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Inspired simultaneously from the theory of network synthesis and from the 
theory of means for positive operators, we introduce the notions of direct and 
inverse addition of order p for pairs of convex sets in a locally convex topological 
linear space. In this way a general formalism is introduced which allows us, on the 
one hand, to recover the operations of series and parallel addition derived from 
network connections as well as the notions of arithmetic and harmonic means for 
positive operators and, on the other hand, to recover the main binary operations 
on convex sets appearing in Convex Analysis. 6 1990 Academic Press, Inc. 

1. INTRODUCTION 

In studying the series and parallel connection of two resistors in an 
electrical network, Erickson [9] was led to introduce a couple of dual 
operations called series and parallel addition. In order to consider also the 
electrical connection of multiports, Anderson and Dufftn [l] extended 
these operations 

(A,B)HA-tB 

(A,B)t+A u B=(A-‘+B-‘)-’ 
(1.2) 

from the scalar case A, BE rW*, to the case in which A and B are symmetric 
positive definite matrices. They gave, in fact, a more general expression for 
A 0 B allowing the possibility of singular matrices A and B. This is not a 
minor point since in the generalized setting, the possibility of a short circuit 
in some of the components of each multiport is not excluded. In the 
literature two other streams of generalizations for these binary operations 
are discussed. On the one hand, Fillmore and Williams [12] extended 
these operations to the class of bounded positive linear operators on a 
Hilbert space. In the same vein the works of Anderson and Trapp [4] and 
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Morley 1261, among others, must be considered. They gave equivalent 
formulations of the parallel addition in the infinite dimensional setting 
mentioned above. Anderson, Morly, and Trapp [2] initated the study of 
the parallel sum of nonlinear subdifferentials of convex functions in Hilbert 
spaces. Passty 129) pushed through this program and considered the 
natural extension to nonlinear monotone operators. On the other hand, it 
is worth mentioning a different path of generalizations for the notions 
of series and parallel addition. These operations have an interpretation 
relating them to the notions of arithmetic and harmonic means, rather than 
as operations derived from network connections. Recall that the arithmetic 
and the harmonic means, on the class of bounded linear strictly positive 
operators, are the binary operations defined by 

(A, B) I-+ $4 + 5) 

and 

(A,B)k+ [;(A- ‘+B-I]- ‘, 

respectively. As quoted by Kubo and Ando [20], these operations are, of 
course, the same as in (1.2) except for the normalization factor 4. By using 
an axiomatic approach these authors introduced the notion of mean for 
pair of operators like the ones mentioned above. In their general formalism 
they recover, as a particular case, the arithmetic and the harmonic mean, 
as well as the geometric mean considered by Pusz and Woronowicz [31]. 
Nevertheless they pushed their generalization in a direction which excludes 
the power mean of order p, 

(A, B)H &4P+ BP)-J”P, 

studied by Bhagwat and Subramanian [6]. 
In this paper we go beyond the framework proper to the theory of 

network connections, as well as the one proper to the theory of means for 
positive operators. Consequently, rather than series and parallel addition 
or arithmetic and harmonic mean, we refer to this pair of dual operations 
simply by direct and inverse addition. Inspired by both theories, we intro- 
duce the notions of direct and inverse addition of order p for pairs of 
convex sets in a locally convex topological linear space and for pairs of 
positive extended real-valued functions defined over such a space. These 
notions appear to be extremely fruitful from a theoretical viewpoint, since 
they set up a framework from which a general theory for these dual 
operations can be derived. What is more surprising is the fact that these 
operations allow us to recover the main binary operations appearing in 
Convex Analysis by choosing appropriately the order p. The title of this 
paper has not been chosen arbitrarily. Throughout all this work the author 
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confesses a special predilection for Convex Analysis and the reader will be 
confronted at each moment with the tools proper to this theory. The direct 
and the inverse addition of order p appear to be interesting also from an 
applied viewpoint, as shown by means of some examples. We claim that 
the field of applications of these notions can be considerably enlarged. 

The plan of this paper is described below. 

Section 2. Introduction and study of the direct and inverse addition 
of order p for pairs of convex sets. Without loss of generality we restrict our 
attention to the convex sets containing the origin. 

Section 3. Introduction and study of the direct and inverse addition 
of order p for pairs of positive extended real-valued functions. 

Section 4. Discussion on the preservation of the closedness of the 
direct sum (A, B) H A 0, B and the inverse sum (A, B) F+ A Ll, B. 

Section 5. Characterization of the support functions of the sets 
A 0, B and A 0, B. 

Section 6. Study of the duality between the direct and the inverse 
addition. This is done by characterizing the polar sets of A 0, B and 
A flP B and by establishing some polarity relationships. 

Section 7. Application in the theory of second-order subdifferentials 
for convex functions. Calculus rules are derived for the computation of the 
second-order subdifferential of the sum and the intimal-convolution of two 
convex functions. These rules are given in terms of the direct and the 
inverse addition for pairs of convex sets. 

Section 8. Application to the algebra of ellipsoids. We characterize 
the ellipsoids associated to the series and parallel sum of two symmetric 
positive semidefinite matrices. These operations derived from network con- 
nections are interpreted in terms of the direct and the inverse addition for 
pairs of convex sets. 

For the reader’s convenience, a partial list of notations is provided below. 

G closure of G 
co G convex hull of G 

Go polar set of G 
O+G recession cone of G 

LG scalar multiple (by 1) of G 
Y, indicatrice function of G 
Yz support function of G 
f * conjugate or Fen&e1 transform off 

f** biconjugate off 
“f0’ recession function off 

dom f effective domain off 

409/14X/2-4 
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2. Two FAMILIES OF OPERATIONS ON THE CLASS OF CONVEX SETS 

Unless we specify the contrary, (X, X*) will be a couple of locally convex 
topological linear spaces in duality by means of the bilinear form 
( ., - ) : Xx X* + Iw (see [7, p. 48 1). We shall henceforth assume X and X* 
have each been supplied with a topology compatible with this duality [7, 
p. 671, so that each one can be identified with the space of continuous 
linear functions on the other. All questions of closure, continuity, and 
boundedness refer to these given topologies. The class of convex subsets of 
X is preserved by a rich variety of binary operations, such as the intersec- 
tion, the convex hull, and the Minkowski addition. We begin this section 
by introducing two new families of binary operations that preserve the 
convexity and that include the above examples as particular cases. In 
this paper we restrict, however, our attention to the class K of all convex 
subsets of X containing the origin: 

K= {GcX/G convex, OEG). 

