
Chemistry & Biology

Article
Biologically Relevant Molecular Transducer
with Increased Computing Power
and Iterative Abilities
Tamar Ratner,1 Ron Piran,1,2 Natasha Jonoska,3 and Ehud Keinan1,2,*
1Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute,

10550 North Torrey Pines Road, La Jolla, CA 92037, USA
3Department of Mathematics, University of South Florida, Tampa, FL 33620, USA

*Correspondence: keinan@tx.technion.ac.il

http://dx.doi.org/10.1016/j.chembiol.2013.02.016
SUMMARY

As computing devices, which process data and inter-
convert information, transducers can encode new
information and use their output for subsequent
computing, offering high computational power that
may be equivalent to a universal Turing machine.
We report on an experimental DNA-based molecular
transducer that computes iteratively and produces
biologically relevant outputs. As a proof of concept,
the transducer accomplished division of numbers
by 3. The iterative power was demonstrated by a
recursive application on an obtained output. This
device reads plasmids as input and processes the
information according to a predetermined algorithm,
which is represented by molecular software. The
device writes new information on the plasmid
using hardware that comprises DNA-manipulating
enzymes. The computation produces dual output: a
quotient, represented by newly encoded DNA, and a
remainder, represented by E. coli phenotypes. This
device algorithmically manipulates genetic codes.

INTRODUCTION

The inherent molecular nature of any biomolecular computing

device implies the advantage of direct interaction with biological

systems. The ability to algorithmically control, manipulate, and

reorganize biomolecular processes in vivo opens up new oppor-

tunities, not only with respect to biologically relevant communi-

cations, but also in creating programmable devices that can

carry out different computational operations. Therefore, the

value of amolecular computing device can be examined in terms

of both its ability to be programmed to carry out sets of different

arithmetic or logical operations and its ability to directly intervene

with biological systems. For example, DNA-based computing

devices, which enjoy the advantages of miniaturization and nat-

ural interaction with biomolecules, may directly impact biological

systems (Livstone et al., 2003; Ratner and Keinan, 2009; Shosh-

ani et al., 2011a; Ratner et al., 2012). Numerous architectures of
726 Chemistry & Biology 20, 726–733, May 23, 2013 ª2013 Elsevier
biomolecular computing devices have been developed and

proved experimentally utilizing ingenious biomolecular tech-

niques (Lipton, 1995; Liu et al., 2000; Sakamoto et al., 2000;

Faulhammer et al., 2000; Braich et al., 2002; Roweis et al.,

1998; Winfree et al., 1998; LaBean et al., 2000; Winfree, 2000;

Benenson et al., 2001; Mao et al., 2000; Rose et al., 2002;

Komiya et al., 2000; Rothemund et al., 2004; Stojanovic and

Stefanovic, 2003; Krishnan and Simmel, 2011; Adleman, 1994).

Each of these studies has elegantly demonstrated some

parts of the above-mentioned potential. Here, we further these

efforts by the experimental construction of an advanced

molecular computing machine, a molecular transducer. This

machine can compute iteratively, i.e., take as input its own

output, and thereby can exhibit the desired criteria for self-con-

tained biomolecular processor.

Transducers are capable of information processing and inter-

conversion of different types of information (Hopcroft et al.,

2001). These computing devices, which model ubiquitous pro-

cesses in both the living and inanimate worlds, may solve a

broad spectrum of different problems. Moreover, the transducer

output can serve as input for subsequent computing by the same

or another transducer. This iterative computational process pro-

vides computational power that has been shown to be equiva-

lent to a universal Turing machine (Hopcroft et al., 2001). There-

fore, the experimental realization of a molecular transducer can

be considered as a significant advancement in the evolution of

prominent architectures of molecular computing.

A transducer is a finite-state machine that at each computa-

tional step progresses stepwise along an input tape, reads an

input symbol, changes its internal state, and also writes a new

symbol on the tape (Hopcroft et al., 2001). Formally, the device

can be described as a graph with vertices, each representing

an internal state, and arrows, representing the transitions

between the states (Figure 1). Each arrow (edge) is labeled

with a pair of characters that, for the transition indicated by the

arrow, represents the current symbol read (the input symbol)

and the symbol written on the tape (the output symbol).

