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MATHEMATICS

A. VAN DEN HOMBERGH AND H. DE VRIES

On the differential operators on the quasi-affine variety G/N

Communicated by T. A. Springer at the meeting of November 26, 1977

Mathematical Institute, Nijmegen

Let g=n- @) @ n+ be a triangular decomposition of a semi-simple
Lie algebra over an algebraically closed field of characteristic zero. Let
U,=U(g), be the universal enveloping algebra of g, (Uy), its natural
filtration, and 7' the principal anti-automorphism of U, defined by
X7=-X for X eg. Let 1 and ¢ be the left and right regular represen-
tations of U respectively, defined by A(u)v=wuv, o(u)p=ovuT for u,ve U.
On the quotient M = U[Un,, the generic Verma module, 4 and ¢ induce
representations of U and U(h @ n.) respectively, also denoted by A and o.

The linear dual U* of U is made into a commutative associative algebra
with unit element by means of the dual of the homomorphism A4: U —
— U @ U, defined by

A(X1...Xn+1)= z X‘l"' Xij®X1---Xi1---X{,' ---Xn+1,

il <,,.< f‘
0<i<n+1

for X1, ceny Xn+1 €4g.

(In the future we shall omit the indication of the summation set, in
similar expressions.) The dual M* of M, naturally identified with a
subspace of U*, is a subalgebra of U*.

Generally, for a dominant integral element § of the linear dual %H*
of Y, B’ will denote a fixed irreducible U-module with highest weight 8,
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and for any U-module W we shall denote by W* the sum of its submodules
isomorphic to E’.

Now let &= 3, (U*)’, where U* is considered as a U-module by means
of the contragredient representation A¢ of 4; so & is the subalgebra of U*
consisting of the U-finite elements. The use of g¢ instead of Ac leads to
the same subalgebra &; the restrictions of A¢ and ¢¢ to & will be denoted

by 7 and E respectively. Let # =& N M*. Then & is the subalgebra
of & consisting of the elements annihilated by g(1), #° is simple for
every dominant integral 4, and & 4. Fl%=F*+% For these, and related,
matters, see e.g. G. Hochschild [6], N. Conze [2], J. Dixmier {3]. Moreover,
& can be considered as the algebra of regular functions on G, where @
is a simply connected algebraic group with Lie algebra g, and # as the
algebra of regular functions of the quasi-affine algebraic variety G/N,
where N is the subgroup of G that corresponds to n,. The maximal ideal
m of & consisting of the elements vanishing in mg, with me=1+ Un,,
corresponds to the point N of G/N, and is a simple point of the affine
variety with affine algebra &.

Generally, if « and S are representations of U in V and W respectively,
then ad (x, 8) will denote the representation of U in Hom (V, W) defined
by:

ad (x, B)(X)= Y BX)oA—AouxX), for Xeg.

AeHom(V, W)

(Here “Y”” denotes Freudenthal’s function symbol, see e.g. [4], p. xviii.)
Moreover, L(V, W) will denote the subspace of Hom (V, W) consisting
of the elements U-finite under ad («, 8). For the definition of L(M, M),
LU, M) and L(U, U), we take for « and p the appropriate represen-
tation A.

Now let H=U(). Then the representation y of U ® H in M defined
by y(u @ v)=A(u)e(v) for ue U, ve H, is an intertwining operator from
the adjoint representation of U @ H in U ® H to the representation
ad (y, y); hence the image of y is contained in L(M, M)y, the subspace
of elements of L(M, M) annihilated by ad (g, 0) (). The representation
y is compatible with the identification of the centre Z(g) of U with a
subalgebra of 1 ® H via the Harish-Chandra mapping (, defined as the
projection of U to H along n_U + Uny, using A(z)mo=A({(z))me for z € Z(g):
if me M, and w e U such that m=A(u)mg, then

Mzym = A(2)A(w)mo = A(w) A(z)mo = A(w)A(L(2) ymo = o(E(2))m.
Hence y factors to a homomorphism
o: U Rz) H— L(M, M)o,

with an obvious definition for U Qzq) H.
We shall prove:
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THEOREM l. ¢ is an isomorphism.

