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INTRODUCTION

While line bundles endowed with a connection on a scheme X may be
entirely described in terms of the cohomology of X with values in the mul-
tiplicative de Rham complex, the theory of connections on a principal
bundle P with non-abelian structure group G requires the introduction of
differential forms with values in the Lie algebra of G, or of its adjoint
group Pad. From this follow certain complications, arising from the more
elaborate algebraic structure which such forms possess. For example, they
are endowed with a non-trivial graded Lie algebra structure. Also the dif-
ferentials from n- to (n+1)-forms which define the de Rham complex of X
must be replaced, in this more general context, by somewhat more
complicated expressions, of which the structural equation of Elie Cartan
[16, II, Theorem 5.2] is the prototype. The assertion that dn+1

p dn=0,
where dn: Wn

X 0 Wn+1
X is the differential in the de Rham complex, must now

be replaced by a corresponding assertion for the new maps, which in low
degrees yields both the Maurer–Cartan equation and the Bianchi identity.
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A very clear understanding of this structure is provided by the so-called
combinatorial definition of group-valued differential forms. The combina-
torial theory of forms is a topic which has been developed within the
context of synthetic differential geometry. This synthetic geometry (dis-
cussed, for example, in [17, 21]) may be viewed as an attempt to transpose
to the setting of C.-manifolds the methods introduced by A. Grothendieck
and others in algebraic geometry in order to deal with the concept of infi-
nitely near points. Our aim here is to reintroduce some of the results
obtained within synthetic geometry into the standard scheme-theoretic
setting. The study of combinatorial group-valued differential forms is
mainly due to Kock, in a remarkable series of texts [17–19]. With hind-
sight, one of his main constructions, when transcribed into the language
of algebraic geometry, may be restated as follows. A relative differential
1-form on a smooth relative scheme X/S might be defined, in a fairly
traditional manner, as an S-pointed map

TX/S 0 Ga, S

from the tangent bundle of X to the additive S-group scheme Ga, S, which is
linear on the fibers. Kock observes in essence that such a 1-form only
depends on its restriction to the conormal bundle of X in TX/S, where the
linearity condition is no longer required. To phrase it differently, a relative
1-form on X/S is now simply a pointed map w: D1

X/S 0 Ga, S, where D1
X/S is

the schemes of pairs of points (x0, x1) of X which are infinitesimally close
to first order. It is easy to see that this description of a relative 1-form on X
is equivalent to the more traditional definition as a section of the sheaf
W1

X/S of Kähler differentials of X. It is then customary, and not only in
algebraic geometry, to introduce n-forms on X for any n > 1 in an external
manner, by setting

Wn
X/S :=L

n

W1
X/S.

Kock extends instead the internal definition from 1- to n-forms, by
introducing the scheme D (n)

X/S of pairwise first order infinitesimally close
(n+1)-tuples of points (x0, ..., xn) of X. For any n, a relative n-form on
X/S is now an S-morphism D (n)

X/S 0 Ga, S which vanishes on all the partial
diagonals xi=xj in D (n)

X/S. Such an intrinsic definition of an n-form on X, in
terms of ideals in rings of functions on appropriate spaces associated to X,
is close to the standard notion of an n-form as a volume form, with the
proviso that the (n+1)-tuple of points (x0, ..., xn) ¥ D (n)

X/S considered
here generates an infinitesimal n-simplex, rather than an infinitesimal
n-dimensional parallelogram as in the usual definition of a volume form.
Certain factorials in the denominators of various traditional formulas must
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therefore be omitted. More generally, for any S-group scheme G, relative
Lie(G)-valued differential n-forms on X/S may be similarly defined, in
terms of S-morphisms D (n)

X/S 0 G satisfying the vanishing condition on
partial diagonals.

In the general scheme-theoretic context in which we will be working,
some care must be taken in defining correctly the notion of ‘‘pairwise
infinitesimally close points,’’ since the naive definition of such points,
patterned on [18], only yields combinatorial forms which we call weak.
These correspond to sections of the anti-symmetric nth-tensor power W (n)

X/S of
W1

X/S, rather than of its exterior power Wn
X/S. This makes no difference in

Kock’s characteristic zero context, or more generally whenever one works
over a base on which 2 is invertible. In order to deal with the general
situation, we are led to introduce a refinement of the already quite interesting
naive infinitesimal neighborhoods D (n)

X/S of X in Xn+1. The refined schemes
Dn

X/S provide finer neighborhoods of X diagonally embedded in Xn+1. The
corresponding differential forms will be called strong. Neither of these two
families of subschemes of Xn+1, which coincide when n=1, have to our
knowledge been previously studied2 for n > 1. These neighborhoods are in

2 It has recently been brought to our notice, after the completion of this text, that
D. Ferrand, in an unpublished 1990 manuscript, examined D (2)

X/S and its relationship with W (2)
X/S.

the same relation to n-forms on X as the scheme associated to the sheaf of
1-jets on X is to the module of Kähler differentials.

As was apparent in the previous discussion, we will be working here in
the general, parametrized, situation in which X/S is an arbitrary relative
scheme, whereas Kock restricts himself to the absolute case. A more signi-
ficant difference between our approaches is that synthetic differential
geometers generally work in a context in which the spaces considered are
smooth. Their main tool in the study of differential forms is the Taylor
expansion of a given function on X as a formal or convergent power
series. Here, we work instead, for a general affine scheme X :=Spec(B),
with the generators (1 é b)−(b é 1) of the augmentation ideal J :=
ker(B é B|Qm B) of the augmented ring B é B (where m is the multiplica-
tion map in B), and with the corresponding elements in the structure rings
of the schemes D (n)

X/S and Dn
X/S. Another difference is that we have sought,

whenever practical, to prove our results for differentials with values in a
not necessarily representable group-valued functor F, rather than simply in
an S-group scheme G. This extra degree of generality allows us to consider
for example differential forms which take their values in the sheaf Aut(G)
of automorphisms of the group scheme G. This sheaf is not always repre-
sentable, for example, when the group G is unipotent and the base has
characteristic p, or even when the base is Spec(C), and G=Ga×Gm [2,
Remarque 4.11]. Many of the basic properties of Lie-valued forms become
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more transparent when working in a functor-valued setting introduced by
Demazure and Grothendieck in [9, Exp. II]. In fact, they reduce here to a
rather elaborate version of the familiar commutator calculus through which
a Lie algebra structure may be defined on the Lie functor

Lie(F)(T) :=ker(F(T[e])0 F(T))

associated to an arbitrary group-valued functor F.
We now describe in more detail the contents of the present text. In the

first section, we give two separate descriptions of the schemes D (n)
X/S and

Dn
X/S, and we explore the relations between the associated combinatorial

n-forms for varying n. The first one is local, and consists in an explicit
description of the affine rings of both these schemes when X is affine over S.
In the second approach, the functor of points associated to each of these
schemes is described. While such a description is quite natural for D (n)

X/S, it
is more subtle, as we have already said, for Dn

X/S. The first main result in
this first section is the identification (Proposition 1.6 and Theorem 1.11) of
the combinatorial weak n-differentials with the anti-symmetrized module
W (n)

X/S, and the corresponding result for strong n-forms (Theorem 1.16). As
preparatory material for the next section, we also introduce here (Proposi-
tion 1.18) what we believe is a new formulation, in terms of cotorsors, of
the structure of a closed immersion S+ S defined by a square zero ideal
J in OS. The other main properties discussed in this section are the inter-
pretation in terms of differential forms of the action of the symmetric
group Sn+1 on D (n)

X/S and Dn
X/S (Proposition 1.12), and the combinatorial

definition of the exterior product Wm
X/S é Wn

X/S 0 Wm+n
X/S of differential forms

(Proposition 1.14 and Theorem 1.16).
In the second section, we pass from Ga-valued differential forms, i.e.,

sections of Wn
X/S, to general Lie(G)-valued forms. As we have said, we do

not suppose at this stage that the group G is representable, and therefore
study the Lie(F)-valued relative differential forms on X/S associated to
a sheaf of groups F on S. The only requirement on F is that it satisfy a
condition of compatibility with pushouts (Definition 2.1) which extends
Demazure’s condition (E) of [9, II] and parallels the infinitesimal linearity
condition of [17, I, Definition 6.5]. We show that this condition is satisfied
by the sheaf Aut(G) whenever G is a flat S-group scheme. Our cotorsor
description of a square zero embedding S+ S implies (Proposition 2.2)
that the kernel term in the exact sequence

10 Lie(F, J)(S)0 F(S)0 F(S)

is an abelian group, and even a C(S, OS)-module, a result which extends to
non-representable sheaves F a basic assertion from deformation theory
[14, III, Proposition 5.1]. Lemma 2.8 then asserts, as previously observed
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by Kock in his context, that two group-valued differential forms commute
whenever they have a pair of variables in common. Proposition 2.2 also
allows us to interpret in a combinatorial manner the pairing on Lie(F)-
valued differential forms induced by the Lie bracket pairing on Lie(F). The
proof that this defines a graded Lie algebra structure is reminiscent of the
familiar verification [3, II, Sect. 4, No. 4] that the standard commutator
identities on a filtered group induce a Lie algebra structure on the asso-
ciated graded module. The necessary justifications are more elaborate here,
and make repeated use of Lemma 2.8. With future applications in mind, we
also extend the construction of the Lie bracket pairing on G-valued forms
to a pairing between Aut(G)-valued and G-valued forms. As an example of
these combinatorial techniques, we interpret geometrically the adjoint
action of a group G on the module of Lie(G)-valued 1-forms, and also the
Lie bracket pairing between two G-valued 1-forms.

In the final section, we explore in low degrees the differentials dn from
G-valued n-forms to n+1-forms, thereby obtaining a combinatorial proof
of the Maurer–Cartan equation, of the Bianchi identity, and its next higher
analogue. Our proofs here have a rather different flavor from those given
in the previous section, since we now consider forms with values in a
representable group G, and work systematically with the rings of functions
of the schemes X and G. These proofs also are valid without any smooth-
ness hypothesis on X. Various computations presented here are similar to
one another, and the last one has therefore not been carried out in full
detail. When G=Ga, this combinatorial description of the de Rham
complex interprets it as an infinitesimal version of the complex which
defines Alexander–Spanier cohomology. This analogy between de Rham
and Alexander–Spanier cohomology is even more striking if one observes
that the Alexander–Spanier cochains on a manifold may be chosen (see
[7, Lemma 1.4]) to behave in the same manner with respect to the action
of the symmetric group as the combinatorial differential forms do here
(Proposition 1.12).

In a sequel [5] to the present text, we show that the techniques
developed here are well suited to the study of principal bundles with
connections, and to that of connective structures on gerbes, as defined by
J.-L. Brylinski in the special case where the structure group G is the
multiplicative group [6] (see also [15]).

1. INFINITESIMAL NEIGHBORHOODS OF DIAGONALS
AND COMBINATORIAL FORMS

1.1. Let f: X0 S be a relative scheme over an arbitrary base
scheme S. Since all questions considered in this section are Zariski local on
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X and on S, we may assume that X/S is separated. We will write inter-
changeably OX éOS

OX or OX×S X. We denote by J the ideal ker(OX×S X

0 OX) which defines the diagonal immersion of X in X×S X, so that the
sequence of OS-modules

00 J0 OX éOS
OX 0m OX 0 0 (1.1.1)

is exact. It is a sequence of OX-modules, the left and right OX-module
structure on OX éOS

OX determined by the two ring homomorphisms OX 0
OX éOS

OX

bW b é 1 bW 1 é b (1.1.2)

induced on the structure sheaves by the projections p0 and p1 of the
product X×S X onto the first and second factor. The ring homomorphisms
in question respectively determine a splitting of (1.1.1) both as an exact
sequence of left and of right OX-modules. The ideal J in OX éOS

OX is gen-
erated by elements 1 é j−j é 1, with j ¥ J and these elements in fact
generate J as either a left or a right OX-module, so that a general element
of J is of the form

C
i
ai(1 é ji−ji é 1)=C

i
(ai é ji−ai ji é 1) (1.1.3)

with ai ¥ OX and ji ¥ J.
Since we will not be considering higher order jets, the expression ‘‘infini-

tesimal’’ will always mean for us ‘‘infinitesimal to first order,’’ unless
explicitly stated. In particular, the first infinitesimal neighborhood D1

X/S of
X in X×S X is defined by

D1
X/S=Spec(PX/S)

where

PX/S :=(OX éOS
OX)/J2,

viewed as an OX-algebra via either of the two structures (1.1.2), is the ring
of the first order jets on X. The exact sequence (1.1.1) induces an exact
sequence

00 W1
X/S 0 PX/S |Qm OX 0 0, (1.1.4)

where

W1
X/S :=J/J2 (1.1.5)
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is the sheaf of relative 1-forms on X. This sequence is respectively split, as a
sequence of left and of right OX-modules by the maps induced by the first
(resp. the second) morphism (1.1.2).

The image in W1
X/S of the element (1.1.3) is the 1-form ; i ai dji. The

formula

pw=m(p) w, (1.1.6)

which is valid for p ¥ PX/S and w ¥ W1
X/S since both p−m(p) and w are

represented by elements in J, describes the structure of W1
X/S as an ideal in

PX/S in terms of its OX-module structure.

1.2. The two projections of X×S X onto X and the diagonal
immersion induce, functorially in X, morphisms

p0, p1: D1
X/S 0X and D: X+ D1

X/S (1.2.1)

which correspond respectively to the homomorphisms induced by (1.1.2)
and by the multiplication m in the ring PX/S. For any S-scheme T, a
T-valued point

T0x D1
X/S

of D1
X/S corresponds to the pair of infinitesimally close T-valued points

xi=pi p x of X. A related description of such points, in an affine
context, is the following one. Let us set S=Spec(R), X=Spec(B), and
T=Spec(C), and once more denote by J the kernel of the multiplication
map on B. A T-valued point of X is determined by an R-algebra homo-
morphism x: B0 C. The map T||0(x0, x1) X×S X induced by a pair of such
points xi corresponds to the ring homomorphism

B éR B 0 C

b0 é b1 - x0(b0) x1(b1)
(1.2.2)

so that its restriction to J is defined on a generator by

1 é b−b é 1- x1(b)−x0(b),

and therefore on a general element ;m cm(1 é bm−bm é 1) of J by

C
m
cm(1 é bm−bm é 1)WC

m
x0(cm)(x1(bm)−x0(bm)).

The map (1.2.2) factors through B éR B/J2, and therefore determines
a T-valued point of D1

X/S, if and only if x1(b)−x0(b) ¥K, with K=(Im(J))
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a square zero ideal in C. We thus have the following convenient description
of points of D1

X/S:
A pair of ring homomorphisms x0, x1: B0 C determine a T-valued

point (x0, x1) of D1
X/S if and only if

x0 — x1 mod a square zero ideal of C. (1.2.3)

It follows from the exactness of the sequence (1.1.4), that a 1-form
w ¥ W1

X/S may be viewed as a function w(x0, x1) on D1
X/S which vanishes

whenever x0=x1.

1.3. By functoriality, any commutative diagram of schemes

X|Ł
f Y

h g

S

(1.3.1)

induces a commutative diagram

D1
X/SŁD1

Y/S

p0‡ ‡p0

X Ł
f

Y

and therefore a morphism of X-schemes

D1
X/S |0

f1

D1
Y/S×Y X, (1.3.2)

where D1
Y/S is viewed as an Y-scheme via p0. Diagram (1.3.1) also induces a

map

D1
X/Y 0

g1 D1
X/S

(x0, x1) W (x0, x1).

These two functorialities imply that any commutative square

ZŁ X

‡ ‡

TŁ S

determines a composite map

D1
Z/T 0 D1

Z/S 0 D1
X/S×X Z. (1.3.3)
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Setting Z=XT when this square is cartesian, one obtains a base-change
morphism

D1
XT/T 0 D1

X/S×X XT 0’ D1
X/S×S T. (1.3.4)

Since the exact sequence (1.1.1) is split, the formation of the ideal J commutes
with base change, so that for any morphism T0 S the base-change
morphism (1.3.4) is an isomorphism.

We now show that the scheme D1
X/S satisfies another base-change property.

Consider the closed immersion i: X+ D1
X/S with defining nilpotent ideal

J/J2. The inverse image functor ig induces an equivalence of categories

(Ét/D1
X/S)0

i* (Ét/X) (1.3.5)

between the categories of étale schemes on D1
X/S and X [12, Theorem

18.1.2]. For any étale morphism p: U0X, a T-valued point of D1
X/S×X U

consists of a triple (x0, x1, u0), for a pair of infinitesimally close T-valued
points x0 and x1 of X (in other words a pair of points whose restrictions to
a closed subscheme j: T0 + T defined by a square zero ideal coincide),
together with a lifting of x0 to a map u0: T0 U. The infinitesimal lifting
property for the étale (or even formally étale) map p ensures that there
exists an unique u1: T0 U such that the diagram

commutes. Since u1 is then infinitesimally close to u0, this implies that the
morphism

D1
U/S 0 D1

X/S×X U (1.3.6)

(1.3.2) is an isomorphism. A quasi-inverse ig to ig (1.3.5) is therefore given
by

ig(pU)=D1
U/S

for any étale X-scheme pU: U0X. It follows that pg
U(W

1
X/S) 4 W1

U/S. We
shall therefore systematically regard W1

X/S, and its exterior and anti-
symmetric powers, as sheaves on the small étale site of X.

COMBINATORIAL DIFFERENTIAL FORMS 211



1.4. Thinking of the projection maps p0 and p1 respectively as the
source and target maps for an infinitesimal vector on X determined by a
given section of D1

X/S, the set of n-tuples of such vectors with a common
origin is represented by the n-fold product of X-schemes

D1
X/S× · · · ×D1

X/S , (1.4.1)

where D1
X/S is viewed as an X-scheme via the first projection. Its ring of

functions is the n-fold tensor product

(O é 2
X /J2) éOX

· · ·éOX
(O é 2

X /J2), (1.4.2)

where each of the n factors is viewed as an OX-algebra by the left multipli-
cation:

b · [b1 é b2]=[bb1 é b2].

