MATHEMATICS

A. VAN DEN HOMBERGH AND H. DE VRIES

On the differential operators on the quasi-affine variety G/N

Communicated by T. A. Springer at the meeting of November 26, 1977

Mathematical Institute, Nijmegen

Let $\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+$ be a triangular decomposition of a semi-simple Lie algebra over an algebraically closed field of characteristic zero. Let $U,=U(\mathfrak{g})$, be the universal enveloping algebra of \mathfrak{g} , $(U_n)_n$ its natural filtration, and T the principal anti-automorphism of U, defined by $X^T=-X$ for $X \in \mathfrak{g}$. Let λ and ϱ be the left and right regular representations of U respectively, defined by $\lambda(u)v=uv$, $\varrho(u)v=vu^T$ for $u, v \in U$. On the quotient $M=U/U\mathfrak{n}_+$, the generic Verma module, λ and ϱ induce representations of U and $U(\mathfrak{h}\oplus\mathfrak{n}_+)$ respectively, also denoted by λ and ϱ .

The linear dual U^* of U is made into a commutative associative algebra with unit element by means of the dual of the homomorphism $\Delta: U \to U \otimes U$, defined by

$$\Delta(X_1 \dots X_{n+1}) = \sum_{\substack{i_1 < \dots < i_j \\ 0 \le j \le n+1}} X_{i_1} \dots X_{i_j} \otimes X_1 \dots \hat{X}_{i_1} \dots \hat{X}_{i_j} \dots X_{n+1},$$
for $X_1, \dots, X_{n+1} \in \mathfrak{g}.$

(In the future we shall omit the indication of the summation set, in similar expressions.) The dual M^* of M, naturally identified with a subspace of U^* , is a subalgebra of U^* .

Generally, for a dominant integral element δ of the linear dual \mathfrak{h}^* of \mathfrak{h}, E^{δ} will denote a fixed irreducible U-module with highest weight δ ,

and for any U-module W we shall denote by W^{δ} the sum of its submodules isomorphic to E^{δ} .

Now let $\mathscr{E} = \sum_{\delta} (U^*)^{\delta}$, where U^* is considered as a U-module by means of the contragredient representation λ^c of λ ; so \mathscr{E} is the subalgebra of U^* consisting of the U-finite elements. The use of ϱ^c instead of λ^c leads to the same subalgebra \mathscr{E} ; the restrictions of λ^c and ϱ^c to \mathscr{E} will be denoted by $\tilde{\lambda}$ and $\tilde{\varrho}$ respectively. Let $\mathscr{F} = \mathscr{E} \cap M^*$. Then \mathscr{F} is the subalgebra of \mathscr{E} consisting of the elements annihilated by $\tilde{\varrho}(\mathfrak{n}_+)$, \mathscr{F}^{δ} is simple for every dominant integral δ , and $\mathscr{F}^{\delta_1} \cdot \mathscr{F}^{\delta_2} = \mathscr{F}^{\delta_1 + \delta_2}$. For these, and related, matters, see e.g. G. Hochschild [6], N. Conze [2], J. Dixmier [3]. Moreover, \mathscr{E} can be considered as the algebra of regular functions on G, where Gis a simply connected algebraic group with Lie algebra \mathfrak{g} , and \mathscr{F} as the algebra of regular functions of the quasi-affine algebraic variety G/N, where N is the subgroup of G that corresponds to \mathfrak{n}_+ . The maximal ideal m of \mathscr{F} consisting of the elements vanishing in \mathfrak{m}_0 , with $\mathfrak{m}_0 = \mathfrak{l} + U\mathfrak{n}_+$, corresponds to the point N of G/N, and is a simple point of the affine variety with affine algebra \mathscr{F} .

Generally, if α and β are representations of U in V and W respectively, then ad (α, β) will denote the representation of U in Hom (V, W) defined by:

ad
$$(\alpha, \beta)(X) = \bigvee_{A \in \operatorname{Hom}(V, W)} \beta(X) \circ A - A \circ \alpha(X)$$
, for $X \in \mathfrak{g}$.

