mathematics

A. VAN DEN HOMBERGH AND H. DE VRIES

On the differential operators on the quasi-affine variety \mathbf{G} / \mathbf{N}

Communicated by T. A. Springer at the meeting of November 26, 1977

Mathematical Institute, Nijmegen

Let $\mathfrak{g}=\mathfrak{H}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$be a triangular decomposition of a semi-simple Lie algebra over an algebraically closed field of characteristic zero. Let $U,=U(\mathrm{~g})$, be the universal enveloping algebra of $\mathrm{g},\left(U_{n}\right)_{n}$ its natural filtration, and T the principal anti-automorphism of U, defined by $X^{T}=-X$ for $X \in \mathrm{~g}$. Let λ and ϱ be the left and right regular representations of U respectively, defined by $\lambda(u) v=u v, \varrho(u) v=v u^{T}$ for $u, v \in U$. On the quotient $M=U / U \mathfrak{n}_{+}$, the generic Verma module, λ and ϱ induce representations of U and $U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right)$respectively, also denoted by λ and ϱ.

The linear dual U^{*} of U is made into a commutative associative algebra with unit clement by means of the dual of the homomorphism $\Delta: U \rightarrow$ $\rightarrow U \otimes U$, defined by

$$
\Delta\left(X_{1} \ldots X_{n+1}\right)=\sum_{\substack{i_{1}<\ldots<i_{j} \\ 0 \leqslant j \leqslant n+1}} X_{i_{1}} \ldots X_{i_{j}} \otimes X_{1} \ldots \hat{X}_{i_{1}} \ldots \hat{X}_{i_{j}} \ldots X_{n+1}
$$

$$
\text { for } X_{1}, \ldots, X_{n+1} \in \mathfrak{g}
$$

(In the future we shall omit the indication of the summation set, in similar expressions.) The dual M^{*} of M, naturally identified with a subspace of U^{*}, is a subalgebra of U^{*}.

Generally, for a dominant integral element δ of the linear dual \mathfrak{h}^{*} of $\mathfrak{h}, E^{\boldsymbol{\delta}}$ will denote a fixed irreducible U-module with highest weight δ,
and for any U-module W we shall denote by W^{d} the sum of its submodules isomorphic to E^{d}.

Now let $\mathscr{E}=\sum_{\delta}\left(U^{*}\right)^{\delta}$, where U^{*} is considered as a U-module by means of the contragredient representation λ^{c} of λ; so \mathscr{E} is the subalgebra of U^{*} consisting of the U-finite elements. The use of ϱ^{c} instead of λ^{c} leads to the same subalgebra \mathscr{E}; the restrictions of λ^{c} and ϱ^{c} to \mathscr{E} will be denoted by $\tilde{\lambda}$ and $\tilde{\varrho}$ respectively. Let $\mathscr{F}=\mathscr{E} \cap M^{*}$. Then \mathscr{F} is the subalgebra of \mathscr{E} consisting of the elements annihilated by $\tilde{\varrho}\left(\mathfrak{n}_{+}\right), \mathscr{F}^{\delta}$ is simple for every dominant integral δ, and $\mathscr{F}_{1} \delta_{1}, \mathscr{F}_{2} \delta_{2}=\mathscr{F}^{\delta_{1}}{ }^{+}{ }^{\delta}$. For these, and related, matters, see e.g. G. Hochschild [6], N. Conze [2], J. Dixmier [3]. Moreover, \mathscr{E} can be considered as the algebra of regular functions on G, where G is a simply connected algebraic group with Lie algebra \mathfrak{g}, and \mathscr{F} as the algebra of regular functions of the quasi-affine algebraic variety G / N, where N is the subgroup of G that corresponds to \mathfrak{n}_{+}. The maximal ideal \mathfrak{m} of \mathscr{F} consisting of the elements vanishing in m_{0}, with $m_{0}=1+U \mathfrak{n}_{+}$, corresponds to the point N of G / N, and is a simple point of the affine variety with affine algebra \mathscr{F}.

Generally, if α and β are representations of U in V and W respectively, then ad (α, β) will denote the representation of U in Hom (V, W) defined by:

$$
\operatorname{ad}(\alpha, \beta)(X)=\sum_{A \in \operatorname{Hom}(V, W)} \beta(X) \circ A-A \circ \alpha(X) \text {, for } X \in \mathfrak{g} .
$$

(Here " Y " denotes Freudenthal's function symbol, see e.g. [4], p. xviii.) Moreover, $L(V, W)$ will denote the subspace of $\operatorname{Hom}(V, W)$ consisting of the elements U-finite under ad (α, β). For the definition of $L(M, M)$, $L(U, M)$ and $L(U, U)$, we take for α and β the appropriate representation λ.