Here, we report on the experimental realization of a DNA-

based molecular transducer that performs long division by 3

on binary strings, it computes iteratively, and also produces a

biologically relevant output. The input binary string of this device

is encoded on a DNA plasmid. The device reads and processes

the plasmid and writes new information by altering its sequence.
Ltd All rights reserved

mailto:keinan@tx.technion.ac.il
http://dx.doi.org/10.1016/j.chembiol.2013.02.016
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.chembiol.2013.02.016&domain=pdf


Figure 1. A Transducer Model with Three Internal States, S0—The

Initial State—S1, and S2, and Input and Output Symbols, 0 and 1

This machine performs long division of a binary number by 3. In each

computational step, an arrow labeled a/b means that, if the device reads an

input symbol a while being at state in the source of the arrow, it replaces the

symbol a by an output symbol b and switches to the state in the target of the

arrow.

Chemistry & Biology

DNA Transducer with Iterative Computing Power
Finally, the internal terminal state of the transducer compu-

tation is realized in the form of a bacterial phenotype upon

transformation.
RESULTS AND DISCUSSION

The Logic Device and Its Molecular Realization
Our design incorporates ideas from previously reported molecu-

lar finite-state automata (Benenson et al., 2001, 2004; Kossoy

et al., 2007; Shoshani et al., 2011b) and the theoretical descrip-

tion of a molecular Turing machine (Rothemund, 1996). The

transducer applicability is demonstrated here through a long

division of binary numbers by 3. This problem allows for two

types of output: a quotient of the division and a remainder, which

can be 0, 1, or 2. A transducer with three states, S0, S1, and

S2, can perform the task of long division by 3 with each state

encoding for one of the remainder possibilities (Figure 1). This

computation requires decoding, encoding, and storage of infor-

mation. Unlike the previously reported finite automata, which

employed linear double-stranded DNA (dsDNA) inputs, in our

implementation the transducer operates on a plasmid, allowing

for both reading of the input symbol and writing of the output

symbol (Ratner and Keinan, 2009; Shoshani et al., 2011a; Ratner

et al., 2012).

We represented eachof the input andoutput binary symbols by

a 6 bp string of dsDNA (Figure 2A). The inputs of the transducer

contained recognition sites for restriction enzymes BpmI, FokI,

and a sequence encoding the string of symbols (Figure 2C).

Each of these inputs was cloned into pTR plasmid (see Experi-

mental Procedures and Figure S2 available online). The ‘‘soft-

ware’’ of the transducer (transition rules) consisted of a set of

short dsDNA molecules, named transition molecules (TMs) (Fig-

ure 2D). The ‘‘hardware’’ was composed of restriction enzymes,

ligase, and a set of dsDNA molecules, named detection mole-

cules (DMs) (Figures 2B and 2E). Successive molecular

operations on the plasmid included reading the input symbol in

one direction and simultaneously writing the output in the

other direction (Figure3). This strategy requireddouble restriction

and double ligation in each read/write cycle. The output of the

computation, i.e., the binary representation of the quotient, was

encoded on the plasmid as newly written DNA symbols, whereas

E. coli phenotypes exhibit the remainders. The iterative compu-

tational power was demonstrated by a recursive application of

the transducer on an obtained output plasmid (Figure 4).
Chemistry & Biology 20,
The Molecular Computing Process
The computation was carried out by alternating exposure of the

input plasmid to two mixtures: a restriction mixture containing

three endonucleases, FokI, BpmI, and BseRI, and a ligation

mixture containing T4 DNA ligase, ATP, TMs, and DMs. For the

task of double restriction, we employed FokI as the primary

computational cutter and BpmI as the secondary cutter. FokI

cleaves downstream of its recognition site to produce a 4-base

sticky end, whereas BpmI cleaves upstream of its recognition

site to produce a 2-base sticky end (Figure 2B). The third restric-

tion enzyme, BseRI, was employed to reduce background noise

by digesting all singly cleaved plasmids.

The FokI restriction represents ‘‘reading’’ an input symbol and

determining the new internal state. Each of the 6 bp sequences

representing an input symbol, as well as the terminator

sequence, could be cleaved by FokI in one of three possible

modes. The first mode involves cleavage at the beginning of

the symbol sequence, producing a single-stranded overhang

of the first four nucleotides. The second and third modes involve

cleavage of the sequence either 1 bp deeper or 2 bp deeper into

that domain, leaving a single-stranded overhang of either the

second through fifth or third through sixth nucleotides, respec-

tively. These modes represent reading of an input symbol while

the transducer is at one of its three internal states, S0, S1, and

S2, respectively (Figure 2A). The transition between the trans-

ducer’s states corresponds to the restriction mode and is

dictated by the distance between the recognition site of FokI

and the input symbol sequence, as instructed by the newly incor-

porated TM (Figure 2D).

