
J
H
E
P
0
7
(
2
0
1
4
)
0
5
1

Published for SISSA by Springer

Received: May 3, 2014

Accepted: June 4, 2014

Published: July 10, 2014

Adinkra ‘color’ confinement in exemplary off-shell

constructions of 4D, N = 2 supersymmetry

representations

S. James Gates Jr.a and Kory Stifflerb

aCenter for String and Particle Theory, Department of Physics, University of Maryland,

College Park, MD 20742-4111 U.S.A.
bDepartment of Chemistry, Physics, and Astronomy, Indiana University Northwest,

Gary, Indiana 46408 U.S.A.

E-mail: gatess@wam.umd.edu, kmstiffl@iun.edu

Abstract: Evidence is presented in some examples that an adinkra quantum number,

χo (arXiv: 0902.3830 [hep-th]), seems to play a role with regard to off-shell 4D, N = 2

SUSY similar to the role of color in QCD. The vanishing of this adinkra quantum number

appears to be a condition required for when two off-shell 4D, N = 1 supermultiplets form

an off-shell 4D, N = 2 supermultiplet. We also explicitly comment on a deformation of the

Lie bracket and anti-commutator operators that has been extensively and implicitly used

in our work on “Garden Algebras” adinkras, and codes.

Keywords: Extended Supersymmetry, Superspaces

ArXiv ePrint: 1405.0048

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2014)051

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81183684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gatess@wam.umd.edu
mailto:kmstiffl@iun.edu
http://arxiv.org/abs/1405.0048
http://dx.doi.org/10.1007/JHEP07(2014)051


J
H
E
P
0
7
(
2
0
1
4
)
0
5
1

Contents

1 Introduction 2

2 A mathematical background question 3

3 Building N =2 supermultiplets from N =1 supermultiplets 3

3.1 Building an N =2 supermultiplet from chiral + chiral N =1 supermultiplets 5

3.2 Building a N =2 supermultiplet from chiral + vector N =1 supermultiplets 8

3.3 Building an N =2 supermultiplet from chiral + tensor N =1 supermultiplets 9

3.4 Building an N =2 supermultiplet from vector + vector N =1 supermultiplets 10

3.5 Building an N =2 supermultiplet from tensor + tensor N =1 supermultiplets 13

3.6 Building an N =2 supermultiplet from vector + tensor N =1 supermultiplets 15

3.7 Summary of building N =2 multiplets from N =1 multiplets 17

4 Adinkra ‘color-like’ confinement rules for 4D, N =1 reps within off-shell

N =2 supermultiplets 18

5 Seeing ‘Kye-Oh’ in 4D, N =1 supermultiplets without 0-brane reduction 19

6 A Garden Algebra/unconstrained superspace prepotential formulation

no-go conjecture 23

7 Conclusion 24

A Chiral + chiral L, R matrices 26

B Chiral + vector L, R matrices 26

C Chiral + tensor L, R matrices 26

D Vector + vector L, R matrices 27

E Tensor + tensor L, R matrices 27

F Vector + tensor L, R matrices 28

G qGR bracket example calculations 28

– 1 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
1

1 Introduction

For a number of years, we have been developing a “Garden Algebra”, Adinkras, and

Codes [1]–[13] approach for providing a deeper understanding of puzzling aspects of why

and how supersymmetric off-shell representation theory works as it does. The basis of

this is our conjecture that off-shell supersymmetrical representation theory should share

as many as possible features with the representation theory of Lie compact algebras, but

must be distinctive is some ways. Let us use su(3) as an exemplar of the former.

For su(3) it is well accepted that the fundamental representations, provided by quark

triplets and anti-quark triplets, give the basic degrees of freedom from which to understand

all representations of baryonic matter. In the work of ref. [18], it was proposed that there

exist fundamental objects, given the names ‘cis-adinkras’ and ‘trans-adinkras’, which play

a similar role in the context of 4D, N = 1 supermultiplet representations. However, within

the work of [19], it was shown that there is a degeneracy in the ‘trans-adinkras’, that can

be recognized by considering the representation theory of the permutation group S4 and

which is embedded in all adinkras with more than four colors. This allows the imposition

of an intrinsic class structure on adinkras and these classes become relevant for defining

how adinkras are related to the higher dimensional supermultiplets.

So the final result of our analysis is that there are three distinct off-shell adinkra classes,

which can be identified with the 4D, N = 1 chiral, vector and tensor supermultiplets, that

are the irreducible supersymmetry or SUSY equivalent to quarks. Just as all hadronic

matter can be regarded as composites of p quark triplets and q anti-quark triplets (here p

and q are simply integers), our research suggests all off-shell 4D, N = 1 supermultiplets

may be regarded as composites of p chiral valise adinkras, q vector valise adinkras and r

tensor valise adinkras (where p, q, and r are integers).

Although the Quark Model is now well accepted as being of fundamental importance

to describing hadronic matter and its interactions, it is often forgotten that one of the

major reasons the Quark Model was initially accepted had to do with the discovery of

the Ω− composed of three strange quarks and first seen in 1964. This particle had been

predicted by the Quark Model prior to being seen in the laboratory and was a true ‘smoking

gun’ indicating the validity of the Quark Model as an accurate description of physics in

Nature. Furthermore, analysis of the statistics of composites in the Quark Model led to

the discovery of color [14–17], the fiftieth anniversary of which has most recently been

celebrated.

In this work, we provide more compelling evidence to support the assertion about an

adinkra-based model of off-shell supersymmetric 4D, N = 1 representations. Of course,

since SUSY has not yet been seen in the laboratory, our evidence must perforce be purely

mathematical. An assertion such as we have made ought to have implications for the struc-

ture of off-shell SUSY representations that go beyond the simple one-dimensional context

used to discover the three foundational adinkras. We demonstrate one such implication in

this work.

– 2 –
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2 A mathematical background question

Some time ago, the topic of q-deformation of the usual Lie bracket

[
A , B

]
= AB −BA →

[
A , B

]
q
= AB − q BA , (2.1)

where −1 ≤ q ≤ 1, was subject to numbers of studies (see for example [20, 21]). We have

not formally commented previously, but in some ways the work of [1–3] can be interpreted

in a similar manner. One can imagine two operators defined by

[
A , B

]
qGR>

= A (BT)− q B (AT) ,
[
A , B

]
qGR<

= (AT)B − q (BT)A ,
(2.2)

acting on matrices A and B. The quantities (AT) and (BT) correspond to the respective

transposed matrices. This bracket (for q = −1) has shown up as part of the mathematical

foundation of the structures we call the ‘Garden Algebras’. It is an interesting question (to

which we do not possess an answer) as whether our use of such brackets can be extended in

other ways? One such possibility would be to ask whether such a bracket admits analogs

of Lie algebras?

To use matrices in such a construction we would begin with some set {G} with N

elements denoted by g1, g2, . . . , gN and impose upon them the conditions

[
A , B

]
qGR>

= i f>AB
C h>C ,

[
A , B

]
qGR<

= i f<AB
C h<C ,

(2.3)

where h>C and h<C are other matrices and f>AB
C and f<AB

C are analogous to structure

constants. One other feature of the “qGR” brackets in (2.2) is that they permit non-

diagonal matrices to be used in their calculations. Thus, if A is a dL × dR and B is a

dR × dL matrix, then h>C will be a dL × dL matrix and h<C will be a dR × dR matrix.

We have long used these properties on our previous works investigating Garden Algebras,

adinkras, and codes.

3 Building N =2 supermultiplets from N =1 supermultiplets

The basic idea of ‘Garden Algebras’ is very simple. The bracket operations above are used

to impose upon the N elements Clifford algebra-like conditions

[
gA , gB

]
(−1)GR>

= 2 δAB I ,
[
gA , gB

]
(−1)GR<

= 2 δAB I , (3.1)

where I is the identity map and both equations are valid for all values of A and B. When

the elements satisfy these conditions, we say g1, g2, . . . , gN forms a “Garden Algebra”. The

set {G} can be subject to the more stringent requirement that it form a group. However,

this is not a requirement. There is no a priori choices made for the group G. The question of

whether all groups allow non-vanishing solutions to these conditions is unknown. However,

when G is picked to be one of the orthogonal groups O(d), these have been found to be

important for the representations of space-time supersymmetry realized off-shell.