Now let $H=U(\mathfrak{h})$. Then the representation γ of $U \otimes H$ in M defined by $\gamma(u \otimes v)=\lambda(u) \varrho(v)$ for $u \in U, v \in H$, is an intertwining operator from the adjoint representation of $U \otimes H$ in $U \otimes H$ to the representation ad (γ, γ); hence the image of γ is contained in $L(M, M)_{0}$, the subspace of elements of $L(M, M)$ annihilated by ad $(\rho, \varrho)(\mathfrak{h})$. The representation γ is compatible with the identification of the centre $Z(\mathrm{~g})$ of U with a subalgebra of $1 \otimes H$ via the Harish-Chandra mapping ζ, defined as the projection of U to H along $\mathfrak{n}_{-} U+U \mathfrak{n}_{+}$, using $\lambda(z) m_{0}=\lambda(\zeta(z)) m_{0}$ for $z \in Z(\mathfrak{g})$: if $m \in M$, and $u \in U$ such that $m=\lambda(u) m_{0}$, then

$$
\lambda(z) m=\lambda(z) \lambda(u) m_{0}=\lambda(u) \lambda(z) m_{0}=\lambda(u) \lambda(\zeta(z)) m_{0}=\varrho(\zeta(z)) m .
$$

Hence γ factors to a homomorphism

$$
\sigma: U \otimes z_{(9)} H \rightarrow L(M, M)_{0},
$$

with an obvious definition for $U \otimes_{z_{(\mathfrak{g}}} H$.
We shall prove:
theorem l. σ is an isomorphism.
First we show that this is equivalent to a conjecture of I. M. Gel'fand and A. A. Kirillov, see [5]. This conjecture has been proved by N. N. Shapovalov [9], as we belatedly discovered. Though the underlying ideas are essentially the same, we believe that our method of approach, based on [2], offers more insight.

For $n \in Z, n \geqslant 0$, let \mathscr{R}^{n} be the subspace of the linear endomorphism space End \mathscr{F} of \mathscr{F} consisting of the regular differential operators of order at most n on G / N; that is, the element D of End \mathscr{F} belongs to \mathscr{R}^{n} if and only if

$$
\sum(-1) f t_{i_{1}} \ldots f_{i_{j}} D\left(f_{1} \ldots \hat{f}_{i_{1}} \ldots \hat{f}_{i_{j}} \ldots f_{n+1}\right)=0 \text { for } f_{1}, \ldots, f_{n+1} \in \mathscr{F} .
$$

Put $\mathscr{R}=\bigcup_{n} \mathscr{R}^{n}$.
For $X \in \mathfrak{g}, Y \in \mathfrak{h}$, the mappings $\tilde{\lambda}(X)$ and $\tilde{\varrho}(Y)$, as acting on \mathscr{F}, are commuting derivations of \mathscr{F}; hence the representation $\tilde{\gamma}$ of $U \otimes H$ in \mathscr{F} maps $U \otimes H$ into \mathscr{R}_{0}, the subspace of elements of \mathscr{R} annihilated by $\operatorname{ad}(\tilde{\varrho}, \tilde{\varrho})(\mathfrak{h})$. The conjecture was that $\tilde{\gamma}$ factors to an isomorphism from $U \otimes_{z(\theta)} H$ to \mathscr{R}_{0}. We shall show that transposition yields a natural antiisomorphism from $L(M, M)_{0}$ to \mathscr{R}_{0}, which, together with the principal anti-automorphism of $U \otimes H$, transforms γ into $\tilde{\gamma}$. The same transposition will yield an anti-isomorphism from $L(M, M)$ to \mathscr{R}.

Make M into a topological vector space (with discrete scalar field) by taking the set of its U-submodules with finite codimension as a neighbourhood base of 0 . Then \mathscr{F} is the continuous dual of M. And an element A of End M is continuous if and only if its transpose A^{t} preserves \mathscr{F}; then \tilde{A} will denote the restriction of A^{t} to \mathscr{F}. The elements of $L(M, M)$ are continuous. We make \mathscr{F} also into a topological vector space by means of the $\mathfrak{n t}$-adic topology, for which the powers \mathfrak{m}^{8} of \mathfrak{m} form a neighbourhood base of 0 .