Our design also included the formation of a degenerate

sticky end, CC, in all restrictions by BpmI. The inclusion of CC

at the end of every symbol allowed for continuous writing of

the output symbols on the plasmid without spacers, thus quali-

fying the output sequence as a new input (Figures 2A and 2D).

The design of 4-base and 2-base sticky ends on each of the

TMs and DMs also provided advantageous kinetic preference

by first hybridizing the 4-base end and then closing the plasmid

at the 2-base end.

Each of the three DMs contained a specific reporter gene,

resistance to ampicillin, tetracycline, or kanamycin, correlated

with one of the three possible terminal states S0, S1, and S2,

respectively (Figure 2E). Each DM could hybridize selectively to

a different sticky end produced by a differently cleaved termi-

nator sequence, identifying one of the three states, S0, S1, and

S2, and hence the remainder of the division. Thus, the output

signal was manifested by specific antibiotic resistance upon

transformation to bacteria.

The transducer was implemented by processing the input

plasmid via repetitive cycles of restriction and ligation to produce

the final-state output in the form of a modified cyclic plasmid.

While the previously reported finite-state automata employed

all components in a single pot (Benenson et al., 2001; Soreni

et al., 2005; Kossoy et al., 2007), the transducer required two

separate mixtures. This practice of alternate exposure to the re-

striction and ligation mixtures offered considerable advantages

for the robustness of the system. First, all TMs, being substrates

of BpmI and BseRI, are incompatible with these enzymes. More-

over, although all TMs are too short to be restricted by FokI they

could still act as its competitive inhibitors. Second, segregation
726–733, May 23, 2013 ª2013 Elsevier Ltd All rights reserved 727



Figure 2. The Long Division by Three DNA-Based Transducer Components

(A) Input symbol 1, 0, and terminator and the identity of sticky ends produced upon specific restriction, which represents state S0, S1, or S2.

(B) The hardware, including two restriction enzymes and T4 DNA ligase.

(C) Two input molecules containing a sequence of symbols 0 (green), 1 (blue), terminator (orange), and recognition sites of the computing enzymes: BpmI (pink)

and FokI (red). The recognition site of BseRI (not shown) is located between these two sites.

(D) Six transition molecules representing the transition rules, each containing a written symbol, either 0 or 1, and recognition sites of BpmI and FokI. The

recognition site of BseRI (not shown) is located between these two sites.

(E) Three detection molecules, each containing a written terminator (orange), reporter gene, and restriction site of PstI (brown).

See also Figure S2.

Chemistry & Biology

DNA Transducer with Iterative Computing Power
of the two mixtures prevents computing mistakes that could

occur by premature restriction/ligation. Third, since restriction

enzymes and T4DNA ligase require different reaction conditions,

segregating their buffers assures their optimal efficiency. Fourth,

this practice allowed for removal of the cleaved fragments and

side products, which could compete with the TMs. Finally, this

separation offered convenient bacterial amplification of the inter-

mediate cyclic plasmids. In order to monitor each computation

step, we ligated the TMs and DMs in two separate steps and
728 Chemistry & Biology 20, 726–733, May 23, 2013 ª2013 Elsevier
examined the resultant plasmids for antibiotic resistance (Fig-

ure S1 available online).

Mathematical Output and Biological Outcome
The computation with the transducer was demonstrated by

dividing three integers 4, 5, and 6 written in their binary format,

100, 101, and 110 (Figure 4). The numbers were represented by

DNA sequences on the corresponding input plasmids named

pTR-In100, pTR-In101, or pTR-In110, respectively (Figure S2).
Ltd All rights reserved



Figure 3. Long Division of 5—Binary

101—by 3

The symbol 0 (green), symbol 1 (blue), and termi-

nator (orange) recognition sites of BpmI (pink) and

FokI (red). The recognition site of BseRI is located

inside the 37 bp spacer. The restriction mixture

included BpmI, BseRI, and FokI. The ligation

mixture included T4 DNA ligase, ATP, transition,

and detection molecules. For details of the

computation steps, see Figure S3. This division

resulted in the integer 001, which was detected

by DNA sequencing, and a remainder of 2,

represented by S2, which was detected by the

resistance of E. coli expressing the plasmid to

kanamycin. See also Figure S3.

