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Let Q =n- @ ij @ n+ be a triangular decomposition of a semi-simple 
Lie algebra over an algebraically closed field of characteristic zero. Let 
U, = U(Q), be the universal enveloping algebra of Q, (u,),, its natural 
filtration, and T the principal anti-automorphism of U, defined by 
XT= -X for X E Q. Let A and Q be the left and right regular represen- 
tations of U respectively, defined by A(~c)v=uv, Q(U)V=Z~U~ for u, v E U. 
On the quotient M= U/Un+, the generic Verma module, 1 and e induce 
representations of 27 and U(lj @ tt+) respectively, also denoted by 3, and 4. 

The linear dual U* of U is made into a commutative associative algebra 
with unit element by means of the dual of the homomorphism d : U--f 
+ U (8, U, defined by 

A (Xl . . . X,+1) = 2 X6, . . . xtf @J Xl . . . xtl . . . 2% . . . xI1+l, 
i1<...<6f 
O<fean+l 

for XI, . . . . %+I E Q. 

(In the future we shall omit the indication of the summation set, in 
similar expressions.) The dual M* of M, naturally identtied with a 
subspace of U*, is a subalgebra of U*. 

Generally, for a dominant integral element 6 of the linear dual Ij* 
of Q, I!? will denote a fixed irreducible U-module with highest weight 8, 
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and for any U-module W we shall denote by Wd the sum of its submodules 
isomorphic to Ed. 

Now let d = 2 ( U*)d, where U* is considered as a U-module by means 
of the contragredient representation 1~ of 1; so d is the subalgebra of U* 
consisting of the U-finite elements. The use of QC instead of AC leads to 
the same subalgebra 8; the restrictions of 1~ and CC to d will be denoted 
by i and G respectively. Let S= 8 fi M*. Then 9 is the subalgebra 
of c” consisting of the elements annihilated by G(n+), 9 is simple for 
every dominant integral 6, and Sdl .Fd2 = @1+‘2. For these, and related, 
matters, see e.g. G. Hochschild [6], N. Conze [2], J. Dixmier [3]. Moreover, 
d can be considered as the algebra of regular functions on G, where G 
is a simply connected algebraic group with Lie algebra Q, and 9 as the 
algebra of regular functions of the quasi-affine algebraic variety G/N, 
where N is the subgroup of G that corresponds to n+. The maximal ideal 
m of 9 consisting of the elements vanishing in mo, with mo = 1 + Un+, 
corresponds to the point N of G/N, and is a simple point of the affine 
variety with atie algebra 9. 

Generally, if 01 and p are representations of U in V and W respectively, 
then ad (do, ,9) will denote the representation of U in Horn (VT, W) defined 
by: 

ad (01, B)(X) = y /9(X) OA-A O&(X), for XEQ. 
AcEbm(v. Iv) 

(Here “ y” denotes Freudenthal’s function symbol, see e.g. [4], p. xviii.) 
Moreover, h( V, W) will denote the subspace of Horn (I’, W) consisting 
of the elements U-finite under ad (a, /I). For the definition of L(M, M), 
L( U, M) and L( U, U), we take for (x and 16 the appropriate represen- 
tation 1. 

Now let H = U(Q). Then the representation y of U @J H in M defined 
by Y(U @ 4 =QMv) f or u E U, v E H, is an intertwining operator from 
the adjoint representation of U @ H in U @I H to the representation 
ad (y, y); hence the image of y is contained in L(M, M)o, the subspace 
of elements of L(M, M) annihilated by ad (Q, Q) (b). The representation 
y is compatible with the identification of the centre Z(Q) of U with a 
subalgebra of 1 @ H via the Harish-Chandra mapping 5, defined as the 
projection of U to H along n-U + Un+, using I(z)mo = A([(z))mr~ for z E Z(Q) : 
if m E M, and u E U such that m =I(u)m, then 

Hence y factors to a homomorphism 

0: U aqe) H -+ -Wf, Jf)o, 

with an obvious definition for U @‘z(Q) H. 
We shall prove: 
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THEOREM 1. 0 is an isomorphism. 
First we show that this is equivalent to a conjecture of I. M. Gel’fand 

and A. A. Kirillov, see [5]. This conjecture has been proved by N. N. 
Shapovalov [9], as we belatedly discovered. Though the underlying ideas 
are essentially the same, we believe that our method of approach, based 
on [2], offers more insight. 

For n E Z, n> 0, let Wn be the subspace of the linear endomorphism 
space End g of 9 consisting of the regular differential operators of 
order at most n on G/N; that is, the element D of End 9 belongs to 
3’~ if and only if 

z: (--Ml -*- hJ)(jl . ..A. . ..A . . . fn+l)=O for fi, . . . . fn+lEF. 

