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Abstract

We develop the basic theory of smooth representations of locally compact groups on bornological
vector spaces. In this setup, we are able to formulate better general theorems than in the topological
case. Nonetheless, smooth representations of totally disconnected groups on vector spaces and of
Lie groups on Fréchet spaces remain special cases of our theory. We identify smooth representations
with essential modules over an appropriate convolution algebra. We examine smoothening functors
on representations and modules and show that they agree if they are both defined. We establish the
basic properties of induction and compact induction functors using adjoint functor techniques. We
describe the center of the category of smooth representations.
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Résumé

Nous développons la théorie basique des représentations lisses des groupes localement compacts
sur les espaces vectorielles bornologiques. Dans ce contexte, nous pouvons établir des meilleurs
théoremes que dans la situation topologique. Néanmoins, les représentations lisses des groupes
totalement discontinus sur les espaces vectorielles et les représentations lisses des groupes de Lie sur
les espaces de Fréchet restent des cas spécialux de notre théorie. Nous identifions des représentations
lisses avec des modules essentielles sur une algebre de convolution convenable. Nous examinons des
foncteurs régularisants sur des représentations et des modules et nous montrons qu'ils sont égales
s'ils sont définis. Nous établissons les propriétés basiques des foncteurs d’induction et d’induction
compact en employant des techniques des foncteurs adjointes. Nous décrivons le centre de la
catégorie des représentations lisses.
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1. Introduction

Smooth representations of totally disconnected groups on vector spaces and of Lie
groups on locally convex topological vector spaces have already been studied for a long
time. It is also known that one can define smooth representations of arbitrary locally
compact groups using the spaces of smooth functions introduced by Franc¢ois Bruhat
in [4]. We shall consider, instead, smooth representations of locally compact groups on
bornologicalvector spaces (see [12]). While this may appear to be only a minor variation
on the usual theory, it turns out that there are several small but significant details that make
the bornological theory much more pleasant and more powerful. Smooth representations
of totally disconnected groups on vector spaces and of Lie groups on Fréchet spaces are
special cases of our theory, so that it allows for a unified treatment of these two kinds of
representations.

Bornological vector spaces went out of fashion quite some time ago. This is rather
unfortunate because they are the ideal setting for noncommutative geometry. As soon
as we move beyond Fréchet spaces, we run into annoying problems when we work
with topological vector spaces. For instance, the multiplication on an algebr®(iR¢
with convolution is only separately continuous and not jointly continuous. Therefore,
one has to givead hocdefinitions for the complexes that compute the Hochschild and
cyclic homology of such convolution algebras. Problems of this nature are artefacts which
disappear if we work bornologically instead. Moreover, bornologies are essential for the
purposes of local cyclic cohomology, which is a variant of cyclic cohomology that produces
better results for Banach algebras like the algebra of continuous functions on a compact
space.

A great advantage of bornological versus topological analysis is the adjoint associativity
between the completed bornological tensor prod@cand the internal Hom functor:
Hom(A & B, C) = Hom(A, Hom(B, C)). In particular, there is a canonical bornology on
the space HowB, C) of bounded linear maps between two bornological vector spaces.
Adjoint associativity holds for vector spaces and Banach spaces, but not for topological
vector spaces. It provides bornological analysis with a much richer algebraic structure than
topological analysis. For representation theory this means that the general theory of smooth
representations of locally compact groups on bornological vector spaces is very similar to
the purely algebraic theory of smooth representations of totally disconnected groups on
vector spaces.

An instance of this is our main theorem, which asserts that the category of smooth
representations of; is isomorphic to the category of essential modules over the
convolution algebraD(G) of smooth functions with compact support éh We also
have very nice adjointness relations between restriction, induction and compact induction
functors, from which we can deduce many properties of these functors.

We now explain our results in greater detail. Throughout this arii¢lgenotes a locally
compact topological group. Bruhat [4] defines spa@é&) and€(G) of smooth functions
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with compact support and with arbitrary growth at infinity, respectively. In the totally
disconnected case a function is smooth if and only if it is locally constant. In the Lie group
case smoothness has the usual meaning. General locally compact groups are treated using
the deep structure theory of almost connected groups. We recall Bruhat's definitions and
adapt them to our bornological setup in Section 2. Besides basic facts about these function
spaces, we prove some interesting results about metrizable bornological vector spaces.

A representationr : G — Aut(V) on a complete convex bornological vector sp&te
is called smooth if the map that sendse V to the functiong — m(g,v) takes
values in&(G, V) and is a bounded linear map,: V — £(G, V). Equivalently, the
formula Wf (g) := g - f(g) defines a bounded linear operator 4G, V). For totally
disconnected; this amounts to the requirement that any bounded set be stabilized by an
open subgroup of;. In particular, ifV is a vector space with the fine bornology, we get
the usual notion of a smooth representation of a totally disconnected group on a complex
vector space.

Now supposé&; to be a Lie group. A representation is called differentiable ifitiisnes
continuously differentiable for alk € N. This notion is weaker than smoothness. For
instance, the left regular representation on the space of compactly supported distributions
£'(G) is differentiable but not smooth. Differentiability and smoothness are equivalént if
is bornologically metrizable. In particular, this happen¥ifs a Fréchet space equipped
with a reasonable bornology.

Differentiable representations on bornological vector spaces are closely related to
smooth representations on topological vector spaces. We show that a bornological
representatioryr is differentiable if and only if it extends to a bounded algebra
homomorphisnyz : £/(G) — End V). Similarly, a topological representatianis smooth
if and only if it extends to a bounded homomorphigim: £(G) — EndV), where
EndV) carries the equicontinuous bornology. léte a bornological topological vector
space, equip it with the von Neumann bornology. Then there is no difference between
the spaces of continuous and bounded méps V, equipped with the equicontinuous
and equibounded bornology, respectively. Hence topological smoothness is equivalent
to bornological differentiability in this case. IV is a Fréchet space, we know that
bornological differentiability and smoothness are equivalent, so that the topological and
bornological notions of smooth representation agree for Fréchet spaces. For getreral
bornological notion of smoothness is more restrictive than the topological one.

If we restrict fr to the convolution algebr®(G), we turnV into a module oveD(G).

A moduleV overD(G) is calledessentialf the module action is a bornological quotient
mapD(G) ® V — V. That s, each bounded subsetibfs the image of a bounded subset
of D(G) ® V. The following theorem generalizes a well-known and much used fact for
totally disconnected groups:

Theorem 1.1.Let G be a locally compact group. The categories of essential bornological
left D(G)-modules and of smooth representationsGfon bornological vector spaces
are isomorphic. The isomorphism sends a representatio@ — Aut(V) to the module
J7:D(G) — EndV).
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The theorem makes three assertions. FirstzifG — Aut(V) is smooth, then
Jm:D(G) ® V — V is a bornological quotient map. In fact, this map even has a
bounded linear section. Secondly, any essential module®é arises in this fashion
from a smooth representation 6f. Thirdly, a bounded linear map between two smooth
representations i§-equivariant if and only if it is a homomorphism &f(G)-modules. In
the topological framework it is still true that is smooth if and only iffr : D(G, V) > V
has a continuous linear section (see [2]). Howe¥¥;, V) is no longer a topological
tensor product oD(G) andV. Therefore, we fail to characterize smooth representations
in terms of the algebr®(G).

We study analogues in the category of modules @4&r) of several constructions with
representations, namely, smoothening, restriction, induction and compact induction. Let
H C G be aclosed subgroup. Then we only h@g7) C £'(G), so that the restriction of a
D(G)-module to aD(H)-module is not always defined. ¥ is an arbitraryD(G)-module,
thenD(G) ®D(G) V and Homp () (D(G), V) carry canonicalD(H)-module structures.
The resulting functors are called temooth and rough restrictiofunctors, %’ and Ré’ In
the converse direction, if is a module oveD(H ), we can produce a module ovBXG)
in two ways. We define theompact induction functaand therough induction functoby

e (V) :=D(G) &p) V.
15(V) := Homp ) (D(G), V).

The functors S= Ic% = S¢ and R:= I = R are calledsmootheningindroughening
respectively. Up to a relative modular factoroﬁ and I(,,Gj, agree with the induction and
compact induction functors for representations, respectively.

These functors enjoy many useful algebraic properties. For instance, they are exact for
appropriate classes of extensions. The exactness of the smoothening functor implies that
the class of essential modules is closed under extensions. The content of the roughening
functor is the following: roughly speaking, the roughening of a modulis the largest
module W that satisfies 8 = SW. Many important properties of the induction and
restriction functors follow easily by playing around with adjoint associativity. We prove
the Shapiro Lemma in group homology and cohomology in this fashion and we show how
to reduce Tor and Ext for the category of essenfdd(G)-modules to group homology
and cohomology. It is remarkable that such results can be proved easily and purely
algebraically. There are no analytical difficulties whatsoever.

The smoothening functors for representations and modules also agree. The module
smoothening is the range of the map: D(G) ® V — V. The image of the uncompleted
tensor product is known as the Garding subspacé/ofJacques Dixmier and Paul
Malliavin show in [5] that the Garding subspace is equal to the smoothening for Lie group
representations on Fréchet spaces. The same is true for arbitrary continuous representations
of locally compact groups on bornological vector spaces.

Finally, we examine the analogue of the Bernstein center of a totally disconnected
group. This is the center of the category of smooth representatiods @i complex
vector spaces, which was studied first by Joseph Bernstein [1]. It plays a crucial role in
the representation theory of reductive groups, which is parallel to the role played by the
center of the universal enveloping algebra in the Lie group case.
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We prove that the center of the category of smooth representatiaigsoisomorphic
to the center of the multiplier algebra @&i(G). In the totally disconnected case this is
the same as the Bernstein center. We describe the multiplier algelP&@f and its
center as spaces of distributions@nFor Lie groups the multiplier algebra is just(G).
For a connected complex Lie group with trivial center, central multipliers are necessarily
supported at the identity element. Thus the center of the category of smooth representations
of G is isomorphic to the center of the universal enveloping algeb@ iofthis case.

2. Spaces of smooth functions on locally compact groups

Many results of this section are adaptations to the bornological setting of results of
Francois Bruhat [4]. There are a few issues regarding tensor products and metrizability
that do not arise in the topological setting, however.

Since we are only dealing with complete convex bornologies, we drop these adjectives
from our notation: whenever we assert or ask that a space be a bornological vector space, it
is understood that it is asserted or asked to be a complete convex bornological vector space.
Good references for the basic theory of bornological vector spaces are the publications of
Henri Hogbe-Nlend [10-12], whose notation we will follow mostly.

2.1. Preliminaries

The structure theory of locally compact groups is crucial for Bruhat's definitions in
order to reduce to the case of Lie groups. Although its results are very difficult to prove,
they are extremely simple to apply and state.

Let G be a locally compact group. L&tg C G be the connected component of the
identity element. The grouf is calledtotally disconnectedf Go = {1}, connectedf
Go = G andalmost connectell G/Gg is compact.

A totally disconnected locally compact group has a base for the neighborhoods of the
identity element consisting of compact open subgroups (see [9]). Applying this to the
totally disconnected grou@/Go, we find that any locally compact group contains an
almost connected open subgroup.

Theorem 2.1[15]. Let G be an almost connected locally compact group. Tlderis
isomorphic to a projective limit of Lie groups. More explicitly, there is a directed st
compact normal subgrousc G such thaiG/k is a Lie groupforallk € 7 and( I = {1}.
We haveG = Ii(_mke[ G/ k for any such system.

Definition 2.2. A subgroupk C G is calledsmoothif its normalizerNg (k) C G is open
andNg (k)/k is a Lie group. Let SC or S@&) be the set of all smooth compact subgroups.
A fundamental system of smooth compact subgraugs is a set/ of smooth compact
subgroups which is directed by inclusion and satigfie= {1}.
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Lemma 2.3.Let G be a locally compact group. K C G is a smooth subgroup, the®/ k,
k\G and G//k := k\G/k are smooth manifolds in a canonical wayklf C k2, then the
induced maps&/k1 — G/ k2, etc., are smooth.

The seSC(G) is a fundamental system of smooth compact subgroups and in particular
directed. We have

G =1limG/k=lmk\G =limG//k,

where the limits are taken fdre SC(G).

A set of subgroups is a fundamental system of smooth compact subgroups if and only
if it is a cofinal subset 08C(G). The setl can be taken countable and even a decreasing
sequence if and only & is metrizable.