Chemistry & Biology

DNA Transducer with Iterative Computing Power
The division of 5 (binary 101) by 3 resulted in quotient 1 (binary

001) and a remainder 2. The latter was represented by a

plasmid encoding S2 as the final state of the computation,

which was manifested by E. coli resistance to kanamycin

(Figures 3, 4, and 5).

Similarly, the division of 4 (binary 100) by 3 resulted in the quo-

tient 1 (binary 001) and a remainder 1, represented by S1 as the

final state of computation, manifested by E. coli resistance to

tetracycline (Figures 4, 5, and S3A). Likewise, the division of 6

(binary 110) by 3 resulted in the quotient 2 (binary 010) and a

remainder 0, represented by a plasmid encoding the final state

S0, manifested by E. coli resistance to ampicillin (Figures 4, 5,

and S3B).

With all three computations,we sampled at least tenE. coli col-

onies that survivedona specific antibiotic and foundall of them to

possess the expected computation plasmid and correct resis-

tance gene. The very few colonies that survived on incorrect

media (1.0% ± 0.8%) were found to be either contamination

by bacteria lacking the computation plasmid or the result
Chemistry & Biology 20, 726–733, May 23, 2013
of incorrectly incorporated detection

molecule. Remarkably, bacteria with

incorrect detection molecule still

possessed the correct quotient

sequence. Furthermore, examination of

several hundred plasmids at all interme-

diate computation steps did not reveal

even a single case of erroneous compu-

tation, indicating very high fidelity (Fig-

ure 6A). Unprocessed (degenerate) input

plasmids were discovered at levels of

0%–30% (Figure 6), reflecting limited

enzymatic efficiency. Nevertheless, these

limitations were irrelevant to the compu-

tational process and fidelity because the

output was amplified by the bacterial

colonies.

Iterative Computing
To demonstrate recursive computing, we

used the output from the primary

computing with input 101 as a new input

for a secondary computing process. The

plasmid bearing the output sequence
001 needed technical adjustments to make it suitable for the

consecutive process. First, we removed the antibiotic resistance

gene. Second, we cloned into the plasmid a restriction cassette

that contained new recognition sites for BpmI, FokI, and BseRI at

a location dictating S0 as the initial state (Figure S4A). The next

computing with this modified input, pTR-In001, resulted in the

expected quotient 0 and remainder 1, represented by a plasmid

encoding the final state S1, which was manifested by the resis-

tance of E. coli to tetracycline (Figures 4, 5, and S4B).

The above-described version of the transducer requires hu-

man intervention. This stepwise approach allowed us to monitor

the products and yields in each step, determine potential errors,

etc. Yet, as described in the Supplemental Information, two

recognition sites for single cutter restriction enzymes, BamHI

and NcoI, were inserted into the input plasmid away from the

computation region (Figure S2A). This cloning site allows for

introduction of a biotinylated DNA cassette that could be used

for automatic separation with avidin-coated magnetic beads

(Figure S2D). This technology, together with the alternate
ª2013 Elsevier Ltd All rights reserved 729



Figure 4. A Schematic Representation of Four Division Processes by the DNA-Based Transducer: 6 O 3; 5 O 3; 4 O 3, and 1 O 3

The latter represents an iterative computing performed with the output 001 that was obtained from the division 5O 3. Light orange: the computing head with its

internal state; light blue and dark orange: input and output symbols in the first three operations, respectively; dark orange and green: input and output symbols in

the iterative computing, respectively. See also Figure S4.

Chemistry & Biology

DNA Transducer with Iterative Computing Power
exposure to the restriction and the ligation solutions, which can

be automatized without human intervention, offers scale-up

opportunities.