It follows immediately from the definitions, that \mathfrak{m}^{8+1} is contained in $\left\{f \in \mathscr{F} \mid\langle f, m\rangle=0\right.$ for $\left.m \in M_{s}\right\}$, where M_{s} is the natural image of U_{s} in M. However, since the transcendence degree of \mathscr{F} equals $\operatorname{dim}(\mathfrak{h}+\mathfrak{n}$) (being the dimension of G / N) and since m is a simple point of the affine variety with affine algebra $\mathscr{F}, \operatorname{dim} M_{s}=\operatorname{dim} \mathscr{F} / \mathfrak{m}^{8+1}$; moreover, since the topological vector space M is separated (see e.g. [1], Lemme 9.3), M naturally identifies with the continuous dual of \mathscr{F}. For $D \in \operatorname{End} \mathscr{F}, D$ continuous, we write \tilde{D} for its dual in End M. Then we obtain an anti-isomorphism between the spaces of \mathfrak{g}-finite continuous endomorphisms of \mathscr{F} and M, which is also an equivalence between the restrictions of the representations ad $(\tilde{\lambda}, \tilde{\lambda})$ and ad (λ, λ) to them. Note that $D\left(\mathfrak{m}^{8+n}\right) \subseteq \mathfrak{m}^{8}$ for $D \in \mathscr{R}^{n}$, so that the elements of \mathscr{R} are continuous. It was shown in [2] (see Proposition 9.9), that the elements of \mathscr{R} are \mathfrak{g}-finite, in other terms, that $\tilde{\mathscr{R}} \subseteq L(M, M)$, and remarked (Remarque 9.10) that even equality holds true; we proceed to prove this inverse inclusion.

Lemma 1. Let $A \in L(M, M)$. Take n such that $B\left(m_{0}\right) \in M_{n}$ for all elements B of some finite-dimensional U-invariant subspace S of $L(M, M)$ containing A. Then $\tilde{A} \in \mathscr{R}^{n}$.

PROOF. For $u \in U_{n}$ one has $\tilde{\lambda}(u) \in \mathscr{R} n$; thus

$$
\sum(-1)^{j} f_{i_{1}} \ldots f_{t_{j}} \tilde{\lambda}(u)\left(f_{1} \ldots \hat{f}_{i_{1}} \ldots \hat{f}_{j} \ldots f_{n+1}\right)=0 \text { for } f_{1}, \ldots, f_{n+1} \in \mathscr{F}
$$

If, moreover, u is taken such that $B m_{0}=\lambda\left(u^{T}\right) m_{0}$, then

$$
\begin{aligned}
& \sum(-1)^{j}\left\langle t_{i_{1}} \ldots f_{i_{j}} \tilde{B}\left(f_{1} \ldots \hat{f}_{i_{1}} \ldots \hat{f}_{i_{j}} \ldots f_{n+1}\right), m_{0}\right\rangle= \\
& =\sum(-1)^{j}\left\langle f_{i_{1}} \ldots f_{i_{j}}, m_{0}\right\rangle\left\langle f_{1} \ldots \hat{f}_{i_{1}} \ldots \hat{f}_{i_{j}} \ldots f_{n+1}, B m_{0}\right\rangle \\
& =\sum(-1)^{j}\left\langle t_{i_{1}} \ldots f_{i_{j}}, m_{0}\right\rangle\left\langle\lambda(u)\left(f_{1} \ldots \hat{f}_{i_{1}} \ldots \hat{f}_{i_{j}} \ldots f_{n+1}\right), m_{0}\right\rangle=0 .
\end{aligned}
$$

To prove the lemma, it is sufficient to show the vanishing of this sum with m_{0} replaced by an arbitrary element m of M. Writing $m=\lambda(v) m_{0}$, with $v \in U$, this follows by induction on the filtration degree of v, simultaneously for all elements B of S, by means of the identity
$\tilde{\lambda}(X)\left(f_{1} \ldots f_{i} \tilde{B}\left(f_{i+1} \ldots f_{n+1}\right)\right)=\sum_{j-1}^{i} f_{1} \ldots \tilde{\lambda}(X)\left(f_{j}\right) \ldots f_{i} \tilde{B}\left(f_{i+1} \ldots f_{n+1}\right)+$ $+\sum_{j=i+1}^{n+1} f_{1} \ldots f_{i} \tilde{B}\left(f_{i+1} \ldots \tilde{\lambda}(X)\left(f_{j}\right) \ldots f_{n+1}\right)-f_{1} \ldots f_{i}(\operatorname{ad}(\lambda, \lambda)(X)(B))^{\sim}$ $\left(f_{t+1} \ldots f_{n+1}\right)$, for $X \in \mathfrak{g}, f_{1}, \ldots, f_{n+1} \in \mathscr{F}$.

