ERRATUM

Volume 163, No. 1 (2000), in the article "Verification by Augmented Finitary Abstraction," by Yonit Kesten and Amir Pnueli, pages 203-243, doi:10.1006/inco.2000.3000): On page 213 , line 24 , replace the formula $x_{\square p} \Leftrightarrow \chi(p) \vee x_{\square p}^{\prime}$ with the formula $x_{\square p} \Leftrightarrow$ $\chi(p) \wedge x_{\square p}^{\prime}$.

On page 214 , line 3 , replace $\Theta_{\varphi}: f_{1} \wedge \neg f_{3}$ with $\Theta_{\varphi}: u=0 \wedge f_{1} \wedge \neg f_{3}$.
On page 220, beginning of Section 6.2, replace "In the various..." with "In the previous. ..."

On page 223 , lines 7 , replace the formula

$$
\begin{aligned}
& \sim\left(\exists V: V_{A}=\mathcal{E}^{\alpha}(V) \wedge p(V)\right) \wedge\left(\exists V: V_{A}=\mathcal{E}^{\alpha}(V) \wedge q(V)\right), \text { with the formula } \\
& \sim \exists V: V_{A}=\mathcal{E}^{\alpha}(V) \wedge p(V) \vee \exists V: V_{A}=\mathcal{E}^{\alpha}(V) \wedge q(V) .
\end{aligned}
$$

On page 224 , line 4 replace

$$
\begin{aligned}
& \alpha^{-}(p \wedge q) \text { is equivalent to } \alpha^{-}(p) \wedge \alpha^{-}(q) \quad \text { with } \\
& \alpha^{-}(p \vee q) \text { is equivalent to } \alpha^{-}(p) \vee \alpha^{-}(q) .
\end{aligned}
$$

On page 225 , line 32 , replace the formula

$$
\forall V: V_{A}=\mathcal{E}^{\alpha}(V) \rightarrow p(V) \wedge \forall V: V_{A}=\mathcal{E}^{\alpha}(V) \rightarrow \forall V: V_{A}=\mathcal{E}^{\alpha}(V) \wedge p(V)
$$

with the formula

$$
\forall V: V_{A}=\mathcal{E}^{\alpha}(V) \rightarrow p(V) \wedge \exists V: V_{A}=\mathcal{E}^{\alpha}(V) \rightarrow \exists V: V_{A}=\mathcal{E}^{\alpha}(V) \wedge p(V)
$$

On page 230, third paragraph of Section 7.2, replace "a ranking monitor or a ranking function ..." with "a ranking monitor for a ranking function. . .."

On page 241, beginning of Section 10, replace "We have presented a method or verification. . ." with "We have presented a method for verification. . .."

Replace Section 8.2 by the Section that follows:

8.2. A Characteristic Example

The whole construction will be illustrated by a single example. Consider the program COND-TERM, presented in Fig. 13.

```
        \(y\) : natural
            \(x:\{-1,1\}\)
\(\ell_{0}\) : while \(y>0\) do
    \(\left[\begin{array}{ll}\ell_{1}: & x:= \pm 1 \\ \ell_{2}: & y:=y+x\end{array}\right]\)
\(\ell_{3}\) :
```

FIG. 13. Program COnd-term.

Statement ℓ_{1} of this program nondeterministically assigns to variable x one of the values $-1,1$. Program COND-TERM does not always terminate. In particular, it will not terminate if statement ℓ_{1} always assigns to x the value 1 . Consequently, the best we can claim for this program is the property of conditional termination which can be specified by

$$
\psi: \diamond \square(x<0) \rightarrow \diamond a t_{-} \ell_{3} .
$$

This property states that if, from a certain point on, x remains negative, then the program will terminate. It is not difficult to see that this property is valid for program COND-TERM.

Since program COND-TERM is a sequential program, it is associated with no fairness requirement. Therefore, step 2 which shifts the fairness requirements from the system to the property is vacuous, and we have that $\mathcal{D}^{-}=\mathcal{D}$ and $\Psi=\psi$.

Step 3 of the proof scheme constructs a temporal tester $T_{\neg \Psi}$, which characterizes all the sequences violating ψ.

Following the construction described in Section 4, we obtain the BDS $T_{\neg \psi}$, given by

$$
\begin{aligned}
& V: \quad \pi: \text { natural; } x:\{-1,1\} ; f_{1}, g_{2}, f_{3}: \text { boolean; } u:[0 . .3] \\
& \Theta_{\neg \psi}: u=0 \wedge f_{1} \wedge \neg f_{3} \\
& \rho_{\neg \psi}:\left(\begin{array}{lllll}
f_{1} & \leftrightarrow & g_{2} & \vee & f_{1}^{\prime} \\
g_{2} & \leftrightarrow & x<0 & \wedge & g_{2}^{\prime} \\
f_{3} & \wedge \\
\leftrightarrow & a t-\ell_{3} & \vee & f_{3}^{\prime} & \wedge \\
\text { case } & : 1 ; \\
u=0 & \\
u=1 \wedge\left(g_{2} \vee \neg f_{1}\right) & : 2 \\
u=2 \wedge\left(x \geq 0 \vee g_{2}\right) & : 3 ; \\
u=3 \wedge\left(a t \ell_{3} \vee \neg f_{3}\right): 0 ; \\
u= \\
\text { true } \\
\text { esac }
\end{array}\right. \\
& J: u=0
\end{aligned}
$$

