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Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The

effects of DHA (220 mg/day, n¼41), DHA+AA (220 mg/day, n¼39) or placebo (n¼34) during pregnancy

and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA

and Mead acid and neurodevelopment were studied. An age-specific, standardized neurological

assessment for the evaluation of minor neurological dysfunction (MND), and the Bayley Scales of

Infant Development (BSID) were used. The intervention did not influence any of the outcomes.

Umbilical venous (UV) Mead acid was negatively and n-6 fatty acids were weakly positively associated

to the BSID mental developmental index. Children with simple MND had lower UV DHA compared to

normally classified children. We conclude that relatively short-term maternal DHA or DHA+AA

supplementation does not influence neurodevelopment at toddler age, although some parameters of

brain development are related to perinatal DHA and AA status.

& 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

The long chain polyunsaturated fatty acids (LCPUFA) docosa-
hexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6)
are considered important for brain development. DHA, ARA and
eicosapentaenoic acid (EPA, 20:5n-3) are structural components of
membrane phospholipids, modulators of gene expression and pre-
cursors of eicosanoids (ARA, EPA), resolvins (ARA, EPA, DHA) and
(neuro)protectins (DHA) [1,2]. EPA and DHA are mainly derived
from fish, while meat, poultry and eggs are the principal sources of
ARA. Brain DHA and ARA contents increase rapidly from the last
trimester of pregnancy up to 2 years postpartum [3]. There are
many studies on the influence of DHA or fish oil supplementation on
early brain development, but their outcomes are inconclusive in a
meta analysis [4]. Since the beneficial effects of DHA in maternal
supplementation studies do not seem dose-dependent, and effects
an Goor).

sevier OA license.
are mainly found in older infants and toddlers and not in early
infancy [5,6], it is conceivable that potentially positive effects of DHA
on neurodevelopmental outcome first become expressed after early
infancy.

In a previous study, postnatal supplemental LCPUFA did not
affect neurological outcome at 18 months [7]. In the same study
we showed that lower DHA and ARA in umbilical vessels were
associated with a less favorable neurological condition as
assessed with the Hempel technique, although no relations were
demonstrable with the Bayley Scales of Infant Development [10].
The Hempel assessment [8,9] is an age-specific and standardized
neurological assessment designed for the evaluation of minor
neurological dysfunction (MND). Next to classic signs of neurolo-
gical function, such as muscle tone and reflexes, ample attention
is paid to the quality of motor behavior. The outcome is either a
clinical classification in terms of MND or major neurological
dysfunction, or a neurological optimality score (NOS). The NOS
at 18 months proved sensitive for detecting subtle differences in
prenatal environmental or nutritional changes, such as exposure
to polychlorinated biphenyls (PCBs) [9], LCPUFA [10] and feeding
with formula or breast milk [9,11].

https://core.ac.uk/display/81184179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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The lower umbilical vessel DHA and ARA of children with a
less optimal neurological condition at ages 3 [12] and 18 [10]
months support the idea that adequate prenatal LCPUFA status is
important for neurological development. We therefore explored
the effects of supplemental DHA and DHA+ARA during pregnancy
and lactation on the children’s neurological development at the
age of 3 and 18 months. At the age of 3 months, we assessed
neurological development by recording general movement (GM)
quality. We found that 60% of the children exhibited mildly
abnormal GMs in the DHA supplementation group. The neurolo-
gical condition of infants in the DHA+ARA groups was similar
(DHA+ARA 34%; placebo 31% mildly abnormal GMs) [13]. Taken
together, these results suggested a typical but less optimal
neurological condition in early infancy [14] following maternal
supplementation with DHA-only. In the current study we report
the neurological outcome of this trial at 18 months, assessed
using the Hempel technique and Bayley Scales of Infant Develop-
ment. In addition, we studied whether prenatal LCPUFA status
was related to brain development.
Table 1
Daily intakes of fatty acids (in mg) from the supplements.