– 3 –
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The Garden Algebras (GA’s) go back to the oldest part of our system of analysis [1–3]

and when coupled with the SUSY Holography conjecture [4] assert all supermultiplets that

are off-shell and possess no central charges must be representations to which the 0-brane

reduction leads to a set of matrices (LI) that satisfy

(LI)i
̂ (RJ)̂

k + (LJ)i
̂ (RI)̂

k = 2 δIJ δi
k,

(RJ)ı̂
j (LI)j

k̂ + (RI)ı̂
j (LJ)j

k̂ = 2 δIJ δı̂
k̂,

(3.2)

(RI)̂
k δik = (LI)i

k̂ δ
̂k̂
, (3.3)

which we have denoted as the “GR(d,N) Algebras”. Here the indices have ranges that

correspond to I, J, · · · = 1, . . . ,N; i, j, · · · = 1, . . . , d; and ı̂, ̂, · · · = 1, . . . , d for some integers

N, and d. For this paper, we mostly consider the cases of N = 8 (for 4D, N = 2) and N = 4

(for 4D, N = 1) 1d, SUSY.

However, there are closely related algebraic structures that we denote as the “GR(dL,

dR, N) Algebras” that satisfy

(LI)i
̂ (RJ)̂

k + (LJ)i
̂ (RI)̂

k = 2 δIJ δi
k +∆IJi

k,

(RJ)ı̂
j (LI)j

k̂ + (RI)ı̂
j (LJ)j

k̂ = 2 δIJ δı̂
k̂ + ∆̂IJ ı̂

k̂,
(3.4)

(RI)̂
k δik = (LI)i

k̂ δ
̂k̂
. (3.5)

Here the indices have ranges that correspond to I, J, · · · = 1, . . . ,N; i, j, · · · = 1, . . . , dL;

and ı̂, ̂, · · · = 1, . . . , dR for some integers N, dL, and dR and for some quantities ∆IJi
k

and ∆̂IJ ı̂
k̂. Past experience [18] has shown us that when there are off-shell central charges

present in the higher dimensional theory, these cast ‘shadows’ in the 1D models in the form

of the non-vanishing values of the quantities ∆IJi
k and ∆̂IJ ı̂

k̂.

The strategy of this section is to start with some well-known 4D,N = 1 supermultiplets

to explore the possibility of constructing 4D, N = 2 supermultiplets. The reason this works

conceptually is described below.

Let some 4D, N = 1 supermultiplet denoted by {A} possess an action S1(A|A)

quadratic in its fields and invariant under the action of an off-shell SUSY operator Da.

This means that

Da

[
S1(A|A)

]
= 0 , (3.6)

up to total derivative terms, and it is off-shell if the condition

{
Da , Db

}
= i 2(γµ)a b ∂µ , (3.7)

is satisfied on all fields without regard to any field equations. A second such 4D, N = 1

supermultiplet, with the same number of degrees of freedom, denoted by {B} will possess

its own invariant action S2(B|B) that satisfies the same property. Denoting the SUSY

operator above by D1
a, it follows that D

1
a satisfies

D1
a

[
S1(A|A) + S2(B|B)

]
= 0 , (3.8)

– 4 –
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from its linearity. However, this statement guarantees that a second invariance generated

by an operator D2
a satisfying

D2
a

[
S1(A|A) + S2(B|B)

]
= 0 , (3.9)

must also exist. The realization of this second operator is such that it maps the bosons in

the {A} supermultiplet into the fermions of the {B} (using the same equations as were the

case of the fermions in the A-multiplet) and maps the fermions in the {A} supermultiplet

into the bosons of the {B} (using the same equations as were the case of the fermions in

the B-multiplet) that allowed the realization of D1
a.

So we have a second fermionic invariance, but is it an on-shell or off-shell supersym-

metry? To answer this requires calculating the anticommutator algebra of D1
a. and D2

a on

all the component fields. There is nothing in the above construction that guarantees that

the two fermionic generators must form an extended off-shell 4D, N = 2 supersymmetry

algebra and one must check on a case-by-case basis. In the following, we will carry out

such checks using the familiar 4D, N = 1 chiral, vector, and tensor supermultiplets to play

the roles of {A} and {B}. We will show that an interesting dichotomy emerges.

3.1 Building an N =2 supermultiplet from chiral + chiral N =1 supermulti-

plets

Among the first discussions of a 4D, N = 2 supermultiplet containing only propagating

field of spin-1/2 or less is the work by Fayet [23] in which there appears a citation to a

work by Wess [24] as providing the initial discussion of the ‘W-F hypermultiplet’. For the

sake of completeness we review these results.

The transformation laws for the W-F hypermultiplet containing the Chiral-Chiral mul-

tiplet combination are (our notational conventions can be found in the [18])

Di
aA = (σ3)ijψj

a , Di
aB = i(γ5) b

a ψ
i
b ,

Di
aF = (σ3)ij(γµ) b

a ∂µψ
j
b , Di

aG = i(γ5γµ) b
a ∂µψ

i
b ,

Di
aÃ = (σ1)ijψj

a , Di
aB̃ = −(σ2)ij(γ5) b

a ψ
j
b ,

Di
aF̃ = (σ1)ij(γµ) b

a ∂µψ
j
b , Di

aG̃ = −(σ2)ij(γ5γµ) b
a ∂µψ

j
b ,

Di
aψ

j
b = i(σ3)ij

(
(γµ)ab∂µA− CabF

)
+ δij

(
− (γ5γµ)ab∂µB + (γ5ab)G

)

+ i(σ1)ij
(
(γµ)ab∂µÃ− CabF̃

)
+ i(σ2)ij

(
− (γ5γµ)ab∂µB̃ + (γ5ab)G̃

)
,

(3.10)

where i = 1, 2 labels the two supersymmetries, and

(σ0)ij = δij . (3.11)

The following Lagrangian is invariant with respect to these transformations:

L = −1

2
∂µA∂

µA− 1

2
∂µÃ∂

µÃ− 1

2
∂µB∂

µB − 1

2
∂µB̃∂

µB̃

+
1

2
F 2 +

1

2
F̃ 2 +

1

2
G2 +

1

2
G̃2 +

1

2
i(γµ)cdψi

c∂µψ
i
d ,

(3.12)

– 5 –
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which is easily seen to be the direct sum of the N = 1 invariant Lagrangians for the

separate (A, ψ1
c , F ) chiral supermultiplet and the (Ã, ψ2

c , F̃ ) chiral supermultiplet. Direct

calculation yields the following algebra:

{
Di

a,D
j
b

}
A = δij2i(γµ)ab∂µA+ i(σ2)ij2iCabF̃

{
Di

a,D
j
b

}
Ã = δij2i(γµ)ab∂µÃ− i(σ2)ij2iCabF

{
Di

a,D
j
b

}
B = δij2i(γµ)ab∂µB + i(σ2)ij2iCabG̃

{
Di

a,D
j
b

}
B̃ = δij2i(γµ)ab∂µB̃ − i(σ2)ij2iCabG

{
Di

a,D
j
b

}
F = δij2i(γµ)ab∂µF + i(σ2)ij2iCab�Ã

{
Di

a,D
j
b

}
F̃ = δij2i(γµ)ab∂µF̃ − i(σ2)ij2iCab�A

{
Di

a,D
j
b

}
G = δij2i(γµ)ab∂µG+ i(σ2)ij2iCab�B̃

{
Di

a,D
j
b

}
G̃ = δij2i(γµ)ab∂µG̃− i(σ2)ij2iCab�B

{
Di

a,D
j
b

}
ψk
c = δij2i(γµ)ab∂µψ

k
c − (σ2)ij(σ2)kr2iCab(γ

µ) d
c ∂µψ

r
d .

(3.13)

From the results in eqs. (3.13) we can see there must be an additional symmetry of

the Lagrangian with respect to the variations:

δA = PF̃ , with δF̃ = −P�A (3.14)

δÃ = PF , with δF = −P�Ã (3.15)

δB = PG̃ , with δG̃ = −P�B (3.16)

δB̃ = PG , with δG = −P�B̃ (3.17)

δψk
c = P (σ2)kr(γµ) d

c ∂µψ
r
d , (3.18)

where P is a constant parameter. In eqs. (3.13) is the composition of the two supersym-

metry variation parameter according to

P ≡ εai ε
b
j(σ

2)ijCab , (3.19)

where εai is an infinitesimal Grassmann spinor.

