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Abstract

In this paper, we discuss asymptotic relations for the approximation of |x |α , α > 0 in L∞ [−1, 1] by
Lagrange interpolation polynomials based on the zeros of the Chebyshev polynomials of first kind.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let n ∈ N0, πn be the space of all algebraic polynomials of degree at most n with real
coefficients, L∞ [−1, 1] the space of all continuous real-valued functions on [−1, 1] equipped
with the supremum norm ∥ f ∥L∞[−1,1] = supx∈[−1,1] | f (x)| and let fα (x) = |x |

α for some fixed
α > 0.

The problem of approximation of |x | on the interval [−1, 1] started at the beginning of the 20th
century, when polynomial approximations to this prototype of a non-smooth function attracted
the interest of Lebesgue, Jackson and Bernstein. In the year 1913, Bernstein [1] investigated the
best polynomial approximation for |x | and established the following remarkable and difficult
result. There exists a positive finite constant B1 with

lim
n→∞

min
pn∈πn

n ∥ f1 − pn∥L∞[−1,1] = B1.
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The precise value of B1 is still unknown and its determination seems to be very difficult. Varga
and Carpenter [14] showed in 1985, by means of high-precision numerical computations that
B1 = 0.28017+ε where |ε| ≤ 4 ·10−6. In the year 1938, Bernstein published in [3] a remarkable
result for an analogue asymptotic expression for |x |

α , α > 0. He showed that for each α > 0,

lim
n→∞

min
pn∈πn

nα
∥ fα − pn∥L∞[−1,1] = Bα

holds for some finite and, apart of even integer values for α, also positive constant Bα , the
so called Bernstein constant(s) depending on the size α. Moreover, Bernstein [3, formula 47]
obtained the bounds

1
π

sin
πα

2

0 (α)


1 −

1
α − 1


≤ Bα ≤

1
π

sin
πα

2

0 (α) , α > 2,

from which we may deduce the asymptotic behavior of Bα when α → ∞. Here 0 denotes the
usual Gamma function. There is not a single value of α, apart from the trivial cases when α is an
even integer, for which Bα is explicitly known. Varga and Carpenter [15] computed numerical
approximations for Bα for different relevant values of α. Unfortunately, while we know these
highly accurate estimates for Bα , no one has succeeded in finding a closed form expression in
terms of hypergeometric functions and/or integrals, which exactly fits with the computed data.
The question arises what type of formulas would stand behind the mystery of Bα?

From the Chebyshev alternation theorem we simply deduce that for each integer n the best
approximating polynomial to |x |

α out of πn can be represented as an interpolating polynomial
with (unknown) consecutive nodes in [−1, 1]. In finding a constructive method for approximating
the Bernstein constants and/or the best approximating polynomials it seems natural to study the
interpolation process for different node systems like the zeros of certain orthogonal polynomials.
One may not expect that a specific choice for such a node system would lead us into an instant
range close to the Bernstein constant. But we can find out what type of formulas will be generated
by the interpolation process itself for these node systems and hopefully these formulas may turn
out to be a part of a closed form expression for the Bernstein constants.

The interpolation process for |x |
α was first and extensively studied in 1937 by Bernstein in

his Russian monograph [2] for the (modified) Chebyshev system

x0 = 0, x j = cos


j −

1
2


2n

, j = 1, 2, . . . , 2n, (1.1)

where the x j , j = 1, . . . , 2n are the zeros of the Chebyshev polynomial T2n of first kind, defined
by Tn (x) = cos (n arccos x) and x0 = 0 is an additional choice, but not a zero of T2n , in order
to obtain the corresponding interpolating polynomial P(1)

2n of degree at most 2n to |x |
α . The

formulas obtained by Bernstein revealed a first estimate for the asymptotic behavior for the error
function and gave a weaker version than the subsequent quoted asymptotic formula (1.2). An

estimate, valid for all integers n ∈ N, was obtained in [12]: let α ∈


0, 2

3


∪ {1} then one has

(2n)α
 fα − P(1)

2n


L∞[−1,1]

≤ 2


2
3

1−α

.