It is in this setting that we shall consider further some applications. In the 
following definition and throughout this paper, the pair (p, q) of numbers 
in [ 1, cc] verifies the conjugacy relationship p -’ + q- ’ = 1. The couples 
(1, co) and (co, 1) are not excluded, since we adopt the convention 
co -r =O. For a vector A = (Jr, 1,) in [w2 we shall write ,I>0 when both 
components 1, and 2, are nonnegative. Recall that the norm (1 ,I /I4 of such 
a vector is given by 

II 2. II y = 
i 

[(A, 1” + wY if qfm 

Max{&, A,} if q=m. 

DEFINITION 2.1. Let A and B be two sets in K. The direct and the 
inverse sum of order p of A and B are respectively the sets 

and 
AO,B=U jR,An~,B/R~O,(I1(1,=1}. 

Note that when G belongs to K, the function (x E [w + H aG verifies the 
monotony condition 

CL, <a2=>a,Gca2G, Va,, a2ER.+. 

This shows that over the class K the operations 0, and 0, can be defined 
equivalently by 
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and 

respectively. The following proposition shows that with the particular 
choices p = 1 and p = co, we recover the main binary operations on convex 
sets appearing in Convex Analysis. 

PROPOSITION 2.2. Let A and B be in K. Then 

(a) A CD1 B=A+B, Minkowski or direct sum, 

(b) A 0 co B = COCA u B], convex hull, 
(c) A 0, B=AnB, intersection, 

(d) ACl,B=A# B, inverse sum. 

Proof: 

(a) A @i B= u {,I,A+&B/ll>O, &>/O, Max{L,, L,> = 1) 

= 1A + 1B. 

(b) A@,B=U {1,A+~2B/~I~0,~2~0,~1+~Z=1}. But the set 
on the right hand side of the above equality coincides with the convex hull 
of A LJ B. For a proof of this fact, see [27, Sect. 5.21. 

(c) Analogous to (a). 
(d) A Elm B=U{i,An~,B/~,~O,~,>,O,~,+I,=l}. This is just 

the definition of the inverse sum A # B of A and B, as given by Rockafellar 
in [34, Sect. 31. 1 

In the next theorem it is shown that on the class K, 0, and 0, are 
indeed internal composition laws. 

THEOREM 2.3. If A and B are convex sets in X containing the origin, then 
so are their direct sum A 0, B and their inverse sum ACI, B. 

ProoJ: If 0 E A n B, it is evident that A 0, B and A 0, B contain the 
origin. Despite the fact that, in general, the union of convex sets is not 
necessarily convex, the following lemma shows that the binary operations 
0, and El, preserve the convexity. It suffices to apply this lemma with the 

choice A = (J. E R*/n > 0, 1) i )/4r < 1 }. 1 

LEMMA 2.4. Let A be a nonempty convex subset of R*. Zf A and B are 
convex subsets of X, then so are the sets 
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and 

D=u {~,A~~,B~(I,,~~,)EA). 

Proof (a) Convexity of the set C. Assume that x, and x2 belong to C, 
that is to say, that they can be represented in the form 

x1 = Qz, + nib, 

x2 = Ifa, + izb, 
(2.1) 

for suitables a, and a2 in A, b, and 6, in B, and vectors A’ = (Ai, 1:) and 
,J2 = (A:, 2:) in L!. We need to prove that any convex combination 

X’PI~l +p2x2 (k>o>P*>o,P~+P2=1) 

of xi and x2 belongs to C too. From (2.1) we deduce the equality 

x=C11~“:a,+~211:a,+~~a:b,+~2~:b2. (2.2) 

If we define 

I,=pJ;+p*jL: 

A2 = p”1 n: + Q.: 

and 

b=PI~:b +P2Gb - - 

/I, 1 A, =’ 

we can write 

and therefore 

x=l,a+A,b. (2.3) 

We see that a belongs to A, since it is a convex combination of a, E A 
and a, E A. Analogously b E B. For proving that x E C, it suffices then to 
show that the vector 1= (A,, 2,) belongs to /1. But this follows from the 
convexity of /i and the fact that 

i.e., 2 is a convex combination of 2’ and k2. 
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(b) Convexity of the set D. The proof is exactly the same as in part 
(a). We only need to change (2.1), (2.2), and (2.3) by 

x, = %:a, = nib, 

x2=Afa2=l:b2, 
(2.1)’ 

x=~L1~“:a,+~*~:a,=~~~~:b~+ll~~:b~, (2.2)’ 

and 

x=A,a=A,b, (2.3)’ 

respectively. 1 

3. DIRECT AND INVERSE ADDITION OF ORDER p ON 
THE CLASS OF POSITIVE FUNCTIONS 

We introduce now the notions of direct and inverse addition of order p 
for positive extended real-valued functions defined on X*. In the next 
definition the norm 

II Pl? P2 lip = 
[(Pl)” + spew’” if p#co 

Maxh, p2) if p=cc 

of a vector (pi, hLz) in [O, cc ] x [O, cc ] must be interpreted as equal to 00 
if either p1 or cl2 is equal to cc. 

DEFINITION 3.1. The direct and the inverse sum of order p of the 
functions f: X* --) [0, cc] and g: X* + [0, co] are the positive extended 
real-valued functions, which assign to each element x* E X* respectively the 
values 

Cfo,gl(x*) = II .0x*), g(x*)ll, 

and 

IIf q ,gl(x*) = Inf x;+x;=x* II .0x:), s(xz*)ll,. 

With the choices p = 1 and p = 00 in the-above definition, we recover the 
main functional operations appearing in Convex Analysis. We get, namely, 
the addition 
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the maximum 

x* E XI+ Cf@, gl(x*) = Max (f(x*L g(x*)}, 

and the infimal-convolution (cf. Moreau [25, Sect. 31 or Laurent [21, 
Sect. 6.51) 

x*EX*++ [fCl,g](x*)= Inf we) +g(xN. x;+x;=.x* 

For the sake of completeness, we mention too a different kind of infimal- 
convolution operation: 

x* E A’* H [f 0 r*: g]]x*) = Inf 
.-c~+X;=X’ 

Max (f(x:), g(xr)}. 

Even if this notion has known a less extensive use than the previous one, 
it deserves at least some attention. Now, coming back to the general case 
in which p is an arbitrary number in [ 1, co], we shall prove that 0, and 
0, are indeed internal composition laws on the class of positive convex 
extended real-valued functions. Before establishing the functional version of 
Theorem 2.3, it is convenient for us to recall a simple fact that will be 
extensively used in what follows: since p and q verify the conjugacy rela- 
tionship p ~ ’ + q-’ = 1, the norms (1 (lp and /I (Jy are dual to each other. 
This means, in particular, that the norm )( ,n IJp of a vector p = (,u,, p2) in 
[0, a] x [0, co] admits the representation 

(3.1) 

THEOREM 3.2. If f and g are positive convex extended real-valued func- 
tions defined on X*, then so are their direct sum f 0, g and their inverse sum 
fqd. 