SIGNIFICANCE

This report describes an experimental realization of a

molecular transducer that not only computes iteratively,

but also produces biologically relevant results. The

above-described DNA-based transducer offers multiple

benefits, such as the ability to read and transform genetic

information, miniaturization to the molecular scale, and

the aptitude to produce computational results, which

interact directly with living organisms. Although this

transducer was employed to solve a specific problem

of a long division by 3, the general methodology shows

that similar devices could be applied for other compu-

tational problems. For example, recursive division by

a certain number is equivalent to root extract. Further-

more, the transducer’s capabilities to compute iteratively

and cooperate with other transducers offer attractive op-

portunities. For example: repetitive employment of several

basic transducers, each can divide a given input number

by a prime number, would allow for many combinations

of these basic transducers. This strategy enables a general

division by a broad variety of numbers without requiring a

specific molecular device for each number. Moreover, re-

petitive employment of several transducers can solve

more difficult problems, up to the level that require a uni-

versal Turing machine (Hopcroft et al., 2001). Therefore,

their implementation on a geneticmaterial may not just eval-

uate and detect specific sequences, but it can also alter and

algorithmically process the genetic code according to a pre-
730 Chemistry & Biology 20, 726–733, May 23, 2013 ª2013 Elsevier
designed formula. This possibility opens up avenues for new

approaches in a variety ofmethods in biotechnology such as

individual gene therapies and cloning.

EXPERIMENTAL PROCEDURES

Strains and Media

DH5aE. coli strain was grown aerobically at 37�C in Luria-Bertani broth or agar

plates supplemented with variable antibiotics: ampicillin, 100 mg/ml (Sigma),

kanamycin, 10 mg/ml (Sigma), tetracycline, 10 mg/ml (Sigma), or chloramphen-

icol, 30 mg/ml (Fluka).

General Molecular Biology Techniques

DNA was separated by gel electrophoresis using 1% agarose for routine use

(Sigma) and purified by the QIAquick Gel Extraction Kit (QIAGEN). DNAs

were amplified by PCR using Red Load Taq Master mix (LAROVA GmbH) or

GoTaq Green Master Mix (Promega). Mutageneses were preformed using

the QuikChange Site-Directed Mutagenesis kit (Stratagene). E. coli transfor-

mations were performed using the calcium-chloride transformation method.

DNA sequencing were performed at the Genomic Technologies Unit, Faculty

of Medicine, Technion - Israel Institute of Technology. General procedures

for DNA amplification, cloning, transformation, and agarose gel electrophore-

ses were carried out as described previously (Sambrook et al., 1989). All

restriction enzymes, T4 DNA Ligase and buffers were purchased from New

England Biolabs.

Synthetic DNA

All deoxyoligonucleotides were custom ordered from Syntezza Bioscience. All

synthetic single-stranded DNA (ssDNA) contained hydroxyl groups on both

30 and 50 ends. Oligonucleotides that were used for site-directed mutagenesis

and computation components were PAGE-purified by the supplier; otherwise

they were desalted. All oligonucleotides were used without further purification.

All sequences are provided in Table S1.

Transition Molecules, Input 101, and ‘‘Restriction-Cassette’’ dsDNA

All synthetic dsDNA molecules were prepared by annealing 100 pmol of

commercially obtained deoxyoligonucleotides, 50 pmol of each ssDNA, in
Ltd All rights reserved



Input 110 Input 101 Input 001Input 100

A
m

pi
ci

lli
n

Te
tra

cy
cl

in
e

K
an

am
yc

in

* * 

* 

* 

Figure 5. Biologically Relevant Output Signals

Computation with inputs 110, 101, and 100 led to bacterial colonies resistant

to ampicillin (S0), kanamycin (S2) and tetracycline (S1), respectively (marked

with white asterisks). Iterative computing with input 001, which was obtained

as the output from computing with 101, resulted in tetracycline resistance (S1).

See also Figure S1.

Figure 6. Identification of which TM Was Cloned into the

Computation Plasmid

After each computation step, the resulting plasmids were amplified to identify

which TM was cloned. The amplification was done using a general primer and

one of six specific primers, each unique to a single TM.

(A) Scanning of the resulting plasmid from the second computation step with

input 100. Lanes 1 and 16, ladder; lanes 2–15 exhibit PCR products of

amplification with primer homology to one of the TMs (indicated above the gel

image). Each amplification reaction was done on ten plasmid lines. The

expected TM to be ligated is TM3. The TM ligated at the previous computation

step was TM2. This electrophoresis gel demonstrated that none of the

unexpected TMs (TM1, TM4–6) were cloned into the computation plasmid. A

specific amplification is seen at lane 8, indicating degenerated plasmids, and

at lane 15, indicating ligation to the expected MT3.

(B and C) PCR products of amplification with specific primers homologous to

the TMs expected to ligate at the examined computation steps. Each ampli-

fication reaction was done on a single plasmid line. Lanes 1 and 13, ladder. Gel

electrophoresis B indicates 70% efficiency of the ligation reaction. Gel elec-

trophoresis C indicates 100% efficiency of the ligation reaction.