In a prominent paper from 2002, Ganzburg [4] established, among others, the following
remarkable limit relation. For all α > 0 one has
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lim
n→∞

(2n)α
 fα − P(1)

2n


L∞[−1,1]

=
4
π

sin
πα

2

  ∞

0

tα−1

et + e−t dt. (1.2)

An extension of this asymptotic relation to a complex α was obtained in [5, Theorem 1]. It is
worth mentioning that the integral on the right side of (1.2) occurs also in different connections
and variants within the approximation of |x |

α by interpolating polynomials, for instance in the
study of best polynomial approximations to |x |

α [3, formulas 2,27 and 42] and surprisingly also
in equidistant(!) polynomial interpolation; see [13].

The question arises why one should not select the more natural node system consisting of the
2n + 1 zeros of T2n+1, since in this case x = 0 is always a zero of T2n+1? In fact, I counted only
one paper, see [17], dealing with this node set for the approximation of |x |

α , where it is shown
that the order of approximation attains the Jackson order, i.e.

∥ fα − Pn∥L∞[−1,1] = O (1)
1

nα
, 0 < α < 1, n ∈ N,

where the polynomials Pn are the corresponding interpolating polynomials to fα based on the
zeros of Tn . In establishing a limit relation like (1.2), one is confronted with two significant
problems. First, to give a construction of a strong asymptotic formula for the error function
and second to calculate the supremum norm from this. It turns out, when using the modified
Chebyshev system (1.1), that the second step is surprisingly comfortable to handle, since the
supremum takes its values at the right end of the interval (even for all integers n) and is quite
easy to calculate. The situation dramatically changes when using the zeros of T2n+1. Even the
first step, the construction of an asymptotic formula for the error function, though following the
general method based on Bernstein [2], requires stronger arguments, while at the same time, the
precise determination of the supremum norm seems to be rather difficult and, at the moment, is
not completely solved.

2. Results

We prove the following.

Theorem 1. Let 2n > α > 0 and P(2)
2n be the unique Lagrange interpolation polynomial out of

π2n to |x |
α on [−1, 1] based on the zeros of T2n+1, i.e.

x j = cos


j −

1
2


π

2n + 1
, j = 1, 2, . . . , 2n + 1, n ∈ N.

(Obviously xn+1 equals zero, n ∈ N.) Then, for all x ∈ [−1, 1], we have

(2n)α

|x |

α
− P(2)

2n (x)


= (−1)n 4
π

sin
πα

2
T2n+1 (x)

(2n + 1) x

·


∞

0

tαx2
x2 +

 t
2n

2 et − e−t
dt + o (1) , n → ∞,

where o (1) is independent of x.

From this result we further obtain the following.
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Corollary 2. For α > 0 and P(2)
2n to be defined as in Theorem 1 we have

lim sup
n→∞

(2n)α
 fα − P(2)

2n


L∞[−1,1]

≤
4
π

sin
πα

2

  ∞

0

tα

et − e−t dt.

Remark 3. Based on numerical computations it seems plausible that there exists a constant
Cα < 4

π
, depending on α, such that

lim
n→∞

(2n)α
 fα − P(2)

2n


L∞[−1,1]

= Cα

sin
πα

2

  ∞

0

tα

et − e−t dt.

Remark 4. Note that the integral on the right-hand side of Corollary 2 can also be represented
through a series, see [4, p. 196], by

∞

0

tα

et − e−t dt = 0 (α + 1)

∞
j=0

1

(2 j + 1)α+1 , α > 0.

The organization of the paper is as follows. In Section 3 we establish a representation for the
interpolation formula for |x |

α valid for arbitrary node systems. To this end we follow the general
method established by Bernstein [2]. Since many technical details are missing in [2] we refer the
interested reader also to [4] which provides the most extensive description for this topic. To keep
the paper selfcontained as much as possible, we pass in this section through the major steps and
give details only when we transfer the formulas into the context of our notation which might be
slightly different from that used in [4]. In Section 4 we are going to develop a strong asymptotics
for the error formula from which we later deduce Theorem 1 and Corollary 2.