Placebo

group

DHA

group

DHA+ARA

group

LA 535 274 46

ALA 60 32 7

ARA 0 15 220

EPA 0 34 36

DHA 0 220 220

LA, linoleic acid, 18:2n-6; ALA, alpha-linolenic acid, 18:3n-3; ARA, arachidonic

acid, 20:4n-6; EPA, eicosapentaenoic acid, 20:5n-3; DHA, docosahexaenoic acid,

22:6n-3.
2. Subjects and methods

2.1. Subjects

This study was part of a double-blind placebo-controlled
randomized trial in which we explored the influence of DHA with
or without ARA during pregnancy and lactation on infant neuro-
logical condition [13,15], maternal mood [15] and cognition as
well as milk fatty acid composition [16]. The study design has
been reported in detail elsewhere [16]. In short, apparently
healthy women were enrolled between the fourteenth and
twentieth weeks of pregnancy, with the majority (80%) being
enrolled between 15.6 and 17.4 weeks postmenstrual age (mean
16.5 weeks). A vegan diet was an exclusion criterion and (gesta-
tional) diabetes mellitus and preterm birth, i.e. birth before 37
weeks of pregnancy, were termination criteria. At enrollment,
women were randomized into 3 groups using block randomiza-
tion. The initial research protocol and the follow-up were
approved by the Central Committee on Research Involving
Human Subjects (CCMO, Den Haag, The Netherlands; protocol
number P03.1071C). All women gave written informed consent.
The trial is registered under ISRCTN58176213.

Power analysis for this trial was based on the NOS [17] at the
age of 2 weeks [13], which revealed that 64 children per group
were needed to obtain sufficient power to detect a 2 point
(¼0.5SD) difference between the groups. Next to the NOS at
2 weeks, we analyzed GM quality. Due to the higher rate of mildly
abnormal GMs at the age of 3 months in the DHA group, inclusion
was discontinued early. From the 183 women included in the
study, 58 dropped out during pregnancy due to lack of motivation
to fill in questionnaires on a regular basis and take supplements
daily (placebo, n¼23; DHA, n¼20; DHA+ARA, n¼15). Six mother–
infant pairs dropped out due to obstetric complications (placebo,
n¼3; DHA, n¼1; DHA+ARA, n¼2). Attrition was evenly distrib-
uted among the groups (p¼0.33). At the age of 18 months,
5 additional children were lost to follow-up. One of the infants
moved and was not examined due to logistical reasons (DHA
group), and 4 of the infants were not examined due to parental
lack of interest (placebo, n¼2; DHA+ARA, n¼2). For this current
report, 114 children were evaluated. Due to the early discontinua-
tion of inclusion, the trial might lack sufficient power to detect
between-group differences in any of the parameters. However, at
the time the study was designed, no data were available on the
effects of maternal DHA and ARA supplementation on the used
neurological outcomes at the age of 18 months and power analysis
was based on the NOS at 2 weeks.

2.2. Dietary intervention

All women received a supplement of vitamins and minerals
according to the Dutch recommended dietary allowances. The
mixture of vitamins and minerals derived from FrieslandCampina
and was produced under the same conditions as those used for
infant formula. The women were instructed to take 2 capsules
once daily from enrollment until 3 months after delivery. The
DHA+ARA group received 220 mg DHA (Marinol D40, Lipid
Nutrition B.V., Wormerveer, The Netherlands, a DHA-enriched
purified fish oil) and 220 mg ARA (Wuhan Alking Bioengeneering
Co. Ltd., Wuhan, China). The DHA group received 220 mg DHA and
1 capsule containing soy bean oil (Wuhan Alking Bioengeneering
Co. Ltd., Wuhan, China). The placebo group received 2 capsules
containing soy bean oil. The daily fatty acid intakes from the
capsules for each of the 3 treatment groups are shown in Table 1.
The daily dosages of DHA and ARA are within the range of typical
Western intakes, i.e. adding the supplements to the diet doubled
the intake of DHA and ARA. The dosages of linoleic acid and alpha-
linolenic acid from the capsules are only a fraction of the daily
Western intakes [18].