We may amalgamate the first rings OX in each of the n factors of the tensor
product ên

OX
(OX éOS

OX), via the isomorphism

ë
n

OX

(OX éOS
OX) 4 ë

n+1

OS

OX

(b0 é b1)é · · ·é (b2n−2 é b2n−1) W 1D
i
b2i
2é b1 é · · ·é b2i+1 é · · ·é b2n−1.

(1.4.3)

For 1 [ s [ n, the ideal (OX éOS
OX)é s−1 é J é (OX éOS

OX)é n−s in the left-
hand expression corresponds under this isomorphism to the ideal J0s in the
right-hand ring generated by the expressions

d0, sb :=(1 é · · ·é b é · · · 1)−(b é · · ·é 1 é · · ·é 1)

in which the non-trivial element b ¥ OX in the first summand lies in position
s+1. Since the exact sequence (1.1.4) is split, J0s corresponds under the
identification (1.4.3) to the kernel of the morphism

ë
n+1

OS

OX |0m0s ë
n

OS

OX

which multiplies together the first and (s+1)st terms in a tensor, and
places this product in first position.
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It follows from the first of these two descriptions of J0s that the ring of
functions of the n-fold product (1.4.1) is isomorphic to the quotient ring

ên+1
OS

OX

; 0 < s [ n J
2
0s

. (1.4.4)

We now define a more general family of ideals Jrs in the ring ên+1
OS

OX in a
similar manner:

Definition 1.1. (i) For any positive integer n, let us denote by Jrs, for
all 0 [ r, s [ n, the ideal in ên+1

OS
OX generated by the expressions

d r, sb :=(1 é · · ·é 1 é · · ·é b é · · ·é 1)

−(1 é · · ·é b é · · ·é 1 é · · ·é 1) (1.4.5)

for all b ¥ OX, with the displayed intermediate terms b in these tensors
respectively placed in the (s+1)st and (r+1)st position (so that in particu-
lar Jrs=Jsr). We will also denote by Jrs the image of this ideal in the ring
(1.4.4), i.e., the ideal

1Jrs+ C
0 < s [ n

J2
0s
2 mod C

0 < s [ n
J2

0s.

(ii) We denote by J (2)
0n the ideal in ên+1

OS
OX defined by

J (2)
0n := C

0 [ r < s [ n
J2

rs.

The same notation will be used for its image

J (2)
0n mod C

0 < s [ n
J2

0s

in the ring (1.4.4).
(iii) We denote by J̃rs the image of the ideal Jrs under the canonical

projection

p:ên+1
OS

OX 0
ên+1

OS
OX

J (2)
0n

(1.4.6)

so that

J̃rs=(Jrs+J(2)
0n ) mod J (2)

0n .
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The ideal Jrs may be characterized as the kernel of the multiplication
map

ë
n+1

OS

OX |0mrs ë
n

OS

OX (1.4.7)

which multiplies together the components in positions r+1 and s+1 in a
pure tensor, and places the result in (r+1)st position.

Since a section of the scheme (1.4.1) describes an n-tuple

(x0, x1), (x0, x2), ..., (x0, xn)

of pairs of close points with a common origin, we could think of them as
generating an infinitesimal n-simplex in X based at the origin x0. However,
since the difference of two such infinitesimal vectors need not be infinite-
simal, some of the other edges of the n-simplex might nevertheless be large.
The following subscheme of (D1

X/S)
n is a better rendition of the idea of an

infinitesimal n-simplex:

Definition 1.2. For any S-scheme X, the S-scheme p: D (n)
X/S 0 S of

infinitesimal n-simplices on X is defined as the closed subscheme of Xn+1

determined by the ideal J (2)
0n :

D (n)
X/S=Spec 1

ên+1
OS

OX

J (2)
0n

2 . (1.4.8)

By construction, for any S-scheme T, a T-valued point of D (n)
X/S corre-

sponds to an (n+1)-tuple of T-valued points (x0, ..., xn) of X which are
pairwise infinitesimally close. In particular, D (1)

X/S=D1
X/S and D (0)

X/S=X.
We view D (n)

X/S as an X-scheme via the projection (x0, ..., xn)W x0. For a
general n, the construction of D (n)

X/S satisfies the same functorialities as D1
X/S,

and in particular commutes with base change (resp. étale base change) as in
(1.3.4), (1.3.6). In the affine situation, the characterization of T-valued
points of D1

X/S introduced in (1.2.3) extends as follows, for T=Spec(C), to
T-valued points of D (n)

X/S:
A T-valued point of D (n)

X/S consists of an n+1-tuple (x0, ..., xn) of
R-algebra homomorphisms xi ¥ Hom(B, C) such that, for each pair i, j,

xi — xj mod some square zero ideal Ki, j of C. (1.4.9)

The n+1 standard projections (x0, ..., xn)W (x0, ..., x̂i, ..., xn) define
n+1 surjective morphisms of S-schemes

di: D (n)
X/S 0 D (n−1)

X/S (1.4.10)
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and the maps (x0, ..., xn−1)W (x0, ..., xi, xi, ..., xn−1) define n partial
diagonal immersions

si: D (n−1)
X/S 0 D (n)

X/S. (1.4.11)

The face maps di and the degeneracy maps si satisfy the standard simplicial
identities, so that the D (n)

X/S define, as n varies, a simplicial S-scheme D ( f )
X/S :

· · · D (2)
X/S

Ł̃ŁŁ̃ D (1)
X/S

Ł̃
Ł X. (1.4.12)

Since the immersions si are defined by the ideals J̃i, i+1 in the ring of
functions of D (n)

X/S, the degeneracy subscheme

0
i
si(D

(n−1)
X/S ) (1.4.13)

of D (n)
X/S is determined by the ideal 4i J̃i, i+1 , so that elements in this ideal

may be viewed as functions f(x0, ..., xn) on D (n)
X/S which vanish whenever

xi=xi+1 for some i.

1.5. We will now give several other descriptions of this ideal. In
order to simplify the notation we may, without loss of generality, localize
over S and X in the Zariski topology. We set once more S=Spec(R) and
X=Spec(B) for some algebra B over a commutative ring R, denote, as in
(1.1.1), by J the kernel of the multiplication map m : B éR B0 B, and set

P=B éR B/J2, W1=J/J2.

We continue to denote by Jrs, J̃rs in this affine context the ideals introduced
in definition 1.1. In particular the isomorphism (1.4.3) induces an iso-
morphism

Pé n 4
Bé n+1

; s J
2
0s

. (1.5.1)

Lemma 1.3. For any triple of distinct integers (i, j, k), the inclusion

Jik … Jij+Jjk (1.5.2)

is satisfied in Bé n+1.
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Proof. The assertion follows from the identity

d i, kb=d i, jb+d j, kb (1.5.3)

for all b ¥ B. The corresponding relation

J̃ik … J̃ij+J̃jk (1.5.4)

in the ring (1.4.8) of D (n)
X/S is then also satisfied. L

The generators d r, sx d r, sy of the ideal J2
rs in Bé n+1 may be expanded for

any x, y ¥ B as

d r, sx d r, sy=(d0, sx+dr, 0x) (d0, sy+dr, 0y)

=d0, sx d0, sy+dr, 0x d0, sy+d0, sx d r, 0y+dr, 0x d r, 0y. (1.5.5)

In the quotient ring Bé n+1/; J2
0i, the first and fourth terms of this expres-

sion vanish, so that

d r, sx d r, sy=d r, 0x d0, sy+d0, sx d r, 0y

=−(d0, rx d0, sy+d0, sx d0, ry). (1.5.6)

The representative in Bé n+1 for the summand d0, rx d0, sy in this formula
corresponds under the amalgamation map (1.4.3) to the expression

1P é · · · dx é · · ·é dy é · · ·é 1P

in Pé n with dx (resp. dy) in (r+1)st (resp. (s+1)st) position, so that the
expression d r, sx d r, sy corresponds up to sign to

(1P é · · ·é dx é · · ·é dy é · · ·é 1P)

+(1P é · · ·é dy é · · ·é dx é · · ·é 1P)

= (1+yr, s)(1P é · · ·é dx é · · ·é dy é · · ·é 1P), (1.5.7)

where an element s in the symmetric group Sn acts on the left on Pé n via
B-algebra automorphisms

s · (p1 é · · ·é pn)=ps−1(1) é · · ·é ps−1(n) (1.5.8)

and yr, s is the transposition exchanging r and s.
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Lemma 1.4. For any n > 0, the relation

D
n

i=1
J̃0i … 3

r < s
J̃rs

is satisfied in the ring Bé n+1/J(2)
0n .

Proof. It suffices to verify that the expression <n
i=1 J̃0i is in the kernel

of each map mrs (1.4.7). It is immediately verified on generators that, for all
r < s,

mrs(J0i)=˛
J0i, i < s
J0r, i=s
J0, s−1, i > s

(1.5.9)

so that

mrs
1D

n

i=1
J0i
2 … mrs
1D

s

i=1
J0i
2 … J2

0r. (1.5.10)

This expression therefore vanishes in Bé n/J (2)
0, n−1. L

The following lemma gives another description of the ideal <n
i=1 J̃0i in

the ring Bé n+1/J(2)
0n :

Lemma 1.5. The ideals <n−1
i=0 J̃i, i+1 and <n

i=1 J̃0i in the ring Bé n+1/J(2)
0n

are equal.

Proof. By iterating (1.5.2), we know that

J01 … J01

J02 … J01+J12

· · ·

J0n … J01+J12+·· ·+Jn−1, n.

Applying distributivity to the product of the right-hand expressions, we see
that all the terms obtained vanish in Bé n+1/J (2)

0n except for the monomial
<n−1

i=0 J̃i, i+1.This yields the inclusion

D
n−1

i=0
J̃0, i+1 … D

n−1

i=0
J̃i, i+1.
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The opposite inclusion is proved similarly, by using instead the inclusions

Jk, k+1 … J0k+J0, k+1

for all k. L

1.6. We now return to the splitting of (1.1.1) as an exact sequence
of left B-modules. This yields a direct sum decomposition of the left
B-module Bé 2/J2 as

P 4 B À W1. (1.6.1)

The image of a generator

(1P)é r−1 é (1 é x−x é 1) é (1P)é n−r

of the summand Pé r−1 é W1 é Pé n−r in Pé n under the amalgamation map
(1.4.3) is the generator d0, rx of the ideal J0r in Bé n+1/; i J

2
0i. The map

(1.4.3) restricts to an isomorphism

Pé r−1 éB W1 éB Pé n−r 4 J0r.

Taking into account the full decomposition of Pé n induced by the splitting
(1.6.1), we observe that the product in Pé n of the n ideals Pé r−1 é
W1 é Pé n−r is the ideal

(W1)é n=3
r
(Pé r−1 é W1 é Pé n−r) (1.6.2)

in Pé n. Consider the map

l: Pé n 0 Bé n+1;C J2
0i (1.6.3)

induced by the amalgamation map (1.4.3). Applying this map l to the
equality (1.6.2) yields the identifications

(W1)é n 4 D
n

i=1
J0i=3

n

i=1
J0i (1.6.4)

with the latter two terms in the ring Bé n+1/; i J
2
0i. These identifications are

compatible with the B-module structures, and the B-module structure on
<n

i=1 J0i is independent of the choice of an inclusion of B in Bé n+1/; J2
0i

induced by the corresponding projection from (D1
X/S)

n to X.
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By Lemma 1.4, the restriction of the map (1.6.3) to the factor (W1)é n

determines the composite map

l: (W1)é n 4D
i
J0i 0

p D
i
J̃0i + 3

r < s
J̃rs (1.6.5)

so that

l(db1 é · · ·é dbn)=D
n

i=1
d0, ibi mod J (2)

0n . (1.6.6)

Proposition 1.6. The composite map (1.6.5) is surjective.

Proof. It suffices to verify that the right-hand map in (1.6.5) is
surjective, i.e., in view of Lemma 1.4 that

3
n

i=1
J̃0i=D

n

i=1
J̃0i. (1.6.7)

Carrying further the discussion in (1.5.9), we observe that

m0r(Jkl)=˛
Jkl, 0 [ k < l < r
J0k, 0 < k < l=r
{0}, (k, l)=(0, r)
Jk, l−1, k < r < l
J0l, k=r < l
Jk−1, l−1, r < k < l.

(1.6.8)

Consider the map

Bé n/J (2)
0, n−1 0d

r
Bé n+1/J(2)

0n

b0 é · · ·é bn−1 W b0 é · · ·é 1 é · · ·é bn−1

induced at the ring level by the face map dr (1.4.10), which inserts the term
1 in the (r+1)st place. This is a section of the map m0r considered above,
and it follows from a verification on generators of the ideal Jkl that

d r(Jkl) … ˛
Jkl, k < l < r
Jk, l+1, k < r < l

(1.6.9)

and

d r(Jrs) … Jr+1, s+1.
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In order to prove (1.6.7), let us show inductively on j that the corre-
sponding assertion

3
j

i=1
J̃0i=D

j

i=1
J̃0i (1.6.10)

is true. The inclusion < j
i=1 J̃0i …4 j

i=1 J̃0i is obvious, so we now prove the
reverse inclusion. Supposing that (1.6.10) is true for j−1, we may represent
an element f ¥4 j

i=1 J̃0i as an element of 4 j−1
i=0 J̃0i=< j−1

i=1 J̃0i, which in turn
we can write as

f=C
l
flhl

with fl ¥ Bé n+1/J(2)
0n and hl=hl, 1 · · · hl, j−1 a product of standard generating

elements hl, k of J̃0k . The splitting d j of m0j determines a decomposition of
fl as

fl=d j(m0j(fl))+gl (1.6.11)

with gl ¥ ker m0j=J̃0j, so that

f=C
l
flhl

=C
l
(d j(m0j(fl)) hl+C

l
glhl. (1.6.12)

Since f and each of the terms glhl live in J̃0j, so does the remaining expres-
sion ; l(d j(m0j(fl)) hl in Eq. (1.6.12) and therefore

C
l
m0j(fl) m0j(hl)=m0j

1C
l
(d j(m0j(fl)) hl

2=0.

Each of the standard generating elements hl, k of J̃0k satisfies the equation

d j(m0j(hl, k))=hl, k

so that d j(m0j(hl))=hl is also true for all l, and therefore

C
l

d j(m0j(fl)) hl=d j 1C
l
m0j(fl) m0j(hl)2

=0.
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Equation (1.6.12) now simplifies to

f=C
l
glhl

so that f ¥ (< j−1
i=0 J̃0i) J̃0j=< j

i=0 J̃0i and the inductive step in the proof of
(1.6.10) has been carried out. L

Remark 1.7. (i) The same argument shows, after replacing m0j by
mj, j+1 and d j by d j+1, that

3
n−1

i=0
J̃i, i+1=D

n−1

i=0
J̃i, i+1.

(ii) Combining Lemma 1.5 and Proposition 1.6 with (i), we have
shown that

D
n

i=1
J̃0i=D

n−1

i=0
J̃i, i+1=3

n−1

i=0
J̃i, i+1=3

n

i=1
J̃0i= 3

0 [ r < s [ n
J̃rs. (1.6.13)

Definition 1.8. For n > 0, let Y (n)
X/S be the ideal 40 [ r < s [ n J̃rs in the

ring of functions of D (n)
X/S. We will use freely any of its equivalent descrip-

tions (1.6.13). In the affine case, we denote it by Y (n). By definition, Y (0)
X/S is

the ring of functions OX of D (0)
X/S. We denote by Y (n)

X/S the sheaf on the small
étale site of X defined by

Y (n)
X/S(U) :=Y (n)

U/S. (1.6.14)

A pure tensor a=<n
i=1 d

0, i(bi) ¥<n
i=1 J̃0i=Y (n)

X/S will be denoted
db1 · · · dbn.

We previously interpreted the ideal Y (n)
X/S as consisting of functions

f(x0, ..., xn) on D (n)
X/S which vanish whenever xi=xi+1 for some i. By

(1.6.13) it can also be described as the ideal of those functions which vanish
whenever x0=xi for some i > 0, or even, more restrictively, as those which
vanish whenever xr=xs for some pair of integers r < s. The definition, in
this last incarnation, transposes to the scheme-theoretic context, and
extends to the not necessarily smooth case, the definition of combinatorial
n-forms given by Kock [18] in the context of synthetic differential geom-
etry. Hence, we will adopt this terminology here. This last characterization
of the ideal also makes it apparent that the (n+1) possible OX-module
structures induced on Y (n)

X/S, as in (1.1.2), by the injections of OX into Oé n+1
X

coincide, since the difference between any pair of images of OX lies in
some J̃rs.
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1.7. In the affine description of points of D (n)
X/S given earlier, a

combinatorial n-form is a rule which associates an element f(x0, ..., xn) in
C to an n+1-tuple of algebra homomorphisms xi: B0 C satisfying the
requisite conditions (1.4.9), and subject to the additional condition

f(x0, ..., xn)=0

whenever xi=xj for some pair of integers i, j. The rule fa associated in this
manner to an element a ¥ Y (n) … Bé n+1/J (2)

0n is given by

fa(x0, ..., xn)=(x0 é · · · é xn)(a), (1.7.1)

where the map (x0 é · · · é xn) is defined by

Bé n+1/J(2)
0n 0 C

b0 é · · · é bn - D
n

i=0
xi(bi).

(1.7.2)

In particular, for a=db1, ..., dbn, we have

fa(x0, ..., xn)=D
i
(xi(bi)−x0(bi)). (1.7.3)

Similarly, an element a in the ring Bé n+1/; J2
0i of the larger scheme

(D1
X/S)

n may be described by the expression (1.7.1) , where now the ring
homomorphisms xi: B0 C satisfy the weaker requirement that for each
integer j, xj — x0 mod some square zero ideal Kj of C. Pulling back the
map (1.7.2) to the ring Pé n via the isomorphisms (1.5.1), one finds that, for
a=l(db1 é · · ·é dbn) ¥ Y (n), the corresponding rule fa is

fa(x0, ..., xn)=(y1 é · · · é yn)(db1 é · · · é dbn)

=D
i
yi(dbi), (1.7.4)

where yi=x0 é xi is the ring homomorphism defined by

P 0 C

b é bŒ - x0(b) xi(bŒ).
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The transported B-module action of an element b ¥ B on the rule fa (1.7.3)
is given by

b(f)a (x0, ..., xn)=D
i
x0(b)(xi(bi)−x0(bi)) (1.7.5)

and the congruence condition (1.4.9) on the xi’s ensures that this expression
can also be written as

b(f)a (x0, ..., xn)=D
i
xj(b)(xi(bi)−x0(bi)) (1.7.6)

for any j ¥ [0, n].