Prooj (a) Convexity of the the direct sum. The representation (3.1) of 
the norm 11 Ilp shows that the function 

x H t-f@, gl(x) = sup (21 f(x) + &g(x)) 
2. 9 0 

II E. llq = 1 

is convex, since it is defined as the supremum of the family 
{ /1, f + &g/l 2 0, /I ,! (I y = I} of convex functions. 

(b) Convexity of the inverse sum. The inverse sum f q ,g can be 
represented as the image of the function 
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under the linear operator A: X* xX*+X* defined by A(x:, x:)= 
XT + x: . For proving the convexity of the function 

x*++(fqg)(x*)= Inf f@:, x:1, 
A(-c;,.$)= r* 

it suffices then to show that H is convex. Like in part (a), we use the 
representation (3.1) of the norm 1) lip and we write 

wet-e)= SUP ww)+~,g(x:)~. 
I. > 0 

II i. II" = 1 

Now we remark that H is convex since it is delined as the supremum of the 
convex functions 

In this way the proof is complete. 1 

4. ON THE PRESERVATION OF CLOSEDNESS 

We have seen in Section 2 that 0, and 0, were internal composition 
laws on the class K of all convex subsets of X containing the origin. 
Nevertheless the operation 0, does not preserve in general the closed- 
ness-i.e., even if A and B are two closed sets in K, it does not follow 
necessarily that A 0, B is a closed set too. Simple conditions for the 
preservation of closedness under various operations, like the Minkowski 
addition and the convex hull, have been deduced from the theory of reces- 
sion cones. Recall that the recession cone O+ G of a nonempty convex set 
G in X is defined as the set of directions y E X such that the ray 
{x+ ty/t>Oj . is contained in G for every x E G. If the convex set G is 
closed, then O+G is the “upper limit” of 13G as A -+ O+, i.e., 

O+G=limsupJG= n u iG, 
i.-rO+ E>OO<j,<E 

where C denotes the closure of C. Other equivalent formulations of O+G 
can be found in [33, Theorem 2A]. If G is a closed set in K, then the reces- 
sion cone of G obviously takes the simpler form 

O+G= (7 2.G. 
i. > 0 
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The scalar multiple notation O+G is particularly helpful in the writing of 
various algebraic formulae. It also suggests to interpret the scalar multi- 
plication of G by 0 as the set O+G instead of merely 0 . G = (0). In this way 
we get slightly different versions for the direct and the inverse sum of order 
p of the sets A, BEK: 

A @,B=U (n,~+&~/i30+, jpll,= i> 

A li,B=U {3L,AnI,B/3L>O+, l/il/,=l}. 
(4.1) 

In the above formulae, the notation j*>O+ means that O+A is substituted 
for OA when A, = 0 and 0 + B is substituted for OB when A2 = 0. These 
modifications are, of course, superfluous when we are dealing with 
bounded sets. The recession cone O+G of a bounded convex set G indeed 
reduces to OG = (0). The introduction of the operations a,, and DP is 
justified by several reasons. For instance, the set A ap B can be closed even 
if A 0, B does not have this property, but the converse does not hold true. 
Choquet [8, Corollary 61 and Rokafellar [34, Theorem 19.61 exhibit some 
conditions on A and B ensuring, for example, that the set 

coincides with the closed convex hull of A and B and therefore 

A@,B=AO,B. 

The operations aP and ii,, seem to be more convenient than 0, and 0, 
when we are dealing with closed sets and we are interested in preserving 
the closedness. Both versions for the direct and inverse addition are com- 
pared in the next proposition. 

PROPOSITION 4.1. Let A and B be two sets in K. Then the inclusions 

AO,BCA@,BCAO,B 
(4.2) 

and 

A ~,BcA B,BcA 0,~ (4.31 

hold true. 

Proof: The proof of the case p = 1 presents no difficulty. From the fact 
that 

(0) cO+GcG, VGEK 
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we conclude 

A+B=A@,B=A@),BcA+B 

and 
AnB=A q ,B=A 8,BcAnB. 

Let us consider then p > 1. Since O+A and O+ B contain the origin, the sets 
A GP B and the A 0, B include A 0, B and A Cl, B, respectively. Let us 
show first that A a,, B is included in the closure of A 0, B. Let x be in 
A GP B. Therefore 

x~tl,A+&B (4.4) 

for some 1=(1,,1,)>0+ such that II2II,=l. If %,>O and 2,>0, thenx 
belongs evidently to A 0, B and the proof is ended. Let us consider the 
more interesting case in which I”, = O+ and I, = 1. In such a case we can 
write 

x=x,+x, (4.5) 

withx,~O+Aandx,~B.Ifforallk>l weput 

then the sequence Ik = (A:, A’;) verifies 11 lk 1) 4 = 1 and 

(4.6) 

Since x, E O+A and A contains the origin, we deduce that 

k̂ 
A2 
,x,eA, Vk>l 
A 1 

This proves that x is the limit of a sequence of points in A 0, B and there- 
fore belongs to A 0, B. The proof of the case 2, = 1 and 1, =O+ is 
analogous. In what concerns the proof of the inclusion A B p B c A Cl p B, 
we proceed as before but we need to change (4.4), (4.5), and (4.6) by 

xEL,AnA,B (4.4)’ 

x=x,=x*, (4.5)’ 
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and 

(4.6) 

respectively. 1 

By imposing additional assumptions on the sets A and B, some of the 
inclusions stated in the above proposition become, in fact, equalities. For 
instance, the following result shows that 8, corresponds to the “closed” 
version of 0, or, more precisely, that fi, preserves the closedness. 

PROPOSITION 4.2. Let A and B be two closed sets in K. Then the 
following equality holds: 

A &B=A O,B. 

Proof. Let X be the limit of a net (x~},~, in A Cl, B. We can write then 

.Y;EE(A~~;B, ViEZ 

with ,Ii=(A’,, A;)20 such that I/II’jj,< 1. 
The compactness of the set A, = {)“E R2/1 2 0, I[ 2 jjy < 1) ensures the 

existence of a cluster point 2~ A, of the net (Ai),,, and therefore the 
existence of a subnet {;iijjtJ of {j~i}i,, converging to A. It is a simple 
matter to check that if A and B are closed set in K, then the condition 

implies 

where 

i+G= 
llG if A>0 
O+G if A = 0. 