Proof. Letk € G be a smooth subgroup and Etbe its normalizer. Thug/ is an open
subgroup ofG, k is a normal subgroup df andU/k is a Lie group. The homogeneous
spaceG/k is just a disjoint union of copiegU/k of the Lie groupU/k for g € G/U
and hence a smooth manifold. The same applids,@. The proof of the corresponding
assertion foiG//k is more complicated. We view this as the orbit space of the acti@n of
on G/k by left multiplication. For anyg € G, letk’ := kN gUg ™. Thenk\kgU/k =
kK\gU/k = g~k’g\U/k becauseG/U is open. The latter double coset space is really
a left coset space becaukeés normal inU. Thusk\G/k is a disjoint union of smooth
manifolds as well.

Let U C G be an open almost connected subgroup.fadnstead ofG, our assertions
follow from Theorem 2.1. Since SU) < SC(G) is cofinal, the latter is a fundamental
system of smooth compact subgroupsinWe also get the isomorphisnds= L@ G/k,
etc., from the corresponding statement £orlt is clear that any cofinal subset of 8©
is still a fundamental system of smooth compact subgroups. Conversklg, guch a set,
then/ € SC(G). Let k € SC(G). Since( I = {1}, the set of’ € I with k' C Ng (k) is
cofinal. Since the Lie groupig (k)/k does not contain arbitrarily small subgroups, the
guotient groupk’/k must eventually be trivial, that i%] C k. This means that is cofinal
in SC(G). Itis clear fromG = L@ G/k thatG is metrizable if and only if we can chooge
countable. O

Before we can define smooth functions on locally compact groups, we need some
generalities about spaces of smooth functions on manifolds (see [14] for more details).
Let M be a smooth manifold and I8 be a Banach space. Then we equip the space
D(M, B) of smooth functions with compact support fromi to B with the following
bornology. A setS of smooth functions is bounded if alf € § are supported in a
fixed compact subset aff and the set of function®(S) is uniformly bounded for any
differential operatorD on M. This is the von Neumann bornology for the usual LF-
topology onD(M, B). We letD(M) beD(M,R) or D(M, C), depending on whether we
work with real or complex bornological vector spaces. In the following, we will assume
that we work with complex vector spaces, but everything works for real vector spaces as
well.

If V is a bornological vector space, we IB{M, V) be the space of all functions
M — V that belong taD(M, V1) for some bounded complete digk< V. A subset of
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DM, V) is bounded if it is bounded iP(M, V) for someT . (Recall thatVy is the linear

span ofT equipped with the norm whose closed unit balllisHence it is a Banach space.)
Let ® be the completed projective bornological tensor product. It is defined by the

universal property that bounded linear map® B — C correspond to bounded bilinear

mapsA x B — C. The natural ma@(M) ® B — D(M, B) is a bornological isomorphism

for all Banach spaceB. The functorD(M) & L commutes with direct limits and preserves

injectivity of linear maps becauge(M) is nuclear (see [13]). Therefore, we have

DM, V)=DM)QV 1)
for all bornological vector spacds. Moreover, for two manifoldd/1, M> we have
D(M1) ® D(M2) = D(M1 x M3).

We define the space:%(M, V) of k times continuously differentiable functions with
compact support similarly fok € N. If V is a Banach space, we 1€ (M, V) be the
usual LF-space and equip it with the von Neumann bornology. For gefenraé let
ckm, vy = Ii_njC’g(M, Vr). We let CZ(M, V) := n(_m:’gm, V) and call functions in
C (M, V) differentiable(see also [19]). While there evidently is no difference between
smooth functions and*°-functions with values in a Banach space, smoothness is more
restrictive than differentiability in general. Smooth functions are easier to work with
because of (1), which fails fai® (M, V).

Definition 2.4. A bornological vector space isietrizableif for any sequencegs,) of
bounded subsets there is a sequence of scal@rsuch thab) e, S, is bounded.

The precompact bornology and the von Neumann bornology on a Fréchet space are
metrizable in this sense (see [14]).

Lemma 2.5.1f V is metrizable, the®(M, V) =C°(M, V).

Proof. Let S € C°(M, V) be bounded. That is§ is bounded irC’g(M, V) for all k e N.
For anyk € N, there is a bounded complete digk € V such thatS is bounded in
Ck(M, V). By metrizability, we can absorb all; in some bounded complete disk
T C V. ThusS is bounded inC’g(M, Vr) for all kK € N. This means thas is bounded
inD(M,V). O

Lemma 2.6.A bornological vector spac¥ is metrizable if and only if the functdr & L
commutes with countable direct products.

Proof. It is easy to see tha¥ is metrizable once/ ® [[C = [[y(V &® C). For the
converse implication, we clearly have a bounded linear iap [[ B, — [[V ® B,.
We have to show thdf[ V & B, satisfies the universal property & ® [ B,. That is,
we need that a bounded bilinear mag/ x [[ B, — X induces a bounded linear map
[1V ® B, — X. By definition, a bounded subsgdf [ V ® B, is contained i [ S, ® T,
with bounded complete disk$, and7;, in V and B, respectively. Hers, & T,, denotes
the complete disked hull of, x 7, in V & B,. By metrizability, all S, are absorbed by
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some bounded complete diSkC V. Moving the absorbing constants infh, we obtain
S C S’ ®[]T,. This implies the desired universal propertya

2.2. The definitions of the function spaces

Let G be a locally compact group and l[Etbe a bornological vector space. The spaces
D(G/k, V) are defined for alk € SC(G). We pull back functions o7/ to G and thus
viewD(G/k, V) as a space of functions @n If k1 C k2, thenD(G/ k2, V) is the subspace
of right-ko-invariant functionsirD(G/ k1, V) and thus aretract @(G/ k1, V). The set SC
is directed by Lemma 2.3. Hence the spab&6&/k, V) for k € SC form a strict inductive
system. Strict means that the structure maps are bornological embeddingsDAE |ét)
be its inductive limit. This is just the union of the spad@&G/k, V) equipped with the
direct union bornology and thus a spacelivalued functions orG. We get the same
space if we replace SC by any fundamental system of smooth compact subgroups because
the latter are cofinal subsets of SC. In particulaGGifis metrizable, then we can use a
decreasing sequence of subgroups.

Lemma 2.7.We have
D(G,V) = @D(G/k, V)= @D(k\G, V)= @D(G//k, V).

Proof. For any compact subsétc G/k there iska € SC that stabilizes all points dof.
That is, functions ifD(G/k, V) with support inS are automatically lefis-invariant and
hence belong t®(G// k2, V). This yields the assertions.O

Let H C G be a closed subgroup. We defibéG/H, V) andD(H\G, V) as follows.
The double coset spaéG/H can be decomposed as a disjoint union of homogeneous
spaces for Lie groups as in the proof of Lemma 2.3 and hence is a smooth manifold
for all k € 1. We viewD(k\G/H) as a space of left-invariant functions onG/H. If
k1 C ko, thenD(k2\G/H) is the set of leftko-invariant functions inD(k1\G/H). Thus
the spaceD(k\G/H) for k € I form a strict inductive system. We |1&(G/H, V) :=
@D(k\G/H, V). The definition of D(H\G, V) is analogous. Lemma 2.7 shows that
this reproduces the old definition 8f(G/H, V) if H is normal inG. If H is a compact
subgroup, the®(G/H, V) is canonically isomorphic to the spaf¥G, V) of elements
in D(G, V) that are invariant under right translation By

If G is a Lie group, thenG/H is a smooth manifold an@®(G/H, V) evidently
agrees with the usual space of smooth functions defined in Section Zliglftotally
disconnected, then the spaé&ds /H are discrete. Therefor®(G/H, V) is the space of
locally constant functions with compact support fréijiH to V.

Definition 2.8. A function f : G/H — V is called smoothifi- f € D(G/H, V) forallh
D(G/H).We letE(G/H, V) be the space of smooth functions fr@imiH to V. A subsetS
of £(G/H, V) is bounded ifz - S is bounded inD(G/H, V) for all h e D(G/H). We let
E(G/H):=E(G/H,C).

For a closed subsétC G/H, let &y(S, V) be the subspace 6(G/H, V) of functions
supported inS and let€(S, V) be the quotient o€ (G/H, V) by the ideal of functions
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vanishing inS. (The latter notation is slightly ambiguous becaf¢g, V) also depends on
G/H.)

Let S € G/H be compact. Then there is€ D(G/H) with h|s = 1. Therefore, we
obtain the same spacés(S, V) and&(S, V) if we replace€(G, V) by D(G, V) in the
above definition. It is evident th&(G/H, V) = Ii_r)né‘o(S, V) wheresS runs through the
directed set of compact subsets@jH. ThusD(G/H, V) is the space of compactly
supported elements &(G/H, V). However, the spacé&(G/H, V) tends to be harder
to analyze tharD(G/H, V).

2.3. Nuclearity and exactness properties

Next we examine some properties®Bf{G/H) and of the functoW — D(G/H, V).
Since the bornological tensor product commutes with inductive limits, (1) implies

D(G/H. V) ZImDK\G/H, V) ZlIimD*K\G/H) & V =D(G/H) & V. )

Proposition 2.9.The bornological vector spad(G/H) is nuclear. More generally, it
is nuclear, so iD(G/H, V).

Proof. For k € SC andS € k\G/H compact, the subspa@(S) € D(\G/H) is a
nuclear Fréchet space becausg;/H is a smooth manifold. Hence it is nuclear as a
bornological vector space as well (see [13]). As an inductive limit of these spaces, the
spaceD(G/H) is nuclear as well. Since nuclearity is hereditary for tensor products, (2)
implies thatD(G/H, V) is nuclear ifV is. O

To state the exactness properties of the fun®06/H, i), we recall some natural

classes of extensions.#ornological extensiois a diagramk — E 2 owithi = Kerp
and p = Cokeri. It is calledlinearly split if it has a bounded linear section. Then it
follows thatE = K & Q. Itis calledlocally linearly splitif for any bounded complete disk
T C Q there is a local bounded linear section — E defined on the Banach spage-.
Equivalently, the sequence

0— Hom(B, K) - Hom(B, E) — Hom(B, Q) — 0O

is exact for any Banach spa@ Locally linearly split extensions are important for local
cyclic cohomology.

Proposition 2.10.The functorV — D(G/H, V) commutes with direct limits. It preserves
bornological extensions and injectivity of morphisms. It also preserves locally linearly split
and linearly split extensions.

Proof. For any bornological vector spad, the functorV — W & V commutes with
direct limits and preserves linearly split and locally linearly split bornological extensions.
Nuclearity of W implies that it also preserves injectivity of morphisms and bornological
extensions. This yields the assertions because of (2).
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Now we turn fromD(G/H, V) to £(G/H, V). For any open covering af/H there
is a subordinate partition of unity consisting of functionsIidG/H). In order to avoid
taking square roots, our convention for partitions of unity is fap?(x) = 1. We choose
such a partition of unity¢;) ;e; on G/H with ¢; € D(G/H) for a(l j € J and use it to
define maps

CEG/H, V)= [[DG/H, V), u(f)j=f-¢),
jedJ

7 [[DG/H. V)= EGIH. V), (D)= i ¢;-

jedJ jelJ

®3)

It is clear that: is a well-defined bounded linear map. The maps a well-defined
bounded linear map as well because all but finitely many of the prodijgtg: vanish
for h e D(G/H). ThusE(G/H, V) is naturally isomorphic to a retract (that is, direct
summand) of [;., D(G/H, V).

Proposition 2.11.The functor€(G/H, L) preserves bornological extensions and injec-
tivity of morphisms. It also preserves locally linearly split and linearly split bornological
extensions. The spad&&G/H, V) is nuclear if (and only i V is nuclear andG/H is
countable at infinity.

Proof. The classes of extensions that occur in the proposition are closed under direct
products. Hence a retract of a direct product of exact functors is again exact. Using the maps
in (3), the assertions abo&itG/H, L) therefore follow from the corresponding assertions
aboutD(G/H, L) in Proposition 2.10. Suppos$e/ H to be countable at infinity. Then the
partition of unity above is countable, so talG/H, V) is a retract of a countable direct
product of space®(G/H, V). Since nuclearity is hereditary fopuntableadirect products,
E(G/H,V)isnuclear. O

Definition 2.12.Let!: D(G/H, V) — W be a bounded linear map. Bepportsupg is the
smallest closed subs&tc G/H suchthal(f)=0forall f € D(G/H, V) thatvanishin a
neighborhood of. (An argument using partitions of unity shows that this is well defined.)