Hence:

THEOREM 2. $L(M, M) \ni A \mapsto \tilde{A} \in \mathscr{R}$ is an anti-isomorphism.
Obviously, under this isomorphism, $L(M, M)_{0}$ corresponds to \mathscr{R}_{0}.
In exactly the same way one makes U and \mathscr{E} into topological vector spaces, and transposition provides an anti-isomorphism between $L(U, U)$ and the space \mathscr{S} of regular differential operators on G.

Let x be any representation of U in a linear space V, and let e_{x} : $U \otimes V \rightarrow V$ be the corresponding evaluation mapping, defined by $e_{x}(u \otimes v)=\chi(u) v$.

Let ξ_{x} be the self-mapping of the space $\operatorname{Hom}(U, V)$ of linear mappings from U to V defined by $\xi_{x}(A)=e_{x} \circ(\iota \otimes A T) \circ \Delta$, where ι stands for the identity mapping of U. Thus, for $X_{1}, \ldots, X_{n+1} \in \mathfrak{g}$:
$\xi_{x}(A)\left(X_{1} \ldots X_{n+1}\right)=\sum(-1)^{n+1-j} \neq\left(X_{i_{1}} \ldots X_{i_{j}}\right) A\left(X_{n+1} \ldots \hat{X}_{i_{j}} \ldots \hat{X}_{i_{1}} \ldots X_{1}\right)$.
From this one sees: $\xi_{\chi}(A)=Y_{u}(\operatorname{ad}(\lambda, x)(u)(A))(1)$.
Also, by means of the fact that $\mu \circ(\iota \otimes T) \circ \Delta$ is the unit element of \mathscr{E} (where μ is the multiplication of U), i.e.

$$
\sum(-1)^{n+1-j} X_{i_{1}} \ldots X_{i_{j}} X_{n+1} \ldots \hat{X}_{i_{j}} \ldots \hat{X}_{i_{1}} \ldots X_{1}=0 \text { for } n+1 \geqslant 1
$$

one verifies: $\xi_{x}\left(\xi_{x}(A)\right)=A$, for $A \in \operatorname{Hom}(U, V)$, that is, ξ_{x} is an involutory linear bijection of Hom (U, V) onto itself. The linear subspace of continuous linear mappings from U to V, where V is provided with the
discrete topology, is naturally identifled with $\mathscr{E} \otimes V$; to $f \otimes v$ corresponds $Y_{u} f(u) v$, for $f \in \mathscr{E}, v \in V$. One also verifies, for $X \in g$:

$$
\operatorname{ad}(\lambda, x)(X) \xi_{x}(A)=\xi_{x}(\operatorname{ad}(\varrho, \tau)(X) A)
$$

where τ is the trivial representation of U in V. Hence ξ_{x} intertwines $\mathrm{ad}(\lambda, x)$ and $\mathrm{ad}(\varrho, \tau)$. But $\mathscr{E} \otimes V$ consists of the ad (ϱ, τ)-finite clements of $\operatorname{Hom}(U, V)$. Hence we have:

Lemma 2. $\quad \xi_{x}$ interchanges $L(U, V)$ and $\mathscr{E} \otimes V$.
Now take $V=M, x=\lambda$. By the natural identification of $\operatorname{Hom}(M, M)$ with a subspace of Hom $(U, M), L(M, M)$ consists of the elements of $L(U, M)$ annihilated by ad ($\varrho, \tau)\left(\mathfrak{n}_{+}\right)$; by ξ_{λ} this subspace is mapped onto the subspace Ex \mathscr{E} of $\mathscr{E} \otimes M$ consisting of the elements annihilated by $\operatorname{ad}(\lambda, \lambda)\left(\mathfrak{n}_{+}\right)$(in other terms, annihilated by $(\tilde{\lambda} \otimes \lambda)\left(\mathfrak{n}_{+}\right)$). Let $\mathrm{Ex}_{0} \mathscr{E}=$ $=\xi_{\lambda}\left(L(M, M)_{0}\right)$; then one readily sees that $\mathrm{Ex}_{0} \mathscr{E}$ is the subspace of Ex \mathscr{E} consisting of the elements annihilated by $(\tilde{\lambda} \otimes \mathrm{ad})(\mathfrak{h})$, where ad is the representation of H in M defined by ad $(X)=\lambda(X)+\varrho(X)$ for $X \in \mathfrak{h}$. Furthermore, $\xi_{\lambda}: L(M, M)_{0} \rightarrow \mathrm{Ex}_{0} \mathscr{E}$ intertwines the representation ϱ_{H} of H defined by $\varrho_{H}(X)(A)=\varrho(X) A$ for $X \in \mathfrak{h}$. Generally, the properties mentioned can be taken us the definition of Ex W, as a subspace of $W \otimes M$, and of $\mathrm{Ex}_{0} W$, for any given representation μ in a linear space W instead of $\tilde{\lambda}$ in \mathscr{E}. For more information on such a space Ex W of extreme vectors, see A. van den Hombergh [7].

We shall now prove Theorem 1 by exhibiting a free H-basis of the H-module $U \otimes \mathrm{z}_{(\mathrm{a})} H$ (by means of multiplication in the second tensor factor) which by the H-module homomorphism $\xi_{\lambda} \circ \gamma$ is mapped onto a free H-basis of the H-module $\mathrm{Ex}_{0} \mathscr{E}$ (by means of ϱ_{H}).

Let K be the subspace of U spanned by the powers of the ad-nilpotent elements of \mathfrak{g}. Then, as shown by B. Kostant [8], multiplication yields an isomorphism $K \otimes Z(g) \rightarrow U$, and by considering K as a U-module under the adjoint representation, $\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(E^{\delta}, K\right)$ equals the dimension of the zero weight space of E^{δ}, for any dominant integral δ. Fix δ, a basis $\left(e_{1}, \ldots, e_{n}\right)$ of E^{d}, and a basis ($\phi_{1}, \ldots, \phi_{8}$) of $\operatorname{Hom}_{\mathfrak{g}}\left(E^{d}, K\right)$; let ($\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ be the dual basis of $E^{\delta^{*}}$, and $r_{k i}=Y_{u}\left\langle e_{k}^{*}, u e_{i}\right\rangle$. One knows that $\left(r_{k i}\right)_{k, i}$ is a basis of $\mathscr{E}^{\delta^{*}}$. Then $\left(\phi_{j}\left(e_{i}\right)\right)_{i, j}$ is a basis of K^{δ}, and a free H-basis of $U^{\delta} \otimes z_{(8)} H$. One easily checks:

$$
\xi_{\lambda} \circ \gamma\left(\phi_{j}\left(e_{t}\right)\right)=\sum_{k} r_{k i} \otimes \gamma\left(\phi_{j}\left(e_{k}\right)\right) m_{0}
$$

Now one needs only to prove:
THEOREM 3. $\left(\sum_{k} r_{k i} \otimes \gamma\left(\phi_{j}\left(e_{k}\right)\right) m_{0}\right)_{i, j}$ is an H-basis of $\mathrm{Ex}_{0} \mathscr{E}^{\delta^{*}}$.
Because, for each i, the span of $\left\{r_{k i} \mid k=1, \ldots, n\right\}$ is invariant under $\tilde{\lambda}$, and the representation in it is equivalent to the representation in $E^{\delta^{*}}$
(by letting $r_{k i}$ correspond to e_{k}^{*} for all k), it is sufficient to show the following:

Lemma 3. $\left(\sum_{k} e_{k}^{*} \otimes \gamma\left(\phi_{j}\left(e_{k}\right)\right) m_{0}\right)_{j}$ is an H-basis of $\operatorname{Ex}_{0} E^{\delta^{*}}$.
proof. We use the following fact (see [3], Prop. 8.4.2). Let P be projection from U to $U\left(\mathfrak{n}_{-}\right)$along $U \cdot \mathfrak{h}+U \cdot \mathfrak{n}_{+}$, and

$$
K^{\mathfrak{n}_{-}}=\left\{u \in K \mid\left(\text { ad }^{n_{-}}\right)(u)=\{0\}\right\} ;
$$

then: if $u \in K^{n}-\backslash U_{n-1}$, then $P(u) \notin U_{n-1}$, in other words, P preserves the filtration degree of elements of $K^{\mathbf{n}}$-.

