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Oxidative stress and the antioxidant defense system 
Hydroxyl peroxide, superoxide, and hydroxyl radicals, gener-

ally known as reactive oxygen species (ROS), are the metabolites 
of oxygen in normal cells, whereas nitrite, nitrate, and peroxyni-
trite, referred to as reactive nitrogen species (RNS), are the byprod-
ucts of nitric oxide (NO) metabolism.[1] Mitochondria-catalyzed 
electron transport reactions, UV light irradiation, X-rays, gamma 
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ABSTRACT
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rays, chronic inflammation, lipid peroxidation, and environmental 
pollutants are the common stimuli for ROS/RNS induction.[2,3] 
Maintaining a reasonable level of ROS/RNS in the body is essential 
for normal physiological processes, including cellular senescence 
and programmed cell death, which are beneficial anti-tumorigenic 
functions.[4,5] However, high levels of ROS/RNS generate oxida-
tive stress, a critical trigger of genomic instability, defects in DNA 
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damage repair, transformation of normal cells to premalignant 
cells, enhanced proliferation and survival of malignant cells, and 
subsequent cancer development.[6,7] Oxidative stress also has a 
significant association with many other chronic diseases such 
as neurodegenerative diseases [Alzheimer’s disease (AD), Par-
kinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)], 
cardiovascular disease, diabetes, and inflammatory diseases.[5,8,9]

Non-enzymatic and enzymatic antioxidant regulation
Oxidative stress is counteracted by enzymes that inhibit the 

generation of ROS or by direct scavenging of free radicals by or-
ganic molecules.[5] Vitamin C (l-ascorbate), vitamin E, carotenoids, 
selenium, flavonoids, and thiol antioxidants such as glutathione, 
thioredoxin, and lipoic acid are the non-enzymatic antioxidants.
[4,10,11] However, at high concentrations, some of these molecules, 
such as vitamin C and vitamin E, induce oxidative stress, thereby 
increasing ROS levels.[12]

Enzymatic antioxidants include superoxide dismutases 
(SODs), catalase, and glutathione peroxidase. Three isoforms of 
SODs (SOD1–SOD3) are the major antioxidant defense against 
(O2

−▪), and all three isoforms require catalytic metals (Cu or Mn) 
for their activation.[13,14] The enzyme catalase degrades and reduces 
hydrogen peroxide.[15] Glutathione peroxidases include glutathione 
S-transferases (GSTs) and glutathione peroxidases (GPx), which 
are important for protecting the living organisms from free radical-
induced oxidative damage.[16,17]

Phase I and phase II enzymes are closely associated with xe-
nobiotic metabolism and are also involved in antioxidant activity. 
The phase I drug metabolic enzymes, which belong to the larger 
cytochrome P450 enzyme family, catalyze reactions through oxi-
dation, reduction, hydrolysis, cyclization, and decyclization,. By 
contrast, phase II conjugating enzymes play crucial cytoprotective 
roles against carcinogens and ROS by catalyzing conjugation 
reactions involving glucuronic acid, sulfation, and glutathione 
to inactivate or detoxify harmful substrates by increasing their 
solubility or facilitating their excretion.[18-20] Most polyphenolic 
antioxidants exert their activity through phase II enzymes.[21]

Nrf2-related antioxidant regulation
When the cellular redox status of cells is altered by ROS/

RNS, some ROS/RNS-sensitive regulatory transcription factors, 
such as nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 
(Nrf2), nuclear factor-kappaB (NF-κB), and hypoxia-inducible 
factor-1alpha (HIF-1alpha), are modified with subsequent activa-
tion. Many phase II enzymes as well as some detoxifying genes, 
such as glutathione S-transferase (GST), peroxiredoxin1 (Prx1), 
γ-glutamate cysteine ligase (γ-GCLC and γ-GCLM), heme oxygen-
ase-1 (HO-1), and NAD(P)H:quinine oxidoreductase (NQO1), are 
inducible and activated by Nrf2, a key orchestrator of antioxidant 
signaling.[1,20,22,23]

Nrf2 is a basic leucine zipper-containing transcription factor 
that activates phase II/detoxifying and many other genes through 
the cis antioxidant response element (ARE), which contains a 
conserved sequence (5′-A/G TGA C/T NNNGC A/G-3′, where N 
can be any nucleic acid).[24-30] Keap1 (Kelch-like ECH-associating 
protein 1), an interacting protein of Nrf2, serves as an adaptor that 

bridges Nrf2 and Cul3 for protein ubiquitination.[31] The sulfhydryl 
residues in Keap1 are sensitive to electrophiles, and ROS cause 
cellular redox status changes, making Keap1 a primary redox 
sensor,[32,33] although Nrf2 itself may also be a redox sensor that 
regulates its subcellular localization through its MESTA motif.[34] 
[Figure 1] shows the schematic structure of Nrf2 and Keap1 and 
the mechanism of Nrf2 activation.