3. A formula for the error function

Lemma 5. Let n > s > 0 and −1 ≤ y0 < · · · < yn ≤ 1. Let Pn ∈ πn be the
interpolation polynomial to (1 − y)s on [−1, 1] at the node system


y j : j = 0, . . . , n


. Then,

for any y ∈ [−1, 1],

(1 − y)s
− Pn (y) = −

1
π

vn (y) sin πs


∞

1

(t − 1)s

vn (t) (t − y)
dt, (3.1)

where vn (y) = (y − y0) · · · (y − yn).

Proof. Let a > 1 and M, ε0 be positive numbers with M > a > a − 2ε0 > 1 and M ≥ 2. Next,
let 0 < ε < ε0 be arbitrary and let Pn,a be the interpolating polynomial to (a − y)s on [−1, 1] at
the nodes y0, . . . , yn . Then, by the error formula for Hermite interpolation (see [8,16]),

(a − y)s
− Pn,a (y) =

vn (y)

2π i
lim

M→∞
lim
ε→0


CM,ε

(a − z)s

vn (z) (z − y)
dz,

where CM,ε = C (1)
M,ε ∪ C (2)

M,ε ∪ C (3)
ε ∪ C4

M,ε is a contour in C, oriented in a positive sense, where

C (1)
M,ε =


z : |z| = M, arcsin

ε

M
≤ |arg z| ≤ π


,

C (2)
M,ε =


z = x − iε : a ≤ x ≤


M2 − ε2


,
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C (3)
ε =


z : |z − a| = ε,

π

2
≤ |arg z| ≤ π


,

C (4)
M,ε =


z = x + iε : a ≤ x ≤


M2 − ε2


.

Now, following [4], for M large and ε small, the contour integral contributes only on the segments
C (2) and C (4). Further, using the limit relation

lim
ε→0


(a − t − iε)s

− (a − t + iε)s
= −2i (t − a)s sin πs, ∀t ≥ a,

a routine calculation leads us to

(a − y)s
− Pn,a (y) = −

1
π

vn (y) sin πs


∞

a

(t − a)s

vn (t) (t − y)
dt, (3.2)

which holds for all a > 1, n > s > 0 and −1 ≤ y ≤ 1. Finally, letting a → 1+ in (3.2) and
taking account of lima→1+ Pn,a = Pn , we obtain (3.1). �

Lemma 6. Let 2n > α > 0 and 0 ≤ x0 < · · · < xn ≤ 1. Q2n ∈ π2n denotes the interpolation
polynomial to |x |

α at the node system

±x j : j = 0, . . . , n


. Then, for any x ∈ [−1, 1],

|x |
α

− Q2n (x) = −2−
α
2

1
π

sin
πα

2
wn


1 − 2x2

  ∞

1

(t − 1)
α
2

wn (t)

t − 1 + 2x2

dt, (3.3)

where wn (x) =

x − 1 + 2x2

0


· · ·

x − 1 + 2x2

n


.

Proof. First note that the node system consists of a maximum of 2n + 2 elements which
are symmetrically distributed around the origin. Since fα is an even function and Q2n is
unique in π2n+1 it follows that Q2n is even and thus Q2n has degree at most 2n. Next, with
α = 2s, yn− j = 1 − 2x2

j for j = 0, . . . , n and substituting y = 1 − 2x2 in (3.1) we conclude
that

|x |
α

− 2−
α
2 Pn


1 − 2x2


=

−2−
α
2

π
sin

πα

2
vn


1 − 2x2

  ∞

1

(t − 1)
α
2

vn (t)

t − 1 + 2x2

dt.