Let D'(G/H,V) be the dual space dP(G/H, V), equipped with the equibounded
bornology. ForS € G/H, let D'(S,V) C D'(G/H, V) be the set of linear functionals
supported inS. Let £'(G/H,V) := @D’(S, V), where S runs through the compact
subsets o5/ H. In particular, forV = C, we obtain the spacé® (G/H) and&’'(G/H) of
distributionsanddistributions with compact suppoosh G/ H.

Lemma 2.13. The natural map from the dual of (G/H,V) to D'(G/H,V) is a
bornological isomorphism onté’(G/H, V). In particular, £'(G/H) is the dual space
of E(G/H).

Proof. It is not hard to see that for any set of bornological vector sp&eges the dual
space of | V, is bornologically isomorphic to the direct sug V. This together with (3)
yields the assertion. O
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Lemma 2.14.If G/H is countable at infinity and is metrizable, then
E(G/H,V)ZEWG/H)R V.

Proof. We have already shown th&X(G/H, V) = D(G/H) ® V. Using the maps in (3)
and Lemma 2.6, we obta®XG/H, V) = £(G/H)® V aswell. O

However,£(G/H, V) is not isomorphic ta€(G/H) & V in general. All three spaces
E(G/H xG/H),E(G/H,E(G/H)) andE(G/H) ® £(G/H) are differentunles&/H is
a smooth manifold or compact. This is the reason why the regular representatiptron
usually fails to be smooth.

2.4. Functoriality with respect to the group

Definition 2.15. A continuous linear mag’ : G1/H1 — G2/H> between two homoge-
neous spaces is callesimoothif for any x € G1/H; and anyks € SC(G>»), there is

k1 € SC(G1) and an operk;-invariant neighborhood& € G1/H; of x such that the re-
striction of f to V descends to a smooth mép\V — k2\G2/ H>.

Lemma 2.16.A smooth mag’ : G1/H1 — G2/ H> induces a bounded linear map
f*1E(G2/Ho, V) = E(G1/H1, V), f*(h):=ho f.

If fis proper as well f* restricts to a bounded linear map
[*:D(G2/H2, V) — D(G1/H1, V), f*(h):=ho f.

Proof. Use smooth partitions of unity.o

The following are examples of smooth maps. They induce maps on spaces of smooth
functions by Lemma 2.16.

(1) The group multiplication is a smooth mépx G — G. So are the multiplication maps
GxG/H=GxG/1xH— G/HandH\G x G=H x 1\G x G — H\G. The
mapG x G — G x G, (x,y) — (x, xy), is smooth and so are similar maps involving
homogeneous spaces.

(2) The inversion is a smooth m@p— G andG/H < H\G.

(3) Any continuous group homomorphism is smooth.

(4) If g~ Hg C H’, then the mapG/H — G/H' that sendscH to xHgH' = xgH' is
smooth.

Thus we can define the left and rigkgular representations andp of G onD(G, V)
and&(G, V) by
e f@)i=f(g7 %), pef(x):=f(x-g). 4

Lemma 2.17.The spac& (G/H, V) is naturally isomorphic to the subspace&fG, V)
of functionsf that satisfyp, f = f forall h € H.
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Proof. The projectionG — G/H is smooth and therefore induces a bounded injective
map&(G/H,V)— £(G, V), whose range clearly consists of right-invariant functions.

Letk € SC and letU be its normalizer. In order to prove thatG/ H is a smooth manifold,

we decompose#d\G/H into a disjoint union of the double coset spa¢&s/gH /H for

g € U\G/H and identified the contribution of each double coset with a homogeneous
space for a Lie group action. This reduces the assertion to the special cas&whearkie
group. The projectiols — G/H is a submersion in this case and hence has local smooth
sections. They together with smooth partitions of unity yield the assertion.

The modular functionug:G — R is a continuous group homomorphism. We
define it by the conventiomg(x)dg = d(gx). We haveug € £(G) because group
homomorphisms are smooth maps and the identical fun&tior> R is a smooth function
on R}. Hence multiplication byuc is a bornological isomorphism o®(G, V) and
E(G,V).

If H C G is anopensubgroup, then there are bornological embeddings

D(H,V)— D(G,V), EH,V)—E(G,V),

which extend a function o/ by 0 outsideH. Its range is the space of functions supported
in H and thus a retract. L&iG;);c; be a directed family of open subgroups @fwith
G =|JG,;. ThenD(G, V) is the strict inductive limit of the subspacBgG;, V).

We have

D(G1 x G2) ZD(G1) ® D(G2) =D(G1,D(G2)) (5)

for all locally compact group$s;1 and G2 because the corresponding result holds for
manifolds and the bornological tensor product commutes with direct limits. The spaces
E(G xG),E(G)RE(G) andE(G, £(G)) agree ifG is a Lie group, but not for arbitrarg.

Let (G))ic; be a set of locally compact groups and Kt C G; be compact open
subgroups for all € I \ Fp with somefinite set of exceptiongyp. For each finite subset
F C I containingFp the direct product

G(F):= [ ki x[]Gi

iel\F iel

is a locally compact group. Fdr, C F» the groupG (F1) is an open subgroup @ (F»).
The restricted direct produc{{];.,(G:, K;) is the direct union of these groups. The
characteristic function oK; C G; is a distinguished element @(G;). The ¢estricted
tensor producof the space®(G;) with respect to these distinguished vectors is defined as
follows. For each finite subsét C I containingFp, consider the completed tensor product
Qicr D(G;). We have a map between the associated tensor products forF, that
inserts the factor &, fori € F» \ F1. The tensor product is the direct limit of the resulting

(strict) inductive system. It is straightforward to show that

D(H/(Gi,Ki)) =X)(D(Gi). 1k,). (6)

iel iel
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2.5. Multiplication and convolution

The pointwise product of smooth functions and of smooth functions with distributions
is defined in the usual way. All resulting bilinear maps are clearly bounded.
The group law ofG gives rise to a comultiplication

AE(G)— EG xG), Af(g,h):= f(gh).

We do not havef (G x G) = £(G) ® £(G) in general. The resulting problem with the
convolution of distributions is fixed by the following lemma:

Lemma 2.18.There is a unique bounded bilinear map
E'(G) x E'(G) = £ (G x G), (D1,D2)+— D1® D2,

such that

(D1® D2, f1® f2) = (D1, f1) - (D2, f2),
(f1® f2) - (D1®D2)=f1-D1® f2- D2,

for all D1, D2 € £'(G), f1, f2 € E(G).
There is a unique bounded linear map

&'(G/H)— Hom((G/H,V),V), D Dy,
such that

(Dyv, f®v)=(D, f)-v, f-Dy=(f-D)y
forall De&'(G/H), f €eE(G/H),veV.

Proof. Fix D1, D, with support contained in some compact subset G. There exists
¢ € D(G) with ¢ = 1 in a neighborhood of. Hencep - D; = D; for j = 1, 2. Therefore,
we must putD; ® Dy, f) := (D1 ® D2, (¢ ® ¢) - f). The right-hand side is well defined
becausé¢ ® ¢) - f has compact support afil G x G) = D(G) ® D(G) C £(G) ®E(G).
It is straightforward to see that this definition does not depend and has the required
properties.

The mapDy is defined similarly. There i¢ € D(G/H) with ¢ - D = D. We must have
(Dy, f):=D®idy(¢- f)forall f € £(G/H, V). The right-hand side is defined because
¢-feD(G/H,V)ZDG/H)QV. O

We define the convolution of two compactly supported distributions by
(D1% D2, f):=(D1® D2, Af)

for all f € £(G). This turns&’(G) into a bornological algebra. A similar trick allows to
define the convolution of a compactly supported distribution with an arbitrary distribution.
All these bilinear maps are evidently bounded.

Fix a left Haar measur@dg on G. Then we embed(G) C D'(G) by the usual
map f — fdg. We define convolutions involving smooth functions in such a way that
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frdg * fadg = (fix f2)dg, D *(fdg)= (D x f)dg and(fdg D)= (f x D)dg. It
is straightforward to verify that this defines bounded bilinear maps taking valugin
provided one factor has compact support, and taking valu@g @) if both factors have
compact support. In particula®(G) becomes a bornological algebra and a bimodule over
E'(G).

The antipodef () := f(g~1) on £(G) gives rise by transposition to an antipode on
&’(G), which is a bounded anti-homomorphism with respect to convolution. Its restriction
to the idealD(G) C £'(G) is given by

(fP)©® =g Huce)™ @)

becausel(g~1) = ug(g~1) dg. This is a bounded anti-homomorphism PXG), which
we use to turn righD(G)-modules into left modules and vice versa.

3. Smooth representations of locally compact groups

We shall use the following notation and conventions. Cetbe a locally compact
group and letV be a (complete convex) bornological vector space. The spacg/Eng
Hom(V, V) of bounded linear operators dhis a (complete convex) bornological algebra.
Let Aut(V) be the multiplicative group of invertible elements in ERJ. A group
representatiorof G on V is a group homomorphism : G — Aut(V). Thus we always
assumeG to act by bounded linear operators. We writ€g) = m, andm, (v) = (g, v) =
g-v. Let Map(G, V) = ngc V be the space of all functions fro to V. Theadjoint
of 7 is the bounded linear map. : V — Map(G, V) defined byr, (v)(g) :=n (g, v). We
let G act on MaG, V) by the right regular representatigndefined in (4). Themr, is
G-equivariant.

Definition 3.1. The representatiom is calledsmoothif . is a bounded map int&(G, V).
3.1. First properties of smooth representations

Lemma 3.2.The representation is smooth if and only iV f (x) := x - f(x) defines an
element oAut(D(G, V)). Even morer is already smooth if

Wy V25 DG, V) Map(G. V). v [g ¢(2)m(g.v)].

is a bounded linear map int®(G, V) for some non-zerg € D(G).

Proof. We have W, (v) = W(¢ ® v) = Mym.(v), where My denotes the operator of
pointwise multiplication by¢ on D(G, V). It follows from the definition of€(G, V)
that = is smooth if and only ifW, is a bounded linear map int®(G, V) for all ¢.
This is equivalent to¥ being a bounded linear map. W is bounded, so is its inverse
W=Lf(x):=x"1f(x). HenceW belongs to AWD(G, V)) if and only if = is smooth.

It remains to prove thal, is a bounded map int®(G, V) for all ¢ € D(G) once this
happens for a singlg # 0. Let X € D(G) be the subspace of all for which Wy, is a
bounded map int®(G, V). Clearly, X is an ideal for the pointwise product. Sincég) is
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bounded for alg € G, the operato#,, is bounded if and only i#¥,, is bounded. Hence
for all g € G there isp € X with ¢(g) # 0. SinceX is an ideal, we geX =D(G). O

Corollary 3.3. Let H C G be an open subgroup. Then a representatioraé smooth if
and only if its restriction taH is smooth. Any representation of a discrete group is smooth.

Lemma 3.4.Let H C G be a closed subgroup. The left and right regular representations
of G onD(G/H, V) andD(H\G, V) are smooth.

Proof. We observed after Lemma 2.16 that the napx G/H — G x G/H that sends

(x, yH) to (x, xyH) is smooth. Since it is also proper, itinduces a bounded linear operator
onD(G,D(G/H,V))=D(G x G/H, V). This is the operatow of Lemma 3.2 for the

left regular representationon D(G/H, V). Hencex is smooth. Similarly, the right regular
representation o®(H\G, V) is smooth. O

The regular representations 604G, V) usually fail to be smooth. See Section 3.5 for
some positive results of(G, V).
Theintegrated fornof a smooth representatianis the bounded homomorphism

Jm:E(G)— EndV), [r(D)(v):= Dy (m4(v)).

The operatoDy :£(G, V) — V is defined in Lemma 2.18. We evidently haye(s,) =
e, SO that fmr extendsw. We omit the straightforward proof thafr is an algebra
homomorphism. Let/(G) C £'(G) be the subalgebra of distributions supported @t 1
If G is a Lie group with Lie algebrg, theni/(G) is the universal enveloping algebragf
Restricting/m to g C U(G), we obtain a Lie algebra representation : g — End(V). We
call Drr thedifferential ofr.