Nrf2-related inflammatory pathway regulation
Up to 20% of human cancer is triggered by chronic inflamma-

tion, and NF-κB is a key orchestrator of innate immune/inflam-
matory regulation.[35] With exposure to various stimuli, such as 
tumor necrosis factor alpha (TNF-α), interleukin (IL)-1, H2O2, 
lipopolysaccharide (LPS), or microbial infection, IκB proteins are 
subject to proteasome-mediated degradation as a consequence of 
phosphorylation at serine and threonine by IκB kinases (IKKs) 
within the IKK complex. [36,37] The degradation of IκBs leads to 
nuclear translocation of NF-κB to activate downstream target 
genes including different inflammatory cytokines and chemokines, 
adhesion molecules, enzymes [such as cyclooxygenase 2 (COX-
2) and NO synthase], and many other stress response genes.[37-40] 
NF-κB activation has been observed in many cancer types. For 
example, suppression of the NF-κB pathway by deletion of IKKb, 
an upstream regulator of NF-κB, leads to inhibition of cancer 
cell proliferation and a dramatic decrease in tumor incidence in a 
colitis-associated cancer model.[41-44]

Potential interfaces and significant crosstalk are associated with 
Nrf2 and NF-κB signaling. Compared with wild-type mice, we and 
others have observed that in Nrf2-KO mice, inflammatory-related 
signals such as TNF, IL-1, COX-2, and iNOS attenuate expression 
in primary peritoneal macrophages upon stimulation with LPS 
after pretreatment with sulforaphane (SFN).[45,46] 

Chemopreventive effects of phytochemical compounds

Phytochemicals possess potential anti-cancer effects
Dissecting the chemopreventive effects of dietary compounds 

and phytochemicals extracted from herbal medicines, particularly 
the mechanisms of their antioxidant activities, is an important area 
of research. For example, isothiocyanates, such as phenethyl iso-
thiocyanate (PEITC) and SFN, have been purified from cruciferous 
vegetables, and other dietary compounds, such as curcumin and 
dibenzoylmethane (DBM), exhibit potential anti-cancer effects 
in transgenic adenocarcinoma of the mouse prostate (TRAMP) 
mice and the derivative tumor cell line TRAMP C1. Curcumin or 
PEITC, either alone or in combination, significantly decreases the 
incidence of prostate tumor formation.[47] Vitamin E is a generic 
name for structurally related tocopherols and tocotrienols. We and 
others have shown that gamma-tocopherol (gamma-T) enriched 
mixed tocopherol activates the expression of Nrf2 and suppresses 
prostate intraepithelial neoplasia (PIN) and tumor development 
in the TRAMP prostate cancer mouse model, corresponding to 
inhibition of the expression of proliferating cell nuclear antigen 
(PCNA), COX-2, and estrogen receptor α (ERα), and the induction 
of apoptosis.[48,49] Compounds identified in some herbal medicines 
also exhibit antioxidant activities. For example, the three common 
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ginsenosides present in ginseng, Rb1 (Rb1), ginsenoside Rg1 
(Rg1), and ginsenoside 20(S)-protopanaxatriol (20S), induce Nrf2 
ARE in HepG2-C8 cells stably transfected with an ARE luciferase 
reporter gene.[50]

Potential antioxidant responses regulated by chemopreventive 
compound treatment

The potential mechanisms of these phytochemicals in chemo-
prevention may include 1) attenuating oxidative stress by serving 
as direct antioxidants or inducing Nrf2, as has been shown for 
curcumin, vitamin E, epigallocatechin-3-gallate (EGCG), and syn-
thetic triterpenoid CDDO-Me;[51-56] 2) anti-inflammatory activities; 
and 3) cell cycle and apoptosis regulation. In HT-29 human colon 
cancers and RAW 264.7 murine macrophages, PEITC suppressed 
inflammation by inhibiting pro-inflammatory mediator mediators 
and cytokines (iNOS, COX-2, IL-1b, IL-6, and TNF-α). PEITC 
also suppressed LPS-induced phosphorylation and degradation 
of IkBa and decreased nuclear translocation of p65.[57] DBM, for 

example, blocks the growth and progression of prostate cancer in 
TRAMP mice and arrests TRAMP-C1 cells at the G2-M phase of 
the cell cycle. The expression of phosphorylated retinoblastoma, 
c-myc, cyclin D1, cyclin A, phosphorylated Akt, phosphorylated 
PDK-1, and phosphorylated S6 was also significantly reduced 
by DBM.[58] 