Note that the above implication corresponds to the closedness of the multi- 
function 

at the point X. We conclude in this way that XC A 8, B and hence we have 
proven the remaining inclusion A 0, B c A 0, B. 1 
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It is natural to try to establish an analogous version of Proposition 4.2 
for the operation 6Jp. However, this case requires handling with more care. 
The example 

A=R_x{O} 

B=(-1, -l)+ {(x,y)E[W*/X>O,y>,X~‘} 

shows that 

A Qf,, B= ((x,y)ER2/y> -l} 

can be nonclosed even if A and B are closed sets in K. It is not the purpose 
of this paper to explore deeper in this matter. For the sake of completeness 
we establish here at least the following result. 

PROPOSITION 4.3. Let A and B be two closed sets in K. If at least one of 
them is a bounded set, then the following equality holds: 

Proof. Analogous to the proof of Proposition 4.2. The boundedness of 
either A or B is used to ensure the closedness of the multifunction 

5. THE SUPPORT FUNCTIONS OF A 0, B AND A q lp B 

Recall that the support function of a nonempty subset G of X is, by 
definition, the extended real-valued function Yz : X* + R u { co 1 which 
assigns to each element x* of X* the value 

YT;(xX) = sup (X, .X*>. 
I;EG 

It follows at once from the definition that !I$ is proper (i.e., not identically 
equal to co), sublinear (i.e., subadditive and positively homogeneous), and 
lower-semicontinuous. Of fundamental importance to us is the fact that the 
above properties characterize the functions on X* which are support func- 
tions of nonempty subsets of X. This result, due to Hiirmander [ 181 in its 
full generality, implies that if we perform on the couple (Y2, Yg) a func- 
tional operation which preserves the above properties, we get the support 
function of a new set related with A and B. (This set is not necessarily 
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unique, but so is its closed convex hull.) As an example of such a functional 
operation, we can point out the sum 

and the maximum 

Which kind of operations do we need to perform on the couple (Yv,*, Yg*) 
in order to get the support functions of the sets A 0, B and A Cl, B? Or 
equivalently, how can we characterize the support functions of A 0, B and 
AU,BintermsofY,*and Yz? 

If A and B are two subsets of X containing the origin, then their support 
functions are extended real-valued and positive. Therefore, Definition 3.1 
can be applied with the choices f = Yu,* and g = Yz. At once from its defini- 
tion and from Theorem 3.2 it follows that the direct sum !P; 0, Yg is a 
proper sublinear lower-semicontinuous function. It is then the support 
function of some nonempty subset of X. The following theorem answers the 
first part of the question we are concerned with in this section. 

THEOREM 5.1. Let A and B be in K. Then the direct sum of order p of 
the support functions YJ$ and Yz is equal to the support function of the 
direct sum of order p of A and B, i.e., 

Y? OpB= Yu,* 0, vlg. 

Proof: For notational convenience we shall use also the symbol 
Y*( .; G) for denoting the support function of a set G c X. Let x* be an 
arbitrary element of X*. Applying the standard calculus rules on support 
functions, we obtain the equalities 

Yu,* &x*) = Y* 
( 

x*; u {1-,~+1,~/i>0, I13Llly= i} 
> 

= sup (Y*(x*; ;I, A +1,B)/3+30, 111 IJy = I} 

= sup (;L1 Y,*(x*) + & Y’B(x*)/A > 0, I( 2 JJy = l}. 

But due to the equality (3.1), this last term is equal to (1 Yuj;l(x*), Yz(x*)[l,. 
The case in which either Yu,*(x*) = cc or Yg(x*)= co is, of course, not 
excluded. In such a situation both functions Y,* opB and Y; 0, vl,* assign 
to x* the value co. 1 

Let us consider now the second part of the question we are concerned 
with in this section. Directly from its definition and from Theorem 3.2, it 
follows that the inverse sum Y,* Cl, Y$ is a proper sublinear function 
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defined on X*. Since the operation 0, does not preserve in general the 
lower-semicontinuity, we are led to take the lower-semicontinuous hull or 
closure of Yu,* 0, !Pg. This classical procedure (see, for example, [21, 
Sect. 6.21) gives us in this case a new function 

x*t+ [Y,* 0, Y,*](x*)=liminf [Yu,* Cl, Yg](y*) 
.v* -x* 

which fulfills all the requirements in Hormander’s theorem to be a support 
function of a nonempty subset of X. After this short prelude, we present the 
second part of a diptych having Theorem 5.1 as the first component. 

THEOREM 5.2. Let A and B be two closed sets in K. Then the lower-semi- 
continuous hull of the inverse sum of order p of the support functions !Pu,* and 
!Pz is equal to the support function of the inverse sum of order p of A and 
B, i.e., 

The proof of this theorem is an excellent exercise on the use of the 
so-called Fenchel transform or conjugate of a function. Recall that the 
conjugate of a proper function f : X -+ [FB u {co } is a new proper function 
f*:X*+[Wu{co} defined by 

f*(x*)=SuP {<x,x*> -f(x)}, 
x E x 

vx* E x*. 

This justifies the notation attributed to the support function Yz, which is 
the conjugate of the indicatrice function of G: 

XEXt+ Y,(x)= 
0 if xeG 
co 

if x$G. 

Of course, we can apply the operation of conjugacy on f * in order to get 
the b&conjugate f* * = (f*)* off: Recall also that the recession function 
f 0 + off is the one which assigns to each element x E X the value 

where 

D-o+l(x)=suPI( x, x*)/x* ~domf *}, 

dom f*= {x*~X*/f*(x*)<a}. 

Without further ado, we use in the next proof some properties and calculus 
rules associated to the notions mentioned above. The books of Aubin and 
Ekeland [5, Sect. 1 ] and Laurent [21, Sect. 61 cover the ones we need. 