Definition 1.9. Let W (n)
X/S be the quotient of the OX-module (W1

X/S)
é n

by the submodule generated by all the elements

(w1 é · · ·é wr é · · ·é ws é · · ·é wn)+(w1 é · · ·é ws é · · ·é wr é · · ·é wn)
(1.7.7)

for all r < s. The module W (n)
X/S will be called the module of weak (or anti-

symmetric) relative n-forms on X/S. We will write w1 N4 · · · N4wn for the
image of w1 é · · ·é wn in W (n)

X/S.

The quotient of W (n)
X/S by the additional relations w1 é · · ·é wr é · · ·é

wr é · · ·é wn with wr in both rth and sth position for all r < s is simply the
exterior power Wn

X/S=Mn W1
X/S of n copies of W1

X/S, in other words the
traditional module of exterior relative n-forms on X. The kernel of the
canonical surjection

W (n)
X/S 0 Wn

X/S

is 2-torsion for all n and vanishes whenever 2 is invertible in X, since the
corresponding relation between the anti-symmetrized tensor power and the
corresponding exterior power of a module is satisfied. The anti-symme-
trized quotient of Pé n will be denoted P (n), so that W (n) is a direct factor of
P (n), just as Wn is a direct factor of Mn P.

Proposition 1.10. The (surjective) composite map (1.6.5) factors
through W (n)

X/S.
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Proof. In order to prove that the map factors through W (n)
X/S, it suffices

to verify that the elements (1.7.7) live in the kernel of this map. Such an
element can be rewritten as a multiple

(w1 é · · ·é 1 é · · ·é 1 é · · ·é wn)

×[(1 é · · ·é wr é · · ·é ws é · · ·é 1)

+(1 é · · ·é ws é · · ·é wr é · · ·é 1)]

in the ring Pé n of the element

(1 é · · ·é wr é · · ·é ws é · · ·é 1)+(1 é · · ·é ws é · · ·é wr é · · ·é 1)

(with displayed intermediate positions r+1 and s+1). The latter’s image in
Bé n+1/; J2

0i under the amalgamation map is equal, by the discussion pre-
ceding (1.5.7), to the element −d r, swr d r, sws ¥ J

2
rs. By construction, such an

element vanishes in the ring Bé n+1/J(2)
0n . L

Theorem 1.11. The induced map

W (n)
X/S |0nn Y (n)

X/S (1.7.8)

is an isomorphism between the module W (n)
X/S of weak n-forms and the module

Y (n)
X/S of weak combinatorial n-forms on X/S.

Proof. Let K be the submodule of anti-symmetrizing elements in
(W1)é n. We have the following commutative diagram with exact horizontal
lines:

0|||Ł K|||Ł (W1)é n Ł W (n) Ł 0

‡l|K 6‡l ‡
a
n

0 Ł J (2)
0n 5 D

i
J0i Ł D J0i |Ł Y (n) Ł 0.

In order to prove that the map n induced by l is an isomorphism, it suffices
to verify the surjectivity of l|K.

A general element in the ideal ; J2
rs is a sum of multiples of generators

d r, sx d r, sy of J2
rs. We have seen (1.5.7) that such a generator d r, sx d r, sy of

J2
rs corresponds via the map l−1 to the element

(1+yr, s)(1P é · · ·é dx é · · ·é dy é · · ·é 1P)
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in Pé n, so that a general element in J2
rs is sent by l−1 to a sum of elements

in Pé n which are each of the form

(p1 é · · ·é pn)(1+yr, s)(1P é · · ·é dx é · · ·é dy é · · ·é 1P)

with pi ¥ P for all i. Eq. (1.1.6), applied in (r+1)st and (s+1)st place,
implies that such an expression may be rewritten as

m(pr) m(ps)(p1 é · · ·é 1P é · · · 1P é · · ·é pn)

×[(1+yr, s)(1P é · · ·é dx é · · ·é dy é · · ·é 1P)]

=m(pr) m(ps)[(1+yr, s)(p1 é · · ·é 1P é · · · 1P é · · ·é pn)

×(1P é · · ·é dx é · · ·é dy é · · ·é 1P)]

so that a general element g of l−1(; r, s J
2
rs) is of the form

g=C (1+yr, s)(tr, s)

for some tr, s ¥ Pé n. Suppose that g belongs to (W1)é n, so that q(g)=g

where q: Pé n 0 Wé n is the projection map determined by the splitting
(1.6.1). Applying q to the expression for g, it follows that

g=C
r, s
(1+yr, s)(q(tr, s))

so that g lives as required in the anti-symmetrizing submodule K of
(W1)é n. L

1.8. The symmetric group Sn+1 acts on the left via B-module
automorphisms on Y (n)

X/S by the rule

s.f(x0, ..., xn)=f(xs(0), ..., xs(n)). (1.8.1)

Proposition 1.12. The symmetric group Sn+1 acts on Y (n)
X/S via the sign

character:

sf=sgn(s) f. (1.8.2)

Proof. For n=1, this follows from the computation

x1 é x0(db)=x0(b)−x1(b)=−x0 é x1(db).
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For n > 1, it suffices, since all transpositions in Sn+1 are conjugate, to verify
the assertion for a single transposition yr, s, and we may assume 0 < r < s so
that yr, s lies in the subgroup Sn … Sn+1 consisting of those permutations of
the set [0, n] which leave 0 invariant. The left action (1.5.8) of Sn on Pé n

corresponds under the amalgamation isomorphism (1.6.3) to its action on
Bé n+1 defined by

s(b0 é b1 é · · ·é bn)=b0 é bs−1(1) é · · ·é bs−1(n).

Furthermore,

sfa=fsa

for all a ¥ W (n), in view of the following computation, which it is sufficient
to carry out for a pure tensor a=db1 é · · ·é dbn in W (n). In the notation of
(1.7.4),

sfa(x0, ..., xn)=D
n

i=1
ys(i)(dbi)

=D
n

i=1
yi(dbs−1(i))

=fsa(x0, ..., xn).

In particular, yr, sfa=fyr, sa. Lifting the action of yr, s back from Bé n+1/J(2)
0n

to Pé n, we finally observe that

yr, s(db1 é · · · dbr é · · ·é dbs é · · ·é dbn)

=db1 é · · · dbs é · · ·é dbr é · · ·é dbn

=−db1 é · · · dbr é · · ·é dbs é · · ·é dbn

in W (n)
X/S. L

1.9. We now consider the multiplicative structure on combinatorial
differential forms.

Definition 1.13. For any m, n, we define a pairing

Y (m)
X/S×Y (n)

X/S Ł
km, n

Y (m+n)
X/S

(f, g) ›|ł f f g
(1.9.1)
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by setting

(f fg)(x0, ..., xm+n) :=f(x0, ..., xm) g(xm, ..., xm+n).

It is immediate that this pairing yields a combinatorial (m+n)-form, and
that it is biadditive. By definition, it associates to the pair of forms f and g,
viewed as morphisms

f: D (m)
X/S 0 Ga g: D (n)

X/S 0 Ga,

the composite morphism

D (m+n)
X/S 0 D (m)

X/S×D (n)
X/S |0f×g Ga×Ga 0 Ga, (1.9.2)

the first map being the product of the projection onto the first m+1 and
the last n+1 factors, and the last one the ring multiplication on the
additive group Ga. The compatibility of the pairing with the OX-module
structure is most readily verified by restricting to an affine setting, and
observing that the B-module structure on an m-form f may expressed as

b ·f(x0, ..., xm)=xi(b) f(x0, ..., xm)

for all b ¥ B, and that, as we have already noted, this formula is inde-
pendent of the choice of the integer i.

Proposition 1.14. The diagram

W (m)
X/S éOX W (n)

X/S ||Ł
nm é nn

’
Y (m)

X/S éOX
Y (n)

X/S

‡ ‡km, n

W (m+n)
X/S ||||||Ł

nm+n

’
Y (m+n)

X/S

with horizontal maps defined by (1.7.8) is commutative.

Proof. It suffices to verify the commutativity of the diagram on the
generators a=db1 N4 · · · N4 dbm and b=dbm+1 N4 · · · N4 dbm+n of W (m)

X/S and
W (n)

X/S. The element

(nm é nn)(a é b)=D
m

i=1
d0, ibi é D

n

j=1
d0, jbm+j
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describes the right-hand morphism D (m)
X/S×D (n)

X/S 0 Ga of (1.9.2). The left-
hand morphism of affine X-schemes D (m+n)

X/S 0 D (m)
X/S×X D (n)

X/S in (1.9.2)
corresponds to the ring homomorphism

Pém éB Pé n 0 Pém+n

(p1 é · · ·é pm) éB (pm+1 é · · ·é pm+n) W p1 é · · ·é pm+n

(1.9.3)

where we (exceptionally!) view Pém, in the tensor power Pém éB Pé n, as a
right B-module via its extreme right B-module structure. The amalga-
mation homomorphism (1.9.3) sends <m

i=1 d
0, ibi é<n

j=1 d
0, jbm+j to the

product <m
i=1 d

0, ibi <n
j=1 d

m, m+jbm+j in Pém+n so that

km, n p (nm é nn)(a é b)=D
m

i=1
d0, ibi D

n

j=1
dm, m+jbm+j. (1.9.4)

Each of the factors dm, m+jbm+j in this equation may, by (1.5.3), be
expanded as

dm, m+jbm+j=d0, m+jbm+j−d0, mbm+j.

However, the contribution to (1.9.4) of the new summand d0, mbm+j is can-
celled out by the term d0, mbm in the first factor of (1.9.4), since both these
terms lie in the square zero ideal J0m. It follows that

km, n p (nm é nn)(a é b)=D
m

i=1
d0, ibi D

n

j=1
d0, m+jbm+j

=D
m+n

i=1
d0, ibi

=nm+n(aN4 b). L (1.9.5)

1.10. In order to interpret combinatorially ordinary differential
forms, i.e., elements of the OX-module Wn

X/S :=Mn W1
X/S rather than of the

anti-symmetric tensor product W (n)
X/S, we now enlarge the ideal J (2)

0n in Oé n+1
X

of Definition 1.1.

Definition 1.15. (i) We set

JO2P
0n =J(2)

0n +Jn,

where Jn is the ideal in Oé n+1
X generated by the products d0, rb d0, sb, for all

pairs r, s and all b ¥ OX. We use the same notations J (2)
0n and Jn for the

corresponding ideals in the ring (1.4.4).
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(ii) We denote again by J̃rs the image in Bé n+1/JO2P
0n of the corre-

sponding ideal in Oé n+1
X /J(2)

0n , in other words the ideal

Jrs+JO2P
0n mod JO2P

0n .

(iii) The OX-module < i J̃0i in Oé n+1
X /JO2P

0n will be called the module
of (strong) combinatorial n-forms, and denoted Yn

X/S. The corresponding
sheaf Y n

X/S on the small étale site of X is defined as in (1.6.14).

Reverting to the affine case, and with the corresponding notation,
observe that the identifications (1.6.13) yield alternate descriptions of Yn

X/S.
All the expressions d r, tb d s, ub lie in the ideal Jn in the ring (1.4.4), as may be
seen by expanding each of the two factor as in (1.5.5). On the other hand,
Eq. (1.5.6) implies that 2 d0, rb d0, sb lies for all b ¥ B in the smaller ideal J (2)

0n ,
so that the quotient JO2P

0n /J
(2)
0n is 2-torsion. The ideals JO2P

0n and J (2)
0n therefore

coincide whenever 2 is invertible in B, and in that case there is no difference
between weak and strong combinatorial n-forms.

We now define for each n the S-scheme p: Dn
X/S 0 S as a closed

subscheme of Xn+1:

Dn
X/S=Spec(Oé n+1

X /JO2P
0n ). (1.10.1)

We now have closed immersions of subschemes

X … Dn
X/S … D (n)

X/S …Xn+1.

By induction on n, it is easily verified that the ideal ; i Ji, i+1 in the ring
Oé n+1

X determines this closed immersion of X in Xn+1, so that ; i J̃i, i+1

defines the immersion of X into D (n)
X/S. Taking the multinomial expansion of

the (n+1)st power of ; J̃i, i+1, we see that this is a nilpotent ideal. The
immersion of X in Dn

X/S is a fortiori nilpotent. We will call pointed affine
X-schemes such as Dn

X/S, whose augmentation ideal is nilpotent, infinite-
simal X-schemes. We may think of T-valued points of Dn

X/S as (n+1)-
tuples of points of X which are infinitesimally closer to each other than
those of D (n)

X/S. In addition to condition (1.4.9), we further require here that
for any function f: X0 Ga,

(f(xi)−f(x0))(f(xj)−f(x0))=0 for all i, j.

Alternately, in the affine language, a T-valued point of Dn
X/S consists of an

(n+1)-tuple of R-algebra homomorphisms xi: B0 C satisfying (1.4.9),
and for which

(xi(b)−x0(b))(xj(b)−x0(b))=0 (1.10.2)
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for all b ¥ B. The scheme Dn
X/S satisfies the same functoriality properties as

D (n)
X/S, and once more commutes with base change and with étale base

change. The same argument as in Proposition 1.6 shows that the ideal Yn
X/S

has five descriptions analogous to those of Y (n)
X/S (1.6.13) and the action of

Sn+1 on Y (n)
X/S induces a corresponding action on Yn

X/S. Strong combina-
torial n-forms may therefore be thought of as functions f(x0, ..., xn) on
Dn

X/S (in other words for which the xi are infinitesimally close to each other
in the new, stronger, sense) and which satisfy the same vanishing conditions
as before on degenerate elements. The analogue of Theorem 1.11 remains
true in this context:

Theorem 1.16. The isomorphism n (1.7.8) induces an isomorphism

Wn
X/S 0

’
Y n

X/S (1.10.3)

between n-forms and strong combinatorial forms on X/S, and this iso-
morphism is compatible with the multiplicative structure.

Proof. The module of n-forms Wn
X/S is the quotient of the module of

anti-symmetric n-forms W (n)
X/S by the submodule L generated by the expres-

sions dx1 N4 · · · N4 dxn with dxr=dxs=dx for some pair r, s. Such a term
is a multiple in Pé n of an element represented by 1 é · · ·é dxr é · · ·é
dxr é · · ·é 1, so that its image in Yn

X/S is the corresponding multiple of
d0, rx d0, sx. It now follows from the definition of Yn

X/S that n induces an
isomorphism Wn

X/S 0
’ Yn

X/S. The compatibility with the multiplicative
structure follows from the corresponding assertion for weak n-forms
(Proposition 1.14). L

Remark 1.17. (i) When restricted to the Zariski site of X, the
isomorphism (1.10.3) may be spelled out as an isomorphism of OX-modules

Wn
X/S 4

<n
i=1 J0i+JO2P

0n

JO2P
0n

(1.10.4)

or more succinctly with the right hand side replaced by the expression
< i J̃0i or any of its four variants from (1.6.13). This description of Wn

X/S is
the natural generalization for n > 1 of the Kähler style definition (1.1.5)
of W1

X/S.

(ii) The face and degeneracy maps (1.4.10)–(1.4.11) restrict to
corresponding operators

di: Dn
X/S 0 Dn−1

X/S si: Dn−1
X/S 0 Dn

X/S (1.10.5)
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which determine a simplicial S-subscheme Dg
X/S of the simplicial scheme

D ( f )
X/S (1.4.12). Similarly, the projection

D (u)
X/S 0 D (v)

X/S

(x0, ..., xu) - (xi0 , ..., xiv )

of (x0, ..., xu) onto v+1 arbitrary factors restricts to a corresponding map
Du

X/S 0 Dv
X/S which we will also refer to as a projection. The maps

dn: Y n
X/S 0 Y n+1

X/S

(resp. dn : Y (n)
X/S 0 Y (n+1)

X/S ) defined in a Čech–Alexander manner by

dn(f)(x0, ..., xn+1)=C
n+1

i=0
f(x0, ..., x̂i, ..., xn+1),

which we will generally simply denote by d, are OS-linear, satisfy d p d=0
and

d(f fg)=d(f) f (g)+(−1)p f fd(g)

for f ¥ Y p
X/S (resp. ¥ Y (p)

X/S). For f ¥ Y n−1
X/S, (1.10.3) identifies df with df

so that we obtain a combinatorial interpretation of the de Rham complex,
and of its analogue for weak forms, which we will extend in Sect. 3 to
group-valued forms.

1.11. Let S ,0i S be a closed immersion defined by a square zero
ideal J in OS. We will henceforth simply say that such an i is a square zero
immersion. Since J2=0, the quasi-coherent OS-module structure on J
induces a corresponding OS-module structure. The choice of a retraction
r of i determines, when it exists, an OS-module splitting

OS 4 OS À J (1.11.1)

of OS. For any quasi-coherent OS-module M, we set as in [9, II]

DS(M) :=OS ÀMe.