Many of those phytochemicals activate multiple signaling 
pathways. The detailed molecular events of Nrf2 activation by 
various phytochemicals remain unclear. Mitogen-activated protein 
kinases (MAPKs), including extracellular signal-regulated kinases 
(ERKs), c-Jun amino-terminal kinases (JNKs), and protein 38 
(p38), and other kinases such as phosphatidylinositol 3-kinase 
(PI3K) and protein kinase C (PKC) may play a role in this acti-
vation.[59-62] Phytochemicals such as SFN and PEITC induce the 
phosphorylation of ERK1/2, JNK1/2, and c-Jun.[63] ERK and JNK 
have positive effects on ARE-mediated activities and Nrf2 trans-
activation,[5,62,64,65] while phosphorylation of Nrf2 by p38 increases 
Keap1/Nrf2 binding and therefore inhibits Nrf2 activity.[66] PKC 

Figure 1. Hypothetical mechanism of Nrf2 activation.
Keap1 is dimerized through the BTB domain and is anchored to the actin cytoskeleton via the DGR/Kelch region. Nrf2 binds to the DGR/Kelch region of the 
Keap1 dimer via a high-affinity ETGE (hinge) motif and a low-affinity DLG (latch) bAU2 motif. The two-site binding exposes the Ub-acceptor site(s) in Nrf2. 
Under normal conditions, ubiquitinated Nrf2 is degraded by the proteasome, which maintains the equilibrium between synthesis and degradation of the Nrf2 
protein in the cell. Once Keap1 is exposed to oxidants or electrophilic compounds, cysteine thiol groups in the IVR region of Keap1 interact with oxidative 
stress, inducing the formation of disulfide bonds. Disulfide bond formation results in a conformational change that renders Keap1 unable to bind to Nrf2, which 
then translocates to the nucleus. In this stage, the Ub-acceptor site is not easily accessible. The ubiquitination and proteasomal degradation of Nrf2 are impeded. 
The released Nrf2, in heterodimeric combination with other transcription factors such as small Maf, binds to the ARE regulatory region of phase II genes and 
enhances their transcription.

 

1 
 

Oxidative stress, ROS/RNS, TCHM

Figure 1. Hypothetical mechanism of Nrf2 activation.
Keap1 is dimerized through the BTB domain and is anchored to the actin cytoskeleton via the 
DGR/Kelch region. Nrf2 binds to the DGR/Kelch region of the Keap1 dimer via a high-affinity 
ETGE (hinge) motif and a low-affinity DLG (latch) bAU2 motif. The two-site binding exposes the 
Ub-acceptor site(s) in Nrf2. Under normal conditions, ubiquitinated Nrf2 is degraded by the 
proteasome, which maintains the equilibrium between synthesis and degradation of the Nrf2 protein 
in the cell. Once Keap1 is exposed to oxidants or electrophilic compounds, cysteine thiol groups in 
the IVR region of Keap1 interact with oxidative stress, inducing the formation of disulfide bonds. 
Disulfide bond formation results in a conformational change that renders Keap1 unable to bind to 
Nrf2, which then translocates to the nucleus. In this stage, the Ub-acceptor site is not easily 
accessible. The ubiquitination and proteasomal degradation of Nrf2 are impeded. The released Nrf2, 
in heterodimeric combination with other transcription factors such as small Maf, binds to the ARE 
regulatory region of phase II genes and enhances their transcription.
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Table 1. Examples of the effect of TCHM on the activation of Nrf2

TCHM name Ingredient Effect1 Concentration Reference
Acanthopanax senticosus  
(刺五加 Cì Wǔ Jiā)

Aqueous extracts ↑GSH/GSSG ratio ↑Nrf2, ↑CuZnSOD, ↑MnSOD, 
↑catalase, ↑GPx, and ↑GCLC against tert-butyl 
hydroperoxide induced oxidative stress in the livers 
of male Kunming mice

300 mg/kg, i.a. [145]

Garlic (大蒜 Dà Suàn; the bulb 
of Allium sativum)

Diallyl sulfide (an 
organosulfur compound)

↑NQO1 and ↑Nrf2 in livers of male C57BL6/J wild-
type mice

500 mg/kg, p.o. [146]

Angelica Sinensis Radix  
(當歸 Dāng Guī)

Petroleum ether extract ↑NQO1 in Hepa-1c1c7 mouse hepatoma cells; 
↑ARE-luciferase reporter activity in HepG2-ARE-C8 
human hepatoma cells

5.5 ± 0.7 μg/mL [147]

Chloroform extract ↑NQO1 in Hepa-1c1c7 mouse hepatoma cells 3.9 ± 0.5 μg/mL [147]
Z-ligustilide (an 
alkylphthalide)

↑NQO1 in Hepa-1c1c7 mouse hepatoma cells; 
↑ARE-luciferase reporter activity in HepG2-ARE-C8 
human hepatoma cells; 
alkylated cysteine residues in human Keap1 protein

6.9 ± 1.9 μM [147]

Dracocephali Rupestris Herba 
(巖青蘭 Yán Qīng Lán; 
Dracocephalum rupestre) 

Eriodictyol (a flavonoid) ↑Nuclear translocation of Nrf2, ↑HO-1, ↑γ-GCS 
and ↑intracellular glutathione against H2O2-induced 
oxidative stress in PC12 rat pheochromocytoma cells