3.2. Permanence properties of smooth representations

Lemma 3.5.Smoothness is hereditary for subrepresentations and quotients, direct limits
and finite inverse limitgthat is, inverse limits of finite diagrams

Proof. Let K — E — Q be a bornological extension of representationg;ofConsider
the diagram

K E 0

5(G:/K)>—>E(G, E)*>5(G\,/ Q).

The middle vertical map is the adjoint of the representationForThe bottom row is

a bornological extension as well by Proposition 2.11. Since the compogitien E —

£(G, E) — £(G, Q) vanishes, the dotted arrows exist. They are the adjoints of the induced
representations okl andQ. Hencek andQ are smooth representations as well. Itis trivial

to verify that direct sums of smooth representations are again smooth. Since direct limits
are quotients of direct sums and inverse limits are subspaces of direct products, we obtain
the asserted smoothness for direct limits and finite inverse limits.
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Remark 3.6.Infinite direct products of smooth representations may fail to be smooth. The
class of smooth representationsis closed under extensions. A simple counterexample
is the representation @ on C? by

1 ¢@®
= (0 ¢ )
for some discontinuous group homomorphignR — R.

Lemma 3.7.Let ¢: H — G be a continuous group homomorphism and #etG —
EndV) be a group representation. If is a smooth representation @, thenz o ¢

is a smooth representation &f. In particular, restrictions of smooth representations to
closed subgroups remain smoothglfs an open surjection, then the converse holds. That
is, a representation of a quotient grouy/N is smooth if and only if it is smooth as a
representation ofd .

Proof. The smoothness of o ¢ follows from the functoriality of€ (G, V') for continuous
group homomorphisms. i is an open surjection, it is isomorphic to a quotient map
¢.:H— H/N.The map*:E(H/N,V)— E(H, V) is a bornological isomorphism onto
its range by Lemma 2.17. Henaeo ¢ is smooth if and only ifr is. O

The external tensor product; X 7, of two representations; : G; — Aut(V;), j =
1, 2, is the tensor product representatiorafx G, on Vi & Va. If G1 = G2, theinternal
tensor productry ® 7 is the restriction ofr; X, to the diagonals € G x G. Let(G)ies
and(K;);en\ r, be the data for a restricted direct product of groups;eG; — Aut(V;)
be representations df; and lett; € V; be K;-invariant for all but finitely many € 7. Then
we can form the restricted tensor prod@d ., (V;, &) and Iet]’[ﬁe,(G,-, K;) actonitin
the evident fashion. We call this threstricted (externa) tensor product representation
This recipe is frequently used to construct representations of adelic groups.

Lemma 3.8. A representation of a direct product group is smooth if and only if its
restrictions to the factors are smooth. Restricted external tensor products and external
and internal tensor products of smooth representations remain smooth.

Proof. The straightforward proof of the first assertion is left to the reader. Consider a
restricted direct produdt = []'(G;, K;) and a restricted tensor product representation
®ic;(Vi, &) as above. We have

(6. @ Vi.)) = QDG k) & Qi &) = Q)(D(Gi Vi), L, ©5).

The restricted tensor product is functorial for families of m3ps— V; preserving the
distinguished vectors. Since the operdiof Lemma 3.2 is induced from the analogous
operators for the factors, we get the assertion for restricted direct products. This implies
the smoothness of finite external tensor products and hence also of internal tensor products
by Lemma3.7. O
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3.3. Some constructions with representations

Definition 3.9. Thesmootheningf a representation : G — Aut(V) is

SeV:={feEG. V)| f(g) =g f(Dforallge G},

equipped with the subspace bornology, the right regular representation and the map
ty :SgV — V defined byy (f) = f(D).

We frequently drops and just write $V) for the smoothening. We write 8V, ) if
itis important to remember the representatiarA function f € £(G, V) belongs to V)
if and only if f = 7. (f(1)). Therefore, the mag, is injective and V) is invariant under
the right regular representation. The mags bounded and;-equivariant.

Let L C G be a compact neighborhood of the identity. Recall #dt, V) is defined as
a quotient of€ (G, V) in Definition 2.8. However, sincé is compact, it is also a quotient
of D(G, V). ThereforeE(L, V) ZE(L) R V.

Lemma 3.10.The projectionv, f) — f|r is a bornological isomorphism froi®&(V') onto
the space

SLV:={fe&, V)| f(g=g-fforallgeL}.
In particular, Sy V = SV if H C G is an open subgroup.

Proof. Restrictiontal is a bounded linear mgp: S(V) — S, V. Definejf(g) :=g- f (1)
for all g € G, f € S V. This is a bounded linear map from; B to S(V) because
J(Hlgr =g (f) and the interiors of the setd with g € G coverG. Clearly, the mapg
andp are inverse to each othert

Proposition 3.11.The smoothening of is a smooth representation df. If W is any
smooth representation @, then there is a natural isomorphism

(tv)« - Homg (W, V) = Homg (W, S(V)).

Proof. The map(ty), is injective becausey is. A map7T:W — V induces a map
E(G, T):E(G, W) — E(G,V). We havery 0 £(G,T)ox)V =T and (G, T) o xlV
mapsW into S(V) if T is equivariant. Hencéy ), is also surjective.

It remains to prove the smoothness afV3. This requires work because the regular
representation o& (G, V) may fail to be smooth. LeL € G be a compact symmetric
neighborhood of 1 and Igt? := L - L. There is a bounded linear map

P E(G, V)~ EG x G, V), p*f(g h):=f(gh).

It descends to a bounded maf(L?, V) — E(L x L,V) = E(L,E(L,V)), which

maps $2(V) into £(L, Sy V). The isomorphisn€(L x L, V) = E(L,E(L, V)) follows

immediately from&(L, V) = £(L) ® V, but it holds only if L is compact. Using
Lemma 3.10, we get a bounded map

p*1S(V) = E(L,S(V)),  p*(f)(8) = pg(f)
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Since L is a neighborhood of the identity, the smoothness @f )Snow follows from
Lemma3.2. O

Let Rg be the category of representations@fon bornological vector spaces with
G-equivariant bounded linear maps as morphisms. Retbe the full subcategory of
smooth represen/'t\ations. Proposition 3.11 asserts tRE S+ Rg is right adjoint to the
embeddindR¢ C Rg. R

Let H C G be a closed subgroup. We have an evident restriction functqj RRs —
ﬁH, which map<R¢ into Ry. Thesmooth induction functdmdf, 'Ry — Rg is defined
as the right adjoint of the restriction functor. The following construction shows that it exists.

First we construct a right adjoint to I@sRG — Ry. Let

1(V):={veMap(G, V)| f(hg)=h- f(g)forallh € H, g€ G},

equipped with the subspace bornology from M@pV) and the right regular representa-
tion. A morphismf : Re%(W) — Vin Ry induces a morphismf, : W — I (V) in Rg by
fe(w)(g) := f(gw). Any morphismW — I (V) is of this form for a unique morphisn.
That is, I is right adjoint to the restriction functd®g — Rpy. It follows easily that the
functor

Ind% :Ry — Rg, V> Sgl(V),

is right adjoint to the restriction functdRg; — Ry. Any G-equivariant mapw —
Map(G, V) for a smooth representatioif already takes values ii(G, V). Hence we
can usef(G, V) instead of MapG, V) to define of Imﬂj(V). However, we still have to
smoothen afterwards becausgs, V) may fail to be smooth.

The support of a function i (V) is left-H -invariant and can be viewed as a subset of
H\G. We letl.(V) be the subspace of compactly supported functiorq i), equipped
with the inductive limit bornology over the compact subsetsE{G. We define the
compact inductiorfiunctor as

c-Indl :Ry — Rg, V> Sgle(V).

Proposition 3.12. The representatiorc-lndg(V) is isomorphic to the right regular
representation of; on

W=lim{f e &o(H -S.V)| f(hg)=h-f(g)forallhe H, g€ G},

whereS runs through the compact subsetsH{G.
The functorc-lndg preserves direct limits, injectivity of morphisms, bornological
extensions, linearly split extensions and locally linearly split extensions.

Proof. Itis clear thatW is a subrepresentation ff(V). Furthermore, any maf — 1.(V)
from a smooth representation fp(V) must factor through¥. We must prove thaW

is a smooth representation 6f. We do this by realizing it naturally as a linearly split
guotient of the left regular representation®G, V). Thus the functor c-Inﬂ is a retract

of the functorD(G, L) if we forget the group representation. Hence it inherits its functorial
properties listed in Proposition 2.10.



R. Meyer / Bull. Sci. math. 128 (2004) 127-166 145

Consider the maps

P:D(G,V)—> W, Pf(g) :=fh-f(g—1h)dﬂh,
H

JiW DG, V), Jf(g):=r(g) ¢

The mapP is bounded andr-equivariant. The mag is a bounded linear left section fér
provided supg N S - H is compact for allS € G/H compact and/,; ¢ (gh) dph = 1 for

all g € G. Such a functio clearly exists. As a quotient of the left regular representation
onD(G, V), the representatioW is smooth. O

(8)

Proposition 3.12 easily implies that

c-IndS; (D(H, V)) =D(G, V), ©)
c-Ind% (C(1)) = D(G/H), (10)

whereC(1) denotes the trivial representation 8fon C and all function spaces carry the
left regular representation.

It is customary to twist the functors Ifidand c-In¢; by a modular factor. Lefig
and gy be the modular functions o and H, respectively. We call the quasi-character
UG H = MGM;[]' H— Rfr therelative modular functiomf H C G. For a representation
7w H — Aut(W) of H anda € R, we form the representatiqufy,.,, - 7 on W and plug
it into Ind% and c-Ind; instead ofW itself. We call the resulting functors trevisted
induction and compact induction functor$he casex = 1/2 is important because it
preserves unitary representations.

3.4. Explicit criteria for smoothness

Let U € G be an open subgroup which is a projective limit of Lie groups. LéE a
fundamental system of smooth compact subgrougs.ikor a subgroud. € G we let

VL::{UEV|gv:vf0raI|geL}.

This is a closed linear subspaceof The subspaceg* for k € I form a strict inductive
system. We hav®¥ = I|_r)n vk if and only if any bounded subset bfis contained in/’* for
somek € 1.

Theorem 3.13.A representationr : G — Aut(V) is smooth if and only it/ = @ke[ vk
and the representation @f /k on V¥ is smooth for alk € 1.

Proof. Sincer is smooth if and only if its restriction t& is smooth we may assume
without loss of generality that = U. We may also assume that therekpe 7 with k C kg
forall k € I. Fix ¢ € D(G/ ko) with ¢ (1) # 0. The representatian is smooth if and only
if the operatoW,, in Lemma 3.2 is a bounded map frovmto D(G, V) = I|_n)1 D(G/k, V).

Evidently, W, (v) is k-invariantif and only ifv € V*. As aresult, we must have = lim vk
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if 7 is smooth. Suppose now thit=lim VK. Since smoothness is hereditary for inductive

limits and subrepresentationg, is smooth if and only ifV* is smooth for allk € 1.
Moreover, the representation@fon V¥ is smooth if and only if the induced representation
of G/k is smooth. This yields the assertion

If G is totally disconnected, the quotierit’y k are discrete, so that any representation
of U/k is smooth. Thereforer is smooth if and only ifV = lim VK If v carries the
fine bornology, then the latter holds if and only if eack V is stabilized by some open
subgroup. For arbitrarg the quotientd//k are Lie groups. Hence it remains to describe
smooth Lie group representations.

Theorem 3.14.Let G be a Lie group and legy be its Lie algebra. A representation
7 :G — Aut(V) is smooth if and only if it satisfies the following conditions

(i) the representation is locally equibounded, thatigk) C End(V) is equibounded
for any compact subsé& C G;
(ii) the limits Dx(X)(v) := lim;_ ot 1(exp(tX) - v — v) exist for allv € V and the
convergence is uniform on bounded subsets ;of
(iii) for any bounded subseétC V there is a bounded disk C V such thatDz(X1) o
«+-o0 D (X,)(S) is bounded inVy forall n e N, X1,..., X, €g.

Proof. First we show that smooth representations satisfy (i)—(iii). Conditions (i) and (i)
are obvious withDn (X) = /= (X) for all X € g € £'(G). Let S € V be bounded and
let ¢ € D(G) be such thap = 1 in a neighborhood of the identity. Defirk; (v)(g) =
¢(g)m(g,v) as in Lemma 3.2. The sdV,(S) is bounded inD(G, V) and hence in
D(G, Vr) for some bounded disk C V. This yields (iii).