We may, and shall, assume that $\mathfrak{n}-e_{1}=\{0\}$, and that, if g_{j} is the filtration degree of $\phi_{j}\left(e_{1}\right)(j=1, \ldots, s)$, then $g_{1} \leqslant g_{2} \leqslant \ldots \leqslant g_{8}$. Then $\phi_{j}\left(e_{1}\right) \in K^{\mathfrak{n}}$, $j=1, \ldots, s$.

Let $\left(b_{i}\right)_{i}$ be a Poincaré-Birkhoff-Witt basis of $U\left(\mathfrak{n}_{-}\right)$; it is also a free H-basis for the right H-module $U\left(\mathfrak{n}_{-}+\mathfrak{h}\right)$. We shall use that M is a free cyclic $U\left(\mathfrak{n}_{-}+\mathfrak{h}\right)$-module with cyclic vector m_{0}. Let $x \in \operatorname{Ex}_{0} E^{\delta^{*}}$; then $x=\sum_{i, k} e_{k}^{*} \otimes \gamma\left(b_{i} q_{k i}\right) m_{0}$, for uniquely determined elements $q_{k t}$ in H. Now suppose $p \in H, p \neq 0$, and $p_{j} \in H, j=1, \ldots, s$, such that

$$
\varrho_{H}(p) x=\sum_{j} \sum_{k} \varrho_{H}\left(p_{j}\right)\left(e_{k}^{*} \otimes \gamma\left(\phi_{j}\left(e_{i}\right)\right) m_{0}\right),
$$

whence

$$
\varrho_{H}(p) x=\sum_{j} \sum_{k} e_{k}^{*} \otimes \gamma\left(\phi_{j}\left(e_{k}\right) p_{j}\right) m_{0}=\sum_{i, k} e_{k}^{*} \otimes \gamma\left(b_{t} q_{k k} p\right) m_{0}
$$

We want to show: $p \mid p_{j}, j=1, \ldots, s$. If $\phi_{j}\left(e_{k}\right)$ is decomposed according to $U=U(\mathfrak{n}-\mid \mathfrak{G}) \oplus U \cdot \mathfrak{n}_{+}$, then the second summand annihilates $\varrho\left(p_{j}\right) m_{0}$; let $\phi_{j}^{\prime}\left(e_{k}\right)$ be the first summand. Then $P\left(\phi_{j}^{\prime}\left(e_{k}\right)\right)=P\left(\phi_{j}\left(e_{k}\right)\right)$, and

$$
\varrho_{H}(p) x=\sum_{j} \sum_{k} e_{k}^{*} \otimes \gamma\left(\phi_{j}^{\prime}\left(e_{k}\right) p_{j}\right) m_{0}
$$

Then:

$$
\sum_{j} \phi_{j}^{\prime}\left(e_{k}\right) p_{j}=\sum_{i} b_{i} q_{k i} p, k=1, \ldots, n .
$$

Hence, for $k=1$:

$$
\sum_{j} P\left(\phi_{j}\left(e_{1}\right)\right) p_{j}+\sum_{j}\left(\phi_{i}^{\prime}\left(e_{1}\right)-P\left(\phi_{j}\left(e_{1}\right)\right)\right) p_{j}=\sum_{i} b_{i} q_{k i} p
$$

Let t be the smailest index j such that $g_{j}=g_{s}$. Expressing $P\left(\phi_{j}\left(e_{1}\right)\right)$ and $\phi_{j}^{\prime}\left(e_{1}\right)-P\left(\phi_{j}\left(e_{1}\right)\right)$ in the free right H-basis $\left(b_{i}\right)_{i}$ of $U(\mathfrak{t}-+\mathfrak{h})$, we conclude, by the fact noted above and considering the terms in which b_{i} has degree g_{8} :

$$
p \mid \boldsymbol{p}_{j}, j=t, \ldots, s
$$

Note that the summands $P\left(\phi_{j}\left(e_{1}\right)\right) p_{j}$, for $j<t$, and all the summands ($\phi_{j}^{\prime}\left(e_{1}\right)-P\left(\phi_{j}\left(e_{1}\right)\right) p_{j}$, do not contribute to these terms. Repeated application of this procedure, first to