Now, by definition of y j , vn (x) =
n

j=0


x − yn− j


=
n

j=0


x − 1 + 2x2

j


= wn (x) and a

routine argument shows that 2−
α
2 Pn


1 − 2x2


equals the interpolation polynomial Q2n (x). �

Remark 7. By uniqueness, see [9], of the best approximating polynomial p∗

2n out of π2n to |x |
α

it follows that a constructive solution for p∗

2n can be produced via the solution for the Minmax
problem,

min
0≤x0<···<xn≤1

max
0≤x≤1

wn


1 − 2x2

  ∞

1

(t − 1)
α
2

wn (t)

t − 1 + 2x2

dt

 .
Thus a good choice of nodes would be achieved when, at the same time, wn is as small as possible
inside the interval [−1, 1] and grows as rapidly as possible outside of it when weighted by the
other factors inside the integral.
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Lemma 8. Let n ∈ N0 and t (2n+1)
j = t j = cos


j− 1

2


π

2n+1 for j = 1, 2, . . . , 2n + 1 be the zeros of
T2n+1. Further, let x j = tn+1− j for j = 0, 1, . . . , n and wn to be defined as in Lemma 6. Then

(a)

±x j : j = 0, 1, . . . , n


=

t j : j = 1, 2, . . . , 2n + 1


,

(b) wn


1 − 2x2


= (−1)n+1 21−n xT2n+1 (x) , for − 1 ≤ x ≤ 1,

(c) wn (x) = 2−n (Tn+1 (x) − Tn (x)) , for x ≥ 1,

where, in (c), the definition of the polynomials Tn has to be extended in the usual way, by

Tn (z) =
1
2


z +

√
z2 − 1

n
+


z −

√
z2 − 1

n
, z ∈ C.

Proof. The proofs for (a) and (b) are easy. We prove only (c). First

wn (x) =

n
j=0


x − 1 + 2x2

j


=

n
j=0


x − 1 + 2t2

n+1− j



=

n+1
j=1


x − 1 + 2t2

j


= (x − 1)

n
j=1


x − 1 + 2t2

j


.

Using the identity cos 2α = 2 cos2 α − 1, we get

wn (x) = (x − 1)

n
j=1


x + cos

(2 j − 1) π

2n + 1



= (x − 1)

n
j=1


x − cos

2 jπ

2n + 1


= (x − 1)

1
2n Wn (x) ,

where Wn is the Chebyshev polynomial of 4th kind. For details, we refer the reader to
[11, Chapter 1.2.3]. From [11, formula 1.18] we see that Wn can be represented as a sum of
Chebyshev polynomials of 2nd kind, i.e. Wn (x) = Un (x) + Un−1 (x), from which we further
deduce that

wn (x) =
1
2n (x − 1)


Un (x) − xUn−1 (x) + xUn−1 (x) + Un−1 (x)


=

1
2n (x − 1)


Tn (x) + (x + 1) Un−1 (x)


=

1
2n


(x − 1) Tn (x) −


1 − x2


Un−1 (x)


=

1
2n


xTn (x) − Tn (x) − (xTn (x) − Tn+1 (x))


= 2−n Tn+1 (x) − Tn (x)


,

where we have used [7, formulas 8.941,3 and 4]. �

Now, combining Lemmas 6 and 8, we arrive at the following.

Corollary 9. Let 2n > α > 0. Then, for −1 ≤ x ≤ 1,

|x |
α

− P(2)
2n (x) = (−1)n 21−

α
2

1
π

sin
πα

2
xT2n+1 (x)

·


∞

1

(t − 1)
α
2

Tn+1 (t) − Tn (t)
 

t − 1 + 2x2
dt. (3.4)



76 M. Revers / Journal of Approximation Theory 165 (2013) 70–82

At this point it should be mentioned that a different and more general approach to identities
like (3.4) was developed by Ganzburg [6] and Lubinsky [10].

4. The asymptotics

We now investigate the asymptotic properties of the integral on the right side of Eq. (3.4).
Using the substitution t =

1
2


z + z−1


, we obtain

In (x) :=


∞

1

(t − 1)
α
2

t − 1 + 2x2
 

Tn+1 (t) − Tn (t)
dt

= 21−
α
2


∞

1

(z − 1)α+1 (z + 1)

z1+
α
2

(z − 1)2

+ 4x2z
 

zn+1 + z−(n+1) − zn − z−n
dz.