80 μM [148]

Ecklonia cava (昆布 Kūn Bù) Eckol (a phlorotannin) ↑Erk, ↑Akt, ↑HO-1, and ↑phosphorylated 
form, nuclear translocation, ARE-binding, and 
transcriptional activity of Nrf2 in V79-4 Chinese 
hamster lung fibroblast cells

10 μg/mL [149]

Ganoderma (靈芝 Líng Zhī; 
Ganoderma lucidum)

Water extract
Ethanol extract

↑SOD, ↑catalase, ↑NQO1, ↑GSTP1 and ↑Nrf2 in 
OVCAR-3 ovarian cancer cells 

10 μg/mL [150]

Macleayae Herba cum Radice (
博落回 Bó Luò Huí; Macleaya 
cordata)

Extract ↑HO-1 in RAW264.7 murine macrophage cells 50 μM [151]
Sanguinarine (an 
alkaloid)

↑Nuclear translocation of Nrf2 and ↑HO-1 in 
RAW264.7 murine macrophage cells

2 μM [151]

Ginseng Radix (人參 Rén 
Shēn; the root of Panax 
ginseng C.A. Meyer)

Water extract ↑GSH content, ↑GST, ↓CYP1A1, ↑GSTA2, ↑GSTA3, 
↑GSTM2, and ↑Nrf2 against benzo[alpha]pyrene 
-induced hepatotoxicity in SD rats

50 mg/kg/day, oral [160]

Ginsenoside 20(S)-Rg3 
(a ginsenoside)

↑NQO1 and ↑nuclear translocation of Nrf2 against 
benzo[a]pyrene-induced DNA damage in neonatal 
human dermal fibroblasts

10 μM [152]

Ginsenoside Rb1, 
ginsenoside Rg1, and 
20(S)-protopanaxatriol 
(ginsenosides)

↑Nrf2, ↑HO-1, and ↑ARE-luciferase reporter activity 
in HepG2-ARE-C8 human hepatoma cells

12.5 μM [50]

20(S)-protopanaxatriol 
(a ginsenoside)

↑Nrf2, ↑HO-1, ↑NQO1, and ↑UGT1A1 in murine 
prostate
cancer TRAMP C1 cells

12.5 μM [50]

Coptidis Rhizoma (黃連 Huáng 
Lián)

Berberine (an alkaloid) ↑Nuclear translocation of Nrf2, ↑Nrf2–DNA binding 
activity, and ↑HO-1-luciferase activity in rat brain 
astrocytes

10 μM [153]

Rubi Fructus (覆盆子 Fù 
Pén Zǐ; the fruits of Rubus 
coreanus)

23-Hydroxytormentic 
acid (a triterpenoid 
glycoside)

↑GSH content, ↓MDA level, ↓ROS, ↑catalase, ↑SOD, 
and ↑nuclear translocation of Nrf2 against cisplatin-
induced toxicity in renal epithelial LLC-PK1 cells

50 μM [154]

Scutellariae Radix (黃
芩 Huáng Qín; the root of 
Scutellaria baicalensis)

Baicalein (a flavone) ↑Hepatic metabolic enzymes through Nrf2-mediated 
ARE pathway and ↑ARE-luciferase reporter activity 
in HepG2 human hepatoma cells

40 μM [155]

Schisandrae Fructus (五味
子 Wǔ Wèi Zǐ; the fruits of 
Schisandra chinensis) 

Schisandrin B (a 
dibenzocyclooctadiene)

↑Nuclear translocation of Nrf2, ↑HO-1, ↑TrxR1, and 
↑GCLC in lymphocytes

50 μM [156]

Puerariae Radix (葛根 Gé Gēn; 
the root of Pueraria lobata)

Puerarin (an isoflavone 
glycoside)

↑Nuclear translocation of Nrf2, ↑HO-1, and ↑PI3K in 
Hepa-1c1c7 mouse hepatoma cells

100 μM [157]

Salviae Miltiorrhizae Radix  
(丹參 Dān Shēn; the root of 
Salvia miltiorrhiza)

Extract ↑HO-1 and ↑nuclear translocation of Nrf2 in RAW 
264.7 macrophages

10 μg/mL [158]

Tanshinone IIA (a 
diterpene)

↑GSH content, ↑NADPH, ↑G6PDH, ↑Nrf2, ↑ERK, 
and ↑PKB in TNF-α–treated human aortic smooth 
muscle cells (HASMCs)

5 μM [159]
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directly phosphorylates Nrf2 at serine 40,[60,67-69] and PI3K increases 
Nrf2 nuclear translocation.[61,70-72] However, when dissecting the 
phosphorylation sites of Nrf2 in detail, MAPK had only a slight 
effect on Nrf2 translocation and activity.[73] Thus, Keap1–Nrf2 
signaling regulation by MAPK may be cell-type dependent, and 
the indirect effect on Keap1 or cofactors such as CBP may be more 
important in the regulation of this antioxidant pathway. [Table 1] 
shows the effects of various traditional Chinese herbal medicine 
(TCHM) on Nrf2 induction.