See also Table S1.

Chemistry & Biology

DNA Transducer with Iterative Computing Power
a final volume of 10 ml of distilled deionized water (DDW). The annealing was

performed by heating the solution to 95�C followed by slow cooling to room

temperature. The synthetic molecules included the sense and antisense

strings, constructing the TMs, input molecule 101, and the restriction

cassette.

Detection Molecules

The carrier vector of the output-detectingmolecule for state S0, was formed by

two mutations on a circular pGEM vector (Promega). The first mutation was

preformed at positions 2370–1. It inserted a synthetic adaptor of 15 bp, con-

taining PstI and BsmBI recognition sites and a unique sequence that served

(after restriction with BsmBI) as a 4-base sticky end. The second mutation

was preformed at position 1217. It inserted a synthetic adaptor of 28 bp,

containing PstI and BseRI recognition sites, a sequence that served (after

restriction with BseRI) as a 2-base sticky end and a terminator sequence.

The above-described mutations generated the plasmid pGEM-D0.

The carrier vectors of the output-detecting molecules for states S1 and S2

were constructed by PCR amplification of the genes encoding for tetracycline

and kanamycin resistance, which were obtained from pBR322 and pUG6,

respectively. The amplification primers enabled incorporation of the following:

(1) PstI and BsmBI recognition sites together with a unique sequence that

served as a 4-base sticky end at the C terminus of the gene. This sticky end

resulted from restriction with BsmBI, and (2) PstI and BseRI recognition sites,

a sequence that served (after restriction with BseRI) as a 2-base sticky end,

and a terminator sequence at the N terminus. Each of the PCR products

was ligated to a pGEM-T Easy Vector (Promega) to generate pGEM-D1 and

pGEM-D2.

In addition to the artificially designed BsmBI recognition site, pGEM-D2 con-

tained a recognition site, originally at position 920–925 in pUG6. The BsmBI

recognition site was eliminated without altering the amino acid encoding

sequence (arginine and leucine) at that kanamycin resistance gene, based

on the degeneration of the genetic code, and maintaining the common genetic

code in E. coli.

The three carrier vectors, pGEM-D0, pGEM-D1, and pGEM-D2, which con-

tained the various detection molecules, DM0, DM1, and DM2, were digested

separately by successive exposure to BsmBI and BseRI to form the three

desired DMs having unique sticky ends.

Preparation of Computing Plasmids

The pJIR480 vector (Sloan et al., 1992) was mutated twice to form pTR. The

first mutation altered the FokI recognition site at position 4211–4215 to an
Chemistry & Biology 20, 726–733, May 23, 2013 ª2013 Elsevier Ltd All rights reserved 731



Chemistry & Biology

DNA Transducer with Iterative Computing Power
NcoI site. The second mutation inserted a BamHI recognition site at position

4665–4667. These changes were carried out in order to delete the FokI recog-

nition site and to enable the insertion of other cassettes (using BamHI and

NcoI) for future studies.

Linearization of pTR was achieved by simultaneous cleavage of pTR with

KpnI and SacI. Input 101 was inserted into pTR to form pTR-In101 using stan-

dard molecular biology techniques. An appropriate plasmid, containing the

input sequence, was detected by PCRwith AMP-In-S and AMP-In-AS primers,

and sequenced. A new recognition site for BseRI was added by mutagenesis

at position 3482 between the BpmI and FokI sites. This procedure resulted in

the insertion of a synthetic adaptor of 16 bp, containing a BseRI recognition

site and a 10 bp spacer. Site-directed mutagenesis was used to convert

pTR-In101 to pTR-In100 by exchange of the second ‘‘1’’ symbol into a ‘‘0’’

symbol. Similarly, pTR-In100 was converted to pTR-In110 by exchange of

the first ‘‘0’’ symbol into a ‘‘1’’ symbol. All final products were sequenced.
Stepwise Computing

The computation process was carried out by sequential exposure of the

computation vector to three reaction mixtures (Figure S1). The restriction

was done by first adding BpmI with buffer 4 and BSA in DDW at 37�C for

55 min, then adding BseRI followed by incubation at 37�C for 5 min, and finally

adding FokI followed by incubation at 37�C for another 5 min. The enzymes

were then inactivated by heating to 65�C for 20 min and the products were

purified by gel electrophoresis. The second treatment was done with a ligation

mixture containing all six TMs (or DMs), T4 DNA ligase, and T4 DNA ligase

buffer in DDW. The products were transformed into competent cells and grown

on a selective agar medium containing chloramphenicol (or, when DMs were

employed, ampicillin, kanamycin, or tetracycline). If specific resistance to

one of the latter three was observed, the computing process was terminated.