By some routine arguments, substituting z = 1 +
t
n , we get

In (x) = 22−
α
2 n−α−2


∞

0


t1+α


1 +

t
2n


1 +

t
n

2+
α
2


4x2 +
t2

n(n+t)


·

1
1 +

t
n

n+1
+

1 +

t
n

−(n+1)
−

1 +

t
n

n
−

1 +

t
n

−n
dt

= 22−
α
2 n−α−1


∞

0

tα

1 +

t
2n


dt

1 +
t
n

2+
α
2


4x2 +
t2

n(n+t)

 
1 +

t
n

n
−

1 +

t
n

−(n+1)
dt. (4.1)

Combining (3.4) and (4.1), we obtain for 2n > α > 0, x ∈ [−1, 1],

|x |
α

− P(2)
2n (x) = (−1)n 23−α 1

π
sin

πα

2
T2n+1 (x)

(2n + 1) x

2n + 1
n

n−α

·


∞

0

tα

1 +

t
2n


x2

1 +
t
n

1+
α
2


4x2 +
t2

n(n+t)

 
1 +

t
n

n+1
−

1 +

t
n

−n
dt. (4.2)

The further analysis requires some preparatory work. Let n ∈ N and t ≥ 0. From the well known
inequality x −

x2

2 ≤ log (1 + x) ≤ x, x ≥ 0, we obtain

et e−
t2
2n ≤


1 +

t

n

n

≤ et . (4.3)

Now, define gn (t) =

et

− e−t
√

n − tet . An easy argument reveals that gn is increasing for
t ∈


0,

√
n − 1


and thus 0 = gn (0) ≤ gn (t), from which we get

t

n
et

≤
et

− e−t

√
n

, n ≥ 1, t ∈

0,

√
n − 1


. (4.4)

Similarly, let hn (t) = 1 +
t
n e2t

− e
t2
n . Again, we conclude that hn is increasing for t ∈ [0, 2n]

and thus 0 = hn (0) ≤ hn (t), from which we obtain

t

n
et e−

t2
2n − e−t e

t2
2n ≥ −e−t e−

t2
2n , n ≥ 1, t ∈ [0, 2n] . (4.5)
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Combining (4.3)–(4.5) we verify that
1 +

t

n

n+1

−


1 +

t

n

−n

≤


1 +

t

n


et

−


1 +

t

n

−n

≤ et
+

t

n
et

− e−t
≤

et

− e−t 1 +
1

√
n


and 

1 +
t

n

n+1

−


1 +

t

n

−n

≥


1 +

t

n


et e−

t2
2n −


1 +

t

n

−n

≥ et e−
t2
2n +

t

n
et e−

t2
2n − e−t e

t2
2n

≥

et

− e−t e−
t2
2n ,

where both estimates are valid for t ∈ [0, n
1
3 ] and n ≥ 10, since in this case we have

n
1
3 ≤

√
n − 1 ≤ 2n. Now, using the elementary inequalities

1 − x ≤
1

1 + x
, x ≥ 0,

1
1 − x

≤ 1 + 2x, 0 ≤ x ≤
1
2
,

ex
≤

1
1 − x

, x < 1,

(4.6)

some routine arguments give a first substantial result for the error analysis,

1 − n−
1
3

et − e−t ≤
1

1 +
t
n

n+1
−

1 +

t
n

−n
≤

1 + n−
1
3

et − e−t , (4.7)

valid for t ∈


0, n

1
3


and n ≥ 10. Using again (4.6), we proceed further to obtain the bounds

1

4x2 +
t2

n2

≤
1
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1
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1
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2
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
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
, t ∈


0, n

1
3


, n ≥ 3.

From the previous estimates we further obtain

1 +
t

2n
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t
n
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α
2

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t2

n(n+t)

 ≤
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1
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. (4.8)
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Next, using a convexity argument, we get for t ∈


0, n

1
3


,

1 +
t

2n
1 +

t
n
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2

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. (4.9)

Now, splitting the integral from (4.2) into two parts by


∞

0 =
 n

1
3

0 +


∞

n
1
3

and combining

(4.7)–(4.9), we arrive at n
1
3
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3

0

tαx2
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et − e−t

dt, (4.10)

which holds for x ∈ [−1, 1] with |ε1 (n)| ≤ Cn−
1
3 for some constant C , independent of n. Now,

we turn to


∞

n
1
3

. For x ∈ [−1, 1], we have

0 ≤
x2

4x2 +
t2

n(n+t)

≤
n (n + t)

(2n + t)2

and, by substituting z = 1 +
t
n , some routine arguments show that
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dz. (4.11)

We now consider the function gn (z) = z2n+1
− z2n

− 1, n ≥ 1 and z ≥ 1. Our next task is to
show that gn (z) ≥ 0 for all z ≥ 1 + n−

2
3 , at least when n becomes sufficiently large, i.e. n ≥ n0.