2.3. Developmental evaluation

Eighteen months after birth, neurodevelopmental status was
assessed using 2 instruments, i.e. the neurological examination
according to Hempel [8,9] and the Dutch version of the Bayley
Scales of Infant Development, second edition (BSID-II-NL) [19].
The Hempel examination includes the observation of spontaneous
motor behavior (grasping, sitting, crawling, standing and walking)
and classical neurological tests, such as the assessment of muscle
tone and reflexes. In this way, fine-motor function, gross-motor
function, posture and muscle tone, reflexes and visuomotor
function are evaluated. Multiple signs in one of these functions
result in a dysfunctional domain (previously labeled ‘clus-
ter’; [20]), of which the isolated domain of dysfunctional reflexes
has no neurological implications. The neurological examination
resulted in 3 types of outcome. First, the neurological classifica-
tion; children are classified as normal, as having simple MND, as
having complex MND or as definitely abnormal. Definitely abnor-
mal implies the presence of a neurological syndrome like cerebral
palsy. Simple MND indicates the presence of 1 dysfunctional
domain and is regarded as a typical but non-optimal form of brain
function. Complex MND indicates the presence of at least
2 domains of dysfunction and is considered the clinically more
relevant form of MND, as it is associated with pre- and perinatal
adversities and learning and behavioral problems [20]. We also
used the optimality concept to summarize neurological condition.
Of 58 items of the neurological examination the optimal range
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was defined. The number of items meeting the criteria for
optimality was added to form the NOS. It is important to stress
that optimality is not identical to normality and that non-optimal
in general is not abnormal, as the range for optimal is narrower
than the range for normality. The fluency score, describing the
fluency of motor behavior in 13 items was extracted from the
total NOS.

The BSID-II-NL was used to assess the mental (MDI) and
psychomotor (PDI) developmental indices, which are based on
the number of successfully completed items from the age-
adjusted test.

2.4. Umbilical cord fatty acid analysis

At birth, 7–10 cm samples of the umbilical cord were taken
and stored in saline at 4 1C for a maximum of 24 h until further
processing. A 1 cm sample from the umbilical venous and the
umbilical arterial wall was isolated from the umbilical cord for
fatty acid profiling. The tissue sample was transferred to a Sovirel
tube containing 2 mL methanol/HCl (5:1, v/v) and 5 mg butylated
hydroxytoluene. Following transmethylation, the fatty acid com-
positions were determined using the capillary gas chromato-
graphic method with flame-ionization detection [21]. Fatty acid
compositions were calculated assuming that equal peak areas
give rise to equal weight amounts [22]. The fatty acids are
presented in relative amounts, i.e. g/100 g fatty acids (wt%) and
ratios in wt/wt.

2.5. Statistics

Statistical analyses were performed with the SPSS software
package, version 16. Unless otherwise indicated, a po0.05 was
considered to be significant. The NOS and fluency score proved
skewed and were transformed using � ln(59.5-NOS) resp.
� ln(14.5-fluency score). Univariate between-group differences
for � ln(59.5-NOS), � ln(14.5-fluency score), MDI and PDI were
evaluated using a one-way ANOVA with Tukey’s correction at
po0.05.

Differences between intervention groups for maternal age,
birth weight, gestational age at birth, testing age, and height,
weight and head circumference at 18 months were calculated
using a one-way ANOVA with Tukey’s correction. For categorical
data, i.e. maternal education (lower education vs. higher educa-
tion), maternal parity at birth (0 or 1), and gender, a chi-square
test was used.
Table 2
Prenatal, perinatal and social characteristics and anthropometrics.

Placebo group (n¼34)

Mean SD

Testing age (months) 18.4 0.9

Maternal age at inclusion (years) 32.7 5.1

Gestational age at birth (weeks) 40.2 1.1

Birth weight (g) 3576 551

Duration of breastfeeding (months) 5.1 4.5

Weight at 18 months (kg) 11.5 1.1

Height at 18 months (cm) 84.0 3.8

Head circumference at 18 months (cm) 47.8 1.5

n %

Maternal higher educationa 29 85.3

First born 21 61.8

Male gender 21 61.8

DHA, docosahexaenoic acid; ARA, arachidonic acid.

a At least High school completed.
Linear or logistic multivariate regression was applied to
correct the effect of the intervention for potential confounders
like gender, maternal education, maternal age, maternal parity at
birth, duration of breastfeeding, birth weight and gestational age
at birth, as well as for testing age for the Hempel data (not for the
outcomes of the Bayley scales, which are normalized for age).
Both the DHA and DHA+ARA groups were compared to placebo in
the ‘default’ model, but to compare the differences between the
DHA group and the DHA+ARA group, models were created in
which the placebo group was not included.

Between-group differences for umbilical arterial (UA) and
venous (UV) wall fatty acids were tested using the Mann–
Whitney U-test at po0.017 to correct for multiple comparisons.
The relations between UA and UV fatty acids and the NOS, the
fluency score, the MDI and the PDI at 18 months were tested
using the Spearman correlation. Significant correlation coeffi-
cients Z0.3 were considered relevant, significant correlations
with coefficients in-between 0.2 and 0.3 were considered weak. In
addition, differences in umbilical cord fatty acids between chil-
dren with different neurological classifications were established
using the Mann–Whitney U-test (po0.05 was considered sig-
nificant for comparison between 2 groups, po0.017 for compar-
ison between 3 groups). We primarily focused on umbilical UA
and UV DHA, ARA, Mead acid and the DHA/ARA ratio.
3. Results

Prenatal, perinatal and social characteristics as well as anthro-
pometrics were similar in the 3 treatment groups (Table 2).