First we show that this is equivalent to a conjecture of I. M. Gel’fand
and A. A. Kirillov, see [5]. This conjecture has been proved by N. N.
Shapovalov [9], as we belatedly discovered. Though the underlying ideas
are essentially the same, we believe that our method of approach, based
on [2], offers more insight.

For ne%, n>0, let #» be the subspace of the linear endomorphism
space End & of & consisting of the regular differential operators of
order at most » on G/N; that is, the element D of End & belongs to
Z#r if and only if

S (=1 o fuD(fr oo foy oo fiy e fra) =0 for fo, oo, fann € F.

Put Z= Un%n. . .

For X g, Y €)), the mappings A(X) and ¢(Y), as acting on &, are com-
muting derivations of #; hence the representation y of U @ H in &
maps U @ H into %o, the subspace of elements of % annihilated by
ad (g, 0)(§). The conjecture was that » factors to an isomorphism from
U ®z@) H to Zo. We shall show that transposition yields a natural anti-
isomorphism from L(M, M), to %o, which, together with the principal
anti-automorphism of U ® H, transforms y into . The same transposition
will yield an anti-isomorphism from L(M, M) to Z.

Make M into a topological vector space (with discrete scalar field) by
taking the set of its U-submodules with finite codimension as a neigh-
bourhood base of 0. Then & is the continuous dual of M. And an element
A of End M is continuous if and only if its transpose A? preserves & ;
then A will denote the restriction of At to #. The elements of L(M, M )
are continuous. We make & also into a topological vector space by means
of the m-adic topology, for which the powers m# of m form a neighbour-
hood base of 0.

It follows immediately from the definitions, that ms+! is contained in
{f e F|{f, m>=0 for m € M,}, where Mj is the natural image of U, in M.
However, since the transcendence degree of # equals dim (h+n-) (being
the dimension of G/N) and since m is a simple point of the affine variety
with affine algebra &%, dim M,;=dim & /m#+1; moreover, since the topo-
logical vector space M is separated (see e.g. [1], Lemme 9.3), M naturally
identifies with the continuous dual of %#. For D € End %, D continuous,
we write D for its dual in End M. Then we obtain an anti-isomorphism
between the spaces of g-finite continuous endomorphisms of # and M, which
is also an equivalence between the restrictions of the representations
ad (}T, i) and ad (4, 4) to them. Note that D(ms+#) C ms for D e #», so
that the elements of & are continuous. It was shown in [2] (see Propo-
sition 9.9), that the elements of # are g-finite, in other terms, that
% C L(M, M), and remarked (Remarque 9.10) that even equality holds
true; we proceed to prove this inverse inclusion.
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LEMMA 1. Let A e (M, M). Take n such that B(mg)e M, for all
elements B of some finite-dimensional U-invariant subspace 8 of L(M, M)
containing 4. Then 4 e %#».

PROOF. For u € U, one has i(u) € %n; thus

2 (—1y fil fi,‘ l(u) fil f;, ver far1)=0 for fs ooy fan € &,

If, moreover, u is taken such that Bmo=A(uT)my, then

Z (—1)7 <fi1 fijE(fl -ﬁl ﬁl fn+1), ’)’no>=
= 3 (=17 fay o fipy mod <y foy "',f" . fn+1, Bmod
= S (=1 oy . frp My AW (1 .. fiy . fy oo Fura), mod=0.

To prove the lemma, it is sufficient to show the vanishing of this sum
with mg replaced by an arbitrary element m of M. Writing m =A(v)mq,
with v € U, this follows by induction on the filtration degree of v, simul-
ta.neously for all elements B of &S, by means of the identity

X)(fr .- fiB(ferr .. fn+1 2_1 frooe MX(f) - FB(fosa o fur) +
+ 2—;+1 foo fiBlfus .. A X)) - fn+1) fi ... fi(ad (4, AX)(B))"
(fis1 --- fan1), for X eg, fl, veis a1 € F.