The ring DS(M) is the generalized ring of dual numbers associated to M,
whose OS-algebra structure is determined by the equation e2=0. The
corresponding pointed S-scheme is denoted

IS(M) :=Spec(DS(M)).
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In particular, DS(OS) is the standard ring of dual numbers on S and the
corresponding affine S-scheme IS(OS) will simply be denoted S[e]. The
compatibility of (1.11.1) with the multiplicative structure is expressed by
the OS-algebra isomorphism

OS 4 DS(J), (1.11.2)

so that S 4 IS(J) when there exists a retraction r of i. In these terms, the
split exact sequence (1.1.4) asserts that

D1
X/S 4 IX(W

1
X/S). (1.11.3)

The construction of the ring DS(M) is covariant in M, and the projection
of M onto the zero OS-module (0) induces an augmentation map
DS(M)0 OS, and therefore a distinguished section

i: S+ IS(M) (1.11.4)

of IS(M). It follows that IS: MW IS(M) is a contravariant functor from
quasi-coherent OS-modules to pointed affine S-schemes. For any pair of
OS-modules M and N, consider the augmented OS-algebra isomorphism

DS(M)×OS
DS(N) 4 DS(M×N). (1.11.5)

The fiber product DS(M)×OS
DS(N) is the product of DS(M) and DS(N) in

the category of augmented OS-algebras, so that DS viewed as a functor
from OS-modules to augmented OS-algebras preserves products. Let

IS(M)KS IS(N) :=Spec(DS(M)×OS
DS(N))

be the corresponding coproduct of IS(M) and IS(N) in the category of
pointed affine S-schemes. The isomorphism (1.11.5) corresponds to an
isomorphism of pointed S-schemes

IS(M)KS IS(N) 4 IS(M×N),

so that the functor IS transforms products into coproducts. More generally,
since fiber products and a final object exist in the category of augmented
OS-algebras, so do amalgamated sums (i.e., pushout diagrams) and an
initial object in the category of pointed affine S-schemes.

The addition M×M0M in M induces a composition law

DS(M)×OS
DS(M)0 DS(M)
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which, together with the morphism OS 0 DS(M) associated to the injection
of (0) into M and with the map induced by the endomorphism of M
which sends any m to −m, makes DS(M) into an abelian group object in
the category of augmented OS-algebras. Dually, this composition law
corresponds to a cocommutative comultiplication

IS(M)0 IS(M×M) 4 IS(M)KS IS(M) (1.11.6)

which, together with the induced counit IS(M)0 S and the coinverse map,
defines on IS(M) a cocommutative cogroup structure in the category of
pointed affine S-schemes. The OS-module structure on M induces an action
of C(S, OS) on IS(M) which is compatible with the cogroup structure.

Suppose that i: S+ S is a closed immersion of schemes, defined by a
square zero ideal J in OS, and that i does not have a retraction. In this
case, there no longer exists an isomorphism (1.11.2), but a weaker form
of the previous structure still exists. Let EX(OS) be the category of
OS-augmented rings, with square zero augmentation ideals which are
quasi-coherent as OS-modules. Consider the morphism

OS×OS
DS(J)0n OS, (1.11.7)

in EX(OS) defined by

n(u, ū+je)=u+j

with j ¥ J and ū the image under the augmentation map of an element
u ¥ OS. It is readily verified (and in fact is a formal consequence of the
definition of an additive cofibered category in [13]) that n defines a right
torsor structure on OS in the category EX(OS) under the action of the
(abelian) group object DS(J). We say that an object E in a category C is a
cotorsor under a cogroup C in C for a coaction n : E0 EKC provided E°
is a torsor under C° via n° in the dual category C°. The following assertion
follows immediately from the previous discussion when we pass from the
category EX(OS) to the dual category of square zero immersions S+ S.

Proposition 1.18. Let i: S+ S be a closed immersion of schemes
defined by a square zero ideal J … OS. The map

S 0 SKS IS(J) (1.11.8)

induced by n (1.11.7) defines a right cotorsor structure on S in the category
of S-pointed schemes, under of the coaction of the (coabelian) cogroup object
IS(J). We will also denote the coaction map (1.11.8) by n.
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We say that such a cotorsor is trivial when there exists a retraction (or
cosection) r: S 0 S of i. We have already seen that such a retraction
determines an identification of the cotorsor S with the underlying
S-scheme of the cogroup IS(J). This identification may also be realized, in
torsor style, as the composite morphism

S 0n SKS IS(J)|0rK1 SKS IS(J)0’ IS(J).

The pushout by itself of any closed immersion i admits a codiagonal
retraction

SKS S 0¨ S.

We now pass from the discussion of coproducts in the category of
pointed affine S-schemes to that of products . For any pair of OS-modules
M and N the natural isomorphism

(OS ÀMe) éOX
(OS ÀNeŒ) 4 OS ÀMe ÀNeŒ À (M éOS

N) eeŒ

determines an isomorphism

IS(M)×S IS(N) 4 Spec(OS ÀMe ÀNeŒ À (M éOX
N) eeŒ). (1.11.9)

The canonical inclusions

IS(M)|0(1, 0) IS(M)×S IS(N) IS(N)|0(0, 1) IS(M)×S IS(N)

determine a pointed immersion

IS(M)KS IS(N)0 IS(M)×S IS(N)

into IS(M)×S IS(N), which corresponds to the projection of the augmenta-
tion ideal M ÀN À (M éOS

N) of IS(M)×S IS(N) onto its two first factors.
On the other hand, the inclusion M éOS

N+ (M ÀN À (M éOS
N))

defines a pointed morphism

IS(M)×S IS(N)0
q IS(M éN).

By (1.11.9), q induces an isomorphism

IS(M)NS IS(N) :=IS(M)×S IS(N)/IS(M)KS IS(N)0’ IS(M éN)
(1.11.10)

which interprets IS(M éN) as the smash-product of IS(M) and IS(N) in
the category of pointed affine S-schemes.
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1.12. We now view Dn
X/S as an X-scheme via p0. The square zero

immersions si (1.10.5) induce a morphism of pointed affine X-schemes

I
X

Dn−1
X/S |0Ki si Dn

X/S.

This morphism factors through a square zero immersion

“Dn
X/S + Dn

X/S ,

where “Dn
X/S is the quotient of JX Dn−1

X/S determined by the simplicial iden-
tities sisj=sj+1si for i [ j. Let us define, for each n > 0, the X-scheme D̄n

X/S

by the cocartesian diagram of pointed affine X-schemes

“Dn
X/S + Dn

X/S

‡ ‡pn

X |0s D̄n
X/S,

(1.12.1)

so that

D̄n
X/S 4

Dn
X/S

“Dn
X/S

.

In particular, D̄1
X/S=D1

X/S. By the étale base change property (1.3.6), the
pullback of this diagram by an étale S-morphism X̃0X is simply the
corresponding diagram, with X replaced by X̃. Since the map induced by
Ji si in diagram (1.12.1) is a square zero immersion, so is the map s
obtained by cobase change. Furthermore, the structural map from Dn

X/S to
X determines a retraction r of s. It follows that

D̄n
X/S 4 IX(J)

with J the augmentation ideal of the pointed affine X-scheme D̄n
X/S. By the

universal property of D̄n
X/S, applied to maps from the cocartesian diagram

(1.12.1) into the pointed affine X-scheme Ga, X,

J 4 ker(ODn
X/S

0 O“Dn
X/S
)=3

i
ker(ODn

X/S
0si* ODn−1

X/S
),

in other words

J 4 Yn
X/S.
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It now follows from Theorem 1.16 that

D̄n
X/S 4 IX(W

n
X/S),

a formula which reduces to (1.11.3) when n=1. Henceforth, we will simply
set

D̄n
X/S=IX(W

n
X/S)

for all n > 0, and D̄0
X/S=X. While this notation for D̄n

X/S is reminiscent of
that used for Dn

X/S and D (n)
X/S, the infinitesimal X-scheme D̄n

X/S is not an
infinitesimal neighborhood of X in Xn+1. It fits instead into the following
diagram of neighborhoods of X:

For n=0, all arrows in this diagram collapse to the identity map 1X.

Remark 1.19. It is of some interest to compare the previous neigh-
borhoods of X with those defined by the powers of the ideal In=; i Ji, i+1

which determines the embedding X+Xn+1. We will restrict ourselves, for
simplicity, to the n=2 case. By Lemma 1.3, In=; i < j Jij so that by the
multinomial expansion

I3
2=(J01+J12)3 … J (2)

02 … (J01+J12+J02)2=I2
2,

and in fact JO2P
02 … I2

2. Setting

(Xn+1) (k) :=Spec(Oé n+1
X /Ik+1

n ),

it follows that

X … (X3) (1) … D2
X/S … D (2)

X/S … (X3) (2) …X3.

The inclusion of (X3) (1) in D2
X/S is in general strict, since the ideal (J̃01+J̃12)2

=J̃01J̃12=W2
X/S in Oé 3

X /JO2P
02 which determines it is non-trivial. In that sense

D2
X/S encompasses a certain amount of second order infinitesimal informa-

tion, and the same is true of W2
X/S.
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Proposition 1.20. For m+n > 0, the following diagram commutes,

Dm+n
X/S |||||||||||||||||Ł

pm+n
D̄m+n

X/S

‡ ‡

Dm
X/S×X Dn

X/S |||0
pm ×pn

D̄m
X/S×X D̄n

X/S |0q IX(W
m
X/S é Wn

X/S)

(1.12.2)

where the left-hand vertical map is induced by the projections

Dm+n
X/S 0 Dm

X/S and Dm+n
X/S 0 Dm

X/S

(x0, ..., xm+n) - (x0, ..., xm) (x0, ..., xm+n) - (xm, ..., xm+n)

and the right-hand one

D̄m+n
X/S =IX(Wm+n)0 IX(Wm é Wn)=D̄m

X/S NX D̄n
X/S

by the canonical projection Wm é Wn 0 Wm+n.

Proof. This is immediate since the identification (1.10.3) is compatible
with the multiplicative structure. L

The proposition could also have been proved by considering the follow-
ing commutative diagram, in which the left-hand vertical map is the
restriction to “Dm+n

X/S of the middle one:

2. GROUP-VALUED DIFFERENTIAL FORMS

2.1. We now extend the combinatorial theory of Section 1 to differen-
tial forms with values in certain functors F on S. While the functors F
considered in our applications will be group valued, we will examine here,
as in [9], a more general situation. We will say that a pointed object (C, e)
in a category C with finite products, endowed with a composition law
m: C×C 0 C for which e is both a left and a right unit, is an H-object,
since such C are usually called H-spaces when C is the category of topo-
logical spaces [22, Chap. 1, Sect. 5]. Every group object in C is of course
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an H-object. For any scheme S, an H-object in the category of S-schemes
will be called an H-scheme over S. In the following we will refer to sheaves
without specifying explicitly the topology. It is to be understood that we
work then with any fixed one of the big Zariski, étale, syntomic or flat
sites. If a statement is topology dependent, we will indicate this. A sheaf of
H-sets will also be called an H-valued sheaf.

Let F be a pointed sheaf on S. For any S-scheme X, we denote by FX the
restriction of F to the category Sch/X. We will also consider the restriction
of F to the subcategory (Sch/S)g of (Sch/S) consisting of pointed
S-schemes. We borrow once more our terminology from topology, and say
that a pointed sheaf F is reduced if F(S)={pt}. For any S-scheme
f: S0 0 S, consider the category S0 0(Sch/S) of S-schemes under S0. An
object in this category is an S0-pointed S-scheme T, i.e., one for which the
diagram

S0 Łg T
f h

S

commutes. We will generally use the slightly less cumbersome notation
(S0 0Sch/S) for this subcategory of (Sch/S), or (Sch/S)f when we wish to
emphasize its dependence on the morphism f. In particular, (Sch/S)1S is
the category (Sch/S)g. When f is a square zero immersion, the full subca-
tegory of (S0 0Sch/S) (resp. (Sch/S)g) consisting of those S-schemes T
for which g is a nilpotent immersion will be called (Inf(S0/S)) (resp.
(Inf(S/S))). The objects T0 S in these subcategories are automatically
affine over S.

For a fixed f: S0 0 S, the S0-reduction fF̃ of the pointed sheaf F is
defined by

fF̃(T) :=ker(F(T)0 F(S0))

for any object T ¥ (S0 0Sch/S), and will generally be denoted S0
F̃. For

f=1S, we set fF̃=F̃. For any pair of composable morphisms of schemes

S −0 |0
fŒ SŒ|0 S

the S −0-reduction of FS Œ is denoted fŒF̃S Œ or S Œ0 F̃S Œ, so that, for every
TŒ ¥ (S −0 0Sch/SŒ),

S Œ0
F̃S Œ(TŒ)=ker(F(TŒ)0 F(S −0)).
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We will systematically identify an S-scheme with the functor on (Sch/S)
which it represents, and refer to an element x ¥ F(T) as a morphism
x: T0 F. Similarly, an element x ¥ S0

F̃(T) will be called an f-pointed
morphism (or simply a pointed morphism when the context is clear) from
T to F.

Definition 2.1. A pointed sheaf F on S universally reverses infini-
tesimal pushouts if, for any SŒ0 S, and any square zero immersion
f: S −0 0 SŒ, the sheaf F transforms any cocartesian diagram

AŁu B
v‡ ‡

C Ł D

(2.1.1)

in (Inf(S −0/SŒ)) into a cartesian diagram in the category of pointed sets.

This property is then also true for the reduction S Œ0
F̃S Œ of FS Œ. To phrase it

differently, the pushout object D in diagram (2.1.1) acts as a pushout for
pairs (r, s) of compatible maps (resp. pointed maps) into FS Œ :

(2.1.2)

As shorthand, we will sometimes simply say that F then satisfies the
pushout reversal property. Note also that diagram (2.1.1) remains cocarte-
sian in the larger category (Sch/SŒ).

Suppose that the sheaf F is represented by an S-scheme Y. Since all
schemes in (2.1.2) have same underlying topological space S, such an F
transforms a cocartesian diagram (2.1.2) in (Inf(S0/S)) into a cartesian
diagram of sets since (2.1.2) corresponds to a cartesian diagram

OD Ł OC

‡ ‡

OB Ł OA

(2.1.3)
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in the category of OS-algebras. It does so universally, since the restriction
FS Œ of F above SŒ is itself representable by the induced SŒ-scheme Y×S SŒ.
When the sheaf F is represented by a pointed S-scheme, this universal
pushout reversal property is also satisfied for pointed morphisms into F.
The same is true for any pointed F whose infinitesimal neighborhoods
Infk F of the distinguished point are representable for all k, since any one
of the pointed maps into F which are considered factor through one of
these neighborhoods. This holds for example if F is a formal Lie group, or
if p is nilpotent on S and F is a p-divisible group [20, II, (1.1.5)]. Similarly,
let S=Spec(L) with L a noetherian ring. If the category (Inf(S/S)) is
replaced by the category C of S-schemes of the form Spec(A) with A an
artinian L-algebra, the property that F reverses cocartesian diagrams, and
therefore finite colimits, is a necessary, and almost sufficient, condition for
the ind-representability of a contravariant functor F on C by the formal
spectrum of a topological L-algebra O [11, Sects. A3 and B, Theorem 1].

2.2. For any pointed sheaf F on S, and any quasi-coherent
OS-module M, we define, following [9], a sheaf Lie(F, M) on S by the
exact sequence

00 Lie(F, M)0 pgFIS(M) 0 F (2.2.1)

where p: IS(M)0 S is the structural map, so that for any S-scheme T,

Lie(F, M)(T)=ker(F(IT(MT))0 F(T))=F̃T(IT(MT))

and in particular

L(F, M) :=Lie(F, M)(S)=ker(F(IS(M))0 F(S)).

If F satisfies the pushout reversal property, the reduced functor F̃ trans-
forms the cocommutative S-cogroup IS(M) into a commutative group, so
that the sheaf Lie(F, M) is endowed with an abelian group structure. If F
is a sheaf of H-sets, the composition law and the unit section of F
determined by the H-structure are compatible with those induced from the
cogroup structure on IS(M). It follows that both composition laws on
Lie(F, M) coincide. In particular, the not necessarily commutative compo-
sition law on F induces an abelian group structure on the associated
functor Lie(F, M), a fact which is basic in Lie theory. Finally, the OS-linear
structure on M induces a corresponding OS-linear structure on Lie(F, M),
where OS(T) :=C(T, OT) for any S-scheme T.
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In particular, Lie(F, OS) is the ‘‘Lie algebra’’ Lie(F) of F, whose
T-valued sections are given by

Lie(F)(T)=ker(F(T[e])0 F(T)).

We set

L(F) :=ker(F(S[e])0 F(S)),

and will denote by Lie(F) the restriction of Lie(F) to the small étale site of
S. Despite the terminology, the OS-module Lie(F) is not endowed with a
Lie bracket unless F is group-valued, as we will recall below (Proposition
2.10) in the more general context of Lie-valued differential forms. On the
other hand, it is ‘‘good’’ in the restrictive sense provided by [9, II, 4.4,
Corollary (iii)] whenever F is pushout reversing since the diagram

S[e]KS S[eŒ]+ S[e, eŒ]

‡ ‡

S ,|Ł S[eeŒ]

is cocartesian.
The following proposition extends to functors F which are not repre-

sentable a basic assertion in deformation theory [9, III, Proposition 0.2; 14,
III, Proposition 5.1].

Proposition 2.2. Let i: S … S be an immersion defined by a square zero
ideal J in OS, and let F be a sheaf of H-sets which satisfies the pushout
reversal property. Then the restriction to the small flat site of S of the
sequence of sheaves of H-sets with abelian kernel

00 ig Lie(FS, J)0 F0 igFS

is exact.

Proof. Let SŒ be a S-scheme, and set SŒ :=S×S SŒ, so that the square
zero ideal JOSŒ determines the immersion iŒ: SŒ+ SŒ induced by i. We must
show that the induced sequence

00 Lie(F, J)(SŒ)0 F(SŒ)0 F(SŒ)

is exact when SŒ is flat over S. In order not to overburden the notation, we
will simply, in the following discussion, write F̃ for the functor iŒF̃ asso-
ciated to the immersion iŒ: SŒ+ SŒ. Consider the composite map

F̃(SŒ)×F̃(IS Œ(JOS Œ))0’ F̃(SŒKS Œ IS Œ(JOS Œ))|0F̃(nŒ) F̃(SŒ),
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where the first arrow is determined by the pushout reversal property and
the second one by the morphism nŒ (1.11.8) associated to the square zero
immersion iŒ. This composite map defines on

ker(F̃(SŒ)0 F̃(SŒ))=ker(F(SŒ)0 F(SŒ))

the structure of a torsor under F̃(IS Œ(JOS Œ)). The distinguished element inF(SŒ)
therefore determines an isomorphism between F̃S Œ(IS Œ(JOS Œ)) and ker(F(SŒ)
0 F(SŒ)). If SŒ/S is flat, there is an isomorphism of OSŒ-modules

JOSŒ 4 J éOS
OSŒ. (2.2.2)

Since both these OSŒ-modules are killed by multiplication by JOSŒ, they may
be viewed instead as a pair of OS Œ-modules, and the isomorphism
(2.2.2) translates to a corresponding isomorphism JOS Œ 4 J éOS

OS Œ of
OS Œ-modules. Reverting to the language of pointed SŒ-schemes, it now
follows that

IS Œ(J éOS
OS Œ) 4 IS Œ(JOS Œ).