The developmental outcomes in the 3 groups are shown in
Table 3. The NOS, the fluency score, the prevalence of simple and
complex MND as well as the Bayley MDI and PDI scores did not
differ between the groups. None of the toddlers suffered from an
evident neurological syndrome such as cerebral palsy. Multi-
variate analyses which took into account the role of confounders,
i.e. gender, gestational age at birth, duration of breastfeeding,
birth weight, maternal education and maternal parity at birth,
confirmed that the neurological condition in the 3 groups was
similar (Table 4).

Umbilical cord fatty acid profiles were available from 94 of the
114 children (data shown in Table 5). Absence of umbilical cord
samples was mainly caused by logistical reasons, i.e. parents
and/or midwives forgot to collect and store a piece of umbilical cord.
UA ARA was highest in the placebo group (median 13.18 wt%, range
DHA group (n¼41) DHA+ARA group (n¼39) p

Mean SD Mean SD

18.5 1.1 18.0 2.0 0.35

32.5 4.4 32.9 4.8 0.95

40.1 1.1 40.2 1.2 0.95

3592 465 3652 377 0.76

6.0 4.5 4.6 4.2 0.37

11.3 1.4 11.5 1.3 0.67

82.8 4.7 83.6 2.9 0.39

47.6 1.1 47.5 1.4 0.79

n % n % p

30 73.2 26 66.7 0.18

25 61.0 18 46.2 0.30

16 39.0 18 46.2 0.14



Table 3
Developmental outcomes at 18 months of age.

Placebo group (n¼34) DHA group (n¼41) DHA+ARA group (n¼39) p

Median Range Median Range Median Range

Neurological optimality score 47.5 29–55 46 30–56 48 25–57 0.55a

Fluency score 10 6–12 9 5–12 10 4–12 0.44a

n % n % N % p

Prevalence of normal neurological condition 20 58.8 24 58.5 28 71.8 0.39b

Prevalence of simple MND 9 26.5 14 34.1 6 15.4 0.19c

Prevalence of complex MND 5 14.7 3 7.3 5 12.8 d

Mean SD Mean SD Mean SD p

Mental developmental index 115.2 11.6 113.7 13.0 112.8 12.6 0.72

Psychomotor developmental index 91.7 8.3 95.8 11.4 92.4e 8.8 0.14

DHA, docosahexaenoic acid; ARA, arachidonic acid; MND, minor neurological dysfunction.

a ANOVA testing was performed on the transformed data.
b Difference in prevalence of normal neurological condition vs those with simple and complex MND in the 3 groups.
c Difference in prevalence of children with simple MND vs children with a normal neurological condition in the 3 groups.
d The groups are too small for statistical analyses.
e PDI was not assessed from one of the infants.

Table 4
Effects of intervention after correction for potential confounders.