Future and novel targets for TCHM

Epigenetics
In recent years, evidence has shown that epigenetic alterations 

such as DNA methylation, histone modifications, and non-coding mi-
croRNAs (miRNAs) consistently contribute to carcinogenesis.[74,75]  
DNA methylation was the first epigenetic alteration observed in 
cancer cells and represents the most common molecular alteration 
in the origin of many cancers.[76,77] DNA methylation occurs at 
the 5′ position of the cytosine residue within CpG dinucleotides 
through the addition of a methyl group by DNA methyltransferases 
(DNMTs), including DNMT1, DNMT3A, and DNMT3B.[78,79]  
Although CpG dinucleotides are under-represented in the human 
genome, short regions rich in CpG content exist that are known as 
CpG islands, most of which are found in the proximal promoter 
regions of approximately half of human genes, where these CpG 
islands are generally unmethylated.[80] Thus, the hypermethyl-
ation of CpG islands leads to transcriptional silencing of tumor 
suppressors and other genes with important biological functions; 
global hypomethylation causes genomic instability and inappro-
priate activation of oncogenes and transposable elements.[81,82]  
In this context, many cancer-related genes, such as hMLH1, 
MGMT (DNA repair), p16INK4a, p15INK4b, p14ARF (cell cycle), death-
associated protein kinase (DAPK) (apoptosis), CDH1, CDH13 
(cell cadherin), Nrf2, and GSTP1 (detoxification) are inactivated 
by hypermethylation; genes such as HRAS, CAGE, cyclin D2, 

maspin, MN/CA9, S100/A4, HPV16, 14-3-3δ, and CT are activated 
by hypomethylation.[76,78,83]

Histone modification is also commonly recognized as a cause 
of tumor-suppressor gene inactivation via the post-translational 
modifications (i.e. acetylation, methylation, phosphorylation, 
ubiquitination, sumoylation, and ADP-ribosylation) of the 
amino-terminal tails of histones.[84,85] The most common histone 
modifications are acetylation/deacetylation and methylation/
demethylation, which are mediated by histone acetyltransferase 
(HAT) and histone deacetylase (HDAC) enzymes, respectively, in 
combination with histone variants and ATP-dependent chromatin 
remodeling.[86] Thus, HATs transfer acetyl groups from acetyl-
CoA to the ε-amino group of lysine (K) residues in histone tails 
(open chromatin and gene activation), whereas HDACs remove 
histone acetyl groups by catalyzing their transfer to coenzyme 
A (CoA) (condensed chromatin and gene inactivation).[87] For 
instance, the loss of acetylated H4-lysine 16 (H4K16ac) as well 
as the overexpression of HDACs such as HDAC1, HDAC2, and 
HDAC6 has been commonly reported during tumorigenesis in 
various types of cancer.[88,89] Histone methylation occurs at lysine 
and arginine residues.[86] This mechanism is regulated by histone 
methyltransferases (HMTs) and demethylases (HDMs), lead-
ing to either activation or repression depending on the residues 
modified and the type of modification present.[75,90] Methylation of 
histone H3–lysine 4 (H3–K4), H3–K36, or H3–K79 is associated 
with transcriptionally active chromatin, whereas methylation of 
H3–K9, H3–K27, or H4–K20 is associated with transcriptionally 
repressed chromatin, the two main silencing mechanisms in mam-
malian cells.[74,91] In this context, cancer cells display widespread 
changes in histone methylation patterns, and changes in H3–K9 
and H3–K27 methylation patterns have been observed in various 
forms of cancer.[86]

The miRNAs are small, endogenous non-coding RNAs (20–22 
nucleotides) that are now recognized as an important component 
of epigenetic gene regulation in mammals, which control an ar-
ray of cellular processes such as differentiation, development, 

TCHM name Ingredient Effect1 Concentration Reference

Four Agents Decoction  
(四物湯 Sì Wù Tāng)

A formula is composed of 
four herbs, Rehmanniae 
Radix Praeparata [熟
地黃 Shú Dì Huáng; 
cooked rehmannia 
(root)], Angelica Sinensis 
Radix (當歸 Dāng Guī), 
Chuanxiong Rhizoma  
(川芎 Chuān Xiōng), and 
Paeoniae Radix (芍藥 
Sháo Yào)

↑ARE-luciferase reporter activity and ↑Nrf2-regulated 
genes including HMOX1, GCLC, GCLM, SLC7A11, 
and NQO1 in MCF-7 human breast cancer cells

2.56 mg/mL [161]

