΔΔc9, a17, ΔΔc12, c16 14.33 0.12 0.008

AGE + BMI 12.96 0.38 <0.00001

(a15, ΔΔc9, a17, ΔΔc12, c16) + AGE + BMI 12.24 0.46 <0.00001
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In conclusion, we believe that our study and results could be useful both to sensitize the bio-
medical engineering research community to the potential pitfalls when using machine learn-
ing for medical diagnosis, and to guide further research on the connection between speech 
and OSA. In this later aspect, we believe there is an open way for future research looking for 
new insights in this connection using different acoustic features, languages, speaking styles, 
or recording positions. However, besides properly addressing the methodological issues when 
using machine learning, any new advance should carefully explore and report on any possible 
indirect influence of speech and AHI mediated through other clinical variables or any other 
factor that could affect speech such as speakers’ dialect, gender or mood state.
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