Coefficient B (95% CI) p Explained variance r2a

� ln (59.5-NOS)b 19.2%

Placebo vs. DHA �0.092 (�0.322–0.137) 0.43

Placebo vs. DHA+ARA 0.038 (�0.196–0.271) 0.75

DHA vs. DHA+ARA 0.125 (�0.100–0.351) 0.27

� ln (14.5-fluency score)b 12.3%

Placebo vs. DHA �0.084 (�0.242–0.074) 0.30

Placebo vs. DHA+ARA 0.023 (�0.138–0.184) 0.78

DHA vs. DHA+ARA 0.107 (�0.048–0.262) 0.17

Mental developmental index 16.2%

Placebo vs. DHA �2.759 (�8.348–2.830) 0.33

Placebo vs. DHA+ARA �2.298 (�7.963–3.368) 0.42

DHA vs. DHA+ARA 0.439 (�5.208–6.086) 0.88

Psychomotor developmental index 8.0%

Placebo vs. DHA 4.086 (�0.534– 8.706) 0.08

Placebo vs. DHA+ARA 0.529 (�4.200–5.258) 0.83

DHA vs. DHA+ARA �3.622 (�8.430–1.186) 0.14

Exp B (95% CI) p Nagelkerke r2 (%); w2; pa

Presence of MND (simple or complex)b 17.3; 15.4; 0.119

Placebo vs. DHA 1.003 (0.369–2.722) 1.00

Placebo vs. DHA+ARA 0.477 (0.165–1.378) 0.17

DHA vs. DHA+ARA 0.513 (0.177–1.485) 0.22

Presence of complex MNDb 24.3; 15.1; 0.130

Placebo vs. DHA 0.472 (0.092–2.424) 0.37

Placebo vs. DHA+ARA 0.698 (0.148–3.287) 0.65

DHA vs. DHA+ARA 1.546 (0.284–8.424) 0.61

DHA, docosahexaenoic acid; ARA, arachidonic acid; NOS, neurological optimality score according to Hempel; MND, minor neurological dysfunction.

To compare the DHA group to the DHA+ARA group, a new model was created in which the placebo group was excluded.

The first mentioned group functions as the reference group (i.e.¼0). Effects of the intervention were corrected for gender, gestational age at birth, duration of

breastfeeding, birth weight, maternal education and maternal parity at birth.

a In the models in which both the DHA and DHA+ARA groups were compared to placebo, the explained variance was assessed.
b Adjusted for testing age in addition to the below mentioned variables.
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10.84–16.92) and lowest in the DHA group [12.18 (9.32–16.11);
p¼0.004]. UA ARA in the DHA+ARA group [12.45 (9.34–16.29)] did
not differ from either the placebo group (p¼0.031) or the DHA
group (p¼0.50). The UA DHA/ARA ratio was lowest in the
placebo group [0.38 (0.24–0.44)] compared to the DHA group
[0.41 (0.24–0.53); p¼0.002]. The DHA+ARA group showed an
intermediate arterial DHA/ARA ratio [0.39 (0.27–0.56)], which did
not differ significantly from the placebo group (p¼0.16) or the DHA
group (p¼0.085). There were no differences in UV fatty acid
compositions.

Umbilical cord fatty acid compositions did not correlate with
the NOS and fluency score. We observed a negative correlation
between UV Mead acid and the MDI (correlation coefficient,
cc¼�0.32, p¼0.002). In addition, significant though weak



Table 5
Umbilical cord fatty acid composition (wt% or wt/wt) in the 3 supplementation groups.