Put g= U&n. 
For X E g, Y E $, the mappings x(X) and ,$ Y), as acting on 9, are com- 

muting derivations of 9; hence the representation 7 of U @ H in 9 
maps U @ H into W 0, the subspace of elements of B? annihilated by 
ad 6% i)W Th e conjecture was that 7 factors to an isomorphism from 
U &-c,) H to 9’0. We shall show that transposition yields a natural anti- 
isomorpbism from L(M, M)c to Wc, which, together with the principal 
anti-automorphism of U @I H, transforms y into F. The same transposition 
will yield an anti-isomorphism from L(M, 1K) to W. 

Make 2M into a topological vector space (with discrete scalar field) by 
taking the set of its U-submodules with finite codimension as a neigh- 
bourhood base of 0. Then 9 is the continuous dual of M. And an element 
A of End M is continuous if and only if its transpose At preserves 9; 
then d will denote the restriction of At to 9. The elements of L(M, M) 
are continuous. We make 9 also into a topological vector space by means 
of the nt-adic topology, for which the powers TIV of m form a neighbour- 
hood base of 0. 

It follows immediately from the definitions, that nts+l is contained in 
{f-w,m)=Of or m E M,), where M8 is the natural image of Us in M. 
However, since the transcendence degree of .F equals dim (lj+n-) (being 
the dimension of G/N) and since m is a simple point of the affine variety 
with aBine algebra .F, dim M, = dim g/rn8+1; moreover, since the topo- 
logical vector space M is separated (see e.g. [l], Lemme 9.3), M naturally 
identifies with the continuous dual of 9. For D E End 9, D continuous, 
we write D for its dual in End M. Then we obtain an anti-isomorphism 
between the spaces of 9-finite continuous endomorphisms of Fand M, which 
is also an equivalence between the restrictions of the representations 
ad (i, 1) and ad (A, A) to them. Note that D(nts+“) C me for D E B?n, so 
that the elements of B are continuous. It was shown in [2] (see Propo- 
sition 9.9), that the elements of ~22 are g-finite, in other terms, that 
& C L(M, M), and remarked (Remarque 9.10) that even equality holds 
true ; we proceed to prove this inverse inclusion. 
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LEMXA 1. Let A E L(M, M). Take 12 such that B(m) E Mm for all 
elements B of some finite-dimensional U-invariant subspace 8 of L(M, M) 
containing A. Then d E 95%. 

PROOF. For u E U, one has !(zc) E Wn; thus 

z\ (-l)‘f,l *.. fq~(~)(fi...~~...54... t+d=O for fi ,..., fn+lEP. 

If, moreover, u is taken such that Bmo=l(ur)mo, then 

z1 (--111 (fc, -** f&f1 . ..R. . ...& . . . fn+l), mo>= 

= 2 k--1)J<ft, a** f+ m)<fl . . . 3’il . . . A, . . . fn+l, Bmo) 
= 2 (-1)’ (fi, **- f$.:mo)<w(fi . ** 3’1 ** * Jj * *. fn+l), mo> = 0. 

To prove the lemma, it is sufficient to show the vanishing of this sum 
with mo replaced by an arbitrary element m of M. Writing m=l(v)mo, 
with v E U, this follows by induction on the filtration degree of v, simul- 
taneously for all elements B of 8, by means of the identity 

i(X)(fl **. f&k+1 *** fn+1))= x-1 fl '** kmf,) *** f&fi+1 *** fn+d+ 

+ zz+1 fl * - * f&ft+1 . . . i(X)(fj) . . . fn+l) -fi . . . f&d (2, WW9)” 
(fi+1 . . . fn+d, for X E g, fi, . . . . t+l E 9. 

Hence : 

THEOREM 2. L(M, M) 3 A I+ B E ~2 is an anti-isomorphism. 

Obviously, under this isomorphism, L(M, M)o corresponds to 90. 
In exactly the same way one makes U and 8 into topological vector 

spaces, and transposition provides an anti-isomorphism between L( U, U) 
and the space Y of regular differential operators on G. 

Let x be any representation of U in a linear space V, and let e,: 
U @I B --f ?’ be the corresponding evaluation mapping, defined by 
e,(u @ v) = x(u)v. 

Let 5% be the self-mapping of the space Horn (U, V) of linear mappings 
from U to Tr defined by &(A) = e, o (L @ AT) o d, where c stands for the 
identity mapping of U. Thus, for Xi, . . . . Xla+i E g: 

E&4)(X1 *-* X,+1) = 2 (- l)n+l-Jx(X$I . . . X&4(X,+1 . . . $$. . . . q . . . X,). 

