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Abstract

We extend our model for the pion, which we used previously towtate its diagonal structure function, to the off-forward
case. The imaginary part of the off-forwayd7w — y*r scattering amplitude is evaluated in the chiral liit, = 0) and
related to the twist-two and twist-three generalised parton distributiqnig3, 3. Non-perturbative effects, linked to the size
of the pion and still preserving gauge invariance, are included. Remarkable new relations btwedand A3 are obtained
and discussed.
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1. Introduction

Structure functions, which can be extracted from deep-inelastic experiments, are useful tools to understand the
structure of hadrons. Even if the@?? evolution is consistent with perturbative QCD, they result mainly from non-
perturbative effects that are still not calculable in the framework of QCD. This has led to phenomenological quark
models embodying various non-perturbative aspects of QCD. These models can be used to depict the behaviour
of the structure functions and to understand the connection between data and non-perturbative aspects of hadrons
There has been extensive work on diagonal distributions along these lines (see Refs. [1,2] for the pion case). These
distributions can be used as the initial condition for a B®Levolution, which is necessary before a comparison
with data [3]. Such models can be applied to the off-diagonal case, for which generalised structure functions [4]
can be linked [5] to generalised parton distributions (GPDs).
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One of the setbacks of phenomenological quark models suited to the description of the low-energy features of
hadrons is that the underlying quark stiwre is obscured by the necessary introduction of regularisation procedures
which result in non-negligible differences in the structure functions.

To avoid these complications, we investigated the diagonal structure functions in the case of a simple model for
the pion [1], where the pion—quark—antiquark pseudoscalar coumbhffg,(qg) yields the correct symmetry, while
the non-perturbative aspects come from a momentunoffutiimicking the size of the pion, but still preserving
gauge invariance. This freed us from the question of what would be the detailed inner structure of the meson.
In that calculation, owing to the introduction of such a cut-off, crossed diagrams for the pion—photon scattering
appear as higher twists, leading twist structure functions can be identified, and a reduction of the momentum
fraction carried by the quarks is observed. Of course, as the cut-off is relaxed to let the quarks behave freely, the
momentum sum rul€x) = 1 is recovered at infinit®2. Having that tool at hand, we now turn to the investigation
of the properties of off-diagonal parton distributions, which are likely to shed some light on parton correlations and
which have therefore attracted much interest in recent years [6—11].

In the following, we calculate the imaginary part ogtbff-forward photon—pion sti&ring amplitude, and of
the structure functionsy, ..., Fs, related to the five independent tensor structures in the scattering amplitude, and
we discuss their behaviour. We relate them to vector and axial vector form factors and to the twist-two and twist-
three generalised parton distributions (GPBE) H3 and H3. We shall show that, within our model and in the
high-02 limit, the non-diagonal structure functiods and F, are related ta<;, while Fs happens to be a higher
twist. These results lead to new relations for the GPDs in the neutral pion case.

2. General tensorial structure of the y*r — y*x amplitude

2.1. External kinematics

Let p1 and p» be the momenta of the ingoing and outgoing piegasandg2 those of the corresponding photons
(see Fig. 1). Defining

(p1+ p2) (91+ q2)
=0 q=———"F5 A=p2—p1,
2 2
one can then write the scattering amplitude as a function of the Lorentz invariants
2
A-
[:AZ, Q2=—q2, X = Q N =—q
2p-q 2p-q

In the elastic limit, characterised by

(+3) =(-3)

one hasA - g = 0 and thust = 0, while the diagonal limit 4 = 0) is obtained fot = 0 ands = 0. We further
recover the Bjorken variable= xg, where
__ 4
2p1-q1
For virtual Compton scattering (VCS), for which the outgoing photon is on-shdlrelated tox through

AZ
s=—x(1-452)

Hence, in the deeply virtual Compton scattering (DVCS) limi 02 and¢ = —x.

XB =
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Fig. 1. The simplest diagrams contributing to the imaginary part of the amplitude for the scajtéting y*z. Upper (lower) diagrams are
referred to as box (crossed) diagrams. Dashed lines represatistbatinuity of the amplitudes, i.e., their imaginary parts.