When the fields (A, Ã, B, B̃, F, F̃ , G, G̃, ψr
a) satisfy their equations of motion, all

the variations in (3.14)–(3.18) vanish. As well, the ‘extra terms’ in the anticommutators

of (3.13) also vanish. So the symmetry generated by these variations are only non-trivial

off the mass shell. This led to these being named as “off-shell central charges”.

We now dimensionally reduce to an eight by eight adinkra by considering all fields to

have only temporal dependence. As in [25], we identify

ψ1
1 = iΨ1 , ψ1

2 = iΨ2 , ψ1
3 = iΨ3 , ψ1

4 = iΨ4 ,

ψ2
1 = iΨ5 , ψ2

2 = iΨ6 , ψ2
3 = iΨ7 , ψ2

4 = iΨ8 ,

Φ1 = A , Φ2 = B , ∂0Φ3 = F , ∂0Φ4 = G ,

Φ5 = Ã , Φ6 = B̃ , ∂0Φ7 = F̃ , ∂0Φ8 = G̃ , (3.20)

– 6 –
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and define

DI =

{
D1

I 1 ≤ I ≤ 4

D2
I−4 5 ≤ I ≤ 8 ,

(3.21)

whereupon the supersymmetric transformations reduce to

DIΦj = i(LI)jk̂Ψk̂
, DIΨk̂

= (RI)k̂j∂0Φj . (3.22)

The explicit form of the matrices in these equations are given in appendix A. These

matrices satisfy the orthogonal relationship

LI = (RI)
−1 = (RI)

T. (3.23)

The Chromocharacters are defined as
(
ϕ(p)

)
I1J1...IpJp

= Tr
{
LI1(LJ1)

T · · ·LIp(LJp)
T
}

(
ϕ̃(p)

)
I1J1...IpJp

= Tr
{
(LI1)

TLJ1 · · · (LIp)
TLJp

}
,

(3.24)

with first order chromocharacters given by:

(ϕ(1))I1J1 = (ϕ̃(1))I1J1 = 8δI1J1 (3.25)

and second order characters given by:
(
ϕ(2)

)
I1J1I2J2

= 8
(
δI1J1δI2J2 + (σ0 ⊗ σ3 ⊗ σ2)I1J1(σ

0 ⊗ σ3 ⊗ σ2)I2J2

+ (σ3 ⊗ σ2 ⊗ σ0)I1J1(σ
3 ⊗ σ2 ⊗ σ0)I2J2

+ (σ3 ⊗ σ1 ⊗ σ2)I1J1(σ
3 ⊗ σ1 ⊗ σ2)I2J2

+ (σ2 ⊗ σ0 ⊗ σ0)I1J1(σ
2 ⊗ σ0 ⊗ σ0)I2J2

+ (σ2 ⊗ σ3 ⊗ σ2)I1J1(σ
2 ⊗ σ3 ⊗ σ2)I2J2

+ (σ1 ⊗ σ2 ⊗ σ0)I1J1(σ
1 ⊗ σ2 ⊗ σ0)I2J2

+ (σ1 ⊗ σ1 ⊗ σ2)I1J1(σ
1 ⊗ σ1 ⊗ σ2)I2J2

)

(
ϕ̃(2)

)
I1J1I2J2

= 8
(
δI1J1δI2J2 + (σ2 ⊗ σ3 ⊗ σ2)I1J1(σ

2 ⊗ σ3 ⊗ σ2)I2J2

+ (σ0 ⊗ σ0 ⊗ σ2)I1J1(σ
0 ⊗ σ0 ⊗ σ2)I2J2

+ (σ0 ⊗ σ2 ⊗ σ3)I1J1(σ
0 ⊗ σ2 ⊗ σ3)I2J2

+ (σ0 ⊗ σ2 ⊗ σ1)I1J1(σ
0 ⊗ σ2 ⊗ σ1)I2J2

+ (σ2 ⊗ σ3 ⊗ σ0)I1J1(σ
2 ⊗ σ3 ⊗ σ0)I2J2

+ (σ2 ⊗ σ1 ⊗ σ3)I1J1(σ
2 ⊗ σ1 ⊗ σ3)I2J2

+ (σ2 ⊗ σ1 ⊗ σ1)I1J1(σ
2 ⊗ σ1 ⊗ σ1)I2J2

)
.

(3.26)

Finally the L-matrices and R-matrices that arise in the case of combining two 4DN = 1

chiral supermultiplets in an attempt to derive a 4D N = 2 supermultiplet satisfy (3.4)

where,

∆IJi
k = −2 (σ2 ⊗ σ3 ⊗ σ2)IJ(σ

2 ⊗ σ2 ⊗ σ0) k
i , (3.27)

and

∆̂IJ ı̂
k̂ = −2 (σ2 ⊗ σ3 ⊗ σ2)IJ(σ

2 ⊗ σ3 ⊗ σ2) k̂
î
. (3.28)

– 7 –
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3.2 Building a N =2 supermultiplet from chiral + vector N =1 supermulti-

plets

The same work by Fayet [23] also introduced the now familiar 4D, N = 2 ‘vector multiplet’.

From these we derive the following realization of for the D-algebra,

D1
aA = ψa ,

D1
aB = i (γ5)a

b ψb ,

D1
aψb = i (γµ)a b ∂µA− (γ5γµ)a b ∂µB − i Ca b F + (γ5)a bG , (3.29)

D1
aF = (γµ)a

b ∂µ ψb ,

D1
aG = i (γ5γµ)a

b ∂µ ψb ,

D1
aAµ = (γµ)a

b λb ,

D1
aλb = − i

1

4

(
[γµ , γν ]

)
ab (∂µAν − ∂ν Aµ) + (γ5)a b d , (3.30)

D1
a d = i (γ5γµ)a

b ∂µλb ,

D2
aA = λa ,

D2
aB = i (γ5)a

b λb ,

D2
aλb = i (γµ)a b ∂µA− (γ5γµ)a b ∂µB − i Ca b F − (γ5)a bG , (3.31)

D2
aF = (γµ)a

b ∂µ λb ,

D2
aG = −i (γ5γµ)ab ∂µ λb ,

D2
aAµ = −(γµ)a

b ψb ,

D2
aψb = i

1

4

(
[γµ , γν ]

)
ab (∂µAν − ∂ν Aµ) + (γ5)a b d , (3.32)

D2
a d = i (γ5γµ)a

b ∂µψb ,

that are equivalent to an invariance, up to total derivatives, of the Lagrangian

L = −1

2
∂µA∂

µA− 1

2
∂µB∂

µB − 1

4
FµνF

µν +
1

2
d2

+
1

2
i(γµ)bcλb∂µλc +

1

2
i(γµ)bcψb∂µψc ,

(3.33)

where

Fµν = ∂µAν − ∂νAµ . (3.34)

The transformation laws satisfy the algebra

{Di
a,D

j
b}χ = 2iδij(γµ)abχ ,

{Di
a,D

j
b}Aν = 2iδij(γµ)abFµν + i(σ2)ij

(
2iCab∂νA− 2(γ5)ab∂νB

)
, (3.35)

where

χ = {A,B, F,G, d, ψc, λc} . (3.36)

– 8 –
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Note, the algebra closes up to gauge transformations. We now dimensionally reduce to

an eight by eight adinkra by considering all fields to have only temporal dependence. As

in [18], we choose the gauge

A0 = 0 , (3.37)

and identify

ψ1 = iΨ1 , ψ2 = iΨ2 , ψ3 = iΨ3 , ψ4 = iΨ4 ,

λ1 = iΨ5 , λ2 = iΨ6 , λ3 = iΨ7 , λ4 = iΨ8 ,

Φ1 = A , Φ2 = B , ∂0Φ3 = F , ∂0Φ4 = G ,

Φ5 = A1 , Φ6 = A2 , Φ7 = A3 , ∂0Φ8 = d , (3.38)

and define DI as in eq. (3.21) whereupon the supersymmetric transformations reduce to the

familiar form, eq. (3.22), where now the adinkra matrices are given in appendix B and the

(RI)k̂i are given by the orthogonal relationship, eq. (3.23), as in section 3.1. The adinkra

matrices satisfy the Garden Algebra in (3.2). The first and second order chromocharacters

are given by

(ϕ(1))I1J1 = (ϕ̃(1))I1J1 = 8δI1J1 , (3.39)

and (
ϕ(2)

)
I1J1I2J2

=
(
ϕ̃(2)

)
I1J1I2J2

= 8(δI1J1δI2J2 + δI1J2δI2J1 − δI1I2δJ1J2) . (3.40)