Umbilical artery Placebo DHA DHA+ARA

n¼25 n¼35 n¼33

Median Range Median Range Median Range

14:0 1.10 0.87–1.28 1.10 0.84–1.38 1.04 0.69–1.37

16:0 22.04 20.36–25.07 21.87 19.69–26.83 21.97 20.29–29.30

18:0 19.83 18.54–21.17 19.64 17.87–22.52 19.87 17.41–21.51

20:0 0.53 0.41–0.63 0.55 0.46–0.71 0.54 0.43–0.65

22:0 1.45 1.21–2.33 1.49 1.17–2.40 1.48 1.14–1.87

24:0 2.68 1.99–3.46 2.78 1.75–4.41 2.69 2.04–3.39

SAFA 47.86 45.48–51.64 47.42 45.60–54.27 47.46 44.52–54.28

22:5n-3 0.25 0.12–0.54 0.27 0.13–0.49 0.23 0.11–0.68

22:6n-3 5.02 3.44–5.95 5.09 2.83–6.19 4.79 3.54–8.03

Sum LCPn-3 5.23 3.63–6.26 5.24 3.10–6.49 5.02 3.73–8.72

Sum n-3 5.33 3.72–6.36 5.34 3.19–6.62 5.11 3.74–8.81

18:2n-6 1.83a 1.35–5.35 1.91a, b 1.30–3.33 1.67b 1.16–3.65

20:2n-6 0.22 0.11–0.53 0.23 0.11–0.41 0.20 0.11–0.36

20:3n-6 1.76a 1.30–2.36 1.77a 1.28–2.27 1.54b 1.21–2.43

20:4n-6 13.18a 10.84–16.92 12.18b 9.32–16.11 12.45 9.34–16.29

22:4n-6 3.29 2.14–5.79 3.14 2.14–4.80 3.08 2.11–4.62

22:5n-6 3.44 2.34–5.01 3.13 1.85–4.89 3.18 1.93–4.22

Sum LCPn-6 21.97a 18.01–28.84 20.78b 15.86–23.78 20.67b 15.85–24.74

Sum n-6 23.78a 19.83–32.19 22.91a, b 17.38–26.44 22.11b 17.02–26.55

18:1n-7 2.94 2.32–3.50 3.17 2.54–3.92 3.15 2.37–4.32

18:1n-9 12.78 9.10–16.19 13.55 11.65–17.33 13.70 10.63–17.81

20:1n-9 0.55 0.32–0.94 0.62 0.34–1.15 0.64 0.31–1.46

24:1n-9 4.09 2.91–5.09 4.04 3.35–5.58 4.16 3.30–5.68

20:3n-9 2.71 0.44–4.15 2.73 1.66–5.31 3.04 0.39–5.46

22:3n-9 1.35 0.30–2.28 1.47 0.80–2.36 1.70 0.47–2.73

Sum n-9 21.88 13.76–26.67 23.13 18.43–29.21 23.87 15.85–30.64

MUFA 20.31a 15.85–24.54 21.81b 18.48–26.37 21.83a, b 17.81–27.92

PUFA 32.75 29.71–39.34 32.83 26.56–35.95 32.25 28.68–35.71

DHA/AA 0.38a 0.24–0.44 0.41b 0.24–0.53 0.39a, b 0.27–0.56

Umbilical vein n¼27 n¼34 n¼33

14:0 0.96 0.48–1.20 0.94 0.78–1.26 0.93 0.73–1.31

16:0 24.52 22.34–28.66 24.32 21.43–28.19 24.27 20.81–32.31

18:0 19.67 16.93–22.71 19.41 16.53–22.34 19.55 17.49–23.02

20:0 0.48 0.37–0.62 0.48 0.31–0.62 0.48 0.32–1.21

22:0 1.14 0.95–2.03 1.14 0.84–1.82 1.20 0.83–2.31

24:0 2.03 1.61–3.02 2.25 1.20–3.23 2.15 1.70–3.01

SAFA 48.56 44.67–55.17 48.39 44.95–55.88 48.13 45.60–60.17

22:5n-3 0.28 0.14–0.63 0.35 0.17–0.73 0.32 0.09–0.67

22:6n-3 4.66 2.60–6.16 4.97 3.72–6.11 4.83 2.01–7.59

Sum LCPn-3 4.90 2.85–6.54 5.33 3.98–6.69 5.12 2.19–8.26

Sum n-3 4.97 2.97–6.62 5.42 4.09–6.83 5.18 2.22–8.33

18:2n-6 2.71 1.89–4.89 2.84 2.11–4.33 2.62 1.69–3.67

20:2n-6 0.42 0.21–0.57 0.40 0.28–0.80 0.37 0.19–1.27

20:3n-6 2.43 1.83–3.19 2.54 1.67–3.45 2.28 1.50–3.45

20:4n-6 16.68 12.40–19.73 16.51 13.35–19.83 16.87 11.73–19.68

22:4n-6 5.14 2.27–7.13 5.10 3.70–7.32 5.33 3.08–7.18

22:5n-6 2.65 1.85–3.97 2.45 1.48–4.74 2.68 1.45–3.73

Sum LCPn-6 28.16 19.26–31.14 27.56 21.46–30.35 28.09 19.48–30.20

Sum n-6 31.04 21.16–33.53 30.10 24.28–33.57 30.73 22.08–32.98

18:1n-7 2.76 1.90–3.48 2.74 2.22–3.96 2.76 2.19–3.51

18:1n-9 10.17 8.80–13.80 10.33 8.47–16.35 10.20 8.51–13.18

20:1n-9 0.42 0.24–0.87 0.44 0.23–1.16 0.40 0.21–0.73

24:1n-9 3.86 3.08–5.19 4.13 2.79–4.82 3.81 3.12–4.63

20:3n-9 0.51 0.26–2.50 0.53 0.23–1.43 0.58 0.06–2.05

22:3n-9 0.52 0.25–1.07 0.51 0.20–1.48 0.52 0.17–1.31

Sum n-9 15.76 13.02–21.02 15.75 12.95–23.95 15.60 12.55–20.35

MUFA 17.13 14.89–21.61 17.72 14.62–25.17 17.39 14.31–21.56

PUFA 37.25 28.52–41.07 37.04 30.25–39.95 36.97 25.90–39.68

DHA/AA 0.29 0.19–0.35 0.30 0.23–0.43 0.29 0.17–0.45

DHA, docosahexaenoic acid; ARA, arachidonic acid; SAFA, saturated fatty acids; LCP, long chain polyunsaturated fatty acids; MUFA, mono-unsaturated fatty acids; PUFA,

polyunsaturated fatty acids; different superscript letters indicate differences between the groups at po0.017.