Conversely, suppose (i)—(iii) to hold. We claim thatis smooth. LetS C V be a
bounded complete disk arfd € G compact. Condition (i) allows us to choose a bounded
complete diskS’” € V containingz (K)(S). Let S” € V be a bounded complete disk
such that the convergence in (ii) is uniform Wy~ for all v € S’. Such a set exists by
the definition of uniform convergence. Condition (iii) asserts that there is a bounded
complete diskl" such thatDz(X1) o --- o Dt (X,)(S”) is bounded inVy for all n € N,
X1,..., Xn €9.

We claim that the map — 7, (v)|g is a bounded linear map froi to £(K, Vr). This
claim implies thatr is smooth. Sinc&'s andV; are Banach spaces, the claim is equivalent
to the smoothness of the Banach space valuedrmmap — Hom(Vs, V7). This is what we
are going to show. The construction of the s&tsS”, T yields the following. The family
of operatorst(g) : Vs — Vg is uniformly bounded fop € K. Let X1, ..., X,, X € g. The
operatorg((exph X)) — id)/h: Vg — Vg converge toward®x in operator norm for
h — 0. The operatoA := Dn(X1) o---o0 D (X,): Vs» — Vr is bounded. Hence

}!imOA o (m(exphX)g) —m(g))/h=AoDr(X)on(g)
converges in HortVs, Vr) and is of the same form as the operatos 7 (g). This means

that we can differentiate with respect to right invariant differential operators. Therefore,
 is aC*°-map fromkK to Hom(Vs, V7) as claimed. O



R. Meyer / Bull. Sci. math. 128 (2004) 127-166 147

3.5. Smooth versus differentiable representations

Let G be a Lie group. Using the spacé&(G, V) defined in Section 2.1 instead of
D(G, V), we define the spaag* (G, V) of C*k-functionsG — V for k e NU {oo} as in
Definition 2.8. We callr aC*-representatiorif ., is a bounded map frorii to C¥(G, V).
For k = 0 andk = oo we getcontinuousaanddifferentiablerepresentations, respectively.

Theorem 3.15Letxw : G — Aut(V) be a representation of a Lie group. Letg be the Lie
algebra ofG. The following statements are equivalent

(1) the representation is differentiable
(2) the representatiom is C1;
(3) there is a bounded homomorphigim: £'(G) — End(V) extendingr;
(4) the following two conditions hold
(i) the representation is locally equibounded, that is, for all compact sulds&tsG
the setr(K) € End(V) is equibounded
(i) the limits Dz (X)(v) := lim;_ot~(exp(tX) - v — v) exist for allv € V and the
convergence is uniform on bounded subsets .of

Proof. Itis clear that (1) implies (2). The dual 6f(G) is a subspace @ (G). It generates
£’(G) as a bornological algebra in the sense that any bounded sul&é6ofis contained

in §” for a bounded subseétc C1(G)'. A C1-representation gives rise to a bounded linear
mapC1(G) — End(V), which we can then extend to an algebra homomorphism on all
of £'(G). Hence (2) implies (3). The set éf, g € K, is bounded ir€’(G) and we have
convergence—l(aexp(,x) —381) = X in £(G) for all X € g. Hence (3) implies (4). The
proof of the implication(4) = (1) is similar to the proof of Theorem 3.14 and therefore
omitted. O

Conditions (i) and (ii) above are the same as in Theorem 3.14. Thus the only difference
between smoothness and differentiability is condition (iii) of Theorem 3.14.

Remark 3.16.1t follows immediately from Theorem 3.15 that the regular representations
on £'(G) andD’'(G) are differentiable. However, these representations are not smooth.
One can verify directly that the third condition of Theorem 3.14 fails. It is also clear that
they are not essential as modules c¢6) because the convolution of a smooth function
with a distribution is already a smooth function.

Proposition 3.17.Let G be a locally compact group that is countable at infinity and
let V be a metrizable bornological vector space. Ldie a fundamental system of smooth
compact subgroups i6. Then

S6(E(G, V), 4) ZIMEK\G, V) ZlIMER\G) & V;
kel kel

S6(E(G, V), p) ZNIMEG/k, V) =IMEG/k) & V;
kel kel
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S6xG(E(G, V), KR p) ZIMEG//k, V) =IIMEG/ /) & V.
kel kel

Proof. We only compute the smoothening of the left regular representation, the other cases
are similar. LetU € G be an open almost connected subgroup. We can assure dll

to be normal subgroups @f. Letk € I. SinceV is metrizable and\G is countable at
infinity, Lemma 2.14 yieldsS(k\G, V) = £(k\G) ® V and hence the last isomorphism.
The spaceS(k\G) ® V is metrizable as well. Hence there is no difference between
smooth and differentiable Lie group representations on this space by Proposition 3.18.
Since&’(U/ k) evidently acts orf (k\G) ® V by convolution, we conclude th&t/k acts
smoothly onE(k\G) ® V for all k € I. Therefore X := lim £ (k\G) &® V is a smooth

representation o by Theorem 3.13. Sinc# = lim Wk for any smooth representation, it
is clear that any bounde@-equivariant magV — £(G, V) factors throughX. HenceX
is the smoothening & (G, V). O

The assertion of the proposition becomes falsg@ ifails to be countable at infinity or
if V fails to be metrizable.

Proposition 3.18. Differentiable Lie group representations on metrizable bornological
vector spaces are smooth.

Proof. This follows immediately from Lemma 2.5.0
3.6. Smooth representations on topological vector spaces

Let G be a Lie group and le¥ be a complete locally convex topological vector space.
Let EndV) be the algebra of continuous linear operatorsiorand let AutV) be its
multiplicative group. We equip Eré') with the equicontinuous bornology, so that it
becomes a bornological algebra. There is a topological analogue of the S(@ECE).

A representationt : G — Aut(V) is calledsmoothif its adjoint is a continuous linear
mapr.:V — £(G, V) (see [3]). The following criterion is similar to the criterion for
differentiable representations in Theorem 3.15.

Proposition 3.19.The representatiorr is smooth if and only if it can be extended to a
bounded homomorphisyit : £'(G) — End(V).

Proof. First suppose to be smooth. We leb € £'(G) act onV as usual by (D) (v) :=
(D & id, m,(v)). This is defined becausé(G, V) = £(G) ®, V is Grothendieck’s
projective tensor product [8]. Lef C £'(G) be bounded. Thel is an equicontinuous
set of linear functionals oif (G) becausef(G) is a Fréchet space. Heng&(S) is
equicontinuous as well. Suppose conversely that£’(G) — EndV) is a bounded
homomorphism extending. Then the family of operators, for g in a compact subset
of G is equicontinuous and 1(exptX) - v — v) — fm(X)(v) in the strong operator
topology forr — 0. This implies thatr is smooth, see [3]. O
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We now equipV with the von Neumann bornology, which consists of the subse¥s of
that are absorbed by each neighborhood of zero. Any equicontinuous family of operators
on V is equibounded. Hence a topologically smooth representation is bornologically
differentiable. The converse implication holdg/fis “bornological”, that is, a subset that
absorbs all von Neumann bounded subsets is already a neighborhood of zero. In that case
an equibounded set of linear maps is equicontinuous as well. Thus topologically smooth
representations on bornological topological vector spaces are the same as bornologically
differentiable representations with respect to the von Neumann bornology.

Next we consider the precompact bornology. Le{WBtbe V equipped with the
precompact bornology. Let be topologically smooth. Since any bounded subset of
£'(G) is bornologically compact, the set of operatgrsS) for boundeds C £'(G) is
even bornologically relatively compact for the equicontinuous bornology oi¥End his
implies thatfx (S)(T) is again precompact for precompdgtthat is, /7 is bounded for the
equibounded bornology on E¢et(V)). The converse implication holds if a subsetlof
that absorbs all precompact subsets is already a neighborhood of zero. For instance, this is
the case iV is a Fréchet space.

As a result, the topological notion of smooth representation is equivalent to the
bornological notion of differentiable representation under mild hypotheses on the topology
of V. However, condition (iii) of Theorem 3.14 will usually be violated.

Analogous assertions for continuous representations are false unlesa Fréchet
space. Forinstance, ¥ is a continuous representation on a Banach space, then the induced
representation on the dual spa¢eis weakly continuous but usually not norm continuous.
However, the weak and the norm topology Whhave the same von Neumann bornology.

Theorem 3.20Letx : G — Aut(V) be a group representation of a Lie group on a Fréchet
space. Then the following are equivalent

(1) = is smooth as a representation on a topological vector space
(2) 7 is smooth with respect to the von Neumann bornalogy
(3) 7 is smooth with respect to the precompact bornology.

Proof. A subset ofV that absorbs all null sequences is already a neighborhood of zero.
Hence the above discussion shows that topological smoothness is equivalent to bornolog-
ical differentiability for either the von Neumann or the precompact bornology. Since both
bornologies ori/ are metrizable, the assertion now follows from Proposition 3.18.

Proposition 3.21 L etV be a Fréchet space equipped with the precompact or von Neumann
bornology and letG be a Lie group. Letr : G — Aut(V) be a representation. Then the
smoothening oV is a Fréchet space with the precompact or the von Neumann bornology,
respectively. IV is nuclear, so iS(V).

Proof. Let W be the Fréchet space of smooth functighs> V in the usual topological
sense, equipped with the precompact or von Neumann bornology, respectively. It is shown
in [14] that £(G, V) = W as bornological vector spaces, for both bornologies. Here we
use that the bornologies of locally uniform boundedness and locally uniform continuity on
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£(G, V) coincide. Since §) is a closed subspace 6{G, V) = W, it is a Fréchet space
as well. Furthermore, iV is nuclear, so i3¥ and hence its subspacé\y. O

4. Essential modules versus smooth representations

Let G be a locally compact group. We are going to identify the category of smooth
representations of; with the category of essential modules over the convolution
algebraD(G). First we introduce the appropriate notion of an approximate identity in
a bornological algebra and define the notion of an essential module. Then we compare
essential modules ovéP(G) with smooth representations @f. Finally, we investigate
analogues of the smoothening, restriction, compact induction and induction functors for
representations.

4.1. Approximate identities and essential modules

Definition 4.1.Let A be a bornological algebra. We say tiahas arapproximate identity
if for each bornologically compact subsgtC A there is a sequend@;),cN iN A such
thatu, - x andx - u,, converge toc uniformly for x € S.

A subset of a bornological vector spages bornologically compacif it is a compact
subset ofVy for some bounded complete digk< V. The uniform convergence in the
above definition means that there is a bounded completeTdiskA such that,x and
xu, converge toc uniformly for x € S in the Banach spacer.

Since we may take a different sequerisg) for each bornologically compact subset,
we are really considering a néi, s) in A, indexed by pairgS,n) whereS C A is
bornologically compact and € N. It is more convenient to work with sequences as
in Definition 4.1, however. The above definition is related to the usual notion of an
approximate identity in a Banach algebra:

Lemma 4.2.Let A be a Banach algebra with @énultiplier) bounded approximate identity
in the usual sense. Thehequipped with the von Neumann or precompact bornology has
an approximate identity in the sense of Definitibh.

Proposition 4.3. The bornological algebrdD(G) has an approximate identity for any
locally compact topological groug.

Proof. LetU € G be open and almost connected. Any elemeri?@f) can be written as
a finite sum of elements of the forép = f or of elements of the fornf x §, with g € G,
f € D(U). Therefore, it suffices to construct an approximate identityliol/). Let I be
a fundamental system of smooth compact subgrou@s.inceD(U) = @D(U/k), it
suffices to construct approximate identitiesIwU / k). Consequently, we may assurge
to be a Lie group.
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Let (u,)nen be a sequence i(G) with

lim /u,,(g)dg:l, lim suppu, = {1}.
n—>0o0 n—oo
G

The latter condition means that the support ipf is eventually contained in any
neighborhood of 1. We claim th&t,) is an approximate identity for any bounded subset
S € D(G). We only check the convergeneg « f — f. The convergencé * u,, — f is
proved similarly, using that Iiryl”G un(g~Hdg=1as well.