3.3 Building an N =2 supermultiplet from chiral + tensor N =1 supermulti-

plets

The “4D, N = 2 tensor” multiplet (also known as the O(2) multiplet) was first introduced

by Wess [24] and in our notation has a set of transformation laws of the form

D1
aA = ψa ,

D1
aB = i (γ5)a

b ψb ,

D1
aψb = i (γµ)a b ∂µA− (γ5γµ)a b ∂µB − i Ca b F + (γ5)a bG , (3.41)

D1
aF = (γµ)a

b ∂µ ψb ,

D1
aG = i (γ5γµ)a

b ∂µ ψb ,

D1
aϕ = χa ,

D1
aBµ ν = −1

4

(
[γµ , γν ]

)
a
b χb , (3.42)

D1
aχb = i (γµ)a b ∂µϕ− (γ5γµ)a b ǫµ

ρσ τ∂ρBσ τ ,

D2
aA = −χa ,

D2
aB = i (γ5)a

b χb ,

D2
aχb = −i (γµ)a b ∂µA− (γ5γµ)a b ∂µB − i Ca b F + (γ5)a bG , (3.43)

D2
aF = (γµ)a

b ∂µ χb ,

D2
aG = i (γ5γµ)a

b ∂µ χb ,
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D2
aϕ = ψa ,

D2
aBµ ν =

1

4

(
[γµ , γν ]

)
a
b ψb , (3.44)

D2
aψb = i (γµ)a b ∂µϕ+ (γ5γµ)a b ǫµ

ρσ τ∂ρBσ τ ,

derived from the supersymmetry invariance, up to total derivatives, of the Lagrangian

L = −1

2
∂µA∂

µA− 1

2
∂µB∂

µB − 1

3
HµναH

µνα − 1

2
∂µϕ∂

µϕ

+
1

2
i(γµ)bcχb∂µχc +

1

2
i(γµ)bcψb∂µψc +

1

2
F 2 +

1

2
G2,

(3.45)

where

Hµνα = ∂µBνα + ∂νBαµ + ∂αBµν . (3.46)

We find the algebra closes up to gauge transformations on Bµν :

{Di
a,D

j
b}X = 2iδij(γµ)abX ,

{Di
a,D

j
b}Bµν = 2iδij(γα)abHαµν

+ i(γµ∂ν − γν∂µ)ac
[
(σ1)ijδ c

b A+ (σ2)ij(γ5) c
b B − (σ3)ijδ c

b ϕ
]
, (3.47)

where

X = {A,B, F,G, ϕ, ψc, χc} . (3.48)

We now dimensionally reduce to an eight by eight adinkra by considering all fields to

have only temporal dependence. As in [18], we choose the gauge

B0i = 0 (3.49)

and identify

ψ1 = iΨ1 , ψ2 = iΨ2 , ψ3 = iΨ3 , ψ4 = iΨ4 ,

χ1 = iΨ5 , χ2 = iΨ6 , χ3 = iΨ7 , χ4 = iΨ8 ,

Φ1 = A , Φ2 = B , ∂0Φ3 = F , ∂0Φ4 = G ,

Φ5 = ϕ , Φ6 = 2B12 , Φ7 = 2B23 , Φ8 = 2B31 , (3.50)

using again the definition (3.21) for DI, the transformation rules can be cast into the form,

eq. (3.22), with the adinkra matrices as in appendix C with (RI)k̂i once again given by the

orthogonality relationship, eq. (3.23). These matrices satisfy the Garden Algebra, (3.2),

and have the first and second order chromocharacters, eq. (3.39) and eq. (3.40), the same

as for the chiral-vector multiplet of section 3.2.

3.4 Building an N =2 supermultiplet from vector + vector N =1 supermul-

tiplets

The three constructs discussed previously in this section are well known. Their starting

point may be regarded as utilizing the three 4D, N = 1 chiral, vector, and tensor super-

multiplets as building blocks for models with a higher degree of extended SUSY. However,
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a little thought reveals there are more similar constructions to explore. Since there are

three distinct 4D, N = 1 building blocks, there should be 6 ways in which one can attempt

to realize 4D, N = 2 multiplets. We direct our attention to these other possibilities in this

and the next subsection.

For the case of two 4D, N = 1 vector multiplets, we introduce the transformation laws

for this system as

Di
aAµ = (γµ)a

b bijλ
j
b ,

Di
a Ãµ = (γµ)a

b aijλ
j
b ,

Di
aλ

j
b = bij

(
− i

1

4

(
[γµ , γν ]

)
ab (∂µAν − ∂ν Aµ) + (γ5)a b d

)

+ aij
(
− i

1

4

(
[γµ , γν ]

)
ab (∂µ Ãν − ∂ν Ãµ) + (γ5)a b d̃

)

Di
a d = i (γ5γµ)a

b bij ∂µλ
j
b ,

Di
a d̃ = i (γ5γµ)a

baij ∂µλ
j
b ,

(3.51)

where i, j = 1, 2 and

aij = cos a0 (σ
1)ij + i sin a0 (σ

2)ij ,

bij = cos b0 δ
ij + sin b0 (σ

3)ij . (3.52)

The transformation laws (3.51) lead to an invariance of the Lagrangian

L = −1

4
FµνF

µν − 1

4
F̃µνF̃

µν +
1

2
i(γµ)bcλjb∂µλ

j
c +

1

2
d2 +

1

2
d̃2, (3.53)

where

Fµν = ∂µAν − ∂νAµ , F̃µν = ∂µÃν − ∂νÃµ , (3.54)

and satisfy the algebra

{
Di

a,D
j
b

}
Aν = 2i

(
δij + (σ3)ij sin 2b0

)
(γµ)abFµν

+ 2i(σ1)ij cos(a0 + b0)(γ
µ)abF̃µν

− i(σ2)ij sin(a0 − b0)ǫ
µαβ
ν (γ5γµ)abF̃αβ

− 2i sin(a0 − b0)(σ
2)ij sin(a0 − b0)(γ

5γν)abd̃ ,

{
Di

a,D
j
b

}
Ãν = 2i

(
δij + (σ3)ij sin 2b0

)
(γµ)abF̃µν

+ 2i(σ1)ij cos(a0 + b0)(γ
µ)abFµν

+ i(σ2)ij sin(a0 − b0)ǫ
µαβ
ν (γ5γµ)abFαβ

+ 2i sin(a0 − b0)(σ
2)ij sin(a0 − b0)(γ

5γν)abd ,

{
Di

a,D
j
b

}
λkc =

(
2iδijδkm + i(cos 2a0 + cos 2b0)(σ

1)ij(σ1)km
)
(γµ)ab∂µλ

m
c

+ i(cos 2a0 − cos 2b0)(σ
2)ij(σ2)km

(
(γ5γµ)ab(γ

5) d
c

+ Cab(γ
µ) d

c + (γ5)ab(γ
5γµ) d

c

)
∂µλ

m
d

+ terms proportional to sin 2a0 and sin 2b0 ,
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{
Di

a,D
j
b

}
d = 2i

(
δij + sin 2b0 (σ

3)ij
)
(γµ)ab∂µd

+ 2i(σ1)ij cos(a0 + b0)(γ
µ)ab∂µd̃

+ 2i(σ2)ij sin(a0 − b0)(γ
5γν)ab∂

µ(∂νÃµ − ∂µÃν) ,

{
Di

a,D
j
b

}
d̃ = 2i

(
δij + sin 2a0 (σ

3)ij
)
(γµ)ab∂µd̃

+ 2i(σ1)ij cos(a0 + b0)(γ
µ)ab∂µd

− 2i(σ2)ij sin(a0 − b0)(γ
5γν)ab∂

µ(∂νAµ − ∂µAν) . (3.55)

To have the canonical SUSY relationship to the momentum operator on the right hand

side for the bosons forces

a0 = m
π

2
, b0 = n

π

2
, m, n integers , (3.56)

which makes

aij = cosm
π

2
(σ1)ij + i sinm

π

2
(σ2)ij ,

bij = cosn
π

2
δij + sinn

π

2
(σ3)ij .