(Here " \forall " denotes Freudenthal's function symbol, see e.g. [4], p. xviii.) Moreover, L(V, W) will denote the subspace of Hom (V, W) consisting of the elements U-finite under ad (α, β) . For the definition of L(M, M), L(U, M) and L(U, U), we take for α and β the appropriate representation λ .

Now let $H = U(\mathfrak{h})$. Then the representation γ of $U \otimes H$ in M defined by $\gamma(u \otimes v) = \lambda(u)\varrho(v)$ for $u \in U$, $v \in H$, is an intertwining operator from the adjoint representation of $U \otimes H$ in $U \otimes H$ to the representation ad (γ, γ) ; hence the image of γ is contained in $L(M, M)_0$, the subspace of elements of L(M, M) annihilated by ad (ϱ, ϱ) (\mathfrak{h}). The representation γ is compatible with the identification of the centre $Z(\mathfrak{g})$ of U with a subalgebra of $1 \otimes H$ via the Harish-Chandra mapping ζ , defined as the projection of U to H along $\mathfrak{n}_{-}U + U\mathfrak{n}_{+}$, using $\lambda(z)m_0 = \lambda(\zeta(z))m_0$ for $z \in Z(\mathfrak{g})$: if $m \in M$, and $u \in U$ such that $m = \lambda(u)m_0$, then

$$\lambda(z)m = \lambda(z)\lambda(u)m_0 = \lambda(u)\lambda(z)m_0 = \lambda(u)\lambda(\zeta(z))m_0 = \varrho(\zeta(z))m.$$

Hence γ factors to a homomorphism

$$\sigma\colon U\otimes_{Z(9)}H\to L(M,\,M)_0,$$

with an obvious definition for $U \otimes_{Z(g)} H$.

We shall prove:

THEOREM 1. σ is an isomorphism.

First we show that this is equivalent to a conjecture of I. M. Gel'fand and A. A. Kirillov, see [5]. This conjecture has been proved by N. N. Shapovalov [9], as we belatedly discovered. Though the underlying ideas are essentially the same, we believe that our method of approach, based on [2], offers more insight.

For $n \in \mathbb{Z}$, $n \ge 0$, let \mathscr{R}^n be the subspace of the linear endomorphism space End \mathscr{F} of \mathscr{F} consisting of the regular differential operators of order at most n on G/N; that is, the element D of End \mathscr{F} belongs to \mathscr{R}^n if and only if

 $\sum (-1)^{j} f_{i_1} \cdots f_{i_j} D(f_1 \cdots \hat{f}_{i_1} \cdots \hat{f}_{i_j} \cdots f_{n+1}) = 0 \text{ for } f_1, \ldots, f_{n+1} \in \mathcal{F}.$

Put $\mathscr{R} = \bigcup_n \mathscr{R}^n$.

For $X \in \mathfrak{g}$, $Y \in \mathfrak{h}$, the mappings $\lambda(X)$ and $\varrho(Y)$, as acting on \mathscr{F} , are commuting derivations of \mathscr{F} ; hence the representation $\tilde{\gamma}$ of $U \otimes H$ in \mathscr{F} maps $U \otimes H$ into \mathscr{R}_0 , the subspace of elements of \mathscr{R} annihilated by ad $(\tilde{\varrho}, \tilde{\varrho})(\mathfrak{h})$. The conjecture was that $\tilde{\gamma}$ factors to an isomorphism from $U \otimes_{Z(\mathfrak{g})} H$ to \mathscr{R}_0 . We shall show that transposition yields a natural antiisomorphism from $L(M, M)_0$ to \mathscr{R}_0 , which, together with the principal anti-automorphism of $U \otimes H$, transforms γ into $\tilde{\gamma}$. The same transposition will yield an anti-isomorphism from L(M, M) to \mathscr{R} .