Hence:

THEOREM 2. L(M,M)>3 A - A €% is an anti-isomorphism.

Obviously, under this isomorphism, L(M, M), corresponds to Z.

In exactly the same way one makes U and & into topological vector
spaces, and transposition provides an anti-isomorphism between L(U, U)
and the space & of regular differential operators on @.

Let » be any representation of U in a linear space ¥V, and let e.:
U®V-—>7V be the corresponding evaluation mapping, defined by
ex(tt Q@ v)=n(uw.

Let &, be the self-mapping of the space Hom (U, V) of linear mappings
from U to V defined by &.(4)=ex o (1t ® AT) o A, where ¢ stands for the
identity mapping of U. Thus, for Xi, ..., Xaneg:

EfA)( Xy ... Xpr1)= 3 (— 1)n+1—fx(X,1 o XA X .. Xy Ky L X).

From this one sees: &(A4)= Yy (ad (4, x)(u)(4))(1).
Also, by means of the fact that wo(t @ T)o 4 is the unit element
of & (where u is the multiplication of U), i.e

S(—1)m4Xy L Xy Xp .. Xy Xy . X1=0 for n+1>1,

one verifies: &.(&.(4)) =4, for A € Hom (U, V), that is, &, is an involutory
linear bijection of Hom (U, V) onto itself. The linear subspace of con-
tinuous linear mappings from U to ¥V, where V is provided with the
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discrete topology, is naturally identifled with & ® V; to f ® v corresponds
Yu f(u)v, for fe & ve V. One also verifies, for X € g:

ad (4, %)(X)&(A4)=Ex(ad (g, 7)(X)4),

where 7 is the trivial representation of U in V. Hence &. intertwines
ad (4, ) and ad (g, ). But & ® V consists of the ad (o, 7)-finite elements
of Hom (U, V). Hence we have:

LEMMA 2. &, interchanges (U, V) and £ @ V.

Now take V=M, x=A. By the natural identification of Hom (M, M)
with a subspace of Hom (U, M), L(M, M) consists of the elements of
L(U, M) annihilated by ad (g, 7)(n4); by &1 this subspace is mapped onto
the subspace Ex & of & ® M consisting of the elements annihilated by
ad (4, A)(ns) (in other terms, anmihilated by (A ® A)(ns)). Let Exo &=
=&(L(M, M)); then one readily sees that Exy & is the subspace of
Ex & consisting of the elements annihilated by (1 ® ad)(h), where ad
is the representation of H in M defined by ad (X)=A(X)+¢(X) for X €.
Furthermore, &: L(M, M), — Exo & intertwines the representation gy of
H defined by ga(X)(4)=p(X)4A for X €Y). Generally, the properties
mentioned can be taken as the definition of Ex W, as a subspace of
W ® M, and of Exo W, for any given representation u in a linear space
W instead of A in &. For more information on such a space Ex W of
extreme vectors, see A. van den Hombergh [7].

We shall now prove Theorem 1 by exhibiting a free H-basis of the
H-module U ®z@ H (by means of multiplication in the second tensor
factor) which by the H-module homomorphism & o y is mapped onto a
free H-basis of the H-module Exy & (by means of gn).

Let K be the subspace of U spanned by the powers of the ad-nilpotent
elements of g. Then, as shown by B. Kostant [8], multiplication yields
an isomorphism K ® Z(g) - U, and by considering K as a U-module
under the adjoint representation, dim Homg (E’, K) equals the dimension
of the zero weight space of E’, for any dominant integral 8. Fix 6, a basis
(e1, ..., en) of E’, and a basis (¢, ..., ¢s) of Homg (E?, K); let (e, ..., €f)
be the dual basis of E®*, and ry= Yu (e, ue;>. One knows that (ri:)i
is a basis of &%*. Then (¢;(er))s,; is a basis of K°, and a free H-basis of
U’ ®z@ H. One easily checks:

& o y(dsle)) = 24 7he ® p(slex))mo.