332 ALBERT0 SEEGER 

Proof of Theorem 5.2. For all x in X, the following equalities hold: 

[Y,* 0, Cl* (xl = sup { (x, x*> - inf II Y~x:), EM) II,} 
X’EX’ r;+r;=r* 

= sup sup 1 (x9 x*> - II Y,*(G)> Y;(x:)Il,) 
.s* t x* x; + .r; = .x* 

rz SUP ((x,-\:1*)+(,~,x2*)-Il~~(x:), w-e)lI,J 
X;,X;EX* 

= SUP { (4 x: > + (4 XT > - II Yxx:), wce)II,J> 
C-Y;, r;)tM 

where M= h(A) x b(B) is the Cartesian product of the barrier cones 
b(A) = dom Y; and b(B) = dom Yg of A and B, respectively. By using the 
representation (3.1) of the norm )I II,,, we get 

II Yxx:), wx:)ll,=~uP{~~, ‘vx(x:)+4wx,*)l~~o, II4l,= 1) 

= sup {A, Yxc) + AZ ‘y;(x:)), 
i. E A 

with A = { 1 E R2/ k 0, 11 ;I 1) y < 1). Therefore 

[ Y’A* 0, YuZ;]* (X) = sup inf L,((x:, XT), A), 
(-C;,XfjEM %tA 

where L, is a finite function over A4 x A defined by 

Now it is important to note that in the above minimax formulation of 
[Y,* El, Yvf]* (x), it is possible to exchange the order of the supremum 
and the infimum. This fact can be justilied by using one of the numerous 
minimax theorems existing in the literature. In the present case we can 
choose either a version due to Sion [37, Corollary 3.31 or one due to 
Fan [lo, Theorem 21. It is a simple matter to check that L, and the sets 
A4 and A verify all the hypotheses invoked in these two versions. Therefore 
we write 

[Yx 0, Y$]* (x)= inf SUP u(x:, .e), i) 
%=/I (.r;,r;)tM 

and consequently 

C% 0, %I* (x)=jn! CrA,2,(~)+rB,&)I, E (5.1) 
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where 

rB,i.2(X) = sup { ( x, XyT) - 2, Y;(x:)}. 
x; E h(B) 

A straightforward calculation shows that 

rA, ,,(x) = { E,::,I’“’ 
if A,=0 
if I.,>0 

and 

if k,=O 
if & > 0. 

Now, if we apply the Fenchel transform on both sides of the equality (5.1), 
we get 

CC 0, %I** (X*)=W [r.q,i, +r,,j.,l* (X*1 
i E A 

and therefore 

CC 0, Y3(X*)=suP Cr,4,;.,+r,;,l* (X*). 
i. t A 

By using the calculus rules on conjugate and recession functions we deduce 
that 

Hence, Y,* Cl, YUg is the support function of the set A 8, B. But due to 
Proposition 4.1, this set has the same support function as the inverse sum 
A 0, B. The proof is then complete. 1 

6. THE POLAR SETS OF A 0, B AND A 0, B 

Let G be a nonempty subset of X. The polar of G is a closed convex 
subset of X* containing the origin defined by 

Go= (x*EX*/VXEG, (x,x*)<l} 
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or, equivalently, by 

Go= {x*~X*/Y;(x*)6 1). 

The polarity correspondence G H Go enjoys a rich variety of properties on 
the class K of all convex subsets of X containing the origin. For instance, 
it allows us to relate different binary operations on K, like the intersection 
and the convex hull, as is shown by the formulae 

[co(A u B)]’ = A” n B”, VA,BEK 

[dnB]‘=co(A’u B’), VA, BE K. 
(6.1) 

Note that each one of the above formulae can be obtained from the other, 
just by exchanging the roles of the couples (A, B) and (A’, B”) and by 
taking into acount that the bipolar Go0 = (Go)’ of a set G in K is equal to 
the closure G of G. In this section it is shown that the polarity corre- 
spondence G H Go give us a new light in the understanding of the connec- 
tion between the direct and the inverse addition. We shall see that a 
polarity relationship like (6.1) also holds for the operations 0, and 0 y. As 
a matter of fact, the formulae (6.1) can be obtained as a particular case of 
the more general polarity theorem which we present immediately. 

THEOREM 6.1. Let A and B be two convex sets in X containing the origin. 
Then the following polarity relationships hold: 

[A 0, B]‘= A0 Cl, B” 

[AO,@O=Ao@,Bo. 

In particular, with the choices (p, q) = ( 1, co ) and (p, q) = (co, 1) we get 
respectively 

[A+B]‘=A’# B” 

[A # B-Jo= A”+Bo 

and 

[co(A u B)]’ = A0 n B” 

[An 81’ = co(A’u B’). 

Proof: In the case in which p = 00 and q = 1, the present theorem states 
the validity of the well-known formulae (6.1). We point out Ref. [36, 
Sect. 4.11 for the reader interested in a proof. Note that in this case the 
closure operation on A0 n B” is superfluous. We prove therefore only the 
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case in which p and q belong to ] 1, cc [ and the case in which p = 1 and 
q=co. 

(i) Assume p, qE 11, oo[. Since A 0, B belongs to K, we can write 

AO,B=[A@,B]m, 

= {x* EX*/!lyOpB(X*)< l}O 

and, due to Theorem 5.1, we obtain 

Hence 

‘4 0, B = {x* E x*/t- !Pu,* 0, Y;](x*) 6 1)“. 

A 0, B= {x*EX*/(f, +f*)(x*)<p-l}o, 

where Jr ,f2 : X* -+ [0, co ] are defined by 

(6.2) 

fi(x*) =P-‘lwx*)Y, Vx” E x* 

f*(x*)=P-lc’y~(x*)Ip, vx* Ex*. 

Now we remark that f, +fi is a lower-semicontinuous proper convex func- 
tion positively homogeneous of degree p. This fact allows us to compute 
the polar set in (6.2) by using a calculus rule due to Rockafellar [34, 
Corollary 153.2 J. This rule was stated in a finite dimensional setting, but 
can be extended to our more general framework. So, we obtain the equality 

A @,B= {XE Wf, +fd* (x)<q-lj 

and therefore 

A O,B= (x~X/[fy Of:](x)<q-l}. 

where •i denotes the infimal-convolution operation. A straightforward 
calculation shows that the Fenchel transforms of fi and fi are given by 

“f?(Xl) = s-‘w%h)ly? VX,EX 

s2*~~~~=q~-‘c~Tp~~*~1y, VX,EX 

and hence 

[f,* 0 f;“](x) = lim inf 
2-y v,j’tf;z ~4~1[:~y,*,~~~~ly+~-1c~vr;o~~2~14~ 

=q-l (lim inf 
i + .r .~, j;f= - II YNX,)? ~~(x*N,~” 

=q-‘{[Y,*o 0, Ygo](x)}“. 

409U48/2-5 
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We get in this way the equality 

AO,B={xEX/[~~~OqY~](X)~l) 

and, due to Theorem 4.2, we conclude 

A O,B=(xEX/~*(X;AOO,B0)~1} 

= [A0 cl, BO]O. 

By computing the polar on both sides of the above equality we get 

[A 0, B]O= [A 0, B]O= [A0 0, BO-JW=AO 0, BO, 

whereas the second formula in the statement of Theorem 6.1 is obtained by 
exchanging the roles played by the couples (A, B) and (A’, I?‘). 

(ii) Assume p = 1 and q = GO. We start with the set of equalities 

[A+B]0={x*EX*/!PY,*+.(x*)61} 

= {x* E x*/Y,*(x*) + Yg(x*) < 1). 