Make M into a topological vector space (with discrete scalar field) by taking the set of its U-submodules with finite codimension as a neighbourhood base of 0. Then \mathscr{F} is the continuous dual of M. And an element A of End M is continuous if and only if its transpose A^t preserves \mathscr{F} ; then \widetilde{A} will denote the restriction of A^t to \mathscr{F} . The elements of L(M, M)are continuous. We make \mathscr{F} also into a topological vector space by means of the m-adic topology, for which the powers \mathfrak{m}^s of \mathfrak{m} form a neighbourhood base of 0.

It follows immediately from the definitions, that \mathfrak{m}^{s+1} is contained in $\{f \in \mathscr{F} | \langle f, m \rangle = 0 \text{ for } m \in M_s\}$, where M_s is the natural image of U_s in M. However, since the transcendence degree of \mathscr{F} equals dim $(\mathfrak{h} + \mathfrak{n}_{-})$ (being the dimension of G/N) and since \mathfrak{m} is a simple point of the affine variety with affine algebra \mathscr{F} , dim $M_s = \dim \mathscr{F}/\mathfrak{m}^{s+1}$; moreover, since the topological vector space M is separated (see e.g. [1], Lemme 9.3), M naturally identifies with the continuous dual of \mathscr{F} . For $D \in \operatorname{End} \mathscr{F}$, D continuous, we write \tilde{D} for its dual in End M. Then we obtain an anti-isomorphism between the spaces of g-finite continuous endomorphisms of \mathscr{F} and M, which is also an equivalence between the restrictions of the representations ad $(\tilde{\lambda}, \tilde{\lambda})$ and ad (λ, λ) to them. Note that $D(\mathfrak{m}^{s+n}) \subseteq \mathfrak{m}^s$ for $D \in \mathscr{R}^n$, so that the elements of \mathscr{R} are continuous. It was shown in [2] (see Proposition 9.9), that the elements of \mathscr{R} are g-finite, in other terms, that $\widetilde{\mathscr{R}} \subseteq L(M, M)$, and remarked (Remarque 9.10) that even equality holds true; we proceed to prove this inverse inclusion. LEMMA 1. Let $A \in L(M, M)$. Take *n* such that $B(m_0) \in M_n$ for all elements *B* of some finite-dimensional *U*-invariant subspace *S* of L(M, M) containing *A*. Then $\tilde{A} \in \mathcal{R}^n$.

PROOF. For $u \in U_n$ one has $\tilde{\lambda}(u) \in \mathscr{R}^n$; thus $\sum (-1)^j f_{i_1} \dots f_{i_j} \tilde{\lambda}(u)(f_1 \dots \hat{f}_{i_1} \dots \hat{f}_{i_j} \dots f_{n+1}) = 0$ for $f_1, \dots, f_{n+1} \in \mathscr{F}$.

If, moreover, u is taken such that $Bm_0 = \lambda(u^T)m_0$, then

$$\begin{split} &\sum (-1)^{j} \langle f_{i_{1}} \dots f_{i_{j}} \widetilde{B}(f_{1} \dots \widetilde{f}_{i_{1}} \dots \widetilde{f}_{i_{j}} \dots f_{n+1}), m_{0} \rangle = \\ &= \sum (-1)^{j} \langle f_{i_{1}} \dots f_{i_{j}}, m_{0} \rangle \langle f_{1} \dots \widetilde{f}_{i_{1}} \dots \widetilde{f}_{i_{j}} \dots f_{n+1}, Bm_{0} \rangle \\ &= \sum (-1)^{j} \langle f_{i_{1}} \dots \widetilde{f}_{i_{j}}, m_{0} \rangle \langle \lambda(u)(f_{1} \dots \widetilde{f}_{i_{1}} \dots \widetilde{f}_{i_{j}} \dots f_{n+1}), m_{0} \rangle = 0. \end{split}$$

