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Abstract

We extend our model for the pion, which we used previously to calculate its diagonal structure function, to the off-forwa
case. The imaginary part of the off-forwardγ �π → γ �π scattering amplitude is evaluated in the chiral limit(mπ = 0) and
related to the twist-two and twist-three generalised parton distributionsH , H3, H̃3. Non-perturbative effects, linked to the si
of the pion and still preserving gauge invariance, are included. Remarkable new relations betweenH , H3 andH̃3 are obtained
and discussed.
 2004 Published by Elsevier B.V.
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1. Introduction

Structure functions, which can be extracted from deep-inelastic experiments, are useful tools to unders
structure of hadrons. Even if theirQ2 evolution is consistent with perturbative QCD, they result mainly from n
perturbative effects that are still not calculable in the framework of QCD. This has led to phenomenologica
models embodying various non-perturbative aspects of QCD. These models can be used to depict the b
of the structure functions and to understand the connection between data and non-perturbative aspects o
There has been extensive work on diagonal distributions along these lines (see Refs. [1,2] for the pion cas
distributions can be used as the initial condition for a DGLAP evolution, which is necessary before a compari
with data [3]. Such models can be applied to the off-diagonal case, for which generalised structure funct
can be linked [5] to generalised parton distributions (GPDs).
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One of the setbacks of phenomenological quark models suited to the description of the low-energy fea
hadrons is that the underlying quark structure is obscured by the necessary introduction of regularisation proce
which result in non-negligible differences in the structure functions.

To avoid these complications, we investigated the diagonal structure functions in the case of a simple m
the pion [1], where the pion–quark–antiquark pseudoscalar coupling (iγ 5gπqq̄ ) yields the correct symmetry, whil
the non-perturbative aspects come from a momentum cut-off mimicking the size of the pion, but still preservin
gauge invariance. This freed us from the question of what would be the detailed inner structure of the
In that calculation, owing to the introduction of such a cut-off, crossed diagrams for the pion–photon sca
appear as higher twists, leading twist structure functions can be identified, and a reduction of the mo
fraction carried by the quarks is observed. Of course, as the cut-off is relaxed to let the quarks behave fr
momentum sum rule〈2x〉 = 1 is recovered at infiniteQ2. Having that tool at hand, we now turn to the investigat
of the properties of off-diagonal parton distributions, which are likely to shed some light on parton correlatio
which have therefore attracted much interest in recent years [6–11].

In the following, we calculate the imaginary part of the off-forward photon–pion scattering amplitude, and o
the structure functionsF1, . . . ,F5, related to the five independent tensor structures in the scattering amplitud
we discuss their behaviour. We relate them to vector and axial vector form factors and to the twist-two an
three generalised parton distributions (GPDs)H , H 3 andH̃ 3. We shall show that, within our model and in t
high-Q2 limit, the non-diagonal structure functionsF3 andF4 are related toF1, while F5 happens to be a highe
twist. These results lead to new relations for the GPDs in the neutral pion case.

2. General tensorial structure of the γ �π → γ �π amplitude

2.1. External kinematics

Let p1 andp2 be the momenta of the ingoing and outgoing pions,q1 andq2 those of the corresponding photo
(see Fig. 1). Defining

p = (p1 + p2)

2
, q = (q1 + q2)

2
, ∆ = p2 − p1,

one can then write the scattering amplitude as a function of the Lorentz invariants

t = ∆2, Q2 = −q2, x = Q2

2p · q , ξ = ∆ · q
2p · q .

In the elastic limit, characterised by(
q + ∆

2

)2

=
(

q − ∆

2

)2

,

one has∆ · q = 0 and thusξ = 0, while the diagonal limit (∆ = 0) is obtained forξ = 0 andt = 0. We further
recover the Bjorken variablex = xB , where

xB = − q2
1

2p1 · q1
.

For virtual Compton scattering (VCS), for which the outgoing photon is on-shell,ξ is related tox through

ξ = −x

(
1− ∆2

4Q2

)
.

Hence, in the deeply virtual Compton scattering (DVCS) limit,t � Q2 andξ = −x.
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Fig. 1. The simplest diagrams contributing to the imaginary part of the amplitude for the scatteringγ �π → γ �π . Upper (lower) diagrams ar
referred to as box (crossed) diagrams. Dashed lines represent thediscontinuity of the amplitudes, i.e., their imaginary parts.