2.2. The structure functions F;’'s

The hadronic tensor is defined through

Tun(gop. &) =i / d*r €7 (pal Tju(r/2) jo(=r/2) o). )

There exist five independent kinetital structures in Eq. (1) that pametrise the photon—pion amplitude.
Defining the projector

q2u91v
q1-4q2

Puu =8uv —

and making use of these five structures, we can rewJiteas follows:

P T TP ) T(AT — 26pT) + (AT — 26p°) pT)P.
Tuv(q, P, A)Z—PuagarlpruFl‘i‘ uo P .P qu2+ o (P° ( Ep") +( sp°)pT) Tqu

2p-q
o T _ Ty o __ o\ T
+P,w(p (AT —2Ep*) — (A9 —26p)p )PwF4
2p-q
+ Puo (A% — 26p?) (A" — 2EpT) Py Fs. (2

Current conservation is ensured by means of the proj@gter Our notation slightly differs from Ref. [5]: we
have included a factor/]w?, in the definition of F5 in order to avoid divergences when the chiral limit is taken.
Note that Bose symmetry requirés, F», Fs, F5to be even and’s to be odd ing.
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3. Themodel
3.1. General description

We use the pion model introduced in our previous work [1], in which¢he vertex is represented by the
simplest pseudoscalar coupling. The Lagrangian includessive pion and massive quark fields interacting through
the pseudoscalar vertex, with an effective pion—quark coupling constant.

Considering an isospin triplet pion field = (x*, 7% =) interacting with quark fieldss the Lagrangian
density reads

Lin=ig(yTysy) - 7, (3)

wherert is the isospin vector operator.

Of course, if our pseudoscalar field is to represent real pions, we have to impose that the corresponding hadrons
have a finite size. That we shall do through the use of a cut-off, as detailed below, the choice of which sets a
constraint on the value of the quark—pion coupling constant [1].

We shall limit ourselves in this Letter to the calculation of the imaginary part of the scattering amplitude, which
allows a direct comparison with our previous work and ethis sufficient to determine the GPDs of neutral pions
[5].

At the leading order in the loop expansion, four diagrams contribute. They are displayed in Fig. 1. Following
the kinematics defined in Section 2.1 and applying Feynman rules, it is straightforward to write down the
analytical expression for the scattering amplitude. For a givep sebf the photon indices and with well-known
conventions the contribution of the first diagram (a) shown in Fig. 1 to the scattering amplitude reads

k+5+m
Mg”=323+2/d4kTr( 5((k — ) + 5 s tmg
g°(ex +¢7) v (K —p)+mg)y (k—l—%)z—mgy
k‘%"‘mq
*+q)+ " ) 4
<y @)

Expressions from the other three diagrams of Fig. 1—the one with reverse loop-momentum and the two crossed
diagrams—are similar and are not written down. Results below all pertain to the chirahlimitO.

3.2. The implementation of the cut-off

A simple way to impose that the pion has a finite size is to require that the square of the relative four-momentum
of the quarks inside the pion is limited to a maximum valtfe Before writing this explicitly, let us give the details
of the internal kinematics, i.e., the one involving the loop-momentubret ¢ ando be the spherical angles bf
with respect to the-axis taken as the direction of the incoming photon. Defirtifig- k|? andt = k? = k3 — k2,
and using spherical coordinates, we write the element of integration as:

d*k = dkodk, k3 d(cost) d¢, ()

3TmS%WWM@MM@%+%mmmwm%mmeMMMQmmmmmewmmmm

Sl G2 R R R (S I (L
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or with the help of the variable:

k
d*k = dkg ?" dt d(cost) d¢. (6)

According to Cutkosky rules, the imaginary part of the amplitude is obtained by putting the intermediate quark
lines on shell. This is realised by the introduction of the two delta functitis+ ¢)? —m?) ands ((k — p)*> —m3).
Working out the delta functions, we obtain that:

1 1
8((k +q)? —m?)8((k — p)® — m2) = ———8(cosd — cosHp) =—=8 (ko — kp), 7
(k+q) mq) (( p) mq) TR ( O)zﬁ (ko — ko) (7)
Zkoqo—QZ—mg-i-T , Qz—i—mﬂ—%1
2k, 1| P00 25
Finally, the element of integration over the internal momentum, considering only the imaginary part of the
amplitude, reads:

with cosfp=

1 [45x202 + (1 20)20
L with (3] = — (BT T 720707
2x s

d*k=dtd¢

1
= (8)
8/s1ql
The boundary values of the integration domainroawre obtained by solving cog = +1.

Now we may look at the effect of the finite size of the pion on the integration procedurekufdme relative
four-momentum squared of the quarks inside the pion is given by

ko:ké, €09 =Cc0SYg

% t
0f=(Zk—piE> =2r+2m§—m§+§i2k-A, (9)
for pion—quark vertices like the ones in diagram Fig. 1(a), and by

2 2 2
05 = (2k—p+2q:|:é) = —2r +6m? —m3 + Lo 2£:|:2(koA+£), (10)
2 2 X X
for vertices as in diagra Fig. 1(b). Note that - A is a known function of the external variables as well a& ahdz.
Generalising the procedure of [1], we require eitr@ﬁ < A%o0r |02i| < A2 for all diagrams. Gauge invariance
is preserved by the cut-off, sin¢9l.i| depend only upon the external variables of e — ¢4 process.
As the 0;'s andt are always negative, we require one of the two following conditions:

2 2
r>i+%—m2—£+|k~A|,
2 T2 "My
A2 mZ t 2 2
R A R e -

Fort small,|O1] and|O2| cannot be small simultaneously. The crossed diagrams have their main contribution
for 01~ 07, and are thus suppressed by a powéy 0% when the cut-off is imposed. The box diagrams have a
leading contribution forO1| or | 02| small, and are not power suppressed by the cut-off.