Now we recall the equivalence between the inequality 

Yv,*(x*) + Yvg(x*) d 1 

and the existence of two nonnegative numbers 2, and A2 adding up to 1 
and such that 

Yu,*(x*) < /I, 

Yu,*(x*) d i,. 

This equivalence is a direct consequence of the fact that the addition + is 
isotonic with respect to the usual order relation in R (cf. Moreau [25, 
Sect. 2.61). Therefore we can write 

[A+B]‘=~ {s~,(Y~*)~S,,(Y,*)/~,BO,;~,BO,~,+II,=~}, (6.3) 

where 

Sj,( Ye) = {X* E X*/Ya(X*) d n} 

is the level set at i of the function !I$. Without diffmulty it can be proved 
that 

S,(YuF) = 
i 
if;, 

if R>O 
if ;1=0 
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when G is a set in K. This shows that the equality (6.3) takes the form 

with O+A” substituted for 0 -A0 when I, = 0 and OfBo substituted for 
0. B” when A, = 0. Taking into account Proposition 4.2 we get finally 

[A+B]“=AoO,Bo=Ao# BO. 

Exchanging the roles of the couples (A, B) and (A’, B”) we get the last 
equality 

[A # B]O=AO+BO 

and we complete the proof. 1 

We end this section by stating without proof two immediate corollaries 
of Theorem 6.1. 

COROLLARY 6.2. Let A and B be two bounded closed convex sets in X 
containing the origin. Then the sets A 0, B and A0 Cl, B” are polar to each 
other. 

COROLLARY 6.3. Let A and B be two closed convex sets in X containing 
the origin in their interior. Then the sets A Cl, B and A0 0, B” are polar to 
each other. 

7. CALCULUS RULES FOR THE SECOND-ORDER SUBDIFFERENTIAL OF 
A CONVEX FUNCTION 

In [ 151 Hiriart-Urruty introduced the so-called second-order subdif- 
ferential of a real-valued convex function defined on the finite dimensional 
space IL!“. This notion has been further developed by the author [35], 
namely, by dealing with an extended real-valued proper convex function 
defined on a locally convex space X, like the one in this paper. We recall 
now in few lines this notion and their main properties and we point out 
Refs. [ 15, 35, 171 for a more complete discussion. 

Letf: X-, [w u {CC } be a proper convex function continuous at the point 
X E X. It is well known that in such a case the directional derivative off 
at X 

hHf’(%h)= lim t-‘[f(X+th)-f(x)] 
r-o+ 
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exists and is finite. We shall say that f is twice directionally differentiable 
at x if the second-order directional derivative offat X 

exists and is finite. Note that the above limit is necessarily nonnegative 
since the function f is convex. The so-called subdifferential 8f(X) off at X 
is the set of elements in X* verifying 

f(x) >f(-q + (x - x, x* >, VXEX 

or, what is equivalent, 

af(x) = ix* E x*/ < h, x*> <f/(x; h), Vh E X}. 

In what concerns the second-order subdifferential a*f(F) offat X, we need 
to know only that this set can be given by 

a’f (2) = {Z* E x*/( h, Z* ) 6 $m, Vh E x} (7.1) 

when the function f is continuous and twice directionally differentiable at 
2. We recall the main properties of this set in the next proposition (cf. [35, 
Sect. B.l] or [15, Proposition 21 in the finite dimensional setting). 

PROPOSITION 7.1. Let f: A’+ R’ u (CC } be a proper convex function 
which is continuous and twice directionally differentiable at X. Then 

(a) the second-order subdifferential a”f (2) off at X is a closed convex 
subset of X* containing the origin, 

(b) the support function of a*f(..?) is equal to the biconjugate of 
Jfm, i.e., 

In particular, the set a’f(%) is bounded (since the function f”(Z; .) is 
assumed to be finite). 

The aim of this section is to derive expressions of the second-order sub- 
differential of a function which has been built up from other functions 
whose properties are better known. We shall give, namely, calculus rules 
for the computation of the second-order subdifferential of the sum f+g 
and the intimal-convolution f 0 g of the proper convex functions f and g. 
It is at this point where the notions of direct and inverse addition of order 
2 will play an important role. They allow us to present these calculus rules 
in a more elegant way and to have a better understanding of them. Recall 
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then that the direct and inverse sums of order 2 of the sets A and B in K 
are by definition 

A @,B=U {&A+&B/;1>/0, 11~11~=1} 

and 

A IJ,B=U {&An&B/1>0, II&=lj 

respectively. It is immediate to see that these sets admit also the charac- 
terization 

A@,B=U {~A+~B/A,~O;1,~O,A,+A,=l} 

and 

AO,B=U {~An~B/A,~O,A,~O:~,+d,=l}. 

Addition. Let us begin now by presenting an expression of the second- 
order subdifferential of the sum of two convex functions. As a first step we 
state the next lemma. 

LEMMA 7.2. Let f, g: X + R v (CC } be two proper convex functions 
which are continuous and twice directionally differentiable at the point X. 
Then so is their sum f + g, which has a second-order directional derivative 
(f + g)” (X; .) at X verifying the equality 

Proof. A direct calculation shows that the second-order directional 
derivative (f + g)" (2; .) off + g at X is given by 

(f+ g)” (2; h) =f”(X; h) +g”(X; h), VhEX. 

We conclude the desired result by taking the square root on both sides of 
the above equality and by applying the general formula 

Ja+b=Max(~J;;+,~Jb/n,~0,nz~0,~,+~2=1} 

Va, b E [0, CCI], (7.3) 

with the choices a =f “(2; h) and b = g”(X; h). The formula (7.3) does not 
seem to be well known, although it can be easily derived from the equality 
(3.1). I 
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Recall that the subdifferential of the sum of two proper convex functions 
verifies 

w-+ g)W = Q-G) + &(-a 
and that the above inclusion becomes an equality 

w+ gN-3 = a-(X) + k(4 

if, for instance, the functionsSand g are continuous at the point X. In what 
concerns the second-order subdifferential off+ g at X, we establish now the 
following calculus rule. We improve previous results of Hiriart-Urruty and 
the author [16, 351, who gave only some lower and upper estimations of 
this set. 

THEOREM 7.3. Let f and g be as in Lemma 7.2. We have then the inclu- 
sion 

a’(f+ g)(X) 3 Pf(.f) 02 a*&+). 

The equality 

i?‘(f+g)(ig = a’f(x) o* d2g(X) (7.4) 

holds if, moreover, f “(2, .) and g”(X; .) are convex functions. 