2.2. The structure functions Fi ’s

The hadronic tensor is defined through

(1)Tµν(q,p,∆) = i

∫
d4r eir ·q〈p2|Tjµ(r/2)jν(−r/2)|p1〉.

There exist five independent kinematical structures in Eq. (1) that parametrise the photon–pion amplitud
Defining the projector

Pµν = gµν − q2µq1ν

q1 · q2

and making use of these five structures, we can rewriteTµν as follows:

Tµν(q,p,∆) = −Pµσ gστPτνF1 + Pµσ pσ pτPτν

p · q F2 + Pµσ (pσ (∆τ − 2ξpτ ) + (∆σ − 2ξpσ )pτ )Pτν

2p · q F3

+ Pµσ (pσ (∆τ − 2ξpτ ) − (∆σ − 2ξpσ )pτ )Pτν

2p · q F4

(2)+Pµσ (∆σ − 2ξpσ )(∆τ − 2ξpτ )PτνF5.

Current conservation is ensured by means of the projectorPµν . Our notation slightly differs from Ref. [5]: we
have included a factor 1/m2

π in the definition ofF5 in order to avoid divergences when the chiral limit is tak
Note that Bose symmetry requiresF1, F2, F4, F5 to be even andF3 to be odd inξ .
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3. The model

3.1. General description

We use the pion model introduced in our previous work [1], in which theqq̄π vertex is represented by th
simplest pseudoscalar coupling. The Lagrangian includes massive pion and massive quark fields interacting thro
the pseudoscalar vertex, with an effective pion–quark coupling constant.

Considering an isospin triplet pion field�π = (π+,π0,π−) interacting with quark fieldsψ the Lagrangian
density reads

(3)Lint = ig(ψ̄ �τγ5ψ) · �π,

where�τ is the isospin vector operator.
Of course, if our pseudoscalar field is to represent real pions, we have to impose that the corresponding

have a finite size. That we shall do through the use of a cut-off, as detailed below, the choice of which
constraint on the value of the quark–pion coupling constant [1].

We shall limit ourselves in this Letter to the calculation of the imaginary part of the scattering amplitude,
allows a direct comparison with our previous work and which is sufficient to determine the GPDs of neutral pio
[5].

At the leading order in the loop expansion, four diagrams contribute. They are displayed in Fig. 1. Fo
the kinematics defined in Section 2.1 and applying Feynman rules, it is straightforward to write dow
analytical expression for the scattering amplitude. For a given setµ,ν of the photon indices and with well-know
conventions,3 the contribution of the first diagram (a) shown in Fig. 1 to the scattering amplitude reads

Mµν
a = 3g2(e2

u + e2
d

)∫
d4k Tr

(
γ 5((/k − /p) + mq

)
γ 5 /k + /∆

2 + mq(
k + ∆

2

)2 − m2
q

γ ν

(4)× (
(/k + /q) + mq

)
γ µ

/k − /∆
2 + mq(

k − ∆
2

)2 − m2
q

)
.

Expressions from the other three diagrams of Fig. 1—the one with reverse loop-momentum and the two
diagrams—are similar and are not written down. Results below all pertain to the chiral limitmπ = 0.

3.2. The implementation of the cut-off

A simple way to impose that the pion has a finite size is to require that the square of the relative four-mom
of the quarks inside the pion is limited to a maximum valueΛ2. Before writing this explicitly, let us give the detai
of the internal kinematics, i.e., the one involving the loop-momentumk. Let φ andθ be the spherical angles of�k
with respect to thez-axis taken as the direction of the incoming photon. Definingk2

ρ = |�k|2 andτ = k2 = k2
0 − k2

ρ ,
and using spherical coordinates, we write the element of integration as:

(5)d4k = dk0 dkρ k2
ρ d(cosθ) dφ,

3 The isospin/charge factor(e2
u + e2

d
) corresponds to the following choice of the isospin matrix:

π−:

(
0 0√
2 0

)
, π0:

(
1 0
0 −1

)
, π+:

(
0

√
2

0 0

)
, γ :

(
eu 0
0 ed

)
.



F. Bissey et al. / Physics Letters B 587 (2004) 189–200 193

quark

of the

e

bution
e a

ce one
or with the help of the variableτ :

(6)d4k = dk0
kρ

2
dτ d(cosθ) dφ.