There is a compact subs&t C G such thatf and f * u,, are supported ik for
all f eS8, neN. Hence we are working in the nuclear Fréchet spégek). It is
straightforward to see that, x f converges tof with respect to the topology & (K),
even uniformly forf € S. Since&y(K) is a Fréchet space equipped with the von Neumann
bornology, the topological and bornological notions of uniform convergence of a sequence
of operators on precompact subset§dk ) are equivalent (see [14]). Hen¢e,) is a left
approximate identity in the sense of Definition 4.13

Let V be a right and¥ a left bornologicald-module. Then we defin€ ®4 W as the
cokernel of the map

PIrVRARW > VRW, v@a®wrH va®w—1vQaw.

That is, we divideV @ W by theclosureof the range ob}. For V = A we also consider
the mapby: A® W — W, a ® w — aw. Sinceby o b} = 0, the mapb(, descends to a map
AQ®s W — W.If VisaB-A-bimodule andW a left A-module, thenV &4 W is a left
B-module in an obvious fashion. In particulatr,® 4 W is a left A-module and the map
A®4 W — W is amodule homomorphism.

Lemma 4.4.Let A be a bornological algebra with an approximate identity andiébe a
bornological leftA-module. The natural mag ®4 W — W is always injective. The map
by: A ® W — W is a bornological quotient map if and only if the map®, W — W
induced bybj is a bornological isomorphism.

Proof. Everything follows once we know that the rangelgf A® A Q@ W — A ® W

is dense in the kernel df;: A & W — W. Pickw € Kerbg. Then there exist bounded
complete disksS € A, T € W such thatw € Ag ® Wr. SinceAg and Wy are Banach
spaces, we can find null sequences) in As, (w,) in Wy and(x,) in ¢X(N) such that
® =Y Ia, ® w, (see [8]). Since the sdu,} is bornologically compact i, there
is a sequencéu,,) in A such thatu,,a, — a, for m — oo uniformly for n € N. Thus
Uy - w— o form — oco. We have

by(Um @ ) =ty - @ — Uy Q by(w) =t - @.

Thusw is the limit of a sequence in the rangeigf O

Definition 4.5. Let A be a bornological algebra with approximate identity. A bornological
left A-moduleV is calledessentiaif the mapby: A ® V — V is a bornological quotient
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map or, equivalentlyA ®4 V = V. Essential right modules and bimodules are defined
analogously.

If A is unital, then a lefid-module is essential if and only if it is unital, that isy &cts
as the identity. The term “essential” is a synonym for “non-degenerate”, which is not as
widely used for other purposes. Grgnbaek [6] calls such moduleéaduced”.

Let M be the category of all bornological left modules o¥HIG). Let M ; be its full
subcategory of essential left modules. We wiite M if V is an object oM  and write
f*xvfor f e D(G), v eV, for the module structure.

Proposition 4.6. For any V € M there is a natural smooth representatian: G —
Aut(V) such that

f*v=fn(fdg><v)=fn<g,v)-f(g)dg

G

forall f € D(G), v € V. Naturality means that bounded module homomorphismsg are
equivariant.

Proof. SinceV is essential, it is naturally isomorphic to the cokernel of the operator
b1:D(G) ® D(G) ® V — D(G) ® V. We let G act on the source and target &f by

the left regular representation on the first tensor factor. This representation is smooth by
Lemma 3.4 and)} is G-equivariant. Therefore, its cokern®l carries a representation

7 : G — Aut(V), which is smooth by Lemma 3.5. Itis trivial to chegk(f1dg)(foxv) =

f1* f2xv. SinceV is essential, this impliegr (f dg)(v) = fxvforall f e D(G),ve V.

The construction ofr is evidently natural. O

4.2. Representations as modules over convolution algebras

We have seen how an essential module oi®(;) can be turned into a smooth
representation ofr. Conversely, we now turn a continuous representatioG — Aut(V)
into a module oveD(G). Continuity implies thatV f (g) := n, f(g) defines a bounded
linear operator fromD(G, V) to LY(G, V) := LY(G) & V, where L1(G) carries the
von Neumann bornology. We remark without proof that the converse implication also
holds: if W is a bounded linear map(G, V) — L1(G, V), thenx is already continuous.
If 7 is continuous, then

Jr(f ®v) = / 7o) - f(g)dg

G

defines a bounded linear map frdG, V) = D(G) ® V to V. By adjoint associativity
we obtain a bounded linear mgp : D(G) — End(V). It is straightforward to check that
this is an algebra homomorphism, so tvabecomes a module ové&r(G). A morphism
in R between continuous representations¥(&)-module homomorphism as well. That
is, we have a functor from the category of continuous representatidmco)ﬂc.
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Proposition 4.7.Let 7 : G — Aut(V) be a continuous representation. Then the following
assertions are equivalent

() = is a smooth representation, that is, the adjointrofis a bounded linear map
V—>E&(G,V);
(ii) the map/m:D(G, V) — V has a bounded linear right section, that is, there is a
bounded linear map : V — D(G, V) such that/r o o =idy;
(i) V is an essential module ové&r(G), that is, the mapx : D(G, V) — V is a borno-
logical quotient map.

If 7 is smooth, then the sectienin (ii) can be constructed explicitly as follows. Choose
¢ € D(G) with [ ¢(g)dg =1 and define

0p:V —>D(G,V), 0s)(g):=¢(@)m (g " v).
If H C G is compact, the section in (ii) can be chosel -equivariant.

Proof. If = is smooth, then the formula fosy defines a bounded linear map into
D(G, V) by Lemma 3.2. A trivial computation shows thaj is a section for/w. Thus
(i) implies (ii). If H € G is compact, we can choosg left-H-invariant. Then the
operatoroy is H-equivariant. The implication (iiy= (iii) is trivial. Suppose (iii). The
map fm : D(G, V) — V is equivariant with respect to the left regular representatio@ of
on D(G, V). The latter is smooth by Lemma 3.4. Thusis a quotient of a smooth
representation. Lemma 3.5 shows that smooth. O

Theorem 4.8. Let G be a locally compact group. Then the categories of smooth
representations and of essential modules are isomorphic. The isomorphism sends a
representationr : G — Aut(V) to its integrated fornym : D(G) — End(V). In particular,

7 is smooth if and only ifr is essential.

Proof. The two constructions in Propositions 4.6 and 4.7 are clearly inverse to each other.
They provide the desired isomorphism of categories.

4.3. Constructions with modules and homological algebra

Most functors between module categories are special cases of two constructions: the
balanced tensor product and the Hom functor. Webe aB-A-bimodule. Then we have a
functorW ® 4 L from left A-modules to leftB-modules and a functor HopiW, L) from
left B-modules to leftA-modules. The lefd-module structure on Hog(W, V) is given
bya - L(w):= L(w-a). These two functors are linked by the adjoint associativity relation

Homg (W ®4 V, X) = Homy (V, Homg (W, X)). (11)

Of course, there are similar constructions for right modules.

Let H € G be a closed subgroup. The embeddifigC G induces an algebra
homomorphisnt’(H) — £'(G). EmbeddingD(H) € £'(H) as usual, using a left Haar
measuredyh on H, we obtain an algebra homomorphist{H) — £'(G). This does
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not suffice to define a restriction functﬁrG — MH. However, we can viewD(G) as a
bimodule oveD(H) on the left and>(G) on the right byfo f1x f2:= (foduh) * fi* f2
for fo e D(H), f1, f2 € D(G). This yields two functors

St:Mg— My, SH(V):=DG)&pe) V,
19 : My — Mg, 15(V) :=Homp) (D(G), V),

called émooth restriction functor and ough) induction functoyr respectively. An
analogous formula allows us to viel(G) as a bimodule oveP(G) on the leftandD(H)
on the right. This yields two functors

Ic% My — Mg, 1c%(V):=D(G) &p) V,
RE:Mg — My, RE(V):=Hompg) (D(G),V),

called (smooth compact induction functoand rough restriction functor respectively.
Finally, we define

S:=S¢ =1c¢:Mg — Mg, S(V):=D(G)&p) V.
R:=RS=1%:Mg — Mg, R(V):=Hom(D(G), V),

thesmootheningindrougheningunctors.

Our treatment of the compact induction functor as a tensor product is analogous to Marc
Rieffel's approach to induced representations [18]. The Banach algebra variant of Rieffel’s
theory by Niels Grgnbaek is even closer to our setup [6,7]. The only difference is that
Granbaek works witl.1(G) instead ofD(G).

The following theorem shows that the smoothening deserves its name. We use the
natural map &) — V induced byby(f ® v) := f *v.

Theorem 4.9.The natural mags(V) — V is always injective and an isomorphism if and
onlyif V.€ M. The smoothening is an idempotent functoig whose range i#1 . As

a functorM ¢ — Mg it is left adjoint to the embeddingl ¢ — M¢. Letn : G — Aut(V)

be a continuous representation 6f Then the smoothenings 6f as a module and as a
representation agree.

Proof. We know from Lemma 4.4 that the map(¥§ — V is always injective and
an isomorphism if and only iV is essential. Since the left regular representation on
D(G) is smooth,D(G) is an essential left module over itself by Theorem 4.8. That is,
D(G) ®D(G) D(G) = D(G). Since the balanced tensor product is associative, we obtain
S?=S. SinceS(V) = Vifand only if V € Mg, the range of S i8l ;.

Let W be an essential module. Since the mapg 5— V is always injective, the induced
map HomW, S(V)) — Hom(W, V) is injective. Any bounded module homomorphism
W — V restricts to a bounded module homomorphiBm= S(W) — S(V), so that the
map Hom{W, S(V)) — Hom(W, V) is also surjective. This means that the embedding and
smoothening functors are adjoint.

Let = be a continuous representation. I&t and V1 be the smoothenings df as
a representation and as a module, respectively. The natural VgapsV andVy — V
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are both injective. Sinc#1 is an essential module, it is a smooth representatioé as
well. Hence the mapy — V factors throughy — V3 by the universal property of the
smoothening. Similarly, sincty is an essential module, the m&p — V factors through
V1 — Vo. Both mapd/y — Vi andVy — Vp are injective and bounded, hence bornological
isomorphisms. O

Eq. (11) specializes to natural isomorphisms

Homp ) (15 (V), W) = Homp s (V. RG (W), (12)
Homp ) (SE (V), W) = Homp(g (V, 15 (W)). (13)

That is, compact induction is left adjoint to rough restriction and rough induction is right
adjoint to smooth restriction.

Especially, S is left adjoint to R. Being adjoint to an idempotent functor, R is idempotent
as well. Thus R is a projection onto a subcategorﬁqu. We may call these modules
rough They are usually not smooth, butdf is a Lie group they are differentiable by
Theorem 3.15 because they are evidently modules&vér). We have R S= R because

Homp g, (V. Ro S(W)) = Homp g, (S(V), S(W))
= Homp ) (S(V), W) = Homp g, (V. R(W))
forall V, W € M. We will prove shortly that 3 R= S. Summarizing, we have
SoSXS SoRZXZS RoSZR, RoRZR (14)

The natural magy/ — R(V) is injective if and only if no non-zero vectarc V satisfies
f=v=0forall f eD(G). Let us restrict attention to this class of modules. Then the
natural maps 8) — V — R(V) are injective. If we have injective mapg\d — W —
R(V), then V) = S(W) because already $SR) = S(V) and the smoothening preserves
monomorphisms. Conversely, if %) = S(V), then RW) = RSW) =ERSV) =ZR(V) as
well, so that we have injective mapg® — W — R(V). This means that a modul&
satisfies 8W) = S(V) if and only if it lies between §/) and RV).

In the following we tacitly identifyM ¢ with R using Theorem 4.8. If we have to view
a smooth representation as a right module, we always use the anfipbdkefined in (7)
to turn a left into a right module.

Since V) =V for V € Mg, we have §|u, = Reg!. The universal property of the
smoothening and (13) imply thataSIf,(W) My — Mg is right adjoint to Reg. This
means that

Sol$ =IndS. (15)

Since Img is the identical functor, we get the relationro®R = S claimed in (14). The
relationship between ¢ and c-Img is more complicated. Before we discuss it we need
some other useful results.

Let X andY be a right and left module ové?(G) and letW be a bornological vector
space. Then HoX, W) is a left module oveD(G) in a canonical way and (11) yields

Hom(X &p(g) Y. W) = Homp g, (Y, Hom(X, W)). (16)
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Let C(1) be the trivial representation &f on C viewed as a right module ové¥(G). The
spaceC(1) ®p(q) Y is called thecoinvariant spacef Y. If Y is a smooth representation
viewed as a left module ov@?(G) andW = C, then (16) asserts that the dual space of the
coinvariant space df is the space of;-invariant linear functionals ofd.