To prove the lemma, it is sufficient to show the vanishing of this sum with m_0 replaced by an arbitrary element m of M. Writing $m = \lambda(v)m_0$, with $v \in U$, this follows by induction on the filtration degree of v, simultaneously for all elements B of S, by means of the identity

$$\begin{split} \widetilde{\lambda}(X)(f_1 \dots f_i \widetilde{B}(f_{i+1} \dots f_{n+1})) &= \sum_{j=1}^i f_1 \dots \widetilde{\lambda}(X)(f_j) \dots f_i \widetilde{B}(f_{i+1} \dots f_{n+1}) + \\ &+ \sum_{j=i+1}^{n+1} f_1 \dots f_i \widetilde{B}(f_{i+1} \dots \widetilde{\lambda}(X)(f_j) \dots f_{n+1}) - f_1 \dots f_i (\mathrm{ad} \ (\lambda, \lambda)(X)(B))^{\sim} \\ (f_{i+1} \dots f_{n+1}), \text{ for } X \in \mathfrak{g}, \ f_1, \dots, f_{n+1} \in \mathscr{F}. \end{split}$$

Hence:

THEOREM 2. $L(M, M) \ni A \mapsto \tilde{A} \in \mathscr{R}$ is an anti-isomorphism.

Obviously, under this isomorphism, $L(M, M)_0$ corresponds to \mathcal{R}_0 .

In exactly the same way one makes U and \mathscr{E} into topological vector spaces, and transposition provides an anti-isomorphism between L(U, U) and the space \mathscr{S} of regular differential operators on G.

Let \varkappa be any representation of U in a linear space V, and let e_{\varkappa} : $U \otimes V \to V$ be the corresponding evaluation mapping, defined by $e_{\varkappa}(u \otimes v) = \varkappa(u)v$.

Let ξ_{κ} be the self-mapping of the space Hom (U, V) of linear mappings from U to V defined by $\xi_{\kappa}(A) = e_{\kappa} \circ (\iota \otimes AT) \circ \Delta$, where ι stands for the identity mapping of U. Thus, for $X_1, \ldots, X_{n+1} \in \mathfrak{g}$:

$$\xi_{\mathbf{x}}(A)(X_1 \ldots X_{n+1}) = \sum (-1)^{n+1-j} \mathbf{x}(X_{i_1} \ldots X_{i_j}) A(X_{n+1} \ldots \hat{X}_{i_j} \ldots \hat{X}_{i_1} \ldots X_1).$$

From this one sees: $\xi_{\mathbf{x}}(A) = \bigvee_{\mathbf{u}} (\operatorname{ad} (\lambda, \mathbf{x})(\mathbf{u})(A))(1).$

Also, by means of the fact that $\mu \circ (\iota \otimes T) \circ \varDelta$ is the unit element of \mathscr{E} (where μ is the multiplication of U), i.e.

$$\sum (-1)^{n+1-j} X_{i_1} \dots X_{i_j} X_{n+1} \dots \hat{X}_{i_j} \dots \hat{X}_{i_1} \dots X_1 = 0 \text{ for } n+1 \ge 1,$$

one verifies: $\xi_{\star}(\xi_{\star}(A)) = A$, for $A \in \text{Hom}(U, V)$, that is, ξ_{\star} is an involutory linear bijection of Hom (U, V) onto itself. The linear subspace of continuous linear mappings from U to V, where V is provided with the

discrete topology, is naturally identified with $\mathscr{E} \otimes V$; to $f \otimes v$ corresponds $\forall_u f(u)v$, for $f \in \mathscr{E}$, $v \in V$. One also verifies, for $X \in \mathfrak{g}$:

ad $(\lambda, \varkappa)(X)\xi_{\varkappa}(A) = \xi_{\varkappa}(ad(\varrho, \tau)(X)A),$

where τ is the trivial representation of U in V. Hence ξ_{\varkappa} intertwines ad (λ, \varkappa) and ad (ϱ, τ) . But $\mathscr{E} \otimes V$ consists of the ad (ϱ, τ) -finite elements of Hom (U, V). Hence we have:

LEMMA 2. ξ_* interchanges L(U, V) and $\mathscr{E} \otimes V$.