According to Cutkosky rules, the imaginary part of the amplitude is obtained by putting the intermediate
lines on shell. This is realised by the introduction of the two delta functions,δ((k+q)2−m2

q) andδ((k−p)2−m2
q).

Working out the delta functions, we obtain that:

(7)δ
(
(k + q)2 − m2

q

)
δ
(
(k − p)2 − m2

q

) = 1

2kρ|�q|δ(cosθ − cosθ0)
1

2
√

s
δ(k0 − k′

0),

with cosθ0 = 2k0q0 − Q2 − m2
q + τ

2kρ|�q| , k′
0 = Q2 + mπ − t

4

2
√

s
.

Finally, the element of integration over the internal momentum, considering only the imaginary part
amplitude, reads:

(8)d4k = dτ dφ
1

8
√

s|�q|
∣∣∣∣
k0=k′

0, cosθ=cosθ0

, with |�q| = 1

2x

√
4sx2Q2 + (1− 2x)2Q4

s
.

The boundary values of the integration domain onτ are obtained by solving cosθ0 = ±1.
Now we may look at the effect of the finite size of the pion on the integration procedure uponk. The relative

four-momentum squared of the quarks inside the pion is given by

(9)O±
1 =

(
2k − p ± ∆

2

)2

= 2τ + 2m2
q − m2

π + t

2
± 2k · ∆,

for pion–quark vertices like the ones in diagram Fig. 1(a), and by

(10)O±
2 =

(
2k − p + 2q ± ∆

2

)2

= −2τ + 6m2
q − m2

π + t

2
− 2Q2

x
± 2

(
k · ∆ + ξQ2

x

)
,

for vertices as in diagram Fig. 1(b). Note thatk ·∆ is a known function of the external variables as well as ofθ andτ .
Generalising the procedure of [1], we require either|O±

1 | < Λ2 or |O±
2 | < Λ2 for all diagrams. Gauge invarianc

is preserved by the cut-off, since|O±
i | depend only upon the external variables of theγ �π → qq̄ process.

As theOi ’s andτ are always negative, we require one of the two following conditions:

τ >
−Λ2

2
+ m2

π

2
− m2

q − t

4
+ |k · ∆|,

(11)τ <
Λ2

2
− m2

π

2
+ 3m2

q + t

4
− Q2

x
−

∣∣∣∣ξQ2

x
+ k · ∆

∣∣∣∣.
For t small, |O1| and|O2| cannot be small simultaneously. The crossed diagrams have their main contri

for O1 � O2, and are thus suppressed by a powerΛ2/Q2 when the cut-off is imposed. The box diagrams hav
leading contribution for|O1| or |O2| small, and are not power suppressed by the cut-off.

It may be worth pointing out that the vertical propagators are more off-shell in DVCS than in DIS, hen
would expect DVCS to be better described by perturbation theory than DIS.



194 F. Bissey et al. / Physics Letters B 587 (2004) 189–200

o

c

ned

r to

n
. In
s

e
t

,

ed.

with the

t the
n

r at
3.3. The coupling constant

In the diagonal case, we have determined the coupling constantg = gπqq by imposing that there are only tw
constituents in the pion. This sum rule constraintsF1 as follows [1]:

(12)

1∫
0

F1(x) dx = 5

18
.

As F1/g
2 is a priori a function ofQ2, the sum rule imposes thatg should be a function ofQ2. But at high enough

Q2, where the details of the non-perturbative interaction are less and less relevant,F1/g
2 reaches its asymptoti

shape when the cut-off procedure is applied, and we obtain a constant value forg. In Ref. [1], this asymptotic
regime was reached forQ2 as small as 2 GeV2. In the following, we shall make use of these previously obtai
values, which are functions of the cut-offΛ.

However, in the DVCS case, an ambiguity may arise as oneof the vertices has an external kinematics simila
a vanishingQ2 DIS. This ambiguity is lifted if one notices that the pertinent quantities are notq2

1 andq2
2 separately

but the factorisation scale, which may be taken as the square of their mean,Q2. Thus in DVCS, althoughq2
2

vanishes,Q2 does not and we shall consider thatg is constant.