Now one needs only to prove:

THEOREM 3. (3, 71t ® p(¢slex))mo)s,s is an H-basis of Exo &%

Because, for each ¢, the span of {r|k=1, ..., »} is invariant under 4,
and the representation in it is equivalent to the representation in E**
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(by letting 7z correspond to et for all k), it is sufficient to show the
following:

LEMMA 3. (3, ek ® y(ds(ex))mo); is an H-basis of Exo E¢*.

PROOF. We use the following fact (see [3], Prop. 8.4.2). Let P be
projection from U to U(n-) along U-§+ U -ny, and

K"~ ={u e K|(ad n-)(u) = {0}};

then: if w € K*-\Up-, then P(u) ¢ Uy, in other words, P preserves the
filtration degree of elements of K™-.

We may, and shall, assume that n-e; = {0}, and that, if g; is the filtration
degree of ¢(e)) (j=1,...,8), then g1<ge<...<gs. Then ¢;(e;) € K*-,
j=1, ...

Let (b:); be a Poincaré-Birkhoff-Witt basis of U(n_); it is also a free
H-basis for the right H-module U(n_+1). We shall use that M is a free
cyclic U(n-+9)-module with cyclic vector mo. Let x € Exo E%*; then
=3, . e ® y(bigrs)mo, for uniquely determined elements gz in H. Now
suppose pe H, p#0, and p;e H, j=1, ..., s, such that

en(p)x= 3, >, on(p)(ek @ y(di(es)ymo),
whence
en(P)r= 3, 3, & @ y(dilex)py)mo= 3, ; €k @ y(bigrip)mo.

We want to show: p|p;, j=1, ..., s. If ¢;{ex) is decomposed according to
U=Um-+%Y @ U-n4, then the second summand annihilates g(p;)mo; let
$i(ex) be the first summand. Then P(¢;(ex)) = P(¢(ex)), and

eu(ple= 3, & ® y(di(ex)psymo.

2,96;(916)191: zibiqkip, k:]-s ceey M.

Hence, for k=1:

S P(le))ps+ 3 (diler) — Pls(e)))py= 3, biguap.

Let t be the smallest index j such that g;=gs;. Expressing P(dy(e1)) and
#i(e1) — P(¢s(e1)) in the free right H-basis (b;); of U(n_+§), we conclude,
by the fact noted above and considering the terms in which b has
degree gs:

Then:

plps, j=t, ..., s.

Note that the summands P(¢y(e;))p;, for j<i, and all the summands
(47 (e1) — P(¢4(e1))py, do not contribute to these terms. Repeated application
of this procedure, first to

en(p)r— 3;_, on(p))(ek ® y(ds(ex))mo),
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yields:
plps, all §, as desired.

The theorem now follows from the fact that dimgg (Exo B°) ®@# K(§) =s,
where K(§) is the quotient field of H, see [7], Prop. 1.1.9.

REMARK. In [1] a conjecture is put forward, that among other things
asserts that Ex & is a free H-module for the representation px. It may
be worthwile to state the full conjecture in our formalism. Starting from
Lemma 2, take for » the representation 4 of U in U. Then we get a linear
isomorphism &: L(U, U) -~ & ® U, and the natural mappings L(M, M) —
— L(U, M) < L(U, U) are transformed into the natural mappings Ex & —
> QM+ & ®U. By

U-Uh®n) @ U-n=H @ UH®n)n-® U-ny

we obtain natural mappings S QM - EQ U(H Pn-) > & ® H. By means
of the evaluation of elements of H in half the sum of the negative roots
a mapping & ® H — & is obtained. Hence a composite mapping

Exfé->6 QM >EQH->ER1=8F

results. The conjecture is: this composition admits a linear lifting
n: € - Ex & such that:
@) nfoeT)=(foT)@mg for fe F (note that generally, for fe &,
(f oT) ® 1 corresponds with the multiplication by f, as element of %),
(ii) % intertwines the representations ¢ ® 7 of U and gy of H,
(iii) the mapping € ® H — Ex & defined by f ® v i— pu(v)n(f) is an H-
module isomorphism.
However, a verification of the conjecture appears to be difficult.
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