Let X,Y, Z be smooth representations 6f. We let G act on HongY, Z) by the
conjugation action(g - 1)(y) := g - I(g"1y) and on X ® Y by the diagonal action
g - (x®y):=gx ® gy. These two constructions are adjoint in the sense that

Homg (X, SHom(Y, Z)) = Homg (X, Hom(Y, Z)) = Homg(X ® Y, Z). (17)

The first isomorphism is the universal property of the smoothening. The second is
proved by identifying both sides with the space of bilinear maps x Y — Z that
satisfy the equivariance conditidtgx, gy) = gl(x, y). If we let X := C(1) be the trivial
representation off on C, we haveC(1) ® Y = Y and

Homg (C(1), SHomY, Z)) = Homg (Y, Z). (18)
Next we claim that
C() ®p6) (Y ® Z) =Y ®p(c) Z. (19)

where we viewC(1) andY as right modules oveP(G). Eq. (19) can easily be verified
directly. For the fun of it we use adjointness relations to prove the equivalent assertion
that HomC(1) ®p)y (¥ ® Z), W) = Hom(Y ®p(G) Z, W) for all bornological vector
spacedV. Eq. (16) implies

Hom(Y ®pg) Z. W) = Homg (Z, Hom(Y, W)),
Hom(C(1) ®pg) (Y ® Z), W) = Hom(Y ® Z, Hom(C(1), W))
ZHom(Y ® Z, W),

whereG acts on HoniY, W) by g - 1(y) := (g~ 1y) and trivially onW. Since the action on
Hom(Y, W) is the conjugation action for the trivial representationWwnboth spaces are
isomorphic by (17). This finishes the proof of (19).

Now we are ready to relate the functorﬁltand c—In(ﬁ. Recall thatug.z denotes
the quasi-characterg/uy : H — RZ. For a representation: H — Aut(V) we write
we:g - V for the representationg.y - 7 on V.

Theorem 4.10.There is a natural isomorphism:Z(V) = c—Inde(MG;H - V) for all
VeM H-

Proof. First we explain the source of the relative modular function iff (). The
right D(G)-module structure o (G) is the integrated form of the twisted right regular
representatiop - g becausef (g) dgg * 8,-1 = f(gx)ug(x) dgg. We equipD(G) and
‘D(H) with the canonicaD(H )-bimodule structure. The restriction mayG) — D(H) is

a left module homomorphism, but we pick up a faqter. 7 for the right module structure.
Therefore, itinduces aH -equivariantmap Ig(V) — ug:g 'V and hence &-equivariant
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map into In@j (nG:m V). Thisis the desired isomorphism onto C-ﬁ'(dLG;H -V). We now
construct it more explicitly. Define

®:D(G,V)—>E(G, V), Pf(g):= / hef(gt h)pg:u(h)duh,
H

wheredyh is a left invariant Haar measure di. Clearly, supg@f C H - (suppf)~t

is uniformly compact inH\G for f in a bounded subset oD(G, V). Moreover,
®@f(hg) = ug:a(h)h - @f(g) for all h € H, g € G. This means that the range df

is contained in c-Inﬁ(uGZH V). Moreover, one computes easily that f,) = @ (f) if
fn(g) == ug(h)h - f(gh) for h € H. This means tha® is H-invariant for the diagonal
action of H on D(G) ® V that occurs in (19). Thereforeh descends to a bounded
linear map orD(G) ®D(H) V= Ich(V). Finally, @ is G-equivariant, thatispi, = p, .
Summing up, we have constructed a natural transformation

@:1cG (V) — c-Ind? (ug.m - V).

It remains to verify thatp is an isomorphism for alV. This is easy for the left regular
representations o (H, V), where we can compute both sides explicitly. Any essential
module overD(H) is the cokernel of a map, :D(H x H,V) — D(H, V) between left
regular modules. The functorﬁ,cpreserves cokernels because it has a right adjoint. The
functor c-Ind; also preserves cokernels by Proposition 3.12. H@négan isomorphism
forall V. O

Corollary 4.11. If H C G is cocompact, then there is a hatural isomorphism
SolG (g - V) =I1c (V).

Proof. Itis clear from the definition that c-Irffi= Ind$, in this case. Hence the assertion
follows from Theorem 4.10 and (15).0

We continue with some further properties of our functors. Let H C G. Since the
right D(H)-module structure orD(G) comes from a smooth representation, we have
D(G) ®pwy D(H) = D(G) and hence

Ic$ oIci (V) = D(G) &pwy D(H) &p(1) V =D(G) &pr) V =1c¥ (V).

The assertion 5 o S# = SL is proved similarly. By adjointness we also obtajjd 11 =
I¢ and R; o R? = RL. We evidently have RésReg! = Reg: and hence Inff o Indy =
Indf by adjointness. As special cases we note that

Rol% =19 =1%0R,  Solch =Ic% oS=1c. (20)

Together with (14), we obtain further relations like 4 S=1¢ and I, o R=1c%.
Let V andW be aright and a left module ovéX(G) andD(H), respectively. Then we
trivially have

\% ®D(G) |Cg(W) =V ®D(G) D(G) ®'D(H) W= Sg \% ®'D(H) w. (21)
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Let X be a bornological vector space, equip Ho¥ X) with the canonical right module
structure. Then we have canonical isomorphisms

Homp g, (V, 15 Hom(W, X)) = Homp ) (S& V, Hom(W, X))
= Hom(S{V &puy W, X)
= Hom(V ®p(q) Ic W, X)
= Homp(g)(V, Hom(Ic% W, X)).
SinceV is arbitrary, we conclude that
19 Hom(W, X) = Hom(Ic§ W, X) (22)

as left modules oveP(G). HereW is a right module oveD(H) and X is a bornological
vector space. FoiX = C this is an assertion about induction of dual spaces. The
smoothening of the dual is tle®ntragradientepresentatiofV. Eq. (22) implies

Ind% W = (c-IndS (G - W)~ (23)
The analogous statements
RZ Hom(W, X) = Hom(SE w, X), RHom(W, X) = Hom(SW, X), (24)

about restriction follow easily from (11).

Finally, we do some homological algebra and begin by recalling a few standard notions.
Let AT be the augmented unital algebra obtained by adjoining a unit element to a
bornological algebra. The category of left modules ovdris isomorphic to the category
of unital left modules over ™. Hence the correct definition offeee left modulever A
is AT ® V with the evident left module structure ovar Similar remarks apply to right
modules and bimodules. The free module has the universal property that bounded module
homomorphismsi™ ® V — W correspond bijectively to bounded linear maps—> W.

As a consequence, free modules are projective for linearly split extensions. In the following
we say that a module iglatively projectivef it is projective for this class of extensions.
In general, the modules ® V need not be relatively projective.

Proposition 4.12.Let H C G. ThenD(G) is relatively projective as a left or right module
overD(H).

Proof. It suffices to prove thaD(G) is projective as a left module ové@r(H). We are
going to construct a boundd?( H)-linear sectiors for the convolution map

wiD(H x G) =D(H)®D(G) — D(G), nf(g) :=/f(h,h_1g) dh.
H

Let u* be the extension o to D(H)T ® D(G), thenu™ o o =id as well. ThusD(G)

is relatively projective as a retract of the free modeH )t ® D(G). The mapo is
defined byo f (h, g) := f(hg) - ¢ (g) for some functionp € £(G). This defines a map to
D(H x G) if suppy N H - L is compact for all compact C G. It is a section foru if
and only iffH ¢(h~1g)dyh =1 forall g € G. Functionsp with these properties clearly
exist. O
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Theorem 4.13.Let H C G be a closed subgroup. The functdrg and Sg preserve
bornological extensions, locally linearly split extensions, linearly split extensions and
injectivity of morphisms. They commute with arbitrary direct limits. They map relatively
projective objects to relatively projective objects. In particular, all this applies to the
smoothening functor.

The functorsf, and Rf, preserve linearly split extensions and injectivity of morphisms.
They commute with arbitrary inverse limits. They map relatively injective objects to
relatively injective objects. In particular, all this applies to the roughening functor.

Proof. For the exactness assertions we can forget the module structur&; ovi)land
Sg(V) and view these spaces just as bornological vector spaces. Thus the exactness
assertions abou{Sfollow from the corresponding statements abo@ll@roposition 4.12
implies that the functor @ is a retract of the functoV — D(G) ® V X D(G, V). Hence

it inherits the properties of the latter functor listed in Proposition 2.10. Sirf,@eahﬂ %

have right adjoints, they commute with direct limits. Furthermore, the assertion ﬁ]at Ic
preserves relative projectivity is equivalent to the statement that its right adjointfurﬁtor R
is exact for linearly split extensions. This follows from Proposition 4.12. It is evident that
Ig and % preserve injectivity of morphisms. Since they have left adjoint functors, they
commute with inverse limits. Since their left adjoints are exact for linearly split extensions,
they preserve relatively injective objectsa

Theorem 4.14) etK — E — Q be a bornological extension Iﬁg. ThenE € Mg ifand
only if bothK e Mg andQ € M.

Proof. Let K/, E’, Q' be the smoothenings &f, E, Q. Consider the diagram

K/> > E/ > Q/

L

Both rows are bornological extensions by Theorem 4.1 nd Q are essential, then

the vertical arrowsk’ — K and Q' — Q are bornological isomorphisms. This implies
that the middle arrow is a bornological isomorphism by the Five Lemma. The validity
of the Five Lemma for bornological vector spaces can be proved directly. It also follows
easily from the observation that the category of bornological vector spaces with the class
of bornological extensions is an exact category in the sense of Daniel Quillen (see [16,
17]). Hencek is essential if bottk andQ are essential. Conversely fifis essential, then

the module actio(G) ® Q — Q is a bornological quotient map, so th@tis essential.
Another application of the Five Lemma shows tlkats essential as well. O

We have seen in Section 3.2 that the class of smooth representatiGris bereditary
for subrepresentations and quotient representations, but not for extensions in general. We
have to assume the representationfoto be continuous. Then we can use Theorem 4.14
to obtain the smoothness 6f.
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Theorem 4.15.The categoryM s = R has enough relatively projective and injective
objects.

The functorlndf,:RH — Rg is exact for linearly split extensions. It preserves
monomorphisms and relatively injective objects. It commutes with inverse limits in these
subcategoriegthey differ from those in the larger categori@s; or MG!).

The functorsc-lndf, and Re% are exact for any class of extensions and preserve
monomorphisms and relatively projective objects. They commute with direct limits.

Proof. The exactness assertions about gieme trivial. The exactness properties of
Ind% = So 1€ follow immediately from those of S andjl Since Re$§ and Ind; are
adjoint, the first preserves direct and the latter preserves inverse limits. The exactness
properties imply that Infj and Re§ preserve relatively injective and projective objects,
respectively. The assertions about c-gnibllow immediately from the corresponding
properties of |§ and Theorem 4.10. For the trivial groufy linearly split extensions are
already direct sum extensions. Thus any object is relatively injective and projective. By
Theorem 4.13 we obtain thatﬁCV) =D(G, V) is relatively projective and Irgi(V) =

SE(G, V) is relatively injective. IfV is an arbitrary smooth representation, then we have
a linearly split surjectiorD(G, V) — V by Proposition 4.7 and a linearly split injection
V—>SEG,V). O

Thus we can derive functors on the category of smooth representations using relatively
projective and injective resolutions. Let us writg F andR*F, x € N, for the left and
right derived functors of a functdf from Rg to some additive category. The left derived
functors ofV ®D(G) L are denoted T@(V, W), the right derived functors of Hog(V, L)
are denoted Ext(V, W). If we takeV to be the trivial representation @ we obtain group
homology and cohomology, denoted (G, V) andH* (G, V), respectively.

The general machinery of derived functors yields the following results. Since the
compact induction functor is exact and preserves relatively projective objects, we have
Ly(F 0 1c) = (L« F) o Ic§. Since the induction functor Iffl is exact and preserves
relatively injective objects, we hav®*(F o Indg) = (R*F) o Indf,. Therefore, the
adjointness of restriction and induction and (21) imply

Exts; (V, Ind%, (W)) = Ext}; (Reg! V., W), (25)
Tor (V, c-Ind§ (g - W)) = Tor (Re! v, W), (26)
H*(G, Ind% (W)) = H*(H, W), (27)
H«(G, c-Indfj (uG.rs - W) = Ha(H, W). (28)

The functorsW — V ® W with diagonal action andW — Hom(V, W) with
conjugation action are evidently exact for linearly split extensions. Since they are adjoint
by (17), the first preserves relative projectivity and the second preserves relative injectivity.
Reasoning as above (18) and (19) imply

EXt; (V, W) = Extg (C(1), SHomV, W)) = H*(G, SHomV, W)), (29)
TorS (V, W) = Tor¢ (C(1), V & W) =H.(G, V & W). (30)
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That is, group homology and cohomology already determine the bivariant homology and
cohomology theories.