4. Results

4.1. General features

From the imaginary part of the total amplitude, the five structure functionsFi can be obtained by a projectio
on the corresponding tensors. From now on,Fi will stand for the imaginary part of these structure functions
order to display their general features, we plot them in Fig. 2 first as functions ofx andξ for parameter value
mq = 0.3 GeV andΛ = 0.75 GeV, to ease the comparison with [1], and forQ2 = 10 GeV2 andt = −0.1 GeV2.
Let us notice that for any fixed value ofξ not close to±1, we recover forF1 andF2 the same behaviour as in th
diagonal case. We checked indeed that the diagonal limit is recovered forξ = 0 and t= 0. Let us notice also tha
the structure functionsF3, F4, F5 depend little onξ except when this variable is close to±1.

Let us turn now to DVCS. Fig. 3 displays the behaviour ofF1 for various values oft with and without cut-off.
In the presence of size effects, the value ofF1 gets significantly reduced, especially for smallx, as|t| increases
whereas that effect is much less noticeable without cut-off.

In the elastic case (see Fig. 4), the same suppression at smallx is observed, especially when the cut-off is appli
In Fig. 5, we display the average value of 2x with respect to theF1 distribution. The value of〈2x〉 increases when
|t| increases. The momentum fraction carried by the quarks and probed by the process thus increases
momentum transfer.

The effects of the variation ofQ2 are displayed in Fig. 6. As in the diagonal case [1], we can conclude tha
details of the non-perturbative effects cease to matter forQ2 greater than 2 GeV2, that is significantly larger tha
Λ2. On the other hand, when the cut-off is not applied, we see (Fig. 6(b)) thatF1 evolves so slowly withQ2 that
the asymptotic state is not visible.

4.2. High-Q2 limit: new relations

Having determined the 5 functionsFi ’s in the context of our model, we shall now consider their behaviou
highQ2. Expanding the ratios ofF2/F1,F3/F1,F4/F1,F5/F1, we obtain the following asymptotic behaviour:
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Fig. 2. Plot of the five structure functions as functions ofx (∈ [0,1]) andξ (∈ [−1,1]) with a cut-off Λ = 0.75 GeV, atQ2 = 10 GeV2 and
t = −0.1 GeV2.

(13)F2 = 2xF1 +O
(
1/Q2),

(14)F3 = 2xξ

ξ2 − 1
F1 +O

(
1/Q2),

(15)F4 = 2x

ξ2 − 1
F1 +O

(
1/Q2),

(16)F5 =O
(
1/Q2).

The fact that at leading order there are only three independent structure functions has been known
time [5,10]. However, we show here that they can all be obtained fromF1. The first relation is similar (at leadin
order in 1/Q2 and with the replacement ofx by xB) to the Callan–Gross relation between the diagonal struc
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Fig. 3.F1 as a function ofx for various values oft in the DVCS case with (a) and without (b) cut-off (Λ = 0.75 GeV), atQ2 = 10 GeV2.

Fig. 4. Evolution ofF1 (elastic case,ξ = 0) for decreasing values oft with (a) and without (b) cut-off, forQ2 = 10 GeV2.

Fig. 5. Mean value of 2x for theF1 distribution in the elastic case (ξ = 0) as a function ofQ2 and for various values oft .
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Fig. 6.F1 as a function ofx for t = −0.1 GeV2 and for various values ofQ2 in the DVCS case with (a) and without (b) cut-off.

functionsF1 andF2, valid for spin one-half constituents in general. Except forF5, which is small at largeQ2,
these relations show thatF2, F3 andF4 are simply related toF1 at leading order. These relations clearly disp
and therefore confirm the symmetries of these functions. Combining Eqs. (14) and (15), we have, at leadin

(17)F3 = ξF4,

which confirms thatF3 is an odd function ofξ , while F4 is even.
The simple relations between theFi ’s (at leading order) constitute a remarkable result of our mo

Furthermore, we checked that the termO(1/Q2) in Eq. (13) is numerically quite small, even for moderateQ2.
One may wonder whether these results are typical of our model or more general.

5. Linking the Fi ’s to H , H 3, and H̃ 3

Having at hand the five functionsFi ’s that parametrise the amplitude forγ �π → γ �π , we would like to link
them to the off-forward parton distribution functions or to the generalised parton distributions. For this pu
we make use of a tensorial expression coming from the twist-three analysis of the process, which single
twist-twoH and the twist-threeH3, H̃3 form factors. Following Ref. [5], we write:4

(18)Tµν(q,p,∆) = −PσµgστPντ
q · V1

2p · q + (
PσµpσPνρ +PρµpσPνσ

) V
ρ
2

p · q −PσµiεστqρPντ
A1ρ

2p · q ,

where theVi ’s andA1 read

(19)V1ρ = 2pρH+ (∆ρ − 2ξpρ)H3 + twist 4,

(20)A1ρ = iερ∆pq

p · q H̃3,

(21)V2ρ = xV1ρ − x

2

pρ

p · q q · V1 + i

4

ερσ∆q

p · q Aσ
1 + twist 4.