This determines an identification of F̃(IS Œ(JOS Œ)), and therefore of
ker(F(SŒ)0 F(SŒ)), with

Lie(F, J)(SŒ) :=F̃(IS Œ(J éOS
OS Œ)). L

The following proposition provides us with our basic examples of not
necessarily representable sheaves which nevertheless satisfy the pushout
reversal property.

Proposition 2.3. Let X and Y be a pair of S-schemes (resp. G and H a
pair of S-group schemes). The sheaf MorS(X, Y) (resp. HomS(G, H)) uni-
versally reverses pushouts whenever X (resp. G) is flat over S. The same is
true of IsomS(X, Y) (resp. IsomS(G, H)) whenever Y (resp. H) is also flat
over S.

Proof. Compatible maps from the vertices A, B, C of the cocartesian
diagram (2.1.1) into the sheaf MorS(X, Y) of S-morphisms from X to Y
correspond, by the adjunction isomorphism

MorS(U, MorS(V, W)) 4 MorS(UV, W)
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in the category of sheaves on S, to morphisms to Y from the pullback of
this diagram by the flat morphism X0 S:

(2.2.3)

Since X is flat over S, the square (2.2.3) is cocartesian as the corresponding
diagram of rings (2.1.3) remains cartesian after tensorization with the flat
OS-module OX. It therefore produces a map from DX to Y, i.e., a section
over D of MorS(X, Y). This finishes the proof that MorS(X Y) reverses
pushouts. As G×S G is flat over S, and since taking kernels commutes with
fiber products, a formal argument shows that HomS(G, H) is also pushout
reversing. The same is true of IsomS(G, H) since it is expressed in terms of
cartesian diagrams involving S, HomS(G, H) and HomS(H, G), and the
same argument applies to IsomS(X, Y). L

In particular, Lie(F) is pushout reversing whenever F is, since S[e] is
flat over S.

2.3. Let X be an S-scheme. We once more view Dn
X/S as an

X-scheme via the projection p0 onto the first factor.

Definition 2.4. Let X be an S-scheme and F a pointed sheaf on S
whose restriction FX is pushout reversing. We denote by Yn

X/S(F) the
global sections of the sheaf Y n

X/S(F) on the small étale site of X defined by

Y n
X/S(F) :=3

i
ker(MorS(D

n
X/S, F)0

si MorS(D
n−1
X/S, F)),

where the arrows are those induced by the corresponding n degeneracy
maps si (1.10.5). An element of Yn

X/S(F) is called an F-valued combina-
torial n-form on X/S.

A combinatorial n-form f ¥ Yn
X/S(F) may therefore be viewed as a map

Dn
X/S 0

f F (2.3.1)

satisfying the equations

f(x0, ..., xi, xi, ..., xn−1)=1
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for all i. When F is represented by the additive group scheme Ga, S,

Y n
X/S(F)=Y n

X/S.

Since FX transforms coproducts into products, we may also write

Y n
X/S(F)= ker(MorS(D

n
X/S, F)0 MorS(“D

n
X/S, F)).

The pushout reversal condition on F, applied to diagram (1.12.1) and to
the sheaf FX on Xét yields an identification

Y n
X/S(F)0

’ Lie(FX, Wn
X/S)

fW fc.

For convenience, we display this assertion as a commutative diagram

The map fc will be called, for reasons which will become clear below, the
‘‘classical representative’’ of the combinatorial F-valued differential
form f.

In order to obtain alternate descriptions of the OX-module Lie(FX, Wn
X/S)

of Lie(F)-valued n-forms, let us consider the relative tangent sheaf TX/S :=
(W1

X/S)ˇ on X/S. Viewing, for n > 0, the global section D ¥ C(X,Mn TX/S)
as a linear form D: Wn

X/S 0 OX, we see that D induces a pointed map
uD=IX(D):

X[e]|0uD IX(Wn). (2.3.2)

By functoriality of the smash-product, a pair of sections Y ¥ C(X,Mm TX/S)
and Z ¥ C(X,Mn TX/S) determine a commutative diagram

X[e]×X X[eŒ]||||||ŁuY ×uZ D̄m
X/S×X D̄n

X/S

‡ q‡

X[g]||ŁuYNZ D̄m+n
X/S Ł IX(W

m
X/S é Wn

X/S)

(2.3.3)

where g=eeŒ.
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Composition of map (2.3.2) with a pointed morphism f: D̄n
X/S 0 F yields

a pointed map

X[e]|0uD IX(W
n
X/S)0

f F (2.3.4)

describing a section of Lie(FX). This defines a morphism of étale sheaves
on X

Lie(FX, Wn
X/S)0 HomOX

1L
n

TX/S, Lie(FX)2 . (2.3.5)

The same construction determines more generally, functorially in an
OX-module M, a morphism

Lie(FX, M)0 HomOX
(Mˇ, Lie(FX)) (2.3.6)

which for M=Wn
X/S yields (2.3.5) when composed with the transpose of

Mn TX/S 0 (Wn
X/S)

K. The target of (2.3.6), viewed as a functor in M, com-
mutes with finite direct sums, and so does the source when F universally
reverses infinitesimal pushouts. Under this hypothesis the map (2.3.6) is
therefore an isomorphism whenever the module M is locally free of finite
type, since this is immediate for M=OX. In particular, the map (2.3.5) is
an isomorphism whenever X/S is smooth.

We summarize this discussion as follows:

Proposition 2.5. Suppose p: X0 S is smooth, and that F is a pointed
sheaf on S whose restriction to X universally reverses infinitesimal pushouts.
In that case

Y n
X/S(F) 4 Lie(FX, Wn

X/S) 4 HomOX
1L

n

TX/S, Lie(FX)2

f W fc W (DW fc
p uD).

(2.3.7)

Since the OX-module Mn TX/S is locally free, the right-hand term in
(2.3.7) is isomorphic to the sheaf Lie(FX) éOX

Wn
X/S of traditional Lie(FX)-

valued n-forms. The section fc, or its images in either of the sheaves
HomOX

(Mn TX/S, Lie(FX)) or Lie(FX) éOX
Wn

X/S deserves to be called the
classical representative of the combinatorial differential form f, since the
terms in each of these three OX-modules are ingredients from classical
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differential calculus. In view of these identifications, we will make no distinc-
tion between the expression ‘‘F-valued differential form,’’ which empha-
sizes the combinatorial point of view, and the expression ‘‘Lie(F)-valued
differential forms’’ which refers to its classical description. A direct
homomorphism of OX-modules

Lie(FX) éOX
Wn

X/S 0 Lie(FX, Wn
X/S)

can be obtained by adjunction from the composite map

Wn
X/S 4 HomOX

(OX, Wn
X/S)0 HomOX

(Lie(FX)), Lie(FX, Wn
X/S)) ,

where the second arrow follows from the functoriality in M of Lie(FX, M).
The same reasoning as above shows that this map is an isomorphism when
Wn

X/S is locally free. We omit the verification that this map is the inverse of
the one derived from (2.3.7).

We now further assume that F is representable by a smooth pointed
scheme G/S whose formal completion is Spf(A), and with augmentation
ideal I in A. In that case, Lie(G) is a locally free OS-module, and its
formation commutes with base-change, so that by transposition

HomOX
1L

n

TX/S, Lie(FX)2

4 HomOX
(wG/S éOS

OX, Wn
X/S) 4 HomOS

(wG/S, pgWn
X/S),

where

wG/S :=I/I2

is the co-Lie module of G, endowed with its natural OS-module structure.
In this representable situation, the isomorphism

Y n
X/S(G) 4 HomOS

(wG/S, pgWn
X/S)

can be directly constructed, without any smoothness assumptions on X or
G. Consider f ¥ Yn

X/S(G) as a pointed S-morphism from IX(W
n
X/S) to G.

Such a morphism factors through the first infinitesimal neighborhood
Inf1 G/S=Spec(OS À wG/S) of the unit section e: S+ G of G. The corre-
sponding morphism of OS-algebras OInf1 G/S 0 pg(DX(W

n
X/S)) restricts on

the augmentation ideals to the requisite OS-linear map wG/S 0 pg(W
n
X/S).
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Conversely, to any such OS-linear map u is associated the pointed
S-morphism

IX(W
n
X/S)0 G

determined by the OS-algebra homomorphism

A 0 DX(W
n
X/S)

a W g(a)+u(a−g(a)),

with g: A0 OS the augmentation map of A :=OInf1(G).

Remark 2.6. The alternate descriptions of the ideal Yn
X/S in ODn

X/S
,

analogous to those given for Y (n)
X/S in (1.6.13), yield two other definitions of

G-valued combinatorial n-forms, equivalent to that given in Definition 2.4.
Such forms may either be viewed as maps f (2.3.1) which vanish when-
ever xi=x0 for any i, or as those which vanish when xr=xs for any pair
(r, s).

2.4. Here is a first illustration of these techniques.

Lemma 2.7. Suppose that F universally reverse pushouts. Formula (1.8.2)
remains valid in the context of F-valued differential forms.

Proof. It suffices to verify formula (1.8.2) when the permutation s is a
transposition (i, i+1) of consecutive integers. An F-valued n-form lies in
particular in the group

ker(F(Dn
X/S)|0si F(Dn−1

X/S)) (2.4.1)

determined by the inclusion si with retraction di (1.4.10). The diagram

Dn−1
X/S ,Łsi Dn

X/S

‡ ‡

X |0 IX(J̃i, i+1)

is cocartesian, so this kernel is isomorphic to the group

ker(F(IX(J̃i, i+1))0 F(X)),
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and the commutativity of the cube with upper and lower cocartesian faces

ensures that the injective homomorphism of OX-modules Wn
X/S … J̃i, i+1

induces an injective group homomorphism of Yn
X/S(F) into the group

(2.4.1). The permutation s acts by multiplication by −1 on the ideal J̃i, i+1

in ODn
X/S

. It therefore acts in the same manner on the C(X, OX)-module
F(IX(J̃i, i+1)) and sends the pointed morphism f: Dn

X/S 0 F, in additive
notation, to −f. L

For F representable by a smooth S-group scheme G, this action of
s ¥ Sn+1 on Yn

X/S(G) is given by

s(Y é g)=Y é s .g=(sgn s)(Y é g),

for a pure tensor Y é g ¥ Lie G éOS
Wn

X/S. More generally, for F represented
by a pointed S-scheme G, the action of Sn+1 on HomOS

(wG/S, Wn
X/S) is given

by

su=s p u=sgn(s) u.

2.5. From now on, we suppose that the sheaf F is group-valued.
We introduce a multiplicative structure on the graded group of F-valued
forms

Yg
X/S(F) :=Â

n \ 0
Yn

X/S(F)

by the rule

Ym
X/S(F)×Yn

X/S(F) 0 Ym+n
X/S (F)

(f, g) - [f, g],
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where the combinatorial m+n form [f, g] is

[f, g](x0, ..., xm+n)=[f(x0, ..., xm) , g(xm, ..., xm+n)], (2.5.1)

the commutator bracket [ , ] being defined by

[a, b] :=aba−1b−1. (2.5.2)

The multiplication [ , ], which of course vanishes whenever F is a sheaf of
abelian groups, should not be confused with the product on Ga-valued
forms introduced in definition 1.13. The graded abelian subgroup

Y+
X/S(F) :=Â

n \ 1
Yn

X/S(F)

is an ‘‘ideal’’ for this multiplication in Yg
X/S(F).

One can a priori construct other commutator expressions than (2.5.1)
from a pair of forms f and g on X, but the following lemma will make it
clear that this is the only reasonable one.

Lemma 2.8. For u and v > 0, let f: Du
X/S 0 F and g: Dv

X/S 0 F be a pair
of combinatorial forms with values in a sheaf F on S whose restriction FX

universally reverses pushouts. For any integer r with max(u, v) [ r < u+v,
the induced sections

D r
X/S |0p1 Du

X/S |0f F

D r
X/S |0p2 Dv

X/S |0g F
(2.5.3)

of F determined by arbitrary projection maps pi from D r
X/S to Du

X/S and Dv
X/S

commute.

Proof. The condition on r ensures that there is a commutative diagram
of iterated projections

D r
X/S

p1 p2

Du
X/S Dv

X/S

D1
X/S

. (2.5.4)
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Pulling back this square along the diagonal immersion D (1.2.1) gives a
square

D r−1
X/S

Du−1
X/S Dv−1

X/S

X

.

The functoriality of base change now provides us with a commutative
diagram

D r−1
X/S

Du−1
X/S Dv−1

X/S

D r
X/S

Du
X/S

p1 p2

Dv
X/S

(2.5.5)

in which the slanted maps are projections and the vertical ones partial
diagonal immersions defined by square zero ideals. Since f and g are both
combinatorial forms, it follows that both composite maps (2.5.3)
are sections of F which lie in the kernel of the homomorphism F(D r

X/S)0
F(D r−1

X/S) determined by the middle vertical immersion. By Proposition 2.2,
this kernel is an abelian group. L

Remark 2.9. The hypothesis on the maps f and g in Lemma 2.8 can be
weakened. Instead of supposing that f and g are full-fledged combinatorial
forms, it suffices to assume, in the previous argument, that their restriction
to the specific subschemes Du−1

X/S … Du
X/S and Dv−1

X/S … Dv
X/S displayed in

diagram (2.5.5) are trivial. In practice, this means the following. Consider a
pair of F-valued functions

f(x0, ..., xu), g(y0, ..., yv)

defined on pairwise infinitesimally close points. Diagram (2.5.4) asserts that
these functions have in common a pair of variables, say xi=ys1

and
xj=ys2

. Suppose furthermore that the restrictions of f and g to the partial
diagonal xi=xj are both trivial. Lemma 2.8 asserts that f(x0, ..., xu) and
g(y0, ..., yv) commute in the group F(D r

X/S).
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Proposition 2.10. Let F be a sheaf of groups on S whose restriction to
an S-scheme X universally reverses pushouts. The commutator pairing (2.5.1)
defines a graded Lie algebra structure on Y+

X/S(F), with Lie(FX) set in
degree zero. When X/S is smooth, or when F is represented by a smooth
S-group scheme G, this algebra structure is induced by the classical bracket
on Lie(FX):

(Lie(FX) éOX
Wm

X/S) éOX
(Lie(FX) éOX

Wn
X/S) 0 Lie(FX) éOX

Wm+n
X/S

(Y é w) é (Z é g) W [Y , Z] é (wNg).

(2.5.6)

Proof. We begin the verification that the pairing (2.5.1) defines a
graded Lie algebra structure on Y+

X/S(F). Setting

ab=aba−1 (2.5.7)

for any pair of elements in a group, recall that for any a, b, c the commu-
tator identity

[ab, c]=a[b, c][a, c] (2.5.8)

is satisfied. For any pair of F-valued combinatorial m-forms f, g and any
combinatorial n-forms h, we apply this equation to the elements

a: Dm+n
X/S |0p1 Dm

X/S |0f F b: Dm+n
X/S |0p1 Dm

X/S |0g F,

and

c: Dm+n
X/S |0p2 Dn

X/S |0h F,

where p1 (resp. p2) is induced by the projection on the first m+1 (resp. the
last n+1) factors. It follows that, when m > 0,

[fg, h]=[g, h][f, h]=[f, h][g, h]

since the action (2.5.7) of a on [b, c] is trivial by Remark 2.9. The same
argument, applied instead to the commutator identity

[a, bc]=[a, b] b[a, c]

shows that the pairing (2.5.1) is also additive in the second variable when
n > 0. The biadditivity of this pairing is no longer true, however, if m or n
is equal to zero.
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Similarly, the following calculation deduces from the trivial commutator
identity

[a, b][b, a]=1 (2.5.9)

the corresponding graded identity on combinatorial forms:

Lemma 2.11. Let F be a sheaf of groups on S satisfying the pushout
reversal property, and f and g a pair of F-valued combinatorial forms with
respective degrees m and n > 0. The bracket pairing (2.5.1) satisfies the
identity

[f, g]=(−1)mn+1 [g, f]. (2.5.10)

Proof. This follows from the following computation:

[f, g](x0, ..., xm+n)

=[f(x0, ..., xm), g(xm, ..., xm+n)] by (2.5.1)

=[g(xm, ..., xm+n), f(x0, ..., xm)]−1 by (2.5.9)

=[(−1)m g(xm+1, ..., xm), (−1)n f(xm, ..., xm−1)]−1 by Lemma 2.7

=(−1)mn+1 [g, f](x0, ..., xm+n) by biadditivity of [ , ] and (2.5.1). L

We return to the proof of Proposition 2.10. We now verify that the
graded Jacobi identity

(−1) |f| |h| [[f, g], h]+(−1) |f| |g| [[g, h], f]+(−1) |g| |h| [[h, f], g]=0,
(2.5.11)

is satisfied (with |f| the degree of the F-valued combinatorial form f). It is
derived from the commutator identity

[[a, b], bc][[b, c], ca][[c, a], ab]=1 (2.5.12)

in the same manner as (2.5.10) was from (2.5.9). We set |f|=m, |g|=n
and |h|=p and apply (2.5.12) to the following elements a, b, c of
F(Dm+n+p

X/S ),

a(x0, ..., xm+n+p) :=f(x0, ..., xm) b(x0, ..., xm+n+p) :=g(xm, ..., xm+n)

and

c(x0, ..., xm+n+p) :=h(xm+n, ..., xm+n+p)
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for three given forms f, g, h ¥ Y+
X/S(F). Each of the three factors in the

expression (2.5.12) simplifies: for the first factor we see that

[[f, g], gh]=g[g−1
[f, g], h]

=g[[f, g], h]

=[[f, g], h],

with the last two equalities following from Remark 2.9. Taking into
account the corresponding simplifications of the two other factors in
(2.5.12), this expression now reads

[[a, b], c][[b, c], a][[c, a], b]=1. (2.5.13)

By definition, the term [[a, b], c] is simply the combinatorial m+n+
p-form [[f, g], h], evaluated at the point (x0, ..., xm+n+p) ¥ Dm+n+p

X/S . The
term [[b, c], a], evaluated on the same element of Dm+n+p

X/S , is given by

[[g(xm, ..., xm+n), h(xm+n, ..., xm+n+p)], f(x0, ..., xm)]

=[[g, h](xm, ..., xm+n+p), f(x0, ..., xm)].