Now take V = M, $\varkappa = \lambda$. By the natural identification of Hom (M, M)with a subspace of Hom (U, M), L(M, M) consists of the elements of L(U, M) annihilated by ad $(\varrho, \tau)(\mathfrak{n}_+)$; by ξ_{λ} this subspace is mapped onto the subspace $\operatorname{Ex} \mathscr{E}$ of $\mathscr{E} \otimes M$ consisting of the elements annihilated by ad $(\lambda, \lambda)(\mathfrak{n}_+)$ (in other terms, annihilated by $(\lambda \otimes \lambda)(\mathfrak{n}_+)$). Let $\operatorname{Ex}_0 \mathscr{E} =$ $= \xi_{\lambda}(L(M, M)_0)$; then one readily sees that $\operatorname{Ex}_0 \mathscr{E}$ is the subspace of $\operatorname{Ex} \mathscr{E}$ consisting of the elements annihilated by $(\lambda \otimes \operatorname{ad})(\mathfrak{h})$, where ad is the representation of H in M defined by ad $(X) = \lambda(X) + \varrho(X)$ for $X \in \mathfrak{h}$. Furthermore, $\xi_{\lambda} \colon L(M, M)_0 \to \operatorname{Ex}_0 \mathscr{E}$ intertwines the representation ϱ_H of H defined by $\varrho_H(X)(A) = \varrho(X)A$ for $X \in \mathfrak{h}$. Generally, the properties mentioned can be taken as the definition of $\operatorname{Ex} W$, as a subspace of $W \otimes M$, and of $\operatorname{Ex}_0 W$, for any given representation μ in a linear space W instead of λ in \mathscr{E} . For more information on such a space $\operatorname{Ex} W$ of extreme vectors, see A. van den Hombergh [7].

We shall now prove Theorem 1 by exhibiting a free *H*-basis of the *H*-module $U \otimes_{Z(0)} H$ (by means of multiplication in the second tensor factor) which by the *H*-module homomorphism $\xi_{\lambda} \circ \gamma$ is mapped onto a free *H*-basis of the *H*-module $\text{Ex}_0 \mathscr{E}$ (by means of ϱ_H).

Let K be the subspace of U spanned by the powers of the ad-nilpotent elements of g. Then, as shown by B. Kostant [8], multiplication yields an isomorphism $K \otimes Z(\mathfrak{g}) \to U$, and by considering K as a U-module under the adjoint representation, dim $\operatorname{Hom}_{\mathfrak{g}}(E^{\delta}, K)$ equals the dimension of the zero weight space of E^{δ} , for any dominant integral δ . Fix δ , a basis (e_1, \ldots, e_n) of E^{δ} , and a basis $(\phi_1, \ldots, \phi_{\delta})$ of $\operatorname{Hom}_{\mathfrak{g}}(E^{\delta}, K)$; let (e_1^*, \ldots, e_n^*) be the dual basis of $E^{\delta*}$, and $r_{kl} = \forall_u \langle e_k^*, ue_l \rangle$. One knows that $(r_{kl})_{k,l}$ is a basis of $\mathscr{E}^{\delta*}$. Then $(\phi_j(e_l))_{l,j}$ is a basis of K^{δ} , and a free H-basis of $U^{\delta} \otimes_{Z(\mathfrak{g})} H$. One easily checks:

$$\xi_{\lambda} \circ \gamma(\phi_j(e_i)) = \sum_k r_{ki} \otimes \gamma(\phi_j(e_k)) m_0.$$

Now one needs only to prove:

THEOREM 3. $(\sum_k r_{ki} \otimes \gamma(\phi_j(e_k))m_0)_{i,j}$ is an *H*-basis of $\mathbf{Ex}_0 \ \mathscr{E}^{\delta^*}$.

Because, for each *i*, the span of $\{r_{kt}|k=1, ..., n\}$ is invariant under λ , and the representation in it is equivalent to the representation in E^{s^*}

(by letting r_{ki} correspond to e_k^* for all k), it is sufficient to show the following:

LEMMA 3. $(\sum_{k} e_{k}^{*} \otimes \gamma(\phi_{j}(e_{k}))m_{0})_{j}$ is an *H*-basis of Ex₀ $E^{\delta^{*}}$.