1Abbreviation: ARE: antioxidant response element; CYP1A1: cytochrome P450 1A1; ERK: extracellular signal-regulated kinases; G6PDH: glucose 
6-phosphate dehydrogenase; GCLC: glutamate-cysteine ligase catalytic subunit; GCLM: Glutamate-cysteine ligase modifier subunit; GPx: glutathione 
peroxidases; GSH: glutathione; GSSG: glutathione disulfide; GSTA2: glutathione S-transferase A2; GSTA3: glutathione S-transferase A3; GSTM2: 
glutathione S-transferase M2; GSTP1: glutathione S-transferase P1; HMOX1: heme oxygenase (decycling) 1; HO-1: heme oxygenase-1; MDA: 
malondialdehyde; NADPH: reduced nicotinamide adenine dinucleotide phosphate; NQO1: NAD(P)H:quinine oxidoreductase 1; Nrf2: nuclear 
factor-erythroid 2 p45 (NF-E2)-related factor 2; PI3K: phosphatidylinositol 3-kinase; PKB: Protein Kinase B (PKB); ROS: reactive oxygen species; 
SLC7A11: solute carrier 7A11; SOD: superoxide dismutases; TNF-α: tumor necrosis factor alpha; TrxR1: thioredoxin reductase 1; UGT1A1: UDP-
glucuronosyltransferase 1A1; γ-GCS: γ-glutamylcysteine synthetase.

Table 1. Contd...
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hematopoiesis, cell cycle regulation, and immunity.[92,93] Different 
cancer studies have shown that miRNAs interact with genes in 
diverse cellular pathways, resulting in differential gene expression 
profiles of normal and tumor tissues and among tumor types.[82,94] 
For instance, miRNAs such as miR-221 and miR-22 are highly 
expressed in different cancers (e.g. human thyroid, papillary car-
cinomas) targeting and down-regulating p27 (Kip1). Likewise, 
the miR-17-92 oncogenic cluster targets E2F1 (a cell cycle and 
apoptosis regulator), BIM (a pro-apoptotic gene that counteracts 
the anti-apoptotic activity of genes such as BCL2), and PTEN 
(a negative regulator of the oncogenic pro-survival PI3K/AKT 
signaling pathway) [[94]]. The down-regulation of let-7 and miR-
15/miR-16 miRNAs, which target the RAS and BCL2 oncogenes, 
respectively, has also been described.[82] Another down-regulated 
miRNA is miR-126, which inhibits cancer cell growth, prolifera-
tion, adhesion, and invasion.[95] Other examples of miRNAs are 
miR-21, which is associated with tumor cell invasiveness and re-
sistance to apoptosis, and miR-122, which is associated with tumor 
angiogenesis and cancer cell migration/invasion inhibition.[94,96]

Because epigenetic modifications are reversible, developing 
drugs that control epigenetic regulation represents a very promising 
and attractive avenue for treating or preventing cancers, including 
the development of functional foods or supplements as nutrition-
based epigenetic modulators for cancer.[74,97] While HDAC (e.g. 
vorinostat, belinostat, romidepsin, and panobinostat) and DNMT 
(e.g. 5-azacitidine and 5-aza-20-deoxycytidine) inhibitors have 
been utilized at different phases of clinical trials,[98,99] the devel-
opment of HDAC or DNMT inhibitors as anticancer drugs has 
been hindered by their adverse side effects.[75,100] However, many 
plant secondary metabolites extracted as natural products from 
fruits, vegetables, teas, spices, and traditional medicinal herbs 
have regulatory effects on the epigenetic machinery, thereby 
regulating multiple cancer-related pathways [e.g. NFκB, activator 
protein 1 (AP-1), signal transducers and activators of transcrip-
tion (STAT3), Nrf2, peroxisome proliferator-activated receptor-γ 
(PPARγ), estrogen receptor, liver X receptor (LXR), and hypoxia 
inducible factor-1 (HIF-1)] and epigenetic cofactors (miRNAs) 
both in vitro and in vivo.[83,97,101] 

Curcumin, which is found in turmeric, functions as a strong an-
ticancer agent in different cancer models through the modulation of 
DNMT, HAT/HDAC, and miRNAs that target the Nrf2, Neurog-1, 
RARβ2, PTEN, and P53 pathways.[102-105] Similarly, EGCG from 
green tea epigenetically controls several molecular cancer targets 
such as RARβ, hTERT, GSTP1, p16, MGMT, hMLH1, MAGE-A1, 
Alu, LINE, BCLl2, IL-6, IL-12, NF-κB, and NOS-2 by DNA meth-
ylation, chromatin modification, and miRNA regulation.[87,106,107]  
Genistein from soybeans is another natural compound that controls 
the epigenetic machinery in many cancers both in vitro and in vivo. 
Genistein has been reported to be a DNMT inhibitor at the targets 
p16, BCLl2, RARβ, MGMT, CDKN2A, GSTP1, HMGN5, BTG3 
and hTERT, and BRCA1;[74,108,109] a chromatin modification inducer 
at p21, p16, PTEN, CCLD, p53, FOXA3, SIRT1, BTG3, hTERT, 
and RARb;[110,111] and an miRNA activator at ZEB1, ZBTB10, and 
EGFR.[112,113] Finally, isothiocyanates from broccoli, broccoli 
sprouts, and wasabi also exhibit broad effects on epigenetic mecha-
nisms, such as DNMT inhibition activity at GSTP1 and HDAC 