From this one sees: &(A)= yU (ad (A, x)(u)(A))(l). 
Also, by mean, Q of the fact that ,u o (1 6~ T) o d is the unit element 

of 8 (where ,u is the multiplication of U), i.e. 

z(-l)“+l-~XQ... XtjXn+l . . ..a+ . . . & . ..Xl=O for n+l>l, 

one verifies: &+(&(A)) = A, for A E Horn (U, V), that is, & is an involutory 
linear bijection of Horn (U, V) onto itself. The linear subspace of con- 
tinuous linear mappings from U to V, where V is provided with the 
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discrete topology, is naturally identifled with 8 8 J’ ; to f @ v corresponds 
Yu f(u)w, for f E 8, w E V. One also verifies, for X E 9: 

ad (4 4 G%(A) = Mad (es 4 CW ), 

where z is the trivial representation of U in J’. Hence 6% intertwines 
ad (A, x) and ad (e, t). But d @ V consists of the ad (e, -c)-f%te elements 
of Horn ( U, V). Hence we have : 

LEMMA 2. 5% interchanges L(U, V) and d @ V. 

Now take V=M, %=I. By the natural identification of Horn (M, M) 
with a subspace of Horn (U, M), IQ?, M) consists of the elements of 
L( U, M) annibilated by ad (Q, Z) (tt+) ; by [a this subspace is mapped onto 
the subspace Ex d of d @ M consisting of the elements annihilated by 
ad (2, n)(n+) (in other terms, annihilated by (x @ n)(n+)). Let Exs b= 
= b(.Wf, No) ; th en one readily sees that Exe d is the subspace of 
Ex d consisting of the elements annihilated by fi @ ad)(b), where ad 
is the representation of H in M defined by ad (X) =2(X) + e(X) for X E I$ 
Furthermore, 6: L(M, M) o --f EXO 8 intertwines the representation QH of 
H defined by QH(X)(A)=Q(X)A for X E I$. Generally, the properties 
mentioned can be taken as the definition of Ex W, as a subspace of 
W @I M, and oj EXO W, for any given representation p in a linear space 
W instead of 3, in 8. For more information on such a space Ex W of 
extreme vectors, see A. van den Hombergh [7]. 

We shall now prove Theorem 1 by exhibiting a free H-basis of the 
H-module U @z(s) H (by means of multiplication in the second tensor 
factor) which by the H-module homomorphism & o y is mapped onto a 
free H-basis of the H-module Exe 6’ (by means of QH). 

Let K be the subspace of U spanned by the powers of the ad-nilpotent 
elements of Q. Then, as shown by B. Kostant [8], multiplication yields 
an isomorphism K @ Z(Q) -+ U, and by considering K as a U-module 
under the adjoint representation, dim Home (Ed, K) equals the dimension 
of the zero weight space of Ed, for any dominant integral 6. Fix 6, a basis 
(el, . . . . e,) of E”, and a basis ($1, . .., 4.J of Home (Ed, K) ; let (e:, . . . . e:) 
be the dual basis of Ed*, and rkt= yu (eE, ue,). One kIIOWS that (r&,I 
is a basis of &da*. Then (&(ei))a,j is a basis of Kd, and a free H-basis of 
Ud @.z(~) H. One easily checks: 

Now one needs only to prove: 

THEOREM 3. (z* rkt @I Y(C&(ek))%)cJ is an H-basis of EXO gd*. 
Because, for each i, the span of {Ykg]k = 1, . . . , %} is invariant under i, 

and the representation in it is equivalent to the representation in Ed” 
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(by letting rkt correspond to ek” for all k), it is sufficient to show the 
following : 

LEMMA 3. (zk ef 8 y($,(ek))mo)j is an H-basis of Exe Ea*. 

PROOF. We use the following fact (see [3], Prop. 8.4.2). Let P be 
projection from U to U(z) along U.Q+ U-n+, and 

h?‘-={u.~Kl(adn-)(u)=(O)}; 

then: if u E K”-\U,-1, then P(u) 4: U,-1, in other words, P preserves the 
filtration degree of elements of IS?‘-. 

We may, and shall, assume that n-e1 = {0}, and that, if gj is the filtration 
degree of $j(el) (j= 1, . .., s), then g1 ~gz G . . . <g8. Then $j(el) E K”-, 
j=l , *--, S. 