(3.57)

Defining

c1 ≡ cos

(
(m+ n)π

2

)
,

s1 ≡ sin

(
(m− n)π

2

)
,

c2± ≡ cosmπ ± cosnπ ,

(3.58)

the algebra becomes
{
Di

a,D
j
b

}
Aν = 2iδij(γµ)abFµν + 2ic1(σ

1)ij(γµ)abF̃µν

− is1(σ
2)ijǫ µαβ

ν (γ5γµ)abF̃αβ − 2is1(σ
2)ij(γ5γν)abd̃ ,

{
Di

a,D
j
b

}
Ãν = 2iδij(γµ)abF̃µν + 2ic1(σ

1)ij(γµ)abFµν

+ is1(σ
2)ijǫ µαβ

ν (γ5γµ)abFαβ + 2is1(σ
2)ij(γ5γν)abd ,

{
Di

a,D
j
b

}
λkc =

(
2iδijδkm + ic2+(σ

1)ij(σ1)km
)
(γµ)ab∂µλ

m
c

+ ic2−(σ
2)ij(σ2)km

(
(γ5γµ)ab(γ

5) d
c + Cab(γ

µ) d
c

+ (γ5)ab(γ
5γµ) d

c

)
∂µλ

m
d ,

{
Di

a,D
j
b

}
d = 2iδij(γµ)ab∂µd + 2ic1(σ

1)ij(γµ)ab∂µd̃

+ 2is1(σ
2)ij(γ5γν)ab∂

µ(∂νÃµ − ∂µÃν) ,

{
Di

a,D
j
b

}
d̃ = 2iδij(γµ)ab∂µd̃ + 2ic1(σ

1)ij(γµ)ab∂µd

− 2is1(σ
2)ij(γ5γν)ab∂

µ(∂νAµ − ∂µAν) . (3.59)

We now dimensionally reduce to an eight by eight adinkra by considering all fields to have

only temporal dependence. We choose the gauge

A0 = Ã0 = 0 , (3.60)
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and define

λ11 = iΨ1 , λ12 = iΨ2 , λ13 = iΨ3 , λ14 = iΨ4 ,

λ21 = iΨ5 , λ22 = iΨ6 , λ23 = iΨ7 , λ24 = iΨ8 ,

Φ1 = A1 , Φ2 = A2 , Φ3 = A3 , ∂0Φ4 = d ,

Φ5 = Ã1 , Φ6 = Ã2 , Φ7 = Ã3 , ∂0Φ8 = d̃ , (3.61)

and DI as before, eq. (3.21). The transformation laws reduce to the ever-now-more familiar

form, eq. (3.22), now with the L-matrices and R-matrices given in appendix D. These

matrices satisfy the orthogonality relationship, eq. (3.23), and the algebra of (3.4) where

∆IJi
k = 2c1(σ

1 ⊗ σ0 ⊗ σ0)IJ(σ
1 ⊗ σ0 ⊗ σ0) k

i

+ 2s1(σ
2 ⊗ σ0 ⊗ σ2)IJ(σ

2 ⊗ σ2 ⊗ σ3) k
i

− 2s1(σ
2 ⊗ σ2 ⊗ σ3)IJ(σ

2 ⊗ σ0 ⊗ σ2) k
i

− 2s1(σ
2 ⊗ σ2 ⊗ σ1)IJ(σ

2 ⊗ σ2 ⊗ σ1) k
i ,

(3.62)

and

∆̂IJ ı̂
k̂ = c2+(σ

1 ⊗ σ0 ⊗ σ0)IJ(σ
1 ⊗ σ0 ⊗ σ0) k̂

î

+ c2−(σ
2 ⊗ σ3 ⊗ σ2)IJ(σ

2 ⊗ σ3 ⊗ σ2) k̂
î

− c2−(σ
2 ⊗ σ2 ⊗ σ0)IJ(σ

2 ⊗ σ2 ⊗ σ0) k̂
î

+ c2−(σ
2 ⊗ σ1 ⊗ σ2)IJ(σ

2 ⊗ σ1 ⊗ σ2) k̂
î
.

(3.63)

The first order chromocharacters are as in eq. (3.39). For no values of the integers n

and m can the second order chromocharacters be made to satisfy eq. (3.40). This is not a

surprise as nc 6= nt for this system. The second order chromocharacters take a complicated

form, similar to that of the chiral-chiral system in eq. (3.26), though even more complicated,

and less enlightening. We have not completely worked out this formula, but we reiterate

that we have proved by direct calculation that it can not for any values of n and m take

the form of eq. (3.40).

3.5 Building an N =2 supermultiplet from tensor + tensor N =1 supermul-

tiplets

For the case of two 4D, N = 1 tensor multiplets, we introduce the transformation laws for

this system as

Hµνα ≡ ∂µBνα + ∂αBµν + ∂νBαµ , H̃µνα ≡ ∂µB̃να + ∂αB̃µν + ∂νB̃αµ , (3.64)

the Lagrangian for this multiplet is

L = −1

3
HµναH

µνα − 1

3
H̃µναH̃

µνα − 1

2
∂µϕ∂

µϕ− 1

2
∂µϕ̃∂

µϕ̃+ i
1

2
(γµ)abλia∂µλ

i
b , (3.65)
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which is an invariant of the transformation laws

Di
aϕ = bijλja ,

Di
aϕ̃ = aijλja ,

Di
aBµν = −1

4

(
[γµ, γν ]

) b

a
bijλ

j
b ,

Di
aB̃µν = −1

4

(
[γµ, γν ]

) b

a
aijλ

j
b ,

Di
aλ

j
b = aij

(
i(γµ)ab∂µϕ̃− (γ5γµ)abǫ

µρστ∂ρB̃στ

)

+ bij
(
i(γµ)ab∂µϕ− (γ5γµ)abǫ

µρστ∂ρBστ

)
.

(3.66)

For canonical bosonic momentum in the algebra, eqs. (3.56) and (3.57) are once again

forced on us and the algebra is

{Di
a,D

j
b}ϕ = 2iδij(γµ)ab∂µϕ+ 2ic1(σ

1)ij(γµ)ab∂µϕ̃

− i
2

3
s1(σ

2)ijǫµναβ(γ
5γµ)abH̃

ναβ ,

{Di
a,D

j
b}ϕ̃ = 2iδij(γµ)ab∂µϕ̃+ 2ic1(σ

1)ij(γµ)ab∂µϕ

+ i
2

3
s1(σ

2)ijǫµναβ(γ
5γµ)abH

ναβ ,

{Di
a,D

j
b}Bµν = 2iδij(γα)abHαµν − iδij(γ[µ)|ab|∂ν|ϕ

− ic1(σ
1)ij(γ[µ)|ab|∂ν]ϕ̃+ is1(σ

2)ijǫ αβ
µν (γ5γα)ab∂βϕ̃

+ 2ic1(σ
1)ij(γα)abH̃αµν + i

1

3
s1(σ

2)ij(γ5γ[µ)|ab|ǫν]ραβH̃
ραβ ,

{Di
a,D

j
b}B̃µν = 2iδij(γα)abH̃αµν − iδij(γ[µ)|ab|∂ν]ϕ̃

− ic1(σ
1)ij(γ[µ)|ab|∂ν]ϕ− is1(σ

2)ijǫ αβ
µν (γ5γα)ab∂βϕ

+ 2ic1(σ
1)ij(γα)abHαµν − i

1

3
s1(σ

2)ij(γ5γ[µ)|ab|ǫν]ραβH
ραβ ,

{Di
a,D

j
b}λkc = i

(
2δijδkl + c2+(σ

1)ij(σ1)kl
)
(γµ)ab∂µλ

l
c

− ic2−(σ
2)ij(σ2)kl

(
(γ5γµ)ab(γ

5) d
c + Cab(γ

µ) d
c

− (γ5)ab(γ
5γµ) d

c

)
∂µλ

l
d . (3.67)