The expected cloning results were confirmed by PCR using the AMP-In-AS

primer and exchanged primers characteristic to each TM and sequenced.
Consecutive Computation

Deletion of the antibiotic resistance gene was carried out by restriction of the

output vector pTR-001 by PstI followed by self-ligation. The product was

transformed into competent cells and grown on a selective agar medium con-

taining chloramphenicol. The grown colonies were duplicated on agar medium

containing kanamycin. DNA from colonies that grew on chloramphenicol but

could not survive on kanamycin was produced and sequenced. The product

was cleaved using XhoI endonuclease and the restriction cassette was

inserted to form the modified pTR-In001. The latter was transformed into

competent cells and grown on selective agar medium containing chloram-

phenicol. The cloning results were confirmed by PCR using AMP-In-AS and

AMPRestCassette primers, and sequenced.
SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and one table and can

be found with this article online at http://dx.doi.org/10.1016/j.chembiol.2013.

02.016.
ACKNOWLEDGMENTS

This study was supported by the National Science Foundation under grant no.

0523928. N.J. is supported in part by NSF grants CCF-1117254 and DMS-

0900671. E.K. thanks the US-Israel Binational Science Foundation (BSF), the

Russell Berrie Nanotechnology Institute, and the Institute of Catalysis Science

and Technology, Technion. E.K. is incumbent of the Benno Gitter & Ilana Ben-

Ami Chair of Biotechnology, Technion.

Received: November 27, 2012

Revised: February 5, 2013

Accepted: February 7, 2013

Published: May 23, 2013
732 Chemistry & Biology 20, 726–733, May 23, 2013 ª2013 Elsevier
REFERENCES

Adleman, L.M. (1994). Molecular computation of solutions to combinatorial

problems. Science 266, 1021–1024.

Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., and Shapiro, E.

(2001). Programmable and autonomous computing machine made of biomol-

ecules. Nature 414, 430–434.

Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., and Shapiro, E. (2004). An auton-

omous molecular computer for logical control of gene expression. Nature 429,

423–429.

Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W., and Adleman, L.

(2002). Solution of a 20-variable 3-SAT problem on a DNA computer. Science

296, 499–502.

Faulhammer, D., Cukras, A.R., Lipton, R.J., and Landweber, L.F. (2000).

Molecular computation: RNA solutions to chess problems. Proc. Natl. Acad.

Sci. USA 97, 1385–1389.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001). Introduction to Automata

Theory, Languages, and Computation (Boston: Addison-Wesley).

Komiya, K., Sakamoto, K., Gouzu, H., Yokoyama, S., Arita, M., Nishikawa, A.,

and Hagiya, M. (2000). Successive State Transitions with I/O Interface by

Molecules. In 6th international workshop on DNA-based computers, DNA

2000, A. Condon and G. Rozenberg, eds. (Berlin: Springer-Verlag), pp. 19–26.

Kossoy, E., Lavid, N., Soreni-Harari, M., Shoham, Y., and Keinan, E. (2007). A

programmable biomolecular computing machine with bacterial phenotype

output. ChemBioChem 8, 1255–1260.

Krishnan, Y., and Simmel, F.C. (2011). Nucleic acid based molecular devices.

Angew. Chem. Int. Ed. Engl. 50, 3124–3156.

LaBean, T.H., Winfree, E., and Reif, J.H. (2000). Experimental progress in

computational by self-assembly of DNA tilings. In Proceedings of DNA

Based Computers, V.E. Winfree and D.K. Gifford, eds. (Providence RI,

Cambridge, MA: American Mathematical Society), pp. 123–140.

Lipton, R.J. (1995). DNA solution of hard computational problems. Science

268, 542–545.

Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M., and Smith, L.M.

(2000). DNA computing on surfaces. Nature 403, 175–179.

Livstone, M.S., van Noort, D., and Landweber, L.F. (2003). Molecular

computing revisited: a Moore’s Law? Trends Biotechnol. 21, 98–101.