It is easy to see that gn is increasing for z ≥ 1. Using (4.3) and (4.6), we estimate

gn (z) ≥ gn


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2
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− 1 ≥ 0, ∀n ≥ n0.

Combining this fact together with (4.3) and (4.11), we conclude that

0 ≤
1
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2α 1
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, (4.12)

for some constant D, independent of n. Now, taking account of et
− e−t

≥
1
4 et for t ≥ n

1
3 ≥ 1,

we obtain for x ∈ [−1, 1],
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,

where 0 (·, ·) denotes the incomplete gamma function, defined by 0 (β, z) =


∞

z tβ−1e−t dt . By
the well known asymptotics, see [7, formula 8.357],

0 (β, z) = zβ−1e−z (1 + o (1)) , z → ∞,

we obtain for x ∈ [−1, 1] the estimates
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for some constant E , independent of n. Finally, combining (4.2), (4.10)–(4.13), we arrive at
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with |ε1 (n)| ≤ Cn−
1
3 , |ε2 (n)| ≤ Dnαe−n

1
3 and |ε3 (n)| ≤ Enαe−n

1
3 . Thus, for x ∈ [−1, 1], we

have shown the asymptotics
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where o (1) is independent of x .

Lemma 10. For n ∈ N and x ∈ [−1, 1], we have T2n+1 (x)

(2n + 1) x

 ≤ 1.

Proof. First, an easy induction argument reveals

|sin my| ≤ m |sin y| , m ∈ N, y ∈ R.

Now, for x ∈ [−1, 1] let y = arcsin x . It then follows that x = sin y = cos


π
2 − y


. Thus

T2n+1 (x) = cos [(2n + 1) arccos x]

= cos

(2n + 1)

π

2
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= (−1)n sin [(2n + 1) arcsin x] .
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(2n + 1) x
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 ≤ 1. �

From Lemma 10 combined with formulas (4.2) and (4.14) we finally arrive at Theorem 1.
It remains to establish Corollary 2. First we note that the error function is even on the interval
[−1, 1]. So it is further sufficient to restrict ourselves to the case x ∈ [0, 1]. Now, we investigate
the asymptotic behavior of the integral in Theorem 1 by providing the following bounds.

Lemma 11. For n ∈ N and x ∈ [0, 1], we have
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Proof. The upper bound is easy to establish. Also the lower bound holds obviously for the case

x = 0. For the remaining case 0 < x ≤ 1, by substituting u = t
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, a routine argument
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From Lemma 11 an easy consequence is the following.

Corollary 12. For any fixed x ∈ [0, 1],
∞

0

tαx2
x2 +

 t
2n

2 et − e−t
dt

n→∞
−→


0 x = 0,

∞
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tα

et − e−t dt x ≠ 0.

 .

Finally, combining Lemma 10, Corollary 12 and Theorem 1, we arrive at Corollary 2 and so
we are done. We conclude with the following.

Remark 13. From Theorem 1 combined with Lemma 11 we can now analyze in more detail
the problem of the precise determination of the supremum norm in the relevant interval [0, 1].
While |T2n+1 (x) /(2n + 1)x | is a decreasing function in the interval [0, z0] (here z0 denotes the
smallest positive zero of T2n+1), at the same time

∞

0

tαx2
x2 +

 t
2n

2 et − e−t
dt

is increasing in x . It seems plausible that the exact location of the supremum takes place for a
certain sequence of positive numbers (xn)n∈N with xn → 0 (with order 1/n) as n → ∞.
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