Proof: From Proposition 7.1 we know that 

and therefore, due to the previous lemma, we can write for all hEX 

= Max 
IIr 0, A2 b 0 

Y*(h; fi a’f(%) + & 8g(.f)) 
i.1 + 1.2 = 1 

= Y*(h; 8’j-(2) O2 d2g(.f)). 

From this we get the inequality 

!f’*(h; a’(f+g)(Z)) B Y*(h; 8’j-(5) O2 a2g(X)) VhEX 
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and hence the inclusion stated in this theorem. If we 
that f”(2; .) and g”(X; .) are convex functions, then so 
we have 

341 

assume additionally 
is (f+g)” (X; .) and 

Proceeding as in the first part, we get the equality 

Y*(h; cT2(f+g)(i)) = Y*(h; d’f(2) @* iY2g(X)) VheX 

and therefore 

P(f+ g)(Z) = G [8-f(x) 02 @g(Z)]. 

But in this case the above closed convex hull operation is superfluous. We 
know already that a”f(2) @J2 a2g(X) is convex, and we see that this set is 
also closed because a*f(Z) and 8*8(X) are two closed bounded sets. 1 

Remark 7.4. The inclusion stated in the above theorem can be strict if 
the functions f”(2; .) and g”(;F; .) are not convex. Consider, for instance, 
the point X = (0,O) E R2 and the functions f, g: R2 + R defined by 

./lx,, x2) = Max($(~,)~ + $.x2)’ +x1, O} 

g(x,,~~)=Max{~(x,)~+~(x~)~-x~,O}. 

A straightforward calculation show that 

a2(f+g)w= (xE~*/llxll2G 11 

includes strictly the set 

a’f(x) @* Pg(X) = [ - 1, l] x (0). 

Znfimal-Convolution. We shall consider now the problem of estimating 
the second-order subdifferential of the inlimal-convolution 

x-WW(x)= Inf {fh)+g(x2)) x,+x2=x 

of the proper convex functions f, g: X-, If8 u (a3 ). We shall assume that 
there exists a couple (X,, Z2) verifying 

X1 +X2 = X, f(Zi) +g(X2) = Inf 
x,+xz=.c 

(j-(x,) +g(x2)} E R. 
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In such a case the infimal-convolution is said to be exact at X= Xi +X2 
and, as is well known, the subdifferential ofSO g at X is given by 

4f Q g)(-f) = af(Xl) n MU. (7.5) 

Several criteria can be used for ensuring the existence of such a couple 
(Xi, X2). The reader can refer, for instance, to the book of 
Laurent [21, Sect. 7.51 or to the original works of Moreau [24,25], 
Fenchel [ 111, and Rockafellar [32]. We shall assume in what follows that 
f and g are continuous and twice directionally differentiable at the points 
Xi and X,, respectively. As far as we know, stronger assumptions need to 
be made on f and g in order to ensure that f q g is continuous and twice 
directionally differentiable at X. We will not discuss here the ones we 
require and we shall just assume that f 0 g verifies the above condition. In 
terms of their support functions, the sets in (7.5) verify 

and therefore 

(,fQ g)’ (2; .) =f’(Z,; .) q g’(X*; .). 

Now what we need to know is how to compare (f0 g)” (X; .) in terms of 
f”(..?i; .) and g”(X,; .), in order to get an estimation of #(HO g)(%) in 
terms of a’f(.%i) and a2g(Xz). Looking at the equality (7.6) one is tempted 
to write 

(f0 g)” (2; .) =f”(X1; .) q g”(X*; .), (7.7) 

just by changing first- by second-order directional derivatives. As a matter 
of fact this temptation is well justified in many cases. We shall give further 
in an auxiliary remark some sufficient conditions ensuring the validity of 
the above equality. Without further ado we present now the sister version 
of Theorem 7.3, which allows us to compute the second-order subdifferen- 
tial a2(f 0 g)(X). 

THEOREM 7.5. Assume that the infimal-convolution f 0 g of the proper 
convex functions f, g: X+ R! u { 00 ) is exact at X = X, + X,. Let f, g, and 
,f 0 g be continuous and twice directionally differentiable at the points 
XI, X2, and X, respectively. Under these general conditions, if we assume that 
f”(x, , .) and g”(X,; . ) are convex and that equality (7.7) holds, then we can 
write 

d’(f q g)(Z) = a’f(x,) cl, d2g(X,). 
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Proof: Under the hypothesis of this theorem, (f 0 g)” (2; .) is a convex 
finite function and 

Since we are assuming that the equality (7.7) holds, this last function is 
equal to the closure of f”(2,; .) 0 g”(&; .). Now, we see that for all 
h E X, 

and hence 

J(f q g)” 6; .) = ~&(X1) 0 2 Y$n(x2). 

We obtain in this way the equality 

Y*( .; P(f 0 g)(X)) = Yu*( .; ay(x,) cl 2 d2g(X2)), 

from which the desired result follows. 1 

For the sake of completeness we give here an auxiliary remark which 
allows us to check the hypotheses of the above theorem. Since we want to 
present sufticient conditions which are easily to handle, we do not pay care 
to the loss of generality, although these coditions can be weakened in order 
to recover a more general setting. 

Remark 7.6. If we assume that the infimal-convolutionf Cl g of the dif- 
ferentiable convex functions f, g : R” -+ R is exact at X = X, + X2 and that f, 
g, and f 0 g are twice directionally differentiable at the points X,, X,, and 
X, respectively, then the functionsf”(2, ; .) and g”(X,; .) are convex and the 
equality (7.7) holds. 

8. DIRECT AND INVERSE ADDITION OF ELLIPSOIDS AND NETWORK SYNTHESIS 

In a 1969 paper [I] of Anderson and D&tin we can read : “the connec- 
tion of resistors in series and parallel is a familiar concept from elementary 
network theory. If two resistors having resistances A and B are connected 
in series the joint resistance is S = A + B, and if they are in parallel, the 
joint resistance is P = (A-’ + B-l)-’ = AB/(A + B). These two methods of 
combining resistance are then called series and parallel addition.” Of 
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course, it is tacitly assumed in the above that A and B are positive num- 
bers. However we do not need to exclude the case A = 0 or B = 0, since in 
such a situation-a short circuit-we can let P= 0. A few lines below, in 
the same paper, Anderson and Duffin extended these operations to sym- 
metric positive semidefinite 12 x il matrices A and B in order to deal with 
series and parallel connections of n-ports. They defined the series sum of A 
and B as the ordinary sum A + B and the parallel sum of A and B as 

A 0 B=A(A+B)+A, (8.1) 

where C+ denotes the Moore-Penrose generalized inverse of C. 
The equality (8.1) reduces of course to the more familiar form 

A El B=(A-‘+B-‘)-I 

if the matrices A and B are nonsingular. Since then, and even now, a great 
deal of effort has been made in order to give equivalent or more general 
formulations of this last operation. Interesting contributions can be found 
for instance in the papers of Fillmore and Williams 1121, Anderson and 
Schreiberg [3], Anderson and Trapp [4], Pekarev and Smul’jan [30], 
Nishio and Ando [28], Morley [26], Kubo [19], Passty [29], and 
Mazure [23] among others. 