It may be worth pointing out that the vertical propagators are more off-shell in DVCS than in DIS, hence one
would expect DVCS to be better described by perturbation theory than DIS.
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3.3. The coupling constant

In the diagonal case, we have determined the coupling congtant,,, by imposing that there are only two
constituents in the pion. This sum rule constraifitas follows [1]:

1

5
/ Fi(x)dx = I8 (12)
0

As F1 /g2 is a priori a function of02, the sum rule imposes thashould be a function of?. But at high enough
02, where the details of the non-perturbative interaction are less and less releyayftreaches its asymptotic
shape when the cut-off procedure is applied, and we obtain a constant valglelfoRef. [1], this asymptotic
regime was reached f@? as small as 2 Ge¥ In the following, we shall make use of these previously obtained
values, which are functions of the cut-off

However, in the DVCS case, an ambiguity may arise asobtige vertices has an external kinematics similar to
a vanishingQ? DIS. This ambiguity is lifted if one notices that the pertinent quantities arqfwandqg separately
but the factorisation scale, which may be taken as the square of their @éafhus in DVCS, aIthougtq%
vanishesQ? does not and we shall consider tlgais constant.

4. Reaults
4.1. General features

From the imaginary part of the total amplitude, the five structure functipremn be obtained by a projection
on the corresponding tensors. From now dnhwill stand for the imaginary part of these structure functions. In
order to display their general features, we plot them in Fig. 2 first as functionsaofl¢ for parameter values
m, = 0.3 GeV andA = 0.75 GeV, to ease the comparison with [1], and % = 10 Ge\? andt = —0.1 Ge\2.
Let us notice that for any fixed value &fnot close tot1, we recover forF; and F»> the same behaviour as in the
diagonal case. We checked indeed that the diagonal limit is recoverédf@ and r= 0. Let us notice also that
the structure functionsgs, Fs, F5 depend little org except when this variable is closed.

Let us turn now to DVCS. Fig. 3 displays the behaviougffor various values of with and without cut-off.
In the presence of size effects, the valueFafgets significantly reduced, especially for smallas|¢| increases,
whereas that effect is muchsie noticeable without cut-off.

Inthe elastic case (see Fig. 4), the same suppression atsipalbserved, especially when the cut-off is applied.
In Fig. 5, we display the average value of @ith respect to the; distribution. The value of2x) increases when
|t] increases. The momentum fraction carried by the quarks and probed by the process thus increases with the
momentum transfer.

The effects of the variation of? are displayed in Fig. 6. As in the diagonal case [1], we can conclude that the
details of the non-perturbative effects cease to mattegfogreater than 2 Ge/ that is significantly larger than
A2. On the other hand, when the cut-off is not applied, we see (Fig. 6(b)Fihetolves so slowly withQ? that
the asymptotic state is not visible.

4.2. High-Q2 limit: new relations

Having determined the 5 functiorg’s in the context of our model, we shall now consider their behaviour at
high Q2. Expanding the ratios a2/ F1, F3/ F1, F4/ F1, Fs/ F1, we obtain the following asymptotic behaviour:
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The fact that at leading order there are only three independent structure functions has been known for some

10 Ge\2 and
time [5,10]. However, we show here that they can all be obtained fronThe first relation is similar (at leading

0.75 GeV, atQ? =

.8

(e)

0 0.1 02 03 04 05 06 07 0
X

2),

F,=2xF1+0(1/Q
order in 7/ 02 and with the replacement af by x) to the Callan—Gross relation between the diagonal structure

Fig. 2. Plot of the five struare functions as functions of (€ [0, 1]) and¢ (e [—1, 1]) with a cut-off A

t =—0.1Ge\”.
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Fig. 6. F1 as a function of for r = —0.1 GeV2 and for various values ap? in the DVCS case with (a) and without (b) cut-off.

functions F; and F», valid for spin one-half constituents in general. Except fgr which is small at IargeQz,
these relations show th@b, F3 and F4 are simply related ta; at leading order. These relations clearly display
and therefore confirm the symmetries of these functions. Combining Egs. (14) and (15), we have, at leading order,

F3=E&F,, (17)

which confirms that is an odd function o€, while F4 is even.