Step 4 of the construction forms the parallel composition of $\mathcal{D}=\mathcal{D}^{-}$and $T_{\neg \Psi}$ to obtain the combined BDS $\mathcal{B}_{(\mathcal{D}, \neg \Psi)}=\mathcal{D} \| \mid T_{\neg \Psi}$. We claim that the system $\mathcal{B}_{(\mathcal{D}, \neg \Psi)}$ has no computations. Assume to the contrary, that σ is a computation of $\mathcal{B}_{(\mathcal{D}, \neg \Psi)}$. To be a computation, σ must contain infinitely many states in which $u=0$. According to the initial condition, f_{1} is initially true, while f_{3} is initially false. By the transition relation for f_{1} and the condition for getting out of $u=1$, there must exist a position $j \geq 0$ such that $g_{2}=1$ at j. By the transition relation for g_{2}, it follows that $x<0$ for all positions $k \geq j$. This means that, from j on, all executions of statement ℓ_{2} cause y to decrease. Since a natural number cannot decrease infinitely many times, the while loop of the program must terminate, and the execution must reach location ℓ_{3}, which by $f_{3}=0$, is impossible.

According to step 5, we should be able to identify an assertion Φ which is an invariant of $\mathcal{B}_{\left(\mathcal{D}^{-}, \neg \Psi\right)}$, and a progress measure Δ. Indeed, for our example, an appropriate invariant assertion is

$$
\Phi:\left(f_{1} \vee g_{2}\right) \wedge \neg f_{3} \wedge\left(u>1 \rightarrow g_{2}\right) \wedge(\pi \in\{1,2\} \rightarrow y>0),
$$

while a progress measure can be given by

$$
\Delta:\left[\begin{array}{rl}
\text { case } & \\
g_{2}: & \left(0,3 y+2 a t_{-} \ell_{0}+a t_{-} \ell_{1}\right) ; \\
1: & (1,0) ; \\
\text { esac } &
\end{array}\right]
$$

$\begin{aligned} & B_{y>0}: \\ & x: \end{aligned}$	$\begin{aligned} & \text { boolean } \\ & \{-1,1\} \end{aligned}$
	III $\left[\begin{array}{ll}F_{1}, G_{2}, F_{3}: & \text { boolean } \\ u: & {[0.3] \text { where } u=0} \\ \text { inc: } & \{-1,0,1\}\end{array}\right.$

FIG. 14. Program abs-COND-TERM, the augmented abstracted version of program COND-TERM.

It is not difficult to see that any transition taken from a Φ-state is guaranteed not to increase Δ. If such a transition leads to a state in which $u=0$ then Δ must decrease.

In step 6, we use the tester $T_{\text {true }}^{\neg \Psi}$ and the progress measure Δ to construct the progress monitor $M_{T, \Delta}$ given by

$$
M_{T, \Delta}:\left\langle\begin{array}{l}
V_{M}:\left\{\pi: \text { natural, } x:\{-1,1\}, f_{1}, g_{2}, f_{3}: \text { boolean, } u:[0 . .3], \text { inc }:\{-1,0,1\}\right\} \\
\Theta_{M}: u=0 \quad \rho_{M}: \rho_{\neg \psi} \wedge \text { inc }=\operatorname{diff}\left(\Delta, \Delta^{\prime}\right) \\
\mathcal{J}: u=0 \quad \mathcal{C}:\{(\text { inc }<0, \text { inc }>0)\}
\end{array}\right\rangle
$$

Next, we form the composition $\mathcal{D} \| \mid M_{T, \Delta}$, and then compute the abstraction mapping α. To obtain a finitary mapping, we introduce a fresh Boolean variable $B_{y>0}$ with the definition $B_{y>0}=(y>0)$. Applying the abstraction α to $\mathcal{D} \| \mid M_{T, \Delta}$, we obtain an abstracted finite-state system equivalent to the program presented in Fig. 14.

The variables F_{1}, G_{2}, F_{3} are the abstract versions of f_{1}, g_{2}, and f_{3}, respectively. Note that, like $\mathcal{D} \| \mid M_{T, \Delta}$, system ABS-COND-TERM is a parallel composition of three components, the abstraction of program COND-TERM, the abstraction of the tester $T_{\text {true }}^{\Psi}$, and the abstraction of the monitor, taking into account its joint behavior with the other two components.

Clearly, the system abs-Cond-term is a finite-state system and satisfies the property

$$
\psi: \diamond \square(x<0) \rightarrow \diamond a t_{-} \ell_{3} .
$$

To see that ABS-COND-TERM satisfies the property ψ, assume, to the contrary, that there exists a computation σ of ABS-COND-TERM which satisfies $\diamond \square(x<0)$ but never reaches location ℓ_{3}. In this case, the initial values of f_{1} and f_{3} must be 1 and 0 , respectively. The justice requirement with respect to u cannot be satisfied in such a case, unless g_{2} eventually assume the value 1 . Once this happens, inc is constantly -1 from this point on. This violates the compassion requirement with respect to inc. It follows that σ cannot be a computation.