As proved in [ 1, Lemmas 2 and 41 the series and parallel additions are 
indeed internal composition laws on the class of symmetric positive semi- 
definite n x n matrices. Contrarily to the notation A : B which has been the 
most extensively used in the literature, we denote the matrix A(A + B) + B 
by A 0 B for emphasizing the fact that this matrix is obtained by perform- 
ing an intimal-convolution operation (i.e., an inverse addition of order 1). 
This is made clear by recalling a variational property of A 0 B given by 
Anderson and Trapp [4] which, as shown by Morley [26], can be used to 
define the parallel addition (even for positive semidefinite linear operators 
on a Hilbert space): 

([A 0 B]x,x)= Id {(Axl,xl)+<Bx2,x2)), vx E R”. (8.2) XI +x2 =.x 

In terms of the positive (convex) quadratic form 

xwq,.(x)= gcx, x) 

associated to a symmetric positive semidefinite matrix C, the variational 
property (8.2) takes the simpler form 

GLJ B=qA oq,. 
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In her recent thesis [23] and in a related paper [22], Mazure adopted this 
approach for showing in an elegant way how the properties of the parallel 
sum of matrices are then deduced from those of the inlimal-convolution of 
convex functions. Nevertheless, in this paper we want to follow a different 
path, left unexplored as far as we known. Instead of positive quadratic 
forms we consider a geometric concept. There is a one-to-one corre- 
spondence between the set of symmetric positive semidefinite n x n matrices 
and the set of ellipsoids with center 0 in R”. We can consider, for instance, 
the correspondence 

c H E(C) = P2( S), 

where S = {X E FP/(x, x) d 1) is the closed unit ball in R”. We see then 
that the operations of series and parallel addition of matrices can be 
established, in an equivalent way, by considering ad hoc operations on 
the set of ellipsoids. We are then led to recognize the kind of geometric 
operations we need to perform on the ellipsoids E(A) and E(B) in order to 
get E(A + B) and E(A 0 B). Note that from a geometric point of view, 
E(A) and E(B) are closed onvex sets in OX” containing the origin. They are 
necessarily bounded because their support functions, given by 

are finite. These sets do not contain necessarily the origin in their interior, 
since the matrices A or B could be singular. The possibility of degenerate 
or “flat” ellipsoids is therefore not excluded. With all that in mind we can 
state the next theorem, which answers the question we are concerned with 
in this section. 

THEOREM 8.1. Let A and B be two symmetric semidefinite n x n matrices. 
Then 

(a) the ellipsoid E(A + B) associated to the series sum of A and B is 
equal to the direct sum of order two of the elipsoids E(A) and E(B) 
associated to A and B, respectively, 

E(A + B) = E(A) O2 E(B), (8.3) 

(b) the ellipsoid E(A 0 B) associated to the parallel sum of A and B 
is equal to the inverse sum of order two of the ellipsoids E(A) and E(B) 
associated to A and B, respectively, 

E(A 0 B) = E(A) 0, E(B). (8.4) 
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First Proof of Theorem 8.1. Equality (8.3) is obtained by applying 
Theorem 7.3 with f= qA, g = qs and an arbitrary choice for X. Let us take 
X = 0 for instance. It is a simple matter to check that 

#f(x) = {z E R”/(h, z) < ,/<Ah,h), Vh E R”} 

= {z E W/(h, z) d !-f’&,,(h), Vh E R”} 

= E(A) 

and similarly 

iY2g(X) = E(B) 

a*(f+ g)(X) = E(A + B). 

In order to deduce the equality (8.4), we of course need to apply 
Theorem 7.5. As before we take f = qA, g = qe and we choose X arbitrarily. 
Let X = 0 for instance. Note that the infimal-convolution qA Cl qs is exact 
at .Z = Xi +X2 with X, = 0 and Z2 = 0. Taking into account Remark 7.6, we 
see that all the hypotheses mentioned in Theorem 7.5 are satisfied. Of 
course in this case we have 

$j”(x,) = E(A) 

@g(XJ = E(B) 

and 

a’(fCl g)(X) = E(A 0 B). 1 

Second Proof of Theorem 8.1. We prove the same theorem by using a 
methodology which seems to be quite different, but that in fact is intimately 
connected with the previous one. Instead of using the calculus rules for 
computing the second-order subdifferentials a’(f+ g)(X) and a2(f 0 g)(Y), 
we use some calculus rules on the approximate subdifferentials a,(f+g)(Z) 
and a,(f Cl g)(X) established by Hiriart-Urruty [13, 141. Recall that the 
approximate or a-subdifferential a,/(z) at ZE iw” of a convex function 
I: IF!” + R is given by 

8,1(z) = (x* E W/l(x) 3 l(z) + (x -z, x*> -&, vx E W}, 

whereas the approximate or s-directional derivative Ii(z; .) at z of 1 is its 
support function: 

h H ,;(z; h) = Y*(h; C?,/(Z)). 
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Under suitable assumptions made on f and g (as usual, among other 
hypotheses, the intimal-convolution f0 g is assumed to be exact at 
X = X, + &), the following formulae hold true: 

(f 0 g): (3; h) = Max Inf {f&i h) +&(-% h,)} G3.6) El3 0, 0 3 0 h, + h2 = h 
E,+E>=C 

or, what is equivalent, 

&u-+d(4=U {~E,f(x)+d,,g(~)/&1~0,&*~0,&l+&2=&} (8.7) 

&Lfmm)=U (a,,f(x,)na,zg(X2)/&1~0,E2~o,&l+E2=E}. (8.8) 

We have written all these formulae in order to exhibit their astonishing 
similarity with the definitions of direct and inverse addition for functions 
and sets given in Sections 3 and 2, respectively. As in the previous proof, 
we choose now f = qA, g = qe, and X = 0. Taking into account that the 
s-subdifferential at 0 of a positive quadratic form q, is given by 

it is a simple exercise to derive the desired equalities (8.3) and (8.4) starting 
from (8.7) and (8.8), respectively. 1 

We conclude this section by pointing out that a couple of formulae, (8.3) 
and (8.4), are in fact dual to each other. More precisely, each formula can 
be deduced from the other by using the polarity relationships established 
in Theorem 6.1. 
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