Choosing the gauge

B0i = 0 = B̃0i = 0 , (3.68)

defining

B0i = 0 = B̃0i = 0 , (3.69)

and

Φ1 = ϕ , Φ2 = 2B12 , Φ3 = 2B23 , Φ4 = 2B31 ,

Φ5 = ϕ̃ , Φ2 = 2B̃12 , Φ3 = 2B̃23 , Φ4 = 2B̃31 ,

iΨ1 = λ11 , iΨ2 = λ12 , iΨ3 = λ13 , iΨ4 = λ14 ,

iΨ5 = λ21 , iΨ6 = λ22 , iΨ7 = λ23 , iΨ8 = λ24 , (3.70)
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and considering only temporal dependence of the fields reduces the transformation laws to

eq. (3.22) with the DI identifications as in eq. (3.21). The adinkra matrices in this basis

are given in appendix E and satisfy the algebra of eq. (3.4) with

∆IJi
k = 2c1(σ

1 ⊗ σ0 ⊗ σ0)IJ(σ
1 ⊗ σ0 ⊗ σ0) k

i

− 2s1(σ
2 ⊗ σ0 ⊗ σ2)IJ(σ

2 ⊗ σ2 ⊗ σ1) k
i

− 2s1(σ
2 ⊗ σ2 ⊗ σ3)IJ(σ

2 ⊗ σ0 ⊗ σ2) k
i

− 2s1(σ
2 ⊗ σ2 ⊗ σ1)IJ(σ

2 ⊗ σ2 ⊗ σ3) k
i ,

(3.71)

and

∆̂IJ ı̂
k̂ = c2+(σ

1 ⊗ σ0 ⊗ σ0)IJ(σ
1 ⊗ σ0 ⊗ σ0) k̂

î

− c2−(σ
2 ⊗ σ3 ⊗ σ2)IJ(σ

2 ⊗ σ3 ⊗ σ2) k̂
î

− c2−(σ
2 ⊗ σ2 ⊗ σ0)IJ(σ

2 ⊗ σ2 ⊗ σ0) k̂
î

− c2−(σ
2 ⊗ σ1 ⊗ σ2)IJ(σ

2 ⊗ σ1 ⊗ σ2) k̂
î
.

(3.72)

The chromocharacters are exactly the same as for the N = 2 vector + vector multiplet.

The most crucial result of these calculations is that for the tensor + tensor multiplet the

second order chromocharacters can not take the form of eq. (3.40) for any values of the

integers n and m.

3.6 Building an N =2 supermultiplet from vector + tensor N =1 supermul-

tiplets

This supermultiplet has been discussed since the pioneering work of [26, 27]. The La-

grangian for this multiplet is

L = −1

4
FµνF

µν − 1

3
HµναH

µνα − 1

2
∂µϕ∂

µϕ+ i
1

2
(γµ)abλia∂µλ

i
b +

1

2
d2, (3.73)

which is an invariant of the transformation laws

Di
aϕ = bijλja ,

Di
aAµ = (γµ)

b
a a

ijλ
j
b ,

Di
aBµν = −1

4

(
[γµ, γν ]

) b

a
bijλ

j
b ,

Di
aλ

j
b = aij

(
− i

4

(
[γµ, γν ]

)
ab
Fµν + (γ5)abd

)

+ bij
(
i(γµ)ab∂µϕ− (γ5γµ)abǫ

µρστ∂ρBστ

)
,

Di
ad = i(γ5γµ) b

a a
ij∂µλ

j
b .

(3.74)
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For the canonical bosonic momentum term to appear in the algebra, eqs. (3.56) and (3.57)

are once again forced on us and the algebra is

{
Di

a,D
j
b

}
ϕ = 2iδij(γµ)ab∂µϕ+ 2is1(σ

2)ij(γ5)ab∂µd

− ic1(σ
1)ij(γµγν)abFµν ,

{
Di

a,D
j
b

}
Aν = 2iδij(γµ)abFµν + 2ic1(σ

1)ij(γαγµ)abHαµν

− i
2

3
s1(σ

2)ij(γ5)abǫναβµH
αβµ + ic1(σ

1)ij
(
[γν , γ

µ]
)
ab
∂µϕ

− 2s1Cab(σ
2)ij∂νϕ ,

{
Di

a,D
j
b

}
Bµν = 2iδij(γα)abHαµν − s1(σ

2)ijCabFµν

+ i
1

2
s1(σ

2)ij(γ5)abǫµναβF
αβ + i

1

2
c1(σ

1)ij
(
[γ[µ, γ

α]
)
|ab|
Fν]α

+
1

2
c1(σ

1)ij
(
γ5[γµ, γν ]

)
ab
d− iδij(γ[µ)|ab|∂ν]ϕ ,

{
Di

a,D
j
b

}
λkc = i

(
2δijδkl + c2+(σ

1)ij(σ1)kl
)
(γµ)ab∂µλ

l
c

+ ic2+(σ
2)ij(σ2)kl

(
(γ5γµ)ab(γ

5) d
c + Cab(γ

µ) d
c

)
∂µλ

l
d

+ ic2−(σ
2)ij(σ2)kl(γ5)ab(γ

5γµ) d
c ∂µλ

l
d ,

{
Di

a,D
j
b

}
d = 2iδij(γµ)ab∂µd− 2c1(σ

1)ij(γ5γµγν)ab∂
αHαµν

− 2is1(σ
2)ij(γ5)ab∂µ∂

µϕ . (3.75)

Choosing the gauge

B0i = A0 = 0 , (3.76)

defining

Φ1 = ϕ , Φ2 = 2B12 , Φ3 = 2B23 , Φ4 = 2B31 ,

Φ5 = A1 , Φ2 = A2 , Φ3 = A3 , Φ4 =

∫
dt d ,

iΨ1 = λ11 , iΨ2 = λ12 , iΨ3 = λ13 , iΨ4 = λ14 ,

iΨ5 = λ21 , iΨ6 = λ22 , iΨ7 = λ23 , iΨ8 = λ24 , (3.77)

and considering only temporal dependence of the fields reduces the transformation laws to

eq. (3.22) with the DI identifications as in eq. (3.21). The adinkra matrices in this basis

are given in appendix F. They satisfy the orthogonality relationship, eq. (3.23), and the

algebra of eq. (3.4) with ∆ k
IJi and ∆̂IJ ı̂

k̂ given by

∆IJi
k = 2c1(σ

1 ⊗ σ0 ⊗ σ3)IJ(∆
(V T )
1 ) k

i

− 2c1(σ
1 ⊗ σ0 ⊗ σ1)IJ(∆

(V T )
2 ) k

i

− 2c1(σ
1 ⊗ σ2 ⊗ σ2)IJ(∆

(V T )
3 ) k

i

− 2s1(σ
2 ⊗ σ2 ⊗ σ0)IJ(∆

(V T )
4 ) k

i ,

(3.78)
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where the quantities ∆
(V T )
1 , etc. are defined by

∆
(V T )
1 =

[
0 (8)b(1324)

(1)b(1423) 0

]
,

∆
(V T )
2 =

[
0 (13)b(34)

(13)b(34) 0

]
,

∆
(V T )
3 =

[
0 (11)b(12)

(11)b(12) 0

]
,

∆
(V T )
4 =

[
0 (1)b(1423)

(8)b(1324) 0

]
,

(3.79)

where we have used the Boolean Factor notation of [19] to indicate locations of minus signs

for permutation matrices defined as, for instance:

(8)b(1324) ≡




0 0 1 0

0 0 0 1

0 1 0 0

−1 0 0 0


 , (11)b(12) ≡




0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 −1


 . (3.80)

We also have

∆̂IJ ı̂
k̂ = c2+(σ

1 ⊗ σ0 ⊗ σ0)IJ(σ
1 ⊗ σ0 ⊗ σ0) k̂

î

+ c2+(σ
2 ⊗ σ3 ⊗ σ2)IJ(σ

2 ⊗ σ3 ⊗ σ2) k̂
î

+ c2+(σ
2 ⊗ σ1 ⊗ σ2)IJ(σ

2 ⊗ σ1 ⊗ σ2) k̂
î

− c2−(σ
2 ⊗ σ2 ⊗ σ0)IJ(σ

2 ⊗ σ2 ⊗ σ0) k̂
î
.

(3.81)

The first order chromocharacters satisfy eq. (3.39). The second order chromocharacters

can not take the form of eq. (3.40) for any values of the integers n andm. In summary, none

of the N = 2 supermultiplets from the list of chiral + chiral, vector + vector, and tensor

+ tensor, nor vector+tensor have second order chromocharacters as given in eq. (3.40).

3.7 Summary of building N =2 multiplets from N =1 multiplets

To recapitulate the results of this section, we have seen by explicit construction that there

are six possible pairings of 4D, N = 1 chiral, vector, and tensor multiplets that may be

taken as starting points in an attempt to construct 4D, N = 2 supermultiplets that are:

(a.) completely off-shell (i.e. require no a priori differential constraints imposed on any

fields), and

(b.) require no off-shell central charges.

However, the result of this study is that only two combinations:

(a.) chiral + vector, and

(b.) chiral + tensor,

satisfy the required conditions stated immediately above.
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The following two questions seem important to ask. “Why do the results work out in

this way?” “What is it that distinguishes two of the six possible starting points from the

others?” Simply reporting these results does nothing to reveal what deeper mathematical

structures impose these results.