4 Please note that Ref. [5] usesPνµ instead ofPµν as projector.
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In Ref. [5], gauge invariance of Eq. (18) beyond the twist-three accuracy was in fact restored by hand, contraril
the present calculation for which the amplitude is explicitly gauge-invariant.

To relate theFi ’s to theH’s, we project the amplitude (18) onto the five projectors contained in Eq. (2)
identify the results with theFi ’s. Note that, in the neutral pion case, the imaginary part of the form factoH
directly gives the GPDsH , H 3 and H̃ 3 up to a factor 2π. As we have kept the off-shellnesses of the phot
arbitrary, we in fact can relate the imaginary parts ofFi to the GPDs for arbitraryx andξ :

(22)
1

2π
F1 = H,

(23)
1

2π
F2 = 2xH +O

(
1

Q2

)
,

(24)
1

2π
F3 = 2x

x2 − ξ2

(
H 3x2 + H̃ 3ξx − Hξ

) +O
(

1

Q2

)
,

(25)
1

2π
F4 = 2x

x2 − ξ2

(
H 3ξx + H̃ 3x2 − Hx

) +O
(

1

Q2

)
,

(26)
1

2π
F5 =O

(
1

Q2

)
.

Replacing theFi ’s by the expressions (13)–(16), we can write

(27)H̃ 3 = (x − 1)

x(ξ2 − 1)
H +O

(
1

Q2

)
,

(28)H 3 = (x − 1)ξ

x(ξ2 − 1)
H +O

(
1

Q2

)
= ξH̃ 3 +O

(
1

Q2

)
.

Fig. 7. A comparison of the values ofH3 andH̃3 obtained in our model (left) with those calculated in the Wandzura–Wilczek approxima
using the value ofH from our model (right), forQ2 = 10 GeV2.



F. Bissey et al. / Physics Letters B 587 (2004) 189–200 199

),

Wilczek
s are
of the
nt.
atical”

ects.

for this
to relate

ensors,
t
from the

ply

xtended

work
0130).
As F1 to F4 can be written in term of only one of them, e.g.,F1, it is not surprising thatH 3 andH̃ 3 are simply
related toH . Note that polynomiality of the Mellin moments ofH , H 3 andH̃ 3, together with Eqs. (27) and (28
imply thatH must be a polynomialPH multiplying ξ2 − 1. The fact that, as can be seen from Fig. 7,H̃3 is almost
independent ofξ shows thatPH is very close to a constant.

To convince ourselves that relations (27) and (28) are new, we have compared them to the Wandzura–
approximation [12], given in the pion case in [5,13]. First of all, it is well known that these relation
discontinuous atξ = ±x, which is not the case for (27) and (28). Furthermore, we show in Fig. 7 the results
Wandzura–Wilczek approximation compared with our results. We see that the two are numerically very differe
Hence, the relations (27) and (28), derived in an explicitly gauge-invariant model, do not come from “kinem
twist corrections, but emerge from the dynamics of the spectator quark propagator and from finite-size eff

6. Discussion and conclusion

We have extended our previous model for the pion to investigate the off-diagonal structure functions
particular case. The introduction of a cut-off allows the crossed diagrams to behave as higher-twists and
the imaginary part of the forward amplitude with quark GPDs.

We used the formalism of Ref. [5] in order to decompose the amplitude along the relevant Lorentz t
to define five structure functionsFi , and to relate the latter to the GPDsH , H 3 andH̃ 3 introduced in the twis
analysis. We have found that our results in the forward case are qualitatively preserved when departing
forward limit.

Our investigation yields new results. In particular, we singled out new relations, which link theFi ’s in a simple
manner at leading order in 1/Q2. More intriguing, we found that the twist-three structure functions are sim
related toH by relations that differ from the Wandzura–Wilczek approximation.

Although these relations are derived in the context of our simple model, it is possible that they can be e
to a more general case.
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