S.A. van Goor et al. / Prostaglandins, Leukotrienes and Essential Fatty Acids 84 (2011) 139–146 143
positive correlations (cc in-between 0.2 and 0.3) were found for
n-6 fatty acids and the MDI (UA ARA, sum LCPUFAn-6, sum n-6
and sum polyunsaturated fatty acids as well as UV sum n-6)
whereas n-9 fatty acids in general showed a weak but significant
negative correlation (in-between �0.2 and �0.3; UA 18:1n-9,
sum n-9, sum mono-unsaturated fatty acids and UV 20:1n-9,
22:3n-9 and sum n-9). The PDI correlated weakly to 20:2n-6
(cc¼0.243, p¼0.020).

UA fatty acid contents did not differ between children classi-
fied as neurologically normal, having simple MND or having
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complex MND. UV DHA was lower in the simple MND group as
compared to the normal group [simple MND: median 4.65 (range
2.83–6.15) versus normal: 5.00 (3.44–6.47); p¼0.012]. UV ARA
was significantly higher in the complex MND group compared to
the children classified as normal (p¼0.017). The infants classified
as normal and as having simple MND showed similar UV ARA
values.
4. Discussion

We found that supplementation of DHA or DHA+ARA during
pregnancy and lactation did not influence neurological condition
at 18 months as assessed using the Hempel technique and the
Bayley MDI and PDI. UV Mead acid was negatively related to the
MDI. DHA in umbilical veins of children with simple MND was
lower as compared with children with a normal neurological
condition. UV ARA was higher in children with complex MND, as
compared to children with simple MND and those with a normal
neurological condition.

At 18 months, we found no effect of supplemental DHA and
DHA+ARA during pregnancy and lactation on neurodevelopmen-
tal parameters. This was in contrast to our findings at 3 months of
age. At that time, infants in the DHA group showed more
frequently mildly abnormal GMs compared to the placebo group
and additional ARA counteracted this effect of DHA [13]. The
presence of mildly abnormal GMs reflects a typical but non-
optimal condition of the young brain [23]. The absence of either
beneficial or negative effects of supplementation at the age of 18
months might be due to the small sample size. However, post-hoc
power analyses revealed that even in large groups of 150–860
children per group, depending on the developmental parameter,
no significant differences were to be expected using our techni-
ques and the same doses of DHA and ARA.

We have no information regarding the children’s diet after
3 months of age, except for the global duration of breastfeeding.
However, since the participants were properly randomized, the
diet of either mother or child is not expected to differ between the
groups. Indeed, we found no between-group differences in
maternal fish-intake per week during the intervention period, as
estimated with food-frequency questionnaires (average fish con-
sumption 0.94 times/week, 0.5 times fatty fish/week [15]). In
addition, Bouwstra et al. [10] showed that prenatal fatty acid
status is related to neurodevelopment at 18 months, in contrast to
short-term postnatal LCPUFA supplementation to formula [7],
which may suggest that intrauterine LCPUFA status has an
important effect on postnatal development.

Maternal DHA supplementation studies during pregnancy or
during pregnancy and subsequent lactation with doses ranging
from 200 to 3300 mg DHA/day resulted in inconsistent outcomes
that did not seem related to supplementation dose, duration of
supplementation or testing age [5,6,24]. The discrepancy may
relate to a complex interplay between a ceiling effect in the dose–
outcome relationship, benefits to those with suboptimal baseline
status only, and inter-individual differences in developmental
potential [25]. A high variety in developmental tests, differing in
functional background, is used in the various studies. Various
brain regions differ in fatty acid composition, which may imply
region-specific regulation of brain LCP contents. It might there-
fore be that DHA supplementation influences some brain regions,
but not all, and thereby fails to influence the outcomes of each of
the various tests. In addition, the relation between DHA status
and neurodevelopment may be non-linear.

