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Abstract 

The PAMELA experiment is gathering data since 2006 on board the Resurs DK1 satellite (orbit with  inclination 70.4°, the 
altitude  350-600 km). The instrument consists magnetic spectrometer, silicon-tungsten imaging electromagnetic calorimeter, 
neutron detector and shower scintillator that  gives possibility to measure electron and positron fluxes over wide energy range 
from  hundreds MeVs to hundreds GeVs. Results of the experiment indicate the presence of a large flux of positron with respect 
to electrons in the CR spectrum above 10 GeV. This excess might be originated through dark matter annihilation or in local 
astrophysical objects such as pulsars producing possible spatial and season variations. Electron and positron events have been 
analyzed searching for spatial and temporal variations from  June 2006 till January 2014. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute). 
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1. Introduction 

New measurements of the electron–positron ratio in the PAMELA, FERMI-LAT, and AMS-02 experiments [1–3] 
showed that it increases along with energy starting at 5 GeV. The conventional cosmic ray propagation model 
assumes that all positrons are produced in the interaction between high energy cosmic rays with interstellar gas and 
ratio is decreasing with energy above several GeV. The observed increase suggests there is an additional source of 
positrons in cosmic rays. It is believed that pulsars or annihilation or decay of hypothetical dark matter particles 
could produce the positron excess. Important data on the spatial distribution of sources and thus their nature can be 
obtained by studying the anisotropy of positrons and electrons. Although positrons and electrons travelling through 
the interstellar medium are deflected in magnetic fields, the diffusion theory predicts anisotropy that can be observed 
experimentally. For example, the anisotropy of high energy (E~ 1TeV) electrons could be up to ~10% for the nearest 
young pulsars like Vela [4]. It might be possible also that positrons are originate from a local source. In particular, in 
some dark matter models [5] a significant fraction of positrons near the Earth could be produced in the neighborhood 
of the Sun direction. In this case, searches for anisotropies and season time variations of fluxes can provide unique 
information on the source. Observing the anisotropy of positron and electron fluxes could thus allow us to 
distinguish the sources associated with nearby astrophysical objects (the Sun, pulsars, supernovae, molecular clouds, 
etc.) from the radiation of dark matter clumps. In the latter case, the expected anisotropy of fluxes would not exceed 
1%. In the papers [6] a directional analysis of sum of cosmic ray electrons and positrons measured by Fermi-LAT 
was preformed and an upper limit on the flux from the Sun was derived. No significant anisotropy been found in the 
ratio of the positron intensity to the total electron and positron intensity at energies above 16 GeV [3] in the galactic 
coordinate system. Direct study of positron flux anisotropy might be more efficient, since the contribution from the 
isotropic secondary component is small relative to any additional source at energies higher than ~10 GeV. 

2. Experiment 

The Magnetic spectrometer is composed by a permanent magnet of 0.4 T and a silicon tracker. The tracker has 6 
planes of high-precision silicon microstrip detectors equally spaced inside the magnetic cavity. Both sides of each 
detector are divided in strips, providing X and Y coordinates of particle track. It allows to reconstruct the particle 
trajectory through the magnetic cavity and determinate its rigidity.  The measured spatial resolution of the tracker is 
4 μ on the bending side and 15μ on the magnetic unbending side. This device is used to determine the rigidity and 
the charge of particles. The rigidity measurement is done through the reconstruction of the trajectory based on the 
impact points on the tracker planes and the determination of the curvature into magnetic field. Direction of bending 
is used to determine particles sign-of-charge, e.g. to separate electrons and positrons.  The extrapolation of the 
particle trajectory on the top of the instrument allows to determine the particle incident angles with accuracy ~2 
degree. The satellite is 3-axis stabilized. Its orientation is calculated with accuracy better than 1 degree in geocentric 
equatorial inertial reference frame. Knowing the satellite position and the satellite inclination at the time of  event 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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registration, it is therefore possible to reconstruct the  incoming direction of measured particles in space. The 
imaging calorimeter (16.3 X0) is mounted below the spectrometer. It comprises 44 single-sided silicon strip detector 
planes interleaved with 22 plates of tungsten absorber. The main task of the calorimeter is selection of positrons and 
antiprotons from the background of protons and electrons, respectively. This background is about 103 times the 
positrons component at 1 GeV/c and increasing to ~104at 100 GeV/c. The strip detectors provide detailed 
information on topology of showers of interacting particles that provide rejection factor of protons up to ~105. Used 
selection criteria of events are similar to described in paper Adriani et al. [1] and were combined with neutron 
detector data to reduce background contamination. The measuring the electromagnetic shower energy gives 
possibility also to obtain  kinetic energy of positrons and electrons up to ~100GeV.  

3. Data analysis and results 

For this study we have used electrons and positrons collected from July 2006 up to January 2014. First of all, 
positrons have to be identified from a background of protons. In this work we choose the cut thresholds to provide 
residual proton contamination less then 10% in positron sample. Primary cosmic ray particles were selected with 
condition that their measured rigidity R is more then 1.2Rc, where Rc is vertical geomagnetic cut-off. Secondly, for 
each detected particle a arrival direction was reconstructed using trajectory inside the instrument and the satellite 
position and orientation on the orbit. To take into account deflection of particles in the Earth magnetic field above 
the satellite orbit special tracking program was applied. The trajectories of all selected particles were propagated 
back  from the measurement location until they reached an altitude 20x103 km (about 3 radius of the Earth) using 
IGRF model  and known particle rigidity. Geographic reference frame was used for computations.  To perform the 
transformations between the coordinate systems  formulae from  paper [7] were used. 
 

 

 

Fig. 1. Examples of trajectories of electrons and positrons measured by PAMELA . 
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Fig. 2. Electron map in galactic reference frame (long
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Fig. 4. Significance map of the  positrons measured by PAMELA in  galactic coordinates. 

To search for anisotropies of positrons due to local sources , e.g. solar DM annihilation, an isotropic map is 
required. In this analysis electron fluxes were compared with the measured positron maps. Before this comparison 
all events were backtracking to take in to account deflection in geomagnetic field. Figure 3 shows observed map 
(left) and obtained after correction map for electrons. To compare maps an significance S was calculated using 
formulae from paper [8]. Comparing two maps we do not find evidence positron anisotropy  in energy range  
between 16 GeV to 100 GeV in a equatorial  frame and also in solar rest frame. An example of significance 
distribution for energy E>20 GeV is shown in figure 4.  Above 70 GeV statistical accuracy  is not enough to make 
definite conclusion  

4. Conclusion 

Arrival directions of all electrons and positrons were used to build a sky map  of observed positrons and 
electrons. Spatial distributions of positrons  in a equatorial  frame were reconstructed based on PAMELA instrument 
data taken from July 2006 to November 2014 on board the satellite Resurs-DK. To take into account  the Earth 
magnetic field  the  backtracking procedure was applied to reconstruct particles directions in interplanetary space 
outside magnetosphere. To search for anisotropous due to local sources , e.g. solar DM annihilation, isotropic maps 
of fluxes were simulated to be compared to the measured maps.   No evidence was found for positron anisotropy  in 
in a equatorial  and also in galactic  frames .  
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