inhibition on p21 and GSTP1.[114-116] Although these individual 
dietary phytochemicals have consistently shown great potential 
in the prevention and treatment of cancers, additional studies are 
still needed to elucidate the synergistic effects of the combined 
use of dietary components on the coordinated crosstalk between 
different molecular cellular pathways and epigenetic machinery 
as well as to analyze the safety profile of doses, route of admin-
istration, organ specificity, and bioavailability of these bioactive 
components in human clinical studies.[117]

Cancer stem cells 
Tumors consist of phenotypically and functionally different 

subtypes of cancer cells that may have distinct origins at the time 
of tumor initiation.[118,119] Although the origins of cells that cause 
cancer are largely unknown, studies have speculated that a cer-
tain subset of cancer cells with the capability of self-renewal and 
continuous differentiation may be responsible for the growth and 
spread of tumors.[120,121] Many studies have demonstrated the exis-
tence of cancer stem cells (CSCs) in several human cancers. The 
CSC model asserts that a small distinct population of tumorigenic 
cells that is capable of self-renewal and perpetual proliferation 
initiates and develops cancer.[122,123] Tumors following the CSC 
model contain intrinsically different subpopulations of tumorigenic 
and nontumorigenic cells organized in a hierarchy.[124-129] Acute 
myeloid leukemia was the first cancer to support the CSC model. 
Only a small population of cells contributed to the formation of 
tumors when transplanted into immunocompromised mice. These 
leukemia-initiating cells were enriched for the specific surface 
marker profile CD34+CD38−.[124,125] Subsequent studies were per-
formed to demonstrate the role of CSCs in solid tumor formation. 
In the same xenograft model, a very low density of cells present-
ing CD44+CD24−/low initiated breast tumors.[126] Since these initial 
findings of the existence of CSCs were published, subsequent 
research has revealed evidence of CSCs in other human cancers 
such as colon, pancreatic, and ovarian cancer.[127,130,131] In the CSC 
model, there are two different types of cancer cells: tumorigenic 
and nontumorigenic. Through continuous self-renewal and dif-
ferentiation, the minor population of tumorigenic CSCs gives 
rise to phenotypically diverse nontumorigenic cancer cells that 
are thought to compose the bulk of tumors but have little capac-
ity to contribute to the progression of cancer.[120,132,133] Based on 
the CSC model, even though drug/radiation treatments result in 
the shrinkage of tumors, failure to eliminate tumorigenic CSCs 
may cause the recurrence of tumors because the few CSCs that 
survived from treatment can initiate the tumor again.[134,135] Thus, 
increasing evidence emphasizes the importance of the ability of 
both drugs and bioactive food components to modify the self-
renewal capabilities of CSCs.[83,136] 

Natural dietary compounds and TCHM targeting CSCs
Treatment of nasopharyngeal sphere-derived cells with (−)

EGCG, a major bioactive compound in green tea, failed to inhibit 
growth and apoptosis but induced the formation of a sphere, sug-
gesting that EGCG potently eliminates the stem cell character of 
nasopharyngeal cancer cells.[137] EGCG inhibits the self-renewing 
capacity of human prostate cancer cell lines (PC-3 and LNCaP) 
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containing a small population of CSCs presenting CD44+CD133+. 
Furthermore, EGCG also inhibits the self-renewing capacity of 
CD44+α2β1+CD133+ CSCs isolated from human primary prostate 
tumors, as measured by spheroid formation in suspension. The 
inhibitory mechanism of EGCG on human prostate CSCs involves 
apoptosis, as was induced by activating caspase-3/7 and inhibit-
ing the expression of Bcl-2, survivin, and XIAP.[138] Many studies 
have demonstrated the beneficial effect of cruciferous vegetables, 
such as broccoli and watercress, on cancer chemoprevention. SFN 
is a major active compound in cruciferous plants. It significantly 
decreases the growth of human pancreatic CSC-derived spheres by 
inhibiting the components of the sonic hedgehog (Shh) pathway 
and Gli transcription activity in vitro, suggesting the clonogenic 
depletion of the CSCs. SFN also inhibits downstream targets of 
Gli transcription by suppressing the expression of pluripotency-
maintaining factors (Nanog and Oct-4) as well as PDGFRα and 
cyclin D1.[139] Treatment of a nonobese diabetic/severe-combined 
immunodeficient xenograft model with SFN inhibited the growth 
of breast CSCs and down-regulated the Wnt/β-catenin–related 
self-renewal pathway.[140] Curcumin is a well-known dietary 
phytochemical that is found in an Indian spice, turmeric, and has 
a large spectrum of chemoprevention activities. It suppresses 
mammosphere formation, reduces the proportion of aldehyde 
dehydrogenase-presenting cells, and inhibits Wnt signaling in 
breast stem/progenitor cells. However, curcumin is not toxic in 
differentiated cells, indicating that it could be a potential cancer 
prevention reagent for eliminating CSCs.[141] 