By Lemma 2.7, this is equal to

[(−1)n+p [g, h](xm+1, ..., xm+n+p, xm), (−1)m f(xm, x0, ..., xm−1)]

=(−1)m+n+p [[g, h], f](xm+1, ..., xm+n+p, xm, x0, ..., xm−1)

=(−1)m(n+p) [[g, h], f](x0, ..., xm+n+p).

The third term [[c, a], b] in (2.5.12), when evaluated on (x0, ..., xm+n+p), is
equal to

[[h(xm+n, ..., xm+n+p), f(x0, ..., xm)], g(xm, ..., xm+n)]. (2.5.14)

The following lemma asserts that one can substitute xm for the first of
the two occurences of the variable xm+n in the expression (2.5.14):

Lemma 2.12. For f, g, h combinatorial forms, as above, the expressions

[[h(xm+n, ..., xm+n+p), f(x0, ..., xm)], g(xm, ..., xm+n)]

and

[[h(xm, xm+n+1, ..., xm+n+p), f(x0, ..., xm)], g(xm, ..., xm+n)]

are equal.
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Assuming the lemma is true, the term [[c, a], b] in (2.5.13) is now equal
to

[[(−1)ph(xm+n+1 , ..., xm+n+p , xm), (−1)m f(xm, x0, ..., xm−1)], g(xm, ..., xm+n)]

=[(−1)m+p [h, f](xm+n+1 , ..., xm+n+p , xm, x0, ..., xm−1], g(xm, ..., xm+n)]

=[(−1)p [h, f](xm+n+1 , ..., xm+n+p , x0, ..., xm), g(xm, ..., xm+n)]

=(−1)p [[h, f], g](xm+n+1 , ..., xm+n+p , x0, ..., xm+n)

=(−1)p(n+m) [[h, f], g](x0, ..., xm+n+p).

Substituting into (2.5.13) the values which we have now found for the
second and third factor in this expression, we obtain, in additive notation

[[f, g], h]+(−1)m(n+p) [[g, h], f]+(−1)p(m+n) [[h, f], g]=0,

an identity which is equivalent to the graded Jacobi identity (2.5.11).
Let us now prove Lemma 2.12. We set

h(xm+n, ..., xm+n+p)=h(xm, xm+n+1, ..., xm+n+p) k(xm, xm+n, ..., xm+n+p)

and observe that the expression k(xm, xm+n, ..., xm+n+p) defined by this
equation vanishes when the condition xm=xm+n is satisfied. By the com-
mutator identity (2.5.8), we find that

[[h(xm+n, ..., xm+n+p), f(x0, ..., xm)], g(xm, ..., xm+n)]

=[[h(xm, xm+n+1, ..., xm+n+p)

×k(xm, xm+n, ..., xm+n+p), f(x0, ..., xm)], g(xm, ..., xm+n)]

=[h(xm, xm+n+1, ..., xm+n+p)[k(xm, xm+n, ..., xm+n+p), f(x0, ..., xm)]

×[h(xm, xm+n+1, ..., xm+n+p), f(x0, ..., xm)], g(xm, ..., xm+n)].

We apply once more the identity (2.5.8), with this time

a :=h(xm, xm+n+1, ..., xm+n+p)[k(xm, xm+n, ..., xm+n+p), f(x0, ..., xm)]

b :=[h(xm, xm+n+1, ..., xm+n+p), f(x0, ..., xm)]

c :=g(xm, ..., xm+n).

The first factor a[b, c]=[b, c] on the right hand side of (2.5.8) is then the
sought-after second term in Lemma 2.12, so that all that remains to be
proved is the triviality of the second factor in (2.5.8), in other words that a
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and c commute. Since both of these expressions vanish when we set
xm=xm+n, this follows from Remark 2.9. L

2.6. Consider a pair of forms f, g ¥ Yg
X/S(F) of respective degree

m and n, with corresponding classical counterparts the pointed sections
fc ¥ C(D̄m

X/S, F) and gc ¥ C(D̄n
X/S, F). Since, in any group F, commutators

of the form [1, x] and [x, 1] are trivial, so is the restriction to D̄m
X/S KX

D̄n
X/S of the composite map

D̄m
X/S× D̄n

X/S ||0fc×gc

F×FŁ[ , ] F. (2.6.1)

By (1.11.10) applied to the pair of canonical immersions of D̄m
X/S and D̄n

X/S

into D̄m
X/S× D̄n

X/S, it follows that this map factors through IX(W
m
X/S é Wn

X/S)
whenever the functor F reverses pushouts so that we then have a commu-
tative diagram

Dm+n
X/S ||ŁDm

X/S×X Dn
X/S |||0f×g F×F

pm ×pn‡
fc×gc

‡[ , ]

pm+n D̄m
X/S× D̄n

X/S F
q‡

D̄m+n
X/S Ł IX(W

m
X/S é Wn

X/S),

(2.6.2)

the left-hand square being defined by (1.12.2). By construction, the lower
composite map

[f, g]c: D̄m+n
X/S 0 F

interprets the Lie bracket pairing (2.5.1) of f and g in classical terms.
In order to finish the proof of Proposition 2.10, we must still verify that

the lower composite map [f, g]c, which interprets the bracket pairing in
classical terms, is indeed defined by the formula (2.5.6). If F is represent-
able by the smooth group scheme G/S, this follows easily from the com-
mutative diagram (2.6.2). If X/S is smooth, rewriting this pairing, as in
(2.3.7), in the form

HomOX
1L

m

TX/S, Lie(FX)2

é HomOX
1L

n

TX/S, Lie(FX)20 HomOX
1L

m+n

TX/S, Lie(FX)2

(2.6.3)
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this follows easily, from the commutativity of the diagram

X[e]×X X[eŒ] |||||||||Ł
uY ×uZ

D̄m
X/S×X D̄n

X/S ||Ł
fc×gc

F×F

‡ q‡ ‡[ , ]

X[g] |||||Ł
uYNZ

D̄m+n
X/S Ł IX(W

m
X/S é Wn

X/S) ||Ł F
(2.6.4)

constructed from diagrams (2.3.3) and (2.6.2), since the outer square of
(2.6.4) is, by [9, II, pp. 27–28] (see also [8, II, Sect. 4, 4.2]), one of the two
possible definitions of the Lie bracket structure on Lie(F). This completes
the proof of Proposition 2.10. L

Remark 2.13. (i) The smoothness hypothesis on the group G is only
used in Proposition 2.10 in order to identify for all positive n the module
Y n

X/S(G) with Lie(G) éOX
Wn

X/S. Proposition 2.10 remains true without this
assumption on G so long as the classical bracket (2.5.6) is replaced by the
less familiar pairing

HomOS
(wG/S, Wm

X/S) éOX
HomOS

(wG/S, Wn
X/S)0 HomOS

(wG/S, Wm+n
X/S )

induced by the co-Lie bracket on wG/S (see below (2.7.5)).
(ii) Our proof of Proposition 2.10 is reminiscent of the well-known

construction of a Lie algebra structure on the graded module associated
to a group [3, II, Sect. 4, No. 4]. When X is the affine 2-space A2

S, with
coordinates s, t, we may contract the morphism (2.5.6) for m=n=1 with
the global vector fields “s and “t. Our proof in that case parallels the
construction of a Lie algebra structure in [21, V, Theorem 1.6.].

(iii) Proposition 2.10 may be extended from Y+
X/S to all of Yg

X/S, but
the group structure on the degree zero component is not commutative, nor
is the bracket bilinear. The previous discussion shows that the structure
induced on all of Yg

X/S by the commutator pairing (2.5.1) is a graded anti-
commutative version of what has been called a multiplicative Lie algebra [10].

2.7. Suppose that G is an S-group scheme. Replacing, if necessary,
G by its formal completion, and in that case abusing the notation by
writing é for é3 , we may assume that G is affine over S, and hence speak
of its coordinate OS-algebra A. Let e: S+ G be the unit section, with cor-
responding augmentation g: A0 OS. We denote by m: A0 A éOS

A the
comultiplication, whose restriction to augmentation ideal I=ker g is
given by

m(z)=zé 1+1 é z+C
i

ai é bi . (2.7.1)
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The OS-module

Lie(G) :=(wG/S)ˇ (2.7.2)

dual to the co-Lie module wG/S is the Lie algebra of the relative group
scheme G/S. Its OS-Lie bracket is dual to the morphism

wG/S 0
l wG/S é wG/S (2.7.3)

obtained by restricting to I the map which sends a section x to
m(x)−sm(x), where s is the map which permutes the factors in G×G.
Explicitly, l is given by

zW 1z é 1+1 é z+C
i

ai é bi)2−1z é 1+1 é z+C
i

bi é ai
2

=C
i

ai é bi−C
i

bi é ai. (2.7.4)

When G/S is smooth, wG/S is a locally-free OS-module of finite rank so
that Lie(G) commutes with arbitrary base change. For G representable, but
not necessarily smooth, denoting by fg: wG/S 0 Ym

X/S and gg: wG/S 0 Yn
X/S

the ring level classical representatives of combinatorial forms f and g, the
corresponding map

wG/S 0 Ym+n
X/S

associated to [f, g] is described on the ring level by the composite map

wG/S 0
l wG/S é wG/S ||0f* é g*

Wm
X/S é Wn

X/S 0 Wm+n
X/S , (2.7.5)

where l is the map (2.7.4).
When F is represented by a group scheme G, it is easily verified that the

map

I 0 W2n
X/S

z - C
i
fg(ai)Nfg(bi)

(2.7.6)

associated to a G-valued combinatorial n-form f factors, for n odd,
through a map

[f](2): wG/S 0 W2n
X/S.
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Comparing with (2.7.6) the description (2.7.5) of the Lie bracket pairing in
the case f=g, we see that

2[f](2)=[f, f].

In particular, when 2 is invertible in OX, this may be restated as

[f](2)=1
2 [f, f].

For another discussion of the operation fW [f](2) in Lie algebras, when 2
is not invertible, see [3, III, Sect. 3, No. 14].

2.8. The previous constructions can be extended to other situa-
tions. Let us consider the canonical evaluation pairing

Aut(F)×F 0 F

(u, g) W u(g).
(2.8.1)

Just like the commutator pairing, the map

Aut(F)×F |0
{ , } F

(u, g) ›|ł u(g) g−1
(2.8.2)

induced by (2.8.1) has the property that {u, g}=1 whenever u or g is the
identity element. Taking into account Proposition 2.3 when F is represent-
able by a flat S-group scheme G, we may therefore associate for m, n > 0,
to a pair of forms h ¥ Ym

X/S(Aut(G)) and g ¥ Yn
X/S(G) the following

commutative diagram, analogous to diagram (2.6.2):

Dm+n
X/S ||ŁDm

X/S×X Dn
X/S |||0h×g Aut(F)×F

pm ×pn‡
hc×gc

‡{ , }

pm+n D̄m
X/S× D̄n

X/S F
q‡

D̄m+n
X/S Ł IX(W

m
X/S é Wn

X/S),

(2.8.3)

The upper and right-hand vertical path in this diagram constructs a pairing

Ym
X/S(Aut(F))×Yn

X/S(F) 0 Ym+n
X/S (F)

(h, g) - [h, g]
(2.8.4)
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and the same reasoning as in Proposition 2.10 shows that this pairing is
bilinear, and satisfies the graded Jacobi identity. Its classical description is
obtained in the same way as that of (2.6.3). It suffices here to examine the
lower map in (2.8.3), which is a pointed section of F on D̄m+n

X/S . This proves
the following proposition. By Proposition 2.3, the hypotheses are satisfied
whenever X/S is smooth and F is representable by a flat S-group scheme G.

Proposition 2.14. Suppose that F and Aut(F) universally reverse
pushouts, and that X/S is smooth. The pairing (2.8.4) is then given by the
map

(Lie(Aut(F) éOX
Wm

X/S) éOX
(Lie (F) éOX

Wn
X/S) 0 Lie (F) éOX

Wm+n
X/S

(Y é g) é (Z é w) - [Y,Z]é (gNw).
(2.8.5)

In order to make this assertion more transparent, we will mention two
additional properties of the pairing (2.8.4). The first one is the compati-
bility of this pairing with the pairing (2.6.3). This follows immediately by
prolonging diagram (2.6.2) to the right with the commutative triangle

F×S FŁi×1 Aut(F)×S F
[ , ]‡

{ , }

F

with i: F0 Aut(F) the conjugation homomorphism defined by i(x):
yW xy, the bracket maps being respectively defined by (2.5.2) and (2.8.2),
since the enlarged diagram is essentially (2.8.3), with h=i(f). This proves
the following lemma:

Lemma 2.15. The diagram

Y m
X/S(F)×Y n

X/S(F)|||||Łi×1
Y m

X/S(Aut(F))×Y n
X/S(F)

[ , ] [ , ]

Y m+n
X/S (F)

induced by the bracket pairings (2.5.2) and (2.8.2) and the conjugation
homomorphism i is commutative.

We now compare the expression [Y, Z] é (gNw) appearing in the pairing
(2.8.5) with the more classical expression for the pairing of Lie(Aut(G))
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with Lie(G). The latter is defined as follows (for greater legibility, we
denote here by g the OS-Lie algebra Lie (G) of G): the Lie functor
determines a group homomorphism

L: Aut(G)0 AutO S
(g),

with target the sheaf of linear automorphisms of g. Its tangent map Lie(L)
at the origin is of the form

Lie(L): Lie(Aut(G))0 Lie(AutO S
(g)).

Since G is representable, its Lie algebra g is a good OS-module in the sense
of [9, II, 4.4]. Consequently, there is an isomorphism which on T-valued
points is given by

EndOT
(g é OT) 0’ Lie(AutO S

(g))(T)

v W 1+ve (2.8.6)

(see [8, II, Sect. 4, 2.2]). Composing with the evaluation morphism, we
obtain the desired pairing:

Lie(Aut(G)) éO S
gŁ Lie(AutO S

(g)) éO S
g

… 6

EndO S
(g) éO S

g Ł g.

(2.8.7)

Given u ¥ Lie(Aut(G))(T)=ker(Aut(G)(T[e])0 Aut(G)(T)), the asso-
ciated map

GT[e] Ł
u GT[e] Ł

p1 GT

induces a map

wGT
||Ł

(p1 p u)*
wGT

éOT
OT[e]

of the form

zW z+ṽ(z) e

for some ṽ ¥ EndOT
(wGT

). The element Lie(L(u)) ¥ Lie (AutOS
(g))(T)

therefore corresponds to

idg+(ṽ)ˇ e.
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We now view g ¥ g as an OT-linear form yg: wGT
0 OT, and denote for

i=0, 1 by pi the corresponding projection pi: T[e0, e1]0 T[ei] onto the
ring of dual numbers. If we view u as a T[e0]-valued point of Aut(G), and
g as a T[e1]-valued point of G, an elementary computation shows that
{pg

0 (u), p
g
1 (g)} corresponds to the T[e0, e1]-point of G defined at the ring

level by zW yg(ṽ(z)) e0e1 for all z ¥ I, so that

{pg
0 (u), p

g
1 (g)}=v(yg).

It follows that the pairing (2.8.7) coincides with that defined in the manner
of [8, II, Sect. 4, 4.2]. The sought-after compatibility between the pairings
(2.8.5) and (2.8.7) now follows from the commutativity of the following
diagram, where the left-hand square is determined, as in (2.6.4) by the choice
of a pair of global sections Y ¥ C(X,Mm TX/S) and Z ¥ C(X,Mn TX/S),
and the right-hand one is extracted from (2.8.3).

X[e]×X X[eŒ]||||||Ł
uY ×uZ

D̄m
X/S×X D̄n

X/S ||||Ł
hc×gc

Aut(F)×F

‡ q‡ ‡{ , }

X[g] ||||Ł
uYNZ

D̄m+n
X/S Ł IX(W

m
X/S é Wn

X/S) ||Ł F.

When both F and Aut(F) are represented by affine groups schemes, we
now give a still more explicit description of the pairing (2.8.5). We note in
passing that such an assumption is true, by [9, XXIV, Corrollary 1.9],
whenever the group scheme G is reductive over S. On the other hand,
Aut(G) will in general not be representable if G is unipotent. We set
G :=Spec(A) and C :=Aut(G)=Spec(D). The evaluation map (2.8.1)

C×S G0 G

corresponds at the ring level to a homomorphism

A0 D éOS
A.

Since u(1)=1 for any automorphism u, and since u(g)=g when u is the
identity in C, the restriction of this map to the augmentation ideal in A is
of the form

z- 1 é z+C
i
di é zi
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for elements zi (resp. di ) in the augmentation ideals I (resp. Ī) of A and D.
A straightforward computation shows that the map

l: wG/S 0 wC/S éOS
wG/S

induced by (2.8.2) is given by

zWC
i
di é zi. (2.8.8)

The analogue of (2.7.5) in the present context therefore associates to a pair
of forms respectively described at the ring level by homomorphisms fg:
wG/S 0 Wm

X/S and gg: wC/S 0 Wn
X/S the composite map

wG/S 0
l̄ wC/S é wG/S ||0g* é f*

Wn
X/S é Wm

X/S 0 Wm+n
X/S . (2.8.9)

This is consistent, when X/S is smooth, with the description (2.8.5) of
the pairing, since the transpose of l is the Lie bracket map [ , ]:
Lie C é Lie G0 Lie G.