Let (b& be a Poincare-Birkhoff-Witt basis of U(n) ; it is also a free 
H-basis for the right H-module U(tt-+b). We shall use that M is a free 
cyclic U(n-+l!))-module with cyclic vector mo. Let x E Exe Ed* ; then 
x= x., e$ @J y(b~q&zo, for uniquely determined elements qH in H. Now 
suppose ~EH, p#O, and pj~H, j=l, . . . . s, such that 

e&+x= Zi Zk e&d(ef @ ~hW2))~d~ 

whence 

edp)x = G zk 6 C3 y(Mek)p+m = x,k 4 6% y(hqktp)mo. 

We want to show: pipf, j=l, . . . . s. If &(ex) is decomposed according to 
U= U(n-+b) @ U-n+, then the second summand annihilates e(pj)mo; let 
$i(ek) be the first summand. Then P(&(ek))=P(&(eb)), and 

e&)x = s zk B C3 r(&(ek)pj)m0. 
Then : 

G&k&= z:ibmtpp, k=l, . . . . n. 

Hence, for k= 1: 

Let t be the smallest index j such that gj=gs. Expressing P($j(el)) and 
&(el)-P&(4) in th e f ree right H-basis (b& of U(n-+Q), we conclude, 
by the fact noted above and considering the terms in which br has 
degree gS: 

pplph j=t, . . . . 8. 

Note that the summands P($j(el))pj, for j<t, and all the summands 
(&(ei) - P(b(el))pj, do not contribute to these terms. Repeated application 
of this procedure, first to 
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yields : 
pplpj, all j, as desired. 

The theorem now follows from the fact that dimg@) (Exe Ed) 8.~ K(b) = s, 
where R(b) is the quotient field of H, see [7], Prop. 1.1.9. 

REMARK. In [l] a conjecture is put forward, that among other things 
asserts that Ex d is a free H-module for the representation eH. It may 
be worthwile to state the full conjecture in our formalism. Starting from 
Lemma 2, take for x the representation 3, of U in U. Then we get a linear 
isomorphism [A : L( U, U) --f B @ U, and the natural mappings L(M, M) -+ 
--f L( U, M) t L( U, U) are transformed into the natural mappings Ex d -+ 
-+a @MMc? 8 U. Bg 

U= U(lj On-) @ U.n+=H @ U(lj @ n-)n- @ U.n+ 
we obtain natural mappings d @ M --f d @ U(‘E) @ n-) -+ 6’ 8 H. By means 
of the evaluation of elements of H in half the sum of the negative roots 
a mapping d @ H -+ 6’ is obtained. Hence a composite mapping 

Exd+d~M~8~H-+~@l=$ 
results. The conjecture is: this composition admits a linear lifting 
7: d+Exd such that: 

(i) r(f o T) = (f o T) @ m+~ for f E 9 (note that generally, for f E 8, 
(f o 5”) @ 1 corresponds with the multiplication by f, as element of 9), 

(ii) q intertwines the representations G @I z of U and eH of H, 
(iii) the mapping d I$+ H --f Ex d defined by f 8 v I+ ea(v)q(f) is an H- 

module isomorphism. 
However, a verification of the conjecture appears to be dificult. 

REFERENCES 

1. Bernstein, I. N., I. M. Gel’fand and 5. I. Gel’fand - Differential operators on 
the bese Seine space and 8 study of Q-modules, in: Lie groups end their 
represent&ions, Summer School of the Bolyai 5840s Math. Society (1971), 
ed. by I. M. Gel’f8nd. Adam Hilger Ltd, London (1976). 

2. Conze, N. - Algebres d’op&ateurs diff&ent,ielles et quotients dea algebra 
enveloppsntes, Bull. Sot. m8th. France 102, 379-415 (1974). 

3. Dixmier, J. - Algebres enveloppantee. G8uthier-Villars, Paris (1974). 
4. Freudenthel, H. and H. de Vries - Linear Lie groups. Academic Press, New York 

and London (1969). 
6. Gel’fand, I. M. and A. A. Kirillov -The structure of the Lie field connected 

with 8 split semisimple Lie algebra, Function81 An8l. Appl. 3, 6-21 (1969). 
0. Hochschild, G.-Algebraic groups and Hopf algebras, Illinois J. M8th. 14, 

499423 (1970). 
7. Hombergh, A. van den - Harish-Ch8ndr8 modules ctnd representations of step 

algebras. Thesis, Nijmegen (1976). 
8. Kostant, B. - Lie group representations on polynomi81 rings, Amer. J. Math. 85, 

327-404 (1963). 
9. Shapov8lov, N. N. - On 8 conjecture of Gel’fand-Kirillov, Funct. An8lysis and 

its Appl. 7, 166-166 (1974). 

466 