The simple relations between thE’s (at leading order) constitute a remarkable result of our model.
Furthermore, we checked that the te1/Q?) in Eq. (13) is numerically quite small, even for modergé.
One may wonder whether these results are typical of our model or more general.

5. Linking the F;’sto H, H3, and H®

Having at hand the five functiong’s that parametrise the amplitude fpt7 — y*m, we would like to link
them to the off-forward parton distribution functions or to the generalised parton distributions. For this purpose,
we make use of a tensorial expression coming from the twist-three analysis of the process, which singles out the
twist-two H and the twist-thre@(3, 743 form factors. Following Ref. [5], we writé:

o

- Vi V. . Aq
T;w (g, p,A)= _Paug”rpvr ;]P—C] + (Paupﬂpup + Ppupﬂpva)p—.zq - Pa/Lle(rrquvr 2p .,Oq s (18)
where theV;’s and A; read
Vip =2p,H + (A, — 2Ep,)H + twist 4, (19)
. )
A, = Yrapq 73 (20)
pP-q
X Pp [ €p0Aq 4o ;
Voo =xV1, — -——¢q - V1 + ——A7 +twist 4. (21)
P ’ 2p-q 4pqt

4 please note that Ref. [5] us®s,, instead ofP,, as projector.
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In Ref. [5], gauge invariance of Eq. (18) beyond the twiskee accuracy was in fact restored by hand, contrarily to
the present calculation for which the amplitude is explicitly gauge-invariant.

To relate theF;’s to the’H's, we project the amplitude (18) onto the five projectors contained in Eq. (2) and
identify the results with theF;’s. Note that, in the neutral pion case, the imaginary part of the form fagtors
directly gives the GPD$4, H3 and A3 up to a factor 2 As we have kept the off-shellnesses of the photons
arbitrary, we in fact can relate the imaginary partgpfo the GPDs for arbitrary andé:

1
5 FL=H. (22)
1 1
ngzszHD(@), (23)
1 ~ 1
gFg:xz_EZ(H3x2+H3$x—Hé)+0(§), (24)
1 2x ~ 1
§F4=m(H3§x+H3 2—Hx)+(’)<§), (25)
1 1
2:1=9( o) (26)
Replacing theF;’s by the expressions (13)—(16), we can write
- x-121 1
H®=——"_H 0(—), 27
@1 o\ @)
s_ (x—D§ 1 (28)

¢2-1

0 0.2 0.4 0.6 0.8 1

-0.5 |- -

-1 1 1 1 1 1 1 1 1 1
0 0.2 04 06 0.8 1 0 02 04 06 038 1

x T
Fig. 7. A comparison of the values &3 and A3 obtained in our model (left) with those calculated in the Wandzura—Wilczek approximation,
using the value off from our model (right), forQ2 = 10 Ge\2.
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As F; to F4 can be written in term of only one of them, e.f, it is not surprising that/® and A2 are simply
related toH . Note that polynomiality of the Mellin moments &f, H3 and A3, together with Egs. (27) and (28),
imply that H must be a polynomiaPy multiplying €2 — 1. The fact that, as can be seen from Figi3.is almost
independent of shows thatPy is very close to a constant.

To convince ourselves that relations (27) and (28) are new, we have compared them to the Wandzura—Wilczek
approximation [12], given in the pion case in [5,13]. First of all, it is well known that these relations are
discontinuous a¢ = +x, which is not the case for (27) and (28). Furthermore, we show in Fig. 7 the results of the
Wandzura—Wilczek approximation compared with our resiiifs see that the two are numerically very different.
Hence, the relations (27) and (28), derived in an explicitly gauge-invariant model, do not come from “kinematical”
twist corrections, but emerge from the dynamics of the spectator quark propagator and from finite-size effects.

6. Discussion and conclusion

We have extended our previous model for the pion to investigate the off-diagonal structure functions for this
particular case. The introduction of a cut-off allows the crossed diagrams to behave as higher-twists and to relate
the imaginary part of the forward amplitude with quark GPDs.

We used the formalism of Ref. [5] in order to decompose the amplitude along the relevant Lorentz tensors,
to define five structure functiong, and to relate the latter to the GPBE H3 and H3 introduced in the twist
analysis. We have found that our results in the forward case are qualitatively preserved when departing from the
forward limit.

Our investigation yields new results. In particular, we singled out new relations, which lirk e a simple
manner at leading order in/D2. More intriguing, we found that the twist-three structure functions are simply
related toH by relations that differ from the Wandzura—Wilczek approximation.

Although these relations are derived in the context of our simple model, it is possible that they can be extended
to a more general case.
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