Our results may also indicate a transient effect of supplemen-
tation that is expressed at early age (3 months), but disappears at
preschool age, possibly due to plasticity of the brain. The higher
incidence of mildly abnormal GMs in the DHA supplementation
group may also reflect a different developmental trajectory,
which may or may not have consequences for functioning in later
life [26]. The effect of LCPUFA supplementation on neurodevelop-
mental outcome has been studied best in full-term infants in
studies dealing with supplementation of infant formula after
birth. These studies indicated a positive effect of LCPUFA on
outcome in early infancy, but positive effects on later outcome
have not been demonstrated [27]. However, no data are available
on long-term developmental effects. It is therefore also possible
that effects of LCPUFA supplementation may not be found at the
age of 1–2 years, but re-emerge at school age, similarly to the
effect of breastfeeding on developmental outcome [7,28,29].

Children classified as normal had higher UV DHA as compared
to those with simple MND. Simple MND is considered to reflect a
normal (i.e. non-pathological) but non-optimal form of brain
function in which for example the dopaminergic system may
operate in a non-optimal manner [20]. Our findings are therefore
in line with animal studies that indicated a relation between
perinatal brain DHA and e.g. dopaminergic neurotransmis-
sion [30]. Nearly all children (93%) displaying simple MND
showed a gross motor dysfunction, which is in accordance to
previously suggested relations between notably DHA and motor
behavior in rats [31–33] and humans [26,34]. Complex MND is a
more severe condition and is suggested to be at least partly due to
an interruption of connecting fiber systems [20]. The effects of
LCPUFA are known to be subtle at best, and we are not aware of
any etiological mechanisms that may explain the relation
between ARA and complex MND.

The current study showed a negative association between UV
Mead acid and the MDI score. The negative association between
Mead acid and neurodevelopment is consistently found in our
studies, since also the rate of MA GMs increased at increasing
infant erythrocyte Mead acid contents at 3 months of age [26]. In
addition, Dirix et al. [35] showed a negative association between
UA Mead acid contents and parameters of fetal learning and
development and Helland et al. [36] found a negative relation
between umbilical plasma Mead acid and intelligence scores at
4 years of age. Mead acid is used as a parameter of essential fatty
acid deficiency. During pregnancy, Mead acid is probably a
consequence of the high de novo synthesis of oleic acid from the
large amount of glucose that passes the placenta due to reduced
maternal insulin sensitivity. The high neonatal and infant Mead
acid contents likely reflect relative rather than absolute EFA and
LCPUFA deficiency and may point at the importance of adequate
insulin sensitivity and glucose homeostasis [37] in addition to
sufficient, balanced, n-3 and n-6 fatty acids for optimal brain
development .

Our study did not show between-group differences in the RCT,
but we were able to demonstrate associations between the
umbilical cord fatty acid compositions and developmental out-
come at 18 months. Bouwstra et al. [7,10] also reported significant
associations between umbilical cord fatty acid composition and
neurodevelopmental status at 18 months. The associations may be
explained by the fact that umbilical cord fatty acid compositions
reflect long-term LCPUFA status, and are therefore more likely
to show a relationship with neurodevelopment. The currently
employed relatively short term, and relatively low maternal
supplemental dose (i.e. 220 mg DHA/day) may not be sufficient
to provide a higher, steady state, UV DHA content, despite higher
maternal erythrocyte DHA contents [13] after DHA supplementa-
tion. Placental DHA supply to the fetus derives from both maternal
intakes and stores [38]. Due to the low dose and short term of
supplementation, infants in the placebo group may have higher
DHA supply compared to infants in the DHA group when also the
highly variable, but insufficient, background LCPUFA n-3 intake by
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Dutch women (on average 84 mg LCPUFAn-3/day in 2003) [39] is
taken into account.

It should be noted that especially short-term postnatal
RCTs [40] but also prenatal maternal intervention studies [36,41]
show merely subtle effects on neurodevelopment at toddler age,
whereas association studies show relations between (parameters
of) prenatal LCPUFA status and development [10,23,42–44]. DHA
status might be no more than a proxy for socio-economic back-
ground, healthy life-style factors, or both [45], that may syner-
gistically improve brain development. It is well known that
cognitive development is related to socio-economic status. In
addition, randomized controlled trials with single nutrients like
LCPUFA, ignore the many possible interactions with other nutri-
ents, and may therefore not be able to provide us with the
proper information regarding intakes beneficial for e.g. brain
development.

We conclude that relatively short-term maternal supplemen-
tation of a relatively low dose of DHA with or without ARA during
pregnancy and lactation did not influence our neurological out-
comes at toddler age. Long-term maternal LCPUFA intakes, as well
as maternal insulin sensitivity during pregnancy, are likely to
influence some parameters of brain development.
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