2.9. We end this chapter with a discussion of several additional
properties of G-valued differential forms. The simplicial structure on Dg

X/S

determines, as n varies, many interesting relations between the various
n-forms. The simplest of these is the following. The diagonal immersion
(1.2.1) of X in D1

X/S induces, for the étale topology, the following short
exact sequence of sheaves of groups with abelian kernel on the scheme
D1

X/S:

10 Dg(Y
1
X/S(G))0 GD1

X/S
0p DgGX 0 1. (2.9.1)

This sequence is split exact, a splitting of p being induced by either of the
two projection maps pi from D1

X/S to X. By the equivalence between the
categories of étale sheaves on X and on D1

X/S induced by the equivalence of
sites (1.3.5), the exact sequence (2.9.1) is equivalent to the exact sequence of
étale sheaves on X:

10 Y 1
X/S(G)0 GD1

X/S
0p GX 0 1, (2.9.2)

where GD1
X/S

now denotes the sheaf on Xét, whose U-valued points are the
D1

U/S -valued points of G.
It remains to examine the GX-module structure on Lie(G) éOS

W1
X/S 4 Y 1

X/S(G) which the extension (2.9.2) determines when G/S is
smooth. For such an exact sequence with abelian kernel, the intrinsic
action of GX on the kernel is independent of the choice of the splitting. The
conjugation action on the kernel of an element g ¥ GX is given by the n=1
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case of a more general assertion. For any n, the projection p0: Dn
X/S 0X

onto the first factor induces a homomorphism G(X)0 G(Dn
X/S). The

group G therefore acts by conjugation on GDn
X/S

, and this action restricts to
an action of G on the subgroup Y n

X/S(G), which we call the adjoint action.

Lemma 2.16. Let X be an S-scheme, and G a smooth S-group scheme.
The conjugation action ofG on combinatorial n-forms corresponds to the adjoint
action of the group G on Lie(G)-valued n-forms Y é g ¥ Lie GX éOX

Wn
X/S

given by

g(Y é g)=gY é g, (2.9.3)

where YW g Y is the adjoint action of the group GX on its Lie algebra
Lie(GX).

Proof. The conjugation action of g ¥ G(X) sends a map of X-schemes
f: Dn

X/S 0 GX (2.3.1) to the composite map Dn
X/S 0

f GX 0
ig GX where ig(c)

=gcg−1. When f is a combinatorial n-form, this may be viewed as a
composite map

Dn
X/S 0

f Inf1
GX

0
ig Inf1

GX
.

Since the induced action of ig on the co-Lie module wG/S is the coadjoint
action, it follows when reverting from combinatorial forms to classical
n-forms that the action of an element g ¥ GX on a Lie(G)-valued n-form
Y é g is given by formula (2.9.3). L

Remark 2.17. (i) Each of the n+1 projections of Dn
X/S on X defines a

priori a separate action of G on Y n
X/S(G). Setting

g(xi)=g(x0) c(x0, xi),

it is however apparent that both c ¥ G(Dn
X/S) and any f ¥ Yn

X/S(G) live in
the abelian kernel of the homomorphism

G(Dn
X/S)0 G(Dn−1

X/S)

induced by the square zero immersion Dn−1
X/S + Dn

X/S which inserts x0

diagonally in the positions indexed by 0 and i. The conjugation actions by
g(x0) and by g(xi) are therefore identical, since c acts trivially on Y n

X/S(G).
(ii) Lemma 2.16 for n=1 asserts that the exact sequence (2.9.2) is

the embodiment, in geometric terms, of the adjoint action of G on
Lie(G)-valued 1-forms.
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2.10. We finally examine the analogue, at the level of 2-forms, of
the short exact sequence (2.9.2). Observe that the sequence

10 Y 2
X/S(G)0 GD2

X/S
||0
(s1 , s0) GD1

X/S
×GD1

X/S
(2.10.1)

induced by the diagonal immersions s1 and s0: D1
X/S 0 D2

X/S (1.4.11) is also
right-exact, since each of the projections d2 and d0: D2

X/S 0 D1
X/S (1.4.10)

determines a section of the right-hand map over one of the two factors
of GD1

X/S
×GD1

X/S
, and therefore a set-theoretic section on the entire map

(s1, s0). The images of these sections, together with kernel Y 2
X/S(G),

generate the entire group GD2
X/S

. The analogue of (2.9.2) is the short exact
sequence

10 Y 2
X/S(G)0H||0

(s1, s0)
Y 1

X/S(G)×Y 1
X/S(G)0 1 (2.10.2)

defined from (2.10.1) by the pullback diagram:

1Ł Y2
X/S(G)|Ł H ||Ł

(s1, s0) Y1
X/S(G)×Y1

X/S(G)Ł 1

˙ ‡ ‡

1Ł Y2
X/S(G) Ł GD2

X/S
|||Ł

(s1, s0) GD1
X/S
×GD1

X/S
||Ł 1.

By Lemma 2.8, H is a central extension of Y 1
X/S(G)×Y 1

X/S(G) by Y 2
X/S(G).

Since H is split above each of the two factors Y 1
X/S(G), it is a so-called

Heisenberg group. Its structure is entirely determined by the bilinear map

Y 1
X/S(G)×Y 1

X/S(G)0H×H|0[ , ]
Y 2

X/S(G) …H

which maps a pair of 1-forms f and g to the 2-form (x, y, z)W
[f(x, y) , g(y, z)], so that the exact sequence (2.10.2) may be viewed as the
geometric embodiment of this Lie bracket pairing. When G/S is smooth,
the exact sequence (2.10.2) is of the form

10 Lie(G)éOS
W2

X/S 0H||0
(s1, s0) (Lie(G)éOS

W1
X/S)×(Lie(G)éOS

W1
X/S)0 1.

(2.10.3)

By Proposition 2.10, the corresponding Heisenberg pairing is defined by
the multiplication (2.5.6) with m=n=1. The fact that this pairing is
in that case symmetric is an extra element of structure, which reflects the
fact that the map d1 (1.4.10) determines an additional splitting of the
groupHover the diagonal subgroup Lie(G) éOS

W1
X/S … (Lie(G) éOS

W1
X/S)×

(Lie(G) éOS
W1

X/S).
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3. THE DE RHAM COMPLEX WITH VALUES IN
A NON-COMMUTATIVE GROUP

In this section, we construct by combinatorial methods a sequence of
maps between the various modules of G-valued forms Yn

X/S, which reduces
to the de Rham complex when G is the additive group Ga. In order to
express these modules as familiar Lie(G)-valued forms, rather than as
elements of HomOS

(wG/S, Wn
/X/S), we will assume throughout that G/S is

smooth even though this assumption plays no real role here.

3.1. To any point g ¥ G(X) we associate the 1-form d0(g) ¥
Y1

X/S(G) defined by

d0(g)=dg
1g

−1 dg
0g

so that

d0(g)(x0, x1)=g(x0)−1 g(x1).

Lemma 3.1. The map

d0: GX 0 Lie(G) éOS
W1

X/S

is a crossed homomorphism for the right action of G on 1-forms induced by
the left action (2.9.3).

Proof. For any pair of sections g1, g2 of G,

d0(g1 g2)=(dg
1 (g1 g2))−1 dg

0 (g1 g2)

=(dg
1g2)−1 (dg

1g1)−1 dg
0 (g1) d

g
0 (g2)

=(dg
1g2)−1 d0(g1) (d

g
1g2) d(g2)

=d0(g1)g2 d0(g2). L

In particular, to the universal section idG ¥ G(G) of G is associated the
G-valued 1-form

w=d0(idG) (3.1.1)

in Lie(G) é W1
G/S. This is the canonical left translation invariant Lie(G)-

valued 1-form on G referred to classically as the Maurer–Cartan form,
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so that d0(g) is its pullback by gg. A twisted right action of G on
Lie(G)-valued 1-forms may be defined by

(w fg)(x0, x1) :=g(x0)−1 w(x0, x1) g(x1)

=[g(x0)−1 w(x0, x1) g(x0)] [g(x0)−1 g(x1)]

so that, in additive notation,

w fg=wg+d0g. (3.1.2)

Similarly, we define a combinatorial differential map

d1: Y 1
X/S(G)0 Y 2

X/S(G)

by

d1w(x0, x1, x2)=w(x0, x1) w(x1, x2) w(x2, x0). (3.1.3)

By Lemma 2.7, this is indeed a 2-form. An immediate calculation ensures
that

d1d0(g)=1 (3.1.4)

for any g ¥ G, and in fact this equation remains valid for arbitrary triples
(x0, x1, x2) ¥X3, which do not necessarily lie in an infinitesimal neigh-
borhood of X. The equivariance property

d1(w fg)=(d1w)g (3.1.5)

follows directly from (3.1.3) and (3.1.2). Another easy computation in G
shows that

d1(wwŒ)(x, y, z)=d1w(x, y, z)[wŒ(x, y)w(y, z) w(z, x) wŒ(y, z)w(z, x) wŒ(z, x)]
(3.1.6)

so that the map d1 is a priori only a homomorphism up to some compli-
cated twistings. Though the following description of d1(wwŒ) is a conse-
quence of Theorem 3.3 below, it is of some interest to derive it as follows
from first principles:

Lemma 3.2. For any pair of Lie(G)-valued 1-forms w, wŒ, the equation

d1(w+wŒ)=d1w+d1wŒ+[w, wŒ]. (3.1.7)

is satisfied.
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Proof. While w(y, z) w(z, x): D2
X/S 0 G is not a 2-form, it does become

trivial when we set x=y. By remark 2.9, w(y, z) w(z, x) therefore com-
mutes with wŒ(x, y) in G(D2

X/S). We also know that the commutator of
w(z, x)−1 and wŒ(y, z) is a central element in the group H (2.10.3). The
right-hand term of (3.1.6) may therefore be written as

d1w(x, y, z) d1wŒ(x, y, z)[w(z, x)−1 , wŒ(y, z)].

Moreover

[w(z, x)−1, wŒ(y, z)]=[w(x, z), wŒ(z, y)]−1

=−[w , wŒ](x, z, y)

=[w , wŒ](x, y, z)

so that, in the additive notation befitting elements of Lie G é W2
X/S,

Eq. (3.1.7) is satisfied. L

3.2. We now describe the combinatorial differential d1 in classical
terms. Let

d: Lie(G) éOS
Wn

X/S 0 Lie(G) éOS
Wn+1

X/S

be the classical differential on Lie(G)-valued forms, defined on any pure
tensor Y é g ¥ Lie(G) éOS

Wn
X/S by

d(Y é g)=Y é dg. (3.2.1)

Theorem 3.3. Let G/S be a smooth group scheme. For any Lie(G)-
valued 1-form w,

d1(w)=dw+[w] (2). (3.2.2)

Proof. We will write here as though G is an affine S-group scheme
Spec(A). It is easily verified that, up to notational changes, the proof
remains valid for arbitrary G. We may also work Zariski locally on X. We
begin by extending to G-valued forms the description of n-forms given in
(1.7.5). Consider a G-valued n-form w: Dn

X/S 0 G, associated to a ring
homomorphism f: A0 Bé n+1/JO2P

0n whose restriction to the augmentation
ideal I in the ring A of G is

I0 Wn
X/S

z W C
m
cm dbm,

(3.2.3)
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where, for m=(m1, ..., mn), we set

dbm :=dbm1
N · · · Ndbmn

¥ Wn
X/S.

By (1.7.3), the n-form w corresponds to a rule which assigns to a T-valued
point (x0, ..., xn) of Dn

X/S, as described by a collection of ring homo-
morphisms x0, ..., xn: B0 C satisfying conditions (1.4.9) and (1.10.2), the
T-valued point of G defined by the ring homomorphism A0 C whose
restriction to I is given by

I0f C

z W C
m
x0(cm)(x1(bm1

)−x0(bm1
)) · · · (xn(bmn

)−x0(bmn
)).

(3.2.4)

In particular, a G-valued 1-form w: D1
X/S 0 G is described by a ring

homomorphism inducing

I 0 W1
X/S

z-C
m
cm dbm.

The images under this map of the elements ai and bi (2.7.1) associated to z
will be denoted as

ai WC
p
c −i, p db

−

i, p

bi WC
n
c −−i, n db

−−

i, n.

(3.2.5)

By (3.1.3), the 2-form d1w(x0, x1, x2) corresponds, at the ring level, to the
composite map

A|Ł
m123 Aé 3 ||||Ł

f01 é f12 é f20 (Bé 3/JO2P
02 1)

é 3 Ł
m123 Bé 3/JO2P

02 (3.2.6)

The middle terms fij: A0 Bé 3/JO2P
02 are composites

A0f Bé 2/J2 0 Bé 3/JO2P
02 ,

where the right-hand map corresponds to the projection D2
X/S 0 D1

X/S onto
the (i, j)th factor. The map m123 in (3.2.6) is the iterated multiplication in
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the ring Bé 3/JO2P
02 of D2

X/S, and m123 corresponds at the ring level to the
iterated group law

G3 0 G

(g1, g2, g3) W g1(g2 g3).

The restriction of m123 to the augmentation ideal I is given, in the notation
of (2.7.1), by

zW z é 1 é 1+1 é z é 1+1 é 1 é z

+C
i
(ai é bi é 1+ai é 1 é bi+1 é ai é bi)

+C
i, j

ai é ci, j é di, j, (3.2.7)

where

m(bi)=bi é 1+1 é bi+C
j

ci, j é di, j. (3.2.8)

This expression will simply be written in the abbreviated form

zW z é 1 é 1 +shuffles

+C
i

ai é bi é 1 +shuffles

+C
i, j

ai é ci, j é di, j (3.2.9)

since the missing terms in (3.2.9) are precisely those obtained by shuffling
the trivial terms 1 through z (resp. through the tensor ai é bi). The 2-form
d1w(x0, x1, x2) is described on T-valued points as the rule which associates
to each triple of ring homomorphisms xi: B0 C satisfying the conditions
(1.4.9) and (1.10.2) the ring homomorphism A0 C whose value on an
element z ¥ I is the sum of three terms, associated to each of the three
lines in Eq. (3.2.7). By (3.2.4), the three summands on the first line are
respectively sent to the three expressions

C
m
x0(cm)(x1(bm)−x0(bm)), C

m
x1(cm)(x2(bm)−x1(bm)),

C
m
x2(cm)(x0(bm)−x2(bm))

(3.2.10)
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in C. The right-hand sum can be rewritten as ;m x0(cm)(x0(bm)−x2(bm))
since any expression of the form x0(a)−x2(a) lies in a square zero ideal
of C. The sum of the three terms in (3.2.10) is therefore equal to the
expression

C
m
(x1(cm)−x0(cm))(x2(bm)−x1(bm)).

This proves that the contribution of the terms arising from the first line of
(3.2.7) to the ring level map (3.2.6) associated to d1w is the 2-form

zW C
m
dcm dbm=C d(cm dbm) ,

in other words the first summand dw in (3.2.2).
The analysis of the contribution of the second line of (3.2.7) to the ring-

level map associated to d1w will now be performed in a similar manner.
This second line is a sum of terms indexed by i which we will be analyzing
separately, and we will therefore temporarily drop the index i from the
notation. For a fixed i, Eq. (3.2.8) can be restated as

m(b)=b é 1+1 é b+C
j

cj é dj

and (3.2.5) is now

a WC
p
c −p db

−

p

b WC
n
c −−n db

−−

n .

(3.2.11)

The contribution of a middle term

a é b é 1+a é 1 é b+1 é a é b

of (3.2.7) to the rule associated to d1w sends z ¥ I to the sum of the three
terms

x0(c
−

p)[x1(b
−

p)−x0(b
−

p)] x1(c
−−

n )[x2(b
−−

n )−x1(b
−−

n )],

x0(c
−

p)[x1(b
−

p)−x0(b
−

p)] x2(c
−−

n )[x0(b
−−

n )−x2(b
−−

n )],

x1(c
−

p)[x2(b
−

p)−x1(b
−

p)] x2(c
−−

n )[x0(b
−−

n )−x2(b
−−

n )].

(3.2.12)
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The middle term in (3.2.12) may be replaced by x1(c
−

p)[x1(b
−

p)−x0(b
−

p)]
x2(c

−−

n )[x0(b
−−

n )−x2(b
−−

n )] so that the sum of all three terms can be rewritten
as

x1(c
−

p) x2(c
−−

n )[x2(b
−

p)−x0(b
−

p)][x0(b
−−

n )−x2(b
−−

n )]

+x0(c
−

p) x1(c
−−

n )[x1(b
−

p)−x0(b
−

p)][x2(b
−−

n )−x1(b
−−

n )]

=x0(c
−

p) x1(c
−−

n )[x1(b
−

p)−x0(b
−

p)][x2(b
−−

n )−x1(b
−−

n )].

Reintroducing the indices i, it follows that the contribution of the middle
term of (3.2.7) is the rule which maps z ¥ I to

C
i
x0(c

−

i, p)[x1(b
−

i, p)−x0(b
−

i, p)] x1(c
−−

i, n)[x2(b
−−

i, n)−x1(b
−−

i, n)]

in other words, by (3.2.5), the expression ; i f(ai)Nf(bi) occuring in
(2.7.6). This proves that the contribution of the middle term of (3.2.7) to
the rule describing d1w at the ring level is the second summand [w] (2) in
(3.2.2).

Finally, the last line of (3.2.7) contributes nothing to the rule describing
d1w at the ring level, since it corresponds to the sum of expressions
involving multiples of triple products of the form

[x1(u)−x0(u)][x2(v)−x1(v)][x0(w)−x2(w)]

=[x1(u)−x0(u)][x2(v)−x1(v)][(x0(w)−x1(w))+(x1(w)−x2(w))]

=[x1(u)−x0(u)][x2(v)−x1(v)][(x0(w)−x1(w)]

+[x1(u)−x0(u)][x2(v)−x1(v)][x1(w)−x2(w)]

for appropriate u, v, w in B, and each of the two summands on the last line
vanishes in C. L

Remark 3.4. The description (3.2.2) in classical terms of the combina-
torial differential d1w of a 1-form w is, in our context, the structural equa-
tion of Elie Cartan (see [16, II, Theorem 5.2]). When w is the 1-form
(3.1.1), Eq. (3.1.4) asserts that

dw+[w] (2)=0.