Mao, C., LaBean, T.H., Relf, J.H., and Seeman, N.C. (2000). Logical computa-

tion using algorithmic self-assembly of DNA triple-crossover molecules.

Nature 407, 493–496.

Ratner, T., and Keinan, E. (2009). Programmable DNA-Based Finite Automata.

In DNA-Based Algorithmic Bioprocesses, A.A. Condon, D. Harel, J.N. Kok, and

N.C. Series, eds. (Berlin: Springer-Verlag), pp. 505–516.

Ratner, T., Shoshani, S., Piran, R., and Keinan, E. (2012). Biologically relevant

molecular finite automata. In Biomolecular Information Processing, E. Katz, ed.

(Weinheim, Germany: Wiley-VCH), pp. 145–179.

Rose, J.A., Deaton, R.J., Hagiya, M., and Suyama, A. (2002). Equilibrium anal-

ysis of the efficiency of an autonomousmolecular computer. Phys. Rev. E Stat.

Nonlin. Soft Matter Phys. 65, 021910.

Rothemund, P.W.K. (1996). A DNA and restriction enzyme implementation of

Turing machines. In DNA Based Computers, Proceedings of a DIMACS

Workshop, R.J. Lipton and E.B. Baum, eds. (Princeton, NJ: American

Mathematical Society), pp. 75–119.

Rothemund, P.W.K., Papadakis, N., and Winfree, E. (2004). Algorithmic self-

assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424. http://dx.doi.org/

10.1371/journal.pbio.0020424.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F.,

Rothemund, P.W.K., and Adleman, L.M. (1998). A sticker-based model for

DNA computation. J. Comput. Biol. 5, 615–629.

Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,

and Hagiya, M. (2000). Molecular computation by DNA hairpin formation.

Science 288, 1223–1226.
Ltd All rights reserved

http://dx.doi.org/10.1016/j.chembiol.2013.02.016
http://dx.doi.org/10.1016/j.chembiol.2013.02.016
http://dx.doi.org/10.1371/journal.pbio.0020424
http://dx.doi.org/10.1371/journal.pbio.0020424


Chemistry & Biology

DNA Transducer with Iterative Computing Power
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A

Laboratory Manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

Press).

Shoshani, S., Ratner, T., Piran, R., and Keinan, E. (2011a). Biologically relevant

molecular finite automata. Isr. J. Chem. 51, 67–86.

Shoshani, S., Wolf, S., and Keinan, E. (2011b). Molecular computing with plant

cell phenotype serving as quality controlled output. Mol. Biosyst. 7, 1113–

1120.

Sloan, J., Warner, T.A., Scott, P.T., Bannam, T.L., Berryman, D.I., and Rood,

J.I. (1992). Construction of a sequenced Clostridium perfringens-Escherichia

coli shuttle plasmid. Plasmid 27, 207–219.
Chemistry & Biology 20,
Soreni, M., Yogev, S., Kossoy, E., Shoham, Y., and Keinan, E. (2005). Parallel

biomolecular computation on surfaces with advanced finite automata. J. Am.

Chem. Soc. 127, 3935–3943.

Stojanovic, M.N., and Stefanovic, D.A. (2003). A deoxyribozyme-basedmolec-

ular automaton. Nat. Biotechnol. 21, 1069–1074.

Winfree, E. (2000). Algorithmic self-assembly of DNA: theoretical motivations

and 2D assembly experiments. J. Biomol. Struct. Dyn. 17(Suppl 1 ), 263–270.

Winfree, E., Liu, F., Wenzler, L.A., and Seeman, N.C. (1998). Design and self-

assembly of two-dimensional DNA crystals. Nature 394, 539–544.
726–733, May 23, 2013 ª2013 Elsevier Ltd All rights reserved 733


	Biologically Relevant Molecular Transducer with Increased Computing Power and Iterative Abilities
	Introduction
	Results and Discussion
	The Logic Device and Its Molecular Realization
	The Molecular Computing Process
	Mathematical Output and Biological Outcome
	Iterative Computing

	Significance
	Experimental Procedures
	Strains and Media
	General Molecular Biology Techniques
	Synthetic DNA
	Transition Molecules, Input 101, and “Restriction-Cassette” dsDNA
	Detection Molecules
	Preparation of Computing Plasmids
	Stepwise Computing
	Consecutive Computation

	Supplemental Information
	Acknowledgments
	References