PROOF. We use the following fact (see [3], Prop. 8.4.2). Let P be projection from U to $U(\mathfrak{n}_{-})$ along $U \cdot \mathfrak{h} + U \cdot \mathfrak{n}_{+}$, and

$$K^{n-} = \{ u \in K | (ad n_{-})(u) = \{0\} \};$$

then: if $u \in K^{n} \setminus U_{n-1}$, then $P(u) \notin U_{n-1}$, in other words, P preserves the filtration degree of elements of K^{n-1} .

We may, and shall, assume that $\mathfrak{n}_{-}e_1 = \{0\}$, and that, if g_j is the filtration degree of $\phi_j(e_1)$ $(j=1,\ldots,s)$, then $g_1 \leq g_2 \leq \ldots \leq g_s$. Then $\phi_j(e_1) \in K^{\mathfrak{n}_-}$, $j=1,\ldots,s$.

Let $(b_i)_i$ be a Poincaré-Birkhoff-Witt basis of $U(\mathfrak{n}_-)$; it is also a free *H*-basis for the right *H*-module $U(\mathfrak{n}_-+\mathfrak{h})$. We shall use that *M* is a free cyclic $U(\mathfrak{n}_-+\mathfrak{h})$ -module with cyclic vector m_0 . Let $x \in \mathbf{Ex}_0 E^{\mathfrak{d}*}$; then $x = \sum_{i,k} e_k^* \otimes \gamma(b_i q_{ki}) m_0$, for uniquely determined elements q_{ki} in *H*. Now suppose $p \in H$, $p \neq 0$, and $p_j \in H$, j = 1, ..., s, such that

$$arrho_H(p)x = \sum_j \sum_k arrho_H(p_j)(e_k^* \otimes \gamma(\phi_j(e_i))m_0),$$

whence

$$arrho_H(p)x = \sum_j \sum_k e_k^* \otimes \gamma(\phi_j(e_k)p_j)m_0 = \sum_{i,k} e_k^* \otimes \gamma(b_iq_{ki}p)m_0.$$

We want to show: $p|p_j, j=1, ..., s$. If $\phi_j(e_k)$ is decomposed according to $U = U(\mathfrak{n}_- + \mathfrak{h}) \oplus U \cdot \mathfrak{n}_+$, then the second summand annihilates $\varrho(p_j)m_0$; let $\phi'_j(e_k)$ be the first summand. Then $P(\phi'_j(e_k)) = P(\phi_j(e_k))$, and

$$arrho_H(p)x = \sum_j \sum_k e_k^* \otimes \gamma(\phi_j'(e_k)p_j)m_0.$$

Then:

$$\sum_{j} \phi'_{j}(e_{k}) p_{j} = \sum_{i} b_{i} q_{ki} p, \ k = 1, ..., n.$$

Hence, for k=1:

$$\sum_{j} P(\phi_{j}(e_{1}))p_{j} + \sum_{j} (\phi_{j}'(e_{1}) - P(\phi_{j}(e_{1})))p_{j} = \sum_{i} b_{i}q_{ki}p_{i}$$

Let t be the smallest index j such that $g_j = g_s$. Expressing $P(\phi_j(e_1))$ and $\phi'_j(e_1) - P(\phi_j(e_1))$ in the free right H-basis $(b_i)_i$ of $U(\mathfrak{n}_- + \mathfrak{h})$, we conclude, by the fact noted above and considering the terms in which b_i has degree g_s :

$$p|p_j, j=t, ..., s$$

Note that the summands $P(\phi_j(e_1))p_j$, for j < t, and all the summands $(\phi'_j(e_1) - P(\phi_j(e_1))p_j)$, do not contribute to these terms. Repeated application of this procedure, first to

$$\varrho_H(p)x - \sum_{j=t}^s \varrho_H(p_j)(e_k^* \otimes \gamma(\phi_j(e_k))m_0),$$

465

yields:

 $p \mid p_j$, all j, as desired.