Ginseng (人參 Rén Shēn; the root of Panax ginseng) is one 
of the best known Eastern traditional herbs, and research has 
demonstrated healthy beneficial properties of ginseng in humans. 
Ginsenoside F2, an active compound in ginseng that has been used 
in eastern Asia including Korea and China, induces apoptosis in 
breast CSCs via mitochondrial dysfunction. In addition, ginsen-
oside F2 induces the formation of acidic vesicular organelles, the 
recruitment of green fluorescent protein-light chain 3 (GFP-LC3)-
II to autophagosomes, and elevation of Atg-7, suggesting that gin-
senoside F2 initiates an autophagic progression in breast CSCs.[142]  
Celastrol, a triterpenoid from the plant Tripterygii Wilfordii Radix 
(雷公藤 Léi Gōng Téng; the root of Tripterygium wilfordii), ef-
fectively eradicated acute myeloid leukemia (AML) at the bulk, 
progenitor, and stem cell level, as demonstrated via chemical 
genomics methods such as gene expression-based high-throughput 
screening (GE-HTS) and the Connectivity Map.[143] Parthenolide 
(PTL) is a sesquiterpene lactone derived from the leaves of Tanac-
etum parthenium and is considered a main bioactive component 
in that herb. PTL induces the death of human leukemia stem cells 
in vitro without affecting normal hematopoietic cells.[144] 

Many studies have been performed and are still ongoing to 
develop safer and more effective chemopreventive reagents. Ow-
ing to the critical role of CSCs in tumorigenesis, preventing the 
formation of or eliminating CSCs with dietary phytochemicals 
may be a safer and more efficient approach for combating strong 
malignancies. Thus, further studies to elucidate the physiologi-
cal role of these dietary components in preventing the growth of 
CSCs are required.

CONCLUSIONS

In modern urbanized life, human beings are exposed to in-
creased levels of various toxins, including environmental pollut-
ants, dietary mutagens, carcinogens, microorganisms, and solar 
radiation. Accumulating evidence supports the effects of dietary 
phytochemicals, including TCHM, on ROS in health and diseases. 
Dietary phytochemicals have great potential not only for disease 
prevention, but also for improving the recovery from certain dis-
eases and cancers by regulating various types of cellular damage 
caused by ROS. Dietary phytochemicals contribute to cellular 
protection by inducing phase II detoxifying/antioxidant enzymes 
such as GST, NAD(P)H quinine oxidoreductase 1 (NQO1), UDP-
glucuronosyltransferase (UGT), and HO-1. Nrf2 plays an essential 
role in the transcriptional induction of phase II enzymes. Many 
studies have confirmed that various phytochemicals, including 
TCHM, contribute to cellular defensive mechanisms through the 
up-regulation of Nrf2. The restoration of various tumor-suppres-
sor genes that are repressed by aberrant epigenetic alterations 
can be achieved by dietary phytochemical-induced epigenetic 
modifications. Studies of these natural compounds that modify 
the self-renewing capability and perpetual proliferation of CSCs 
have recently increased. Although the beneficial effects of dietary 
phytochemicals on human carcinogenesis are promising, effective, 
and safe, further studies of these natural dietary compounds are 
required. The elucidation of their biological functions, as well as 
their mechanisms of action, including which molecular targets in 
the signaling pathways are affected by phytochemicals, is needed 
to identify more effective and efficient chemopreventive solutions.

Keap1 is dimerized through the BTB domain and is anchored 
to the actin cytoskeleton via the DGR/Kelch region. Nrf2 binds 
to the DGR/Kelch region of the Keap1 dimer via a high-affinity 
ETGE (hinge) motif and a low-affinity DLG (latch) bAU2 motif. 
The two-site binding exposes the Ub-acceptor site(s) in Nrf2. 
Under normal conditions, ubiquitinated Nrf2 is degraded by the 
proteasome, which maintains the equilibrium between synthesis 
and degradation of the Nrf2 protein in the cell. Once Keap1 is 
exposed to oxidants or electrophilic compounds, cysteine thiol 
groups in the IVR region of Keap1 interact with oxidative stress, 
inducing the formation of disulfide bonds. Disulfide bond forma-
tion results in a conformational change that renders Keap1 unable 
to bind to Nrf2, which then translocates to the nucleus. In this stage, 
the Ub-acceptor site is not easily accessible. The ubiquitination 
and proteasomal degradation of Nrf2 are impeded. The released 
Nrf2, in heterodimeric combination with other transcription factors 
such as small Maf, binds to the ARE regulatory region of phase II 
genes and enhances their transcription. 
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