If we use only the conventional and traditional approaches to analyzing these results,

there is no simple and elegant way (at least known to these authors) to answer these

questions. The situation is vaguely analogous to looking at the quark model and asking,

“Which composite systems of quarks occur as an observable baryons?” The answer is

well known, “All observable baryonic composite states must have vanishing color quantum

number.” In the next section, we will argue that the adinkra-based model of off-shell SUSY

representations provides a remarkably elegant and simple answer to the questions above

and does so in a manner similar to the confinement of QCD color.

4 Adinkra ‘color-like’ confinement rules for 4D, N = 1 reps within off-

shell N =2 supermultiplets

The survey of the attempts of building off-shell N = 2 supermultiplets from off-shell

N = 1 supermultiplets shows there appears to be a ‘super- selection-like rule’ that governs

the N = 1 content of the N = 2 extended supermultiplets.

In the work of [18], it was argued that the chromocharacters associated 4D, N = 1

supermultiplets generally take the form

ϕ(2)
I JKL

(N = 1) = 4 (nc + nt)
[
δ
I J
δ
KL

− δ
IK
δ
JL

+ δ
IL
δ
JK

]
+ 4χo ǫ

I JKL
,

χo = (nc − nt) , (4.1)

and we notice the appearance of the Levi-Civita tensor is allowed because 4D, N = 1 super-

symmetric multiplets have only four supercharges and thus require only O(4) symmetry of

their chromocharacters. It follows that the quantity χo (‘Kye-Oh’) can be abstracted from

χo =
1

4 · 4! ǫ
I JKL

ϕ(2)
I JKL

(N = 1) . (4.2)

In every system investigated in section three, if one begins with off-shell N = 1 super-

multiplets and uses these as a basis for constructing off-shell N = 2 supermultiplets, the

latter will not be off-shell and free of central charges unless Σ(nc −nt) = 0, where the sum

is taken over the N = 1 supermultiplets.

This observation is a very explicit demonstration of the utility of the adinkra-based

view that has been developed in a number of our past works. Taking the adinkra ap-

proach [1]–[13], one is naturally led to the existence of nc, and nt. Below we will give a

simple explanation on why this super-selection-like rule must appear in all supermultiplets

that arise in the adinkra approach. In the process, we will show that the adinkra-based

approach thus leads to a new and effective tool, which is obscured in more conventional

approaches, for understanding fundamental aspects of SUSY representation theory in four

dimensions.
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Let us consider the chromocharacter in (3.24) for the case of p = 2. All our previous

works suggests that the chromocharacters possess SO(N) symmetry, i.e. SO(8) symmetry

for our considerations. This is a very powerful assertion and we will now argue that it is

the cause of the proposed super-selection-like rule. Due to SO(8) symmetry, the form of

the second order chromocharacter in this case must be

ϕ(2)
I
1
J
1
I
2
J
2

(N = 2) ∝
[
δ
I
1
J
1

δ
I
2
J
2

− δ
I
1
I
2

δ
J
1
J
2

+ δ
I
1
J
2

δ
I
2
J
1

]
, (4.3)

where we have used the properties of the (LI)-matrices to arrive at this conclusion. This

must be true for the chromocharacters associated with supermultiplets that possess 4D,

N = 2 supersymmetry by our SUSY holography conjecture.

For the N = 2 chromocharacter, the indices I1, I2, J1, and J2 take on values 1, . . . , 8

while for the N = 1 chromocharacter, the indices I, J, K, and L take on values 1, . . . , 4. So

in order to compare these two chromocharacter formulae, one must perform a projection

of SO(8) down to SO(4). However, such a projection will never create a term proportional

to the Levi-Civita tensor.

Thus, these considerations lead to the conclusion that for all 4D,N = 1 supermultiplets

that occur as sub-supermultiplets within off-shell 4D, N = 2 supermultiplets, the value of

χo when summed over the N = 1 sub-supermultiplets must vanish. It is very satisfying to

see that this formal argument is in agreement with the explicit calculations performed in

the previous sections.

5 Seeing ‘Kye-Oh’ in 4D, N =1 supermultiplets without 0-brane reduc-

tion

In this section, we will make an observation about the determination of χo that shows its

value on these three supermultiplets can be found without actually carrying out 0-brane

reduction. We find this is an interesting result as it will show that χo can be directly

determined by a calculation in four dimensions.

In this section, we are going to use the conventions of Superspace where two-component

Weyl spinors have been our tradition. To facilitate this, we first establish a dictionary

between the conventions of [18] and Superspace [39]. Using the former we have

(γ0)a
b = i(σ3 ⊗ σ2)a

b , (γ1)a
b = (I2 ⊗ σ1)a

b ,

(γ2)a
b = (σ2 ⊗ σ2)a

b , (γ3)a
b = (I2 ⊗ σ3)a

b ,

(γ5)a
b = −(σ1 ⊗ σ2)a

b ,

Cab ≡ −i(σ3 ⊗ σ2)ab =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


→ Cab = −Cba .

(5.1)

The inverse spinor metric is defined by the condition CabCac = δc
b.

The chiral projection operators (P±) are defined by

(P±)a
b =

1

2

[
(I4)a

b ± (γ5)a
b
]
, (5.2)
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which implies

(P+)a
bDb =

1

2




(D1 + iD4)

(D2 − iD3)

(D3 + iD2)

(D4 − iD1)


 =

1

2




(D1 + iD4)

(D2 − iD3)

i (D2 − iD3)

−i (D1 + iD4)


 , (5.3)

(P−)a
bDb =

1

2




(D1 − iD4)

(D2 + iD3)

(D3 − iD2)

(D4 + iD1)


 =

1

2




(D1 − iD4)

(D2 + iD3)

−i (D2 + iD3)

i (D1 − iD4)


 . (5.4)

Let us define

DA =
1√
2
(D1 + iD4) , DB =

1√
2
(D2 − iD3) ,

DȦ = − 1√
2
(D1 − iD4) , DḂ = − 1√

2
(D2 + iD3) ,

(5.5)

here the subscripts A, B, Ȧ and Ḃ are understood to be labels, not indices taking on

multiple values. We next derive the form of the super algebra generated by these four

spinorial derivative operators. We find

{
DA , DA

}
=

1

2

[{
D1 , D1

}
−
{
D4 , D4

}
+ i2

{
D1 , D4

}]

= i
[
(γµ)1 1∂µ − (γµ)4 4∂µ

]
− 2 (γµ)1 4∂µ ,

{
DA , DB

}
=

1

2

[{
D1 , D2

}
+
{
D3 , D4

}
+ i
{
D2 , D4

}
− i
{
D1 , D3

}]

= i
[
(γµ)1 2∂µ + (γµ)3 4∂µ

]
− (γµ)2 4∂µ + (γµ)1 3∂µ ,

{
DB , DB

}
=

1

2

[{
D2 , D2

}
−
{
D3 , D3

}
− i2

{
D2 , D3

}]

= i
[
(γµ)2 2∂µ − (γµ)3 3∂µ

]
+ 2 (γµ)2 3∂µ ,

{
DA , DḂ

}
= −1

2

[{
D1 , D2

}
−
{
D3 , D4

}
+ i
{
D2 , D4

}
+ i
{
D1 , D3

}]

= −i
[
(γµ)1 2∂µ − (γµ)3 4∂µ

]
− (γµ)2 4∂µ − (γµ)1 3∂µ ,

{
DA , DȦ

}
= −1

2

[{
D1 , D1

}
+
{
D4 , D4

}]

= −i
[
(γµ)1 1∂µ + (γµ)4 4∂µ

]
,

{
DB , DḂ

}
= −1

2

[{
D2 , D2

}
+
{
D3 , D3

}]

= −i
[
(γµ)2 2∂µ + (γµ)3 3∂µ

]
. (5.6)
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It is a straightforward exercise to show that given the representation for the gamma matrices

we use further imply

(γ0)ab = (I2 ⊗ I2)ab =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , (γ1)ab = (σ3 ⊗ σ3)ab =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 ,

(γ2)ab = (σ1 ⊗ I2)ab =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 , (γ3)ab = (σ3 ⊗ σ1)ab =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 .