The theorem now follows from the fact that $\dim_{K(\mathfrak{h})} (\operatorname{Ex}_0 E^{\delta}) \otimes_H K(\mathfrak{h}) = s$, where $K(\mathfrak{h})$ is the quotient field of H, see [7], Prop. I.1.9.

REMARK. In [1] a conjecture is put forward, that among other things asserts that Ex \mathscr{E} is a free *H*-module for the representation ϱ_H . It may be worthwile to state the full conjecture in our formalism. Starting from Lemma 2, take for \varkappa the representation λ of *U* in *U*. Then we get a linear isomorphism $\xi_{\lambda}: L(U, U) \to \mathscr{E} \otimes U$, and the natural mappings $L(M, M) \to$ $\rightarrow L(U, M) \leftarrow L(U, U)$ are transformed into the natural mappings Ex $\mathscr{E} \to$ $\rightarrow \mathscr{E} \otimes M \leftarrow \mathscr{E} \otimes U$. By

$$U = U(\mathfrak{h} \oplus \mathfrak{n}_{-}) \oplus U \cdot \mathfrak{n}_{+} = H \oplus U(\mathfrak{h} \oplus \mathfrak{n}_{-})\mathfrak{n}_{-} \oplus U \cdot \mathfrak{n}_{+}$$

we obtain natural mappings $\mathscr{E} \otimes M \to \mathscr{E} \otimes U(\mathfrak{h} \oplus \mathfrak{n}_{-}) \to \mathscr{E} \otimes H$. By means of the evaluation of elements of H in half the sum of the negative roots a mapping $\mathscr{E} \otimes H \to \mathscr{E}$ is obtained. Hence a composite mapping

 $\operatorname{Ex} \, \mathscr{E} \to \mathscr{E} \, \otimes \, M \to \mathscr{E} \, \otimes \, H \to \mathscr{E} \, \otimes \, \mathbf{l} = \mathscr{E}$

results. The conjecture is: this composition admits a linear lifting $\eta: \mathscr{E} \to \mathbf{Ex} \ \mathscr{E}$ such that:

- (i) $\eta(f \circ T) = (f \circ T) \otimes m_0$ for $f \in \mathscr{F}$ (note that generally, for $f \in \mathscr{E}$, $(f \circ T) \otimes 1$ corresponds with the multiplication by f, as element of \mathscr{S}),
- (ii) η intertwines the representations $\tilde{\varrho} \otimes \tau$ of U and ϱ_H of H,
- (iii) the mapping $\mathscr{E} \otimes H \to \operatorname{Ex} \mathscr{E}$ defined by $f \otimes v \mapsto \varrho_H(v)\eta(f)$ is an H-module isomorphism.

However, a verification of the conjecture appears to be difficult.

REFERENCES

- Bernstein, I. N., I. M. Gel'fand and S. I. Gel'fand Differential operators on the base affine space and a study of g-modules, in: Lie groups and their representations, Summer School of the Bolyai János Math. Society (1971), ed. by I. M. Gel'fand. Adam Hilger Ltd, London (1975).
- Conze, N. Algèbres d'opérateurs différentielles et quotients des algèbres enveloppantes, Bull. Soc. math. France 102, 379–415 (1974).
- 3. Dixmier, J. Algèbres enveloppantes. Gauthier-Villars, Paris (1974).
- 4. Freudenthal, H. and H. de Vries Linear Lie groups. Academic Press, New York and London (1969).
- Gel'fand, I. M. and A. A. Kirillov The structure of the Lie field connected with a split semisimple Lie algebra, Functional Anal. Appl. 3, 6–21 (1969).
- Hochschild, G. Algebraic groups and Hopf algebras, Illinois J. Math. 14, 499–523 (1970).
- Hombergh, A. van den Harish-Chandra modules and representations of step algebras. Thesis, Nijmegen (1976).
- Kostant, B. Lie group representations on polynomial rings, Amer. J. Math. 85, 327-404 (1963).
- Shapovalov, N. N. On a conjecture of Gel'fand-Kirillov, Funct. Analysis and its Appl. 7, 165–166 (1974).