$$
\varrho_{H}(p) x-\sum_{j=t}^{s} \varrho_{H}\left(p_{j}\right)\left(e_{k}^{*} \otimes \gamma\left(\phi_{j}\left(e_{k}\right)\right) m_{0}\right),
$$

yields:
$p \mid p_{j}$, all j, as desired.
The theorem now follows from the fact that $\operatorname{dim}_{K(\mathfrak{G})}\left(\mathrm{Ex}_{0} E^{\delta}\right) \otimes_{H} K(\mathfrak{h})=s$, where $K(\mathfrak{h})$ is the quotient field of H, see [7], Prop. I.1.9.
remark. In [1] a conjecture is put forward, that among other things asserts that Ex \mathscr{E} is a free H-module for the representation ϱ_{H}. It may be worthwile to state the full conjecture in our formalism. Starting from Lemma 2, take for x the representation λ of U in U. Then we get a linear isomorphism $\xi_{\lambda}: L(U, U) \rightarrow \mathscr{E} \otimes U$, and the natural mappings $L(M, M) \rightarrow$ $\rightarrow L(U, M) \leftarrow L(U, U)$ are transformed into the natural mappings Ex $\mathscr{E} \rightarrow$ $\rightarrow \mathscr{E} \otimes M \leftarrow \mathscr{E} \otimes U$. By

$$
U=U\left(\mathfrak{h} \oplus \mathfrak{n}_{-}\right) \oplus U \cdot \mathfrak{n}_{+}=H \oplus U\left(\mathfrak{h} \oplus \mathfrak{n}_{-}\right) \mathfrak{n}_{-} \oplus U \cdot \mathfrak{n}_{+}
$$

we obtain natural mappings $\mathscr{E} \otimes M \rightarrow \mathscr{E} \otimes U(\mathfrak{h} \oplus \mathfrak{H}) \rightarrow \mathscr{E} \otimes H$. By means of the evaluation of elements of H in half the sum of the negative roots a mapping $\mathscr{E} \otimes H \rightarrow \mathscr{E}$ is obtained. Hence a composite mapping

$$
\operatorname{Ex} \mathscr{E} \rightarrow \mathscr{E} \otimes M \rightarrow \mathscr{E} \otimes H \rightarrow \mathscr{E} \otimes 1=\mathscr{E}
$$

results. The conjecture is: this composition admits a linear lifting $\eta: \mathscr{E} \rightarrow$ Ex \mathscr{E} such that:
(i) $\eta(f \circ T)=(f \circ T) \otimes m_{0}$ for $f \in \mathscr{F}$ (note that generally, for $f \in \mathscr{E}$, $(f \circ T) \otimes 1$ corresponds with the multiplication by f, as element of \mathscr{S}),
(ii) η intertwines the representations $\tilde{\varrho} \otimes \tau$ of U and ϱ_{H} of H,
(iii) the mapping $\mathscr{E} \otimes H \rightarrow$ Ex \mathscr{E} defined by $f \otimes v \mapsto \varrho_{H}(v) \eta(f)$ is an H module isomorphism.
However, a verification of the conjecture appears to be difficult.

REFERENCES

1. Bernstein, I. N., I. M. Gel'fand and S. I. Gel'fand-Differential operators on the base affine space and a study of g -modules, in: Lie groups and their representations, Summer School of the Bolyai János Math. Society (1971), ed. by I. M. Gel'fand. Adam Hilger Ltd, London (1975).
2. Conze, N.-Algèbres d'opérateurs différentielles et quotients des algèbres enveloppantes, Bull. Soc. math. France 102, 379-415 (1974).
3. Dixmier, J. - Algèbres enveloppantes. Gauthier-Villars, Paris (1974).
4. Freudenthal, H. and H. de Vries - Linear Lie groups. Academic Press, New York and London (1969).
5. Gel'fand, I. M. and A. A. Kirillov - The structure of the Lie field connected with a split semisimple Lie algebra, Functional Anal. Appl. 3, 6-21 (1969).
6. Hochschild, G. - Algebraic groups and Hopf algebras, Illinois J. Math. 14, 499-523 (1970).
7. Hombergh, A. van den - Harish-Chandra modules and representations of step algebras. Thesis, Nijmegen (1976).
8. Kostant, B. - Lie group representations on polynomial rings, Amer. J. Math. 85, 327-404 (1963).
9. Shapovalov, N. N. - On a conjecture of Gel'fand-Kirillov, Funct. Analysis and its Appl. 7, 165-166 (1974).