This is generally referred to as the Maurer–Cartan equation. For a version
of this assertion in the synthetic differential geometry context, see [18,
Theorem 5.4].
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3.3. The differentials which, for n > 1, will determine the addi-
tional terms in the G-valued de Rham complex of X/S depend on auxiliary
data, which is encoded in a fixed Aut(G)-valued combinatorial 1-form

q: D1
X 0 Aut(G).

The map

d2
q: Y2

X/S(G)0 Y3
X/S(G)

is defined in combinatorial terms by

d2
q(f)(x, y, z, u)=q(x, y)(f(y, z, u)) f(x, y, u) f(x, u, z) f(x, z, y).

(3.3.1)

It follows from Lemma 2.7 that d2
q(f) is indeed a combinatorial 3-form.

Let i be the inner conjugation map

G 0 Aut(G)

c W ic: gW cgc−1.

Lemma 3.5. For any combinatorial 1-form g: D1
X/S 0 G,

d2
i
*
g p d1(g)=1, (3.3.2)

where igg is the induced Aut(G)-valued combinatorial 1-form

D1
X/S 0 G0i Aut(G).

Proof. It suffices to substitute the values (3.1.3) of f and igg of q into
(3.3.1), and to take into account, as in the proof of the corresponding
Theorem 9.1 of [19], the appropriate cancellations. L

Remark 3.6. Strictly speaking, it is incorrect to refer as we have done
here to a de Rham complex, since the differential d2 in formula (3.3.2)
depends to some extent on the given 1-form g.

3.4. We now describe more classically, just as we did for d1 in
Theorem 3.3, the 3-form d2

q(f). We will assume that X/S is smooth. As we
have already observed, Aut(G) is representable whenever G is a reductive
S-group scheme. In this case, the auxiliary combinatorial 1-form q actually
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takes its values in the affine S-group Gad=G/ZG since, by [9, XXIV,
Corollary 1.7], Gad is the connected component of the identity in Aut(G).

Theorem 3.7. Let G be a smooth group scheme over S, and f (resp. q) a
combinatorial G-valued 2-form (resp. a combinatorial Aut(G)-valued 1-form)
on a smooth S-scheme X. Then

d2
q(f)=df+[q, f].

Here df is the classical differential (3.2.1) and the bracket pairing is given by
(2.8.5).

Proof. The expression d2
q(f) splits as

d2
q(f)(x, y, z, u)=d̃2

q(f) d̃2(f),

where we set

d̃2
q(f)(x, y, z, u) :=q(x, y)(f(y, z, u)) f(y, z, u)−1 (3.4.1)

and

d̃2(f)(x, y, z, u) :=f(y, z, u) f(x, y, u) f(x, u, z) f(x, z, y). (3.4.2)

Proposition 2.14 asserts that d̃2
q(f)=[q, f] so that what remains to be

verified is that the 3-form d̃2(f), which does not depend on the auxiliary
1-form q, is described by the classical differential df. Working locally in
the Zariski topology, we assume that X is affine. This 3-form is then
described at the ring level by the composite map

AŁ
m1234 Aé 4 |||||||Ł

f123 é f013 é f032 é f021 (Bé 4/JO2P
03 )

é 4 Ł
m1234 Bé 4/JO2P

03 (3.4.3)

analogous to (3.2.6). Here fijk is the composite

fijk: A0f Bé 3/JO2P
02 0 Bé 4/JO2P

03 ,

where the right-hand map corresponds to the projection D3
X/S 0 D2

X/S onto
the factor indexed by (i, j, k). The map m1234 in (3.2.6) is the iterated mul-
tiplication in the ring Bé 4/JO2P

03 of D3
X/S, and the m1234 corresponds at the

ring level to the iterated group law

G4 0 G

(g1, g2, g3, g4) W g1(g2(g3 g4)).
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The restriction of m1234 to the augmentation ideal I of A is given, in the
notation of (2.7.1), (3.2.8), and with the same shuffle convention as in
(3.2.9), by

zW z é 1 é 1 é 1 +shuffles

+C
i

ai é bi é 1 é 1 +shuffles

+C
i, j

ai é ci, j é di, j é 1 +shuffles

+C
i, j, k

ai é ci, j é gijk é hijk (3.4.4)

where

m(dij)=1 é dij+dij é 1+C
k

gijk é hijk,

m being the comultiplication map (2.7.1) on A .
Each of the summands in the full expression (3.4.4) a priori contributes a

term to the corresponding rule associated to the induced expression (3.4.3).
However, we now show that the last three lines of (3.4.4) contribute
nothing to the value of d̃2(f) by examining the effect of the two right-hand
maps in (3.4.3) on the various terms in these three lines in (3.4.4). We will
simply do this for the first such term ai é bi é 1 é 1, since the same rea-
soning applies to all subsequent ones. Since f(ai) and f(bi) both live in
Y2

X/S=J̃01J̃02, the image of ai é bi é 1 é 1 lies in the ideal (J̃12J̃13)(J̃01J̃03)
in Bé 4/JO2P

03 . However, by (1.5.4),

(J̃12J̃13)(J̃01J̃03) … J̃12J̃13J̃01(J̃01+J̃13)

=J̃12J̃13J̃
2
01+J̃12J̃

2
13J̃01

=(0)

so that the contribution of such a term to d̃2(f) is zero.
Theorem 3.7 now follows from the following assertion:

Lemma 3.8. The contribution of the first line of (3.4.4) to the combina-
torial differential d̃2(f) is expressed by the classical differential (3.2.1).

Proof. Let us consider the effect on T=Spec(C)-valued points of the
map (3.4.3), just as we did in the proof of Theorem 3.3 for the map asso-
ciated to d1w . The combinatorial 2-form f: D2

X/S 0 G corresponds to
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a ring homomorphism f: A0 Bé 3/JO2P
02 whose restriction to the augmen-

tation ideal I of G is:

I0 W2
X/S

z W C
m, n

cm, n dbm dbn.
(3.4.5)

The form f is described by the rule which assigns to each family of
T-valued points xi of X (0 [ i [ 3) defined by ring homomorphisms xi:
B0 C satisfying the congruence conditions (1.4.9) and (1.10.2) the
T-valued point of G described at the ring level by the ring homomorphism
whose restriction to I is defined by

I0 C

z W C
m, n

x0(cm, n)(x1(bm)−x0(bm))(x2(bn)−x0(bn)). (3.4.6)

The pullbacks of f corresponding to the four terms on the first line of
(3.4.4) are respectively induced by the expressions f123, f013, f032, and f021 in
the composite map (3.4.3); in other words they are the rules which associate
to the points xi the maps which send z ¥ I respectively to

C
m, n

x1(cm, n)(x2(bm)−x1(bm))(x3(bn)−x1(bn))

C
m, n

x0(cm, n)(x1(bm)−x0(bm))(x3(bn)−x0(bn))

C
m, n

x0(cm, n)(x3(bm)−x0(bm))(x2(bn)−x0(bn))

C
m, n

x0(cm, n)(x2(bm)−x0(bm))(x1(bn)−x0(bn)).

Dropping the indices m, n, the first line of (3.4.4) thus contributes a sum of
terms of the form

x1(c)(x2(b)−x1(b))(x3(b)−x1(b))+x0(c)(x1(b)−x0(b))(x3(b)−x0(b))

+x0(c)(x3(b)−x0(b))(x2(b)−x0(b))+x0(c)(x2(b)−x0(b))(x1(b)−x0(b))

corresponding to a summand c db db of the expression ;m, n cm, n dbm dbn.
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Taking into account the fact that the four summands in this expression
take their values in square zero ideals Ki, j in the ring C, we may rewrite
each of them in the following manner:

x1(c)(x2(b)−x1(b))(x3(b)−x1(b))=x1(c)(x2(b)−x1(b))(x3(b)−x2(b))
(3.4.7)

x0(c)(x1(b)−x0(b))(x3(b)−x0(b))=x0(c)(x1(b)−x0(b))(x3(b)−x1(b))

=x0(c)(x1(b)−x0(b))(x3(b)−x2(b))

+x0(c)(x1(b)−x0(b))(x2(b)−x1(b))
(3.4.8)

x0(c)(x3(b)−x0(b))(x2(b)−x0(b))=x0(c)(x3(b)−x0(b))(x2(b)−x3(b))

=x0(c)(x2(b)−x0(b))(x2(b)−x3(b))
(3.4.9)

x0(c)(x2(b)−x0(b))(x1(b)−x0(b))=x0(c)(x2(b)−x0(b))(x1(b)−x2(b))

=x0(c)(x1(b)−x0(b))(x1(b)−x2(b))
(3.4.10)

so that the sum of the four terms (3.4.7)–(3.4.10) is simply the expression

(x1(c)−x0(c))(x2(b)−x1(b))(x3(b)−x2(b))

=(x1(c)−x0(c))(x2(b)−x0(b))(x3(b)−x2(b))

=(x1(c)−x0(c))(x2(b)−x0(b))(x3(b)−x0(b)) (3.4.11)

corresponding to the evaluation at the points x0, x1, x2, x3 of the expression

dc db db=d(c db db).

Reintroducing the indices m, n, Eq. (3.4.11) ensures that the first line of
(3.4.4) contributes to d̃2(f) the sought-after term df=;m, n d(cm, n) dbmdbn.

L

Remark 3.9. We have seen that when q=igg, the bracket pairing [q, ]
(2.8.5) reduces to the pairing [g, ]. Lemma 3.5, expressed by Theorem 3.7
in classical terms, is a version of the Bianchi identity ([16, chap. II,
Theorem 5.4; [19]).
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3.5. Consider a triple

W: D3
X/S 0 G g: D2

X/S 0 G q: D1
X/S 0 Aut(G)

consisting of a G-valued combinatorial 3-form W(x, y, z, u), a G-valued
combinatorial 2-form g(x, y, z), and an Aut(G) valued combinatorial
1-form q(x, y). We define as follows a differential d3

q, g from Lie(G)-valued
3- to 4-forms.

Definition 3.10. The combinatorial differential d3
q, g(W) of the 3-form

W with respect to the pair (q, g) is the Lie(G)-valued 4-form

(d3
q, g) W(x, y, z, u, v)

:=q(x, y) (W(y, z, u, v)) q(x, y)(g(y, z, u)) W(x, y, u, v) W(x, y, z, u)

×[g(x, y, z)W(x, z, u, v)]−1 [q(x, y) q(y, z)(g(z, u, v))W(x, y, z, v)]−1, (3.5.1)

where the action of q on both g and W is induced by the canonical pairing
Aut(G)×G0 G and a G-valued 2-form such as g acts on a G-valued
3-form W via inner conjugation in G.

Except for one missing factor, this formula is analogous to the non-
abelian 2-cocycle formula (4.2.17) in [4]. By Lemma 2.8, the various inner
conjugation actions in (3.5.1) are all trivial, so that the effect on 3-forms of
the differential d3

q, g is equal to that of the naive differential d3
q :=d3

q, 1

defined by

(d3
qW)(x, y, z, u, v) :=q(x, y)(W(y, z, u, v)) W(x, y, u, v) W(x, y, z, u)

×W(x, z, u, v)−1 W(x, y, z, v)−1.

This expression determines an element of Y4
X/S(G), since it defines a section

of G above D4
X/S which vanishes under the specializations x=y, y=z,

z=u and u=v.

Proposition 3.11. Let q: D1
X 0 Aut(G) and g: D2

X 0 G be respectively
an Aut(G)-valued 1-form and a G-valued 2-form on X, satisfying the
additional condition

d1q=ig(g) (3.5.2)

in Y2
X/S(Aut(G)) (with i: G0 Aut(G) the inner conjugation map on G).

Then

(d3
q p d2

q)(g)=0. (3.5.3)
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Proof. Equation (3.5.3) may be formulated as

q(x, y)(W(y, z, u, v)) q(x, y)(g(y, z, u))W(x, y, u, v) W(x, y, z, u)

=q(x, y) q(y, z)(g(z, u, v))W(x, y, z, v) g(x, y, z)W(x, z, u, v), (3.5.4)

where

W(x, y, z, u)=d2
q(g)(x, y, z, u)

=q(x, y)(g(y, z, u)) g(x, y, u) g(x, u, z) g(x, z, y).

Substituting this value for W, the three factors occuring on the left-hand
side of (3.5.4) are respectively given by

q(x, y)(W(y, z, u, v))

=q(x, y) q(y, z)(g(z, u, v)) q(x, y)(g(y, z, v))

×q(x, y)(g(y, v, u)) q(x, y)(g(y, u, z))

q(x, y)(g(y, z, u))W(x, y, u, v)

=q(x, y)(g(y, z, u)) q(x, y)(g(y, u, v)) g(x, y, v) g(x, v, u) g(x, u, y)

×(q(x, y)(g(y, z, u)))−1

W(x, y, z, u)

=q(x, y)(g(y, z, u)) g(x, y, u) g(x, u, z) g(x, z, y).

Multiplying these three terms together, and taking into account some cancella-
tions, it follows that the left-hand side of (3.5.4) is equal to the expression

q(x, y) q(y, z)(g(z, u, v)) q(x, y)(g(y, z, v)) g(x, y, v)

×g(x, v, u) g(x, u, z) g(x, z, y). (3.5.5)

On the other hand, since q(x, y) q(y, z)(g(z, u, v)) acts on W by conjuga-
tion, the first factor on the right-hand side of (3.5.4) is

q(x, y) q(y, z)(g(z, u, v))W(x, y, z, v)

=q(x, y) q(y, z)(g(z, u, v)) q(x, y)(g(y, z, v)) g(x, y, v)

×g(x, v, z) g(x, z, y)(q(x, y) q(y, z)(g(z, u, v)))−1. (3.5.6)
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The second factor on the right-hand side of (3.5.4) is given by

g(x, y, z)W(x, z, u, v)

=g(x, y, z) q(x, z)(g(z, u, v)) g(x, z, v) g(x, v, u) g(x, u, z) g(x, z, y).
(3.5.7)

Applying (3.5.2) to the expression q(x, z) g(z, u, v), we find that

g(x, y, z) q(x, z)(g(z, u, v))=q(x, y) q(y, z)(g(z, u, v)) g(x, y, z) (3.5.8)

for all (x, y, z, u, v) ¥ D4
X/S. Substituting (3.5.8) in (3.5.7) yields the formula

g(x, y, z)W(x, z, u, v)

=q(x, y) q(y, z)(g(z, u, v)) g(x, y, z)

×g(x, z, v) g(x, v, u) g(x, u, z) g(x, z, y). (3.5.9)

Multiplying together the right hand terms of equations (3.5.6) and (3.5.9),
as we must in order to compute the right-hand side of the expression
(3.5.4), we obtain an expression which, after some cancellation, is equal to
(3.5.5). L

Remark 3.12. When G is abelian, or more generally when g: D2
X/S 0

ZG … G is central, condition (3.5.2) reduces to the zero curvature condition

d1q=0.

This is consistent with the occurrence of a similar zero curvature condition
in the construction of the de Rham complex associated to a bundle with
connection ([1, II, Proposition 3.2.5; 19, Proposition 13.1]).

Theorem 3.13. Under the hypotheses of Theorem 3.7, let W (resp. q) be
a G-valued combinatorial 3-form (resp. an Aut(G)-valued combinatorial
1-form) on X/S. Then

d3
q(W)=dW+[q, W].

Proof. The proof is very similar to that of Theorem 3.7, and we will use
the same notation. The expression d3

q(W) factors as

d3
q(W)=d̃3

q(W) d̃3(W)
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with

d̃3
q(W)(x, y, z, u, v) :=q(x, y)(W(y, z, u, v)) W(y, z, u, v)−1

and

d̃3(W)(x, y, z, u, v)

:=d3
1(W)(x, y, z, u, v)

=W(y, z, u, v) W(x, y, u, v) W(x, y, z, u) W(x, z, u, v)−1 W(x, y, z, v)−1

=W(y, z, u, v) W(x, y, u, v) W(x, y, z, u) W(x, z, v, u) W(x, y, v, z).

By Proposition 2.14

d̃3
q(W)=[q, W],

so that all that remains to be done is to identify the factor d̃3(W) with the
classical differential of the 3-form W. Let w: A0 Bé 4/JO2P

03 represent the
3-form W at the ring level. The corresponding description of d̃3(W) is
the composite ring homomorphism

AŁ
m12345 Aé 5 |||||||||||Ł

w1234 é w0134 é w0123 é w0243 é w0142 (Bé 5/JO2P
04 )

é 5

||Ł
m12345 Bé 5/JO2P

04 (3.5.10)

analogous to (3.2.6) and (3.4.3). The iterated multiplication G5 0 G is
described at the ring level by an iterated comultiplication map m12345 anal-
ogous to (3.4.4), and whose restriction to the augmentation ideal I in A is
of the form

zW (z é 1 é 1 é 1 é 1+shuffles) (3.5.11)

+additional terms.

As in the proof of Theorem 3.7, these additional terms make no contri-
bution to the result, and all that remains to be done is to compute the sum
of the images of the five terms occuring on the first line of (3.5.11), in other
words the expression

w1234(z)+w0134(z)+w0123(z)+w0243(z)+w0142(z). (3.5.12)

Setting

w(z) := C
m, n, p

cm, n, p dbm dbn dcp , (3.5.13)
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it suffices compute the contribution to the total expression (3.5.12) of each
individual summand c db db dc in (3.5.13). This 3-form’s value, when
evaluated on a point (x0, x1, x2, x3) ¥ D3

X/S, is given by the expression

x0(c)(x1(b)−x0(b))(x2(b)−x0(b))(x3(c)−x0(c)).

It is then shown as in the proof of Theorem 3.7, by repeatedly using the
fact that the ring homomorphisms associated to the given points xi are
congruent modulo square zero ideals, that the contribution of this expres-
sion to (3.5.12) corresponds to the 4-form dc db db dc=d(c db db dc). We
omit the details of this computation, as it does not require the introduction
of any new concepts. L
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