(5.7)

Use of these matrices then leads to the results

{
DA , DA

}
= i
[
(γµ)1 1∂µ − (γµ)4 4∂µ

]
− 2 (γµ)1 4∂µ

= i
[
(γ0)1 1∂0 + (γ1)1 1∂1 − (γ0)4 4∂0 − (γ1)4 4∂1

]

= 0 ,

{
DA , DB

}
= i
[
(γµ)1 2∂µ + (γµ)3 4∂µ

]
− (γµ)2 4∂µ + (γµ)1 3∂µ

= i
[
(γ3)1 2∂3 + (γ3)3 4∂3

]
− (γ2)2 4∂2 + (γ2)1 3∂2

= 0 ,

{
DB , DB

}
= i
[
(γµ)2 2∂µ − (γµ)3 3∂µ

]
+ 2 (γµ)2 3∂µ

= i
[
(γ0)2 2∂0 + (γ1)2 2∂1 − (γ0)3 3∂0 − (γ1)3 3∂1

]

= 0 ,

{
DA , DḂ

}
= −i

[
(γ3)1 2∂3 − (γ3)3 4∂3

]
− (γ2)2 4∂2 − (γ2)1 3∂2

= −i 2
[
∂3 − i ∂2

]
,

{
DA , DȦ

}
= −i

[
(γµ)1 1∂µ + (γµ)4 4∂µ

]

= −i
[
(γ0)1 1∂0 + (γ1)1 1∂1 + (γ0)4 4∂0 + (γ1)4 4∂1

]

= −i 2
[
∂0 + ∂1

]
,

{
DB , DḂ

}
= −i

[
(γµ)2 2∂µ + (γµ)3 3∂µ

]

= −i
[
(γ0)2 2∂0 + (γ1)2 2∂1 + (γ0)3 3∂0 + (γ1)3 3∂1

]

= −i 2
[
∂0 − ∂1

]
. (5.8)

If we define

∂AȦ = −2
[
∂0 + ∂1

]
, ∂AḂ = −2

[
∂3 − i ∂2

]
, ∂B Ḃ = −2

[
∂0 − ∂1

]
, (5.9)

then the operators DA, DB, DȦ, DḂ, ∂AȦ, ∂AḂ, and ∂B Ḃ satisfy the exact algebraic and

hermiticity properties of the corresponding objects defined in “Superspace”, and we thus

have an explicit dictionary.
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We define the 2× 2 matrix ∂αα̇ as

∂αα̇ =

(
∂AȦ ∂BḂ

∂BȦ ∂BḂ

)
, (5.10)

where ∂BȦ is the complex conjugate of ∂AḂ, i.e.

∂BȦ ≡ ∂BȦ = −2
[
∂3 + i ∂2

]
. (5.11)

We have then explicitly

∂αα̇ = −2

(
∂0 + ∂1 ∂3 − i∂2

∂3 + i∂2 ∂0 − ∂1

)
. (5.12)

Defining the soldering forms as

σ̃0 =

(
1 0

0 1

)
, σ̃1 =

(
1 0

0 −1

)
,

σ̃2 =

(
0 −i
i 0

)
, σ̃3 =

(
0 1

1 0

)
,

(5.13)

we may neatly package ∂αα̇ as

∂αα̇ = −2σ̃µ∂µ . (5.14)

Finally, the two-component Weyl spinor operators denoted byDα andD .
α
in Superspace [39]

are given by

Dα =

[
DA

DB

]
, D .

α
=

[
DȦ

DḂ

]
. (5.15)

With this completed dictionary, we note that in the four dimensional N = 1 conven-

tions of Superspace, one can define a quantum number χ̂o that appears in the following

definition

χ̂o� = −
[
2DαD2Dα +�

]
, (5.16)

and we wish to calculate the value of this quantum number on the spinor component fields

that appear in the chiral, vector and tensor superfields. It is appropriate here to note that

in principle and on a general superfield there may be no value χ̂o for which this equation

possesses a solution. However, whenever a superfield is subject to a sufficient number of

spinorial differential constraints, this is not a concern. In particular, for superfields that

represent irreducible supermultiplets, such constraints are enforced. This is most certainly

the case for the chiral (Φ), vector (Wα) and tensor supermultiplets (G).

We recall that these superfields can be described in the following manner by use of the

respective pre-potentials U , V , and Υα:

(a.) Φ = D2 U , where U 6= U ,

(b.) Wα = iD2Dα V where V = V , and

(c.) G = DαD2Υα + h.c.
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which will permit a rapid determination of the value of χ̂o on the spinor component in each

supermultiplet. These spinor components are given respectively by

ψα ≡ DαΦ
∣∣ , λα ≡Wα

∣∣ , χα ≡ DαG
∣∣ , (5.17)

which leads us to three calculations:

χ̂o�
(
Dβ Φ

∣∣) = −
[
2DαD2Dα +�

](
Dβ Φ

∣∣)

=
[
− 2DαD2Dα

(
Dβ Φ

∣∣)−�
(
Dβ Φ

∣∣)]

=
[
2DβD

2
(
D2Φ

∣∣)−�
(
Dβ Φ

∣∣)]

= �
(
Dβ Φ

∣∣) → χ̂o = +1 ,

χ̂o�
(
W β

∣∣) = −
[
2DαD2Dα +�

](
W β

∣∣)

=
[
− 2DαD2Dα

(
W β

∣∣)−�
(
W β

∣∣)]

=
[
− i2

(
DαD2DαD

2Dβ V
)
−�

(
W β

∣∣)]

= −�
(
W β

∣∣) → χ̂o = −1 ,

χ̂o�
(
Dβ G

∣∣) = −
[
2DαD2Dα +�

](
Dβ G

∣∣)

=
[
− 2DαD2Dα

(
Dβ G

∣∣)−�
(
Dβ G

∣∣)]

=
[
− 2DαD2DαDβ

(
Dγ D2Υγ + h.c.

∣∣)−�
(
Dβ G

∣∣)]

=
[
2DβD

2D2
(
Dγ D2Υγ + h.c.

∣∣)−�
(
Dβ G

∣∣)]

= −�
(
Dβ G

∣∣) → χ̂o = −1 , (5.18)

where respectively we have used the identities,

D2D2Φ = �Φ , DαD2DαD
2 = 0 , D2Dγ = 0 . (5.19)

These calculations beautifully demonstrate the result that χo = χ̂o on the three respec-

tive valise adinkras on one side of the calculation and the three respective supermultiplets

on the other. In other words, this is another example of SUSY holography at work.

The result of this section shows that the valise adinkra-based calculation (4.2) leads to

the same result as the 4D, N = 1 superfield calculation of the operator defined in (5.16).

In other words, the information in the operator in (5.16) is the same as the information

in (4.2). Thus, for some operators acting on 4D, N = 1 superfields, equivalent operators

can be found to act on valise adinkras. This opens up the possibility that there may be

other such operators for which this statement holds.

However, the real power of the valise adinkra viewpoint in these examples has been

to easily identify the quantum number χ̂o that exists among 4D, N = 1 superfields that

determines when these form an off-shell representation and to explain ‘why’ χ̂o must a priori

vanish when summed over 4D, N = 1 superfields to construct 4D, N = 2 superfields.

6 A Garden Algebra/unconstrained superspace prepotential formulation

no-go conjecture

The results of section five also provide the basis for making a conjecture about the rela-

tion of representations of GR(d, N), representations of GR(dL, dR, N), and unconstrained

– 23 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
1

prepotential formulations of higher dimensional supermultiplets. As can be seen from the

models studied earlier in this paper, whenever a supermultiplet is a representation of the

GR(d, N) algebras, it does not possess an off-shell central charge. Alternately, whenever

a supermultiplet is a representation of the GR(dL, dR, N) algebras, it does possess an

off-shell central charge.

There is another observation about supermultiplets that is interesting to note in the

context of unconstrained Salam-Strathdee superfields. An unconstrained Salam-Strathdee

superfield is one that is not subject to any type of differential (either spacetime nor D-

operator) constraint. All superfields that are quantizable, can be expressed in terms of

unconstrained Salam-Strathdee superfields.

There is a direct relation between the component field formulation of a supermultiplet

that does not possess off-shell central charges and their expression in terms of unconstrained

Salam-Strathdee superfields. The component fields of a supermultiplet come in different

engineering dimensions. In the adinkra representation, this assignment of engineering

dimension corresponds to the height at which a node associated with a component field

appears in the adinkra.

When one identifies the highest fields in the adinkra representing a supermultiplet with

no off-shell central charge, one has identified the unconstrained Salam-Strathdee superfields

that describes the supermultiplet.

This brings us to a conjecture:

Only