4.4. The Garding subspace

The smoothening for modules is closely related to the Garding subspac#. bet
a continuous representation of a locally compact group on a bornological vector space.
The Garding subspacef V is defined as the linear subspace spannegdiy)(v) with
f € D(G), v e V. This is the image of the uncompleted tensor prod¢G) @ V
in V. In contrast, V) is the image of the completed tensor prod@iG) ® V. It
seems that everything that can be done with the Garding subspace can also be done with
D(G) ®D(G) V. However, it is actually true that the Garding subspace is always equal
to V). This is proved by Jacques Dixmier and Paul Malliavin in [5] for Lie group
representations on Fréchet spaces. The same argument actually works in much greater
generality:

Theorem 4.16.Let : G — Aut(V) be a continuous representation of a locally compact
group G on a bornological vector spacg. The Garding subspace &f is equal toS(V).
Especially, any element @(G) is a finite linear combination of productg * f> with

f1, f2€ D(G).

Proof. We may assume that the representatiois already smooth because we only make
the problem more difficult if we shrink to (V). Any v € V already belongs td’* for

some smooth compact subgro G. We can replace the representatiortebn V by

the smooth representation of the Lie graNip(k)/k on VX. Thus we may assum@ to

be a Lie group without loss of generality. The class of smooth representations for which
the theorem holds is evidently closed under inductive limits and under quotiemtss la
smooth representation, then it is a quotient of the left regular representatibo@ry).

The latter is the inductive limit of the left regular representationsqds, Vr) for the

small complete disk§” C V. Hence it suffices to prove the assertion for the left regular
representation o (G, V) for a Banach spacgr. This case can be dealt with by literally

the same argument that Jacques Dixmier and Paul Malliavin use in [5] to prove that the
Garding subspace @(G) is D(G). O

5. The center of the category of smooth representations

Definition 5.1.Let A be a bornological algebra with the property thatA spans a dense
subspace ofi.

Let M;(A) and M;(A)°P be the algebras of bounded right and left module homomor-
phismsA — A, equipped with the equibounded bornology. These ardettieand right
multiplier algebrasof A. By convention, the multiplication ioM(A) is the opposite of
the composition of operators. Tkisvo-sided multiplier algebraM (A) of A is the algebra
of pairs(/, r) of a left and a right multiplier such that- (/ - b) = (a-r) -b forall a, b € A.
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All three multiplier algebras are unital bornological algebras and there are obvious
bounded algebra homomorphisms fretminto them. We claim thati is a bornological
unital M;(A)-M;(A)-bimodule. The only point that is not obvious is that «) - r =
[-(a-r)yforallae A, 1 € M|(A),r € Mi(A).If a=bcwithb,ce A,then(l-bc)-r =
(Ib)-(cr) =1-(bc-r). The claim follows because the linear span of elements of theform
is dense inA.

We denote the center of an algebrdy Z(A). A left multiplier [ of A is calledcentral
ifa-l-b=1-a-bforalla,be A. Thatis, the pairl, ) is a two-sided multiplier ofA.
Since we know that left and right multipliers commute with each other, it follows/that
commutes with any left or right multiplier oA. Thus/ belongs to the centers of all three
multiplier algebras. Conversely,lifis central, say, if\M,(A), then it is a central multiplier
in the above sense becausec M|(A). As a result, the multiplier algebras all have the
same center, which consists exactly of the central multipliers.

Definition 5.2. The center Z(C) of an additive categoryC is the ring of natural
transformations from the identity functor id — C to itself.

Equivalently, an element of (Z) is a family of morphismsyy: X — X for each
objectX of C such thatf o yx = yy o f for any morphismf : X — Y in C. The center of
the category of smooth representations of a totally disconnected group on vector spaces is
studied by Joseph Bernstein in [1] and plays a crucial role in the representation theory of
reductive groups over non-Archimedean local fields.

Lemma 5.3.Let A be a bornological algebra with an approximate identity. Suppose
that A ®4 A = A. Then the center of the category of essenfiainodules is naturally
isomorphic to the algebra of central multipliers af

Proof. Let C be the category of essential bornological laffmodules. The center af
maps into the center of the endomorphism ringdobecauseA € C. By definition, this
endomorphism ring isM(A)°P. Hence its center is the algebra of central multipliers.
Thus we obtain a homomorphisim Z(C) — ZM (A). We have to check that this map is
bijective.

For injectivity suppose thad € Z(C) vanishes oM. Let V € C andv € V. Then the
mapa > av is a morphismA — V in C. Hence®y (av) = @4 (a)v = 0. Since elements
of the formav generate/, we getdy = 0. Thuse is injective. For surjectivity let be a
central multiplier. Sinced is a bimodule oveyM|(A) and A, there is a canonicalA|(A)-
module structure ol &4 V, that is, on any essential module. THuscts in a canonical
way on anyV e C. Centrality implies that acts by left module homomorphisms. Thus we
obtain an elementof ). O

The center of the category of all modules oveis equal to the center oA™ because
modules overA are the same as essential modules over Hence we may get a much
smaller center than for essential modules.
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Theorem 5.4.Let G be a locally compact group. Then the center of the category of
smooth representations 6fis naturally isomorphic t& M (D(G)), the algebra of central
multipliers of D(G).

Proof. Theorem 4.8 asserts thR{; is isomorphic toM s and hence has an isomorphic
center. We know thaD(G) satisfies the hypotheses of Lemma 5.3. HencR4 =
ZM(D(G)). O

Lemma 5.5. A left multiplier L of D(G) is of the form f +— D x f for a uniquely
determined distributionD € D’'(G). A right multiplier is of the formf +— f x D for a
uniquely determined distributio® € D’'(G). If a pair (D1, D) of distributions gives an
element ofM (A), thenD1 = D2. ThusM(A) is the intersection of\|(A) and M;(A)
insideD'(G).

Proof. Let L € M|(D(G)). Then we define a distributio®; € D'(G) by Dy(f) :=
L(f)(1g). We viewD(G) as an essential right module ovBXG) and L as a bounded
module homomorphism. The right module structureZofG) is the integrated form of
the representatiopg - p. Theorem 4.8 yields that is equivariant with respect to this
representation of;. A straightforward computation now shows thaf = Dy x f for

all f eD@G).If Dx f=0forall f e D(G), thenD % f(1) =0 for all f and hence
D = 0. Thus the distribution and the left multipli&r « L, determine each other uniquely.
The antipode onD(G) extends to an algebra isomorphism betweeh(D(G)) and
M (D(G)). Hence the description of left multipliers above yields a description of right
multipliers. If the pair(D1, D2) determines a two-sided multiplier, thé€a « D7) x b =

a * (D1 % b) for all a,b € D(G). Thus the right multiplier associated to the distribution
(D2 — D1) * b vanishes for alb. This implies(D2 — D1) * b = 0. Sinceb is arbitrary, we
obtainD, = D1. O

It remains to identify the distributions ofi that give rise to left, right and two-sided
multipliers. Let! be a fundamental system of smooth compact subgrou@s Bbrk € 1
let u; be the normalized Haar measure bnviewed as a distribution o. Thus the
convolution withu; on the left and right averages a function over left or rigttosets.

Proposition 5.6. A distribution D € D'(G) is a left multiplier of D(G) if and only if
D * iy € £(G) for all k € I and a right multiplier if and only ifu; * D € £'(G) for
all k € I. There are bornological isomorphisms
/
Mi(D(G) Zlime G/ = (ImEG/h))
kel kel
M(D(G)) ZlmE (k\G) = (Lme(k\G)) :
kel kel

Proof. We only prove the isomorphisms fok1(D(G)). The structure maps in the
projective systeng”(G/ k) are right convolution withs,. Recall thatD(G) = lim D(k\G)
and that left convolution withe, is a projection ont@(k\G). ThusD € M|(D(G)) if and
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only if left convolution with D x u is a bounded map fro®(k\G) to D(G). Clearly, this

is the case ifD * u; has compact support. Conversely[ifx u; does not have compact
support, then there exist functiotig,),cn in D(k\G) whose support is contained in a
fixed compact subset C G for which D % u; * ¢, does not have a common compact
support. Multiplying the functions, by appropriate scalars we can achieve flggt is a
bounded subset @P(k\G). By construction,D * {¢, } is not a bounded subset 8f(G),

so thatD is not a left multiplier. Thu®D € M, (D(G)) if and only if D % u; has compact
support for allk € I. An analogous computation for a set D’ (G) of distributions shows
that S is bounded inM(D(G)) if and only if S % uy is bounded ir€’(G/k) forall k € I.
This proves the first isomorphism. The second one follows from the universal property of
direct limits. O

Corollary 5.7. If G is a projective limit of Lie groups, then
M(D(G)) = M(D(G)) = M(D(G)).
If G is a Lie group then all three multiplier algebras are equal@G).

The space€(G/k) for k € I are nuclear Fréchet spaces and hence reflexive. We can
rewrite the inductive Iimitj}n}ge[ E(G/k) as a direct sum. I& is metrizable, this is quite
easy: choosé to be a sequence and notice th&6 / k,,) is a retract o€ (G / k,,4-1) for any
n € N. If G is not metrizable, the assertion is still correct, but the proof is more complicated.
Therefore,inf(G/k) is reflexive, so that\|(D(G)) = Ii_n>15(G/k). Furthermore, ifG
is countable at infinity, then Proposition 3.17 shows tﬂ)algelilné?(G/k) is the smoothening
of the right regular representation 61G).

Proposition 5.8.Let D € D'(G). ThenD is a central multiplier ofD(G) if and only if
ur * D x up € ZE'(G//k) for all k € I. There is a natural isomorphism of bornological
algebras

ZM(D(G)) =limZE'(G//k).

Proof. If D is a central multiplier ofD(G), then u; x D * u; belongs to the center
of uxrM(E(G))ur. Proposition 5.6 yields an isomorphism of bornological algebras
wrME(G))ur = E'(G//k). Hence we have a bounded homomorphism 2D (G)) —
limZ&'(G//k).

Suppose conversely thaj, Duy be a central element 6 (G//k) for all k € I. For any
jel,j<k, f eD(G//k), we have

wixDx f=pjxDxpj* frpup=fxpuj*xDkpj*ur=f*pur*Dx* .

Since this is independent gf we obtainD * f = f * ur * D * ug. In particular,D is a
left multiplier. A similar computation forf « D showsf x D = D * f becauseu; Dy

commutes withf. HenceD is central, so that we obtain an isomorphistWZD(G)) =
Lim ZE'(G//k). ltis easy to check that it is bornological O

If G is totally disconnected, then the spacg4/ k are all discrete, so th&( (G//k) =
D(G//k). This special case is covered in [1]. Now Etbe a connected Lie group. If
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[D,X]=0forall X €g,then[D,§,]=0 forall g € G and henceD is central. Thus

a distribution is central if and only if it commutes with In particular, the center of the
universal enveloping algebra ¢f is contained in the center &f(G). The latter can be
bigger thanZi/(G). This happens, for instance, @ has non-trivial center or if5 is
compact. However, there are also many Lie groups for which we Aéi&) = ZE'(G),

that is, any central distribution is supported at 1. The following proposition only gives one
class of examples.

Proposition 5.9. Let G be a connected complex Lie group with trivial center. Then
ZM(D(G)) is equal to the center of the universal enveloping algebra.

Proof. SinceG has trivial center, the adjoint representationtbn its Lie algebrgy is
faithful, so thatG C Gl(g). Let D € ZE'(G) andy € suppD. Since sup@ is compact and
conjugation invariant, the holomorphic function

Cost—>expisX)yexp(—sX) € Gl(g)

is bounded for any € g. Liouville’s Theorem yields that it is constant, that[iX,, y] = 0.
This implies sup® = {1} becauseG has trivial center. Now use the identification of
distributions supported at 1 with the universal enveloping algebra. $iriseonnected, a
distribution is central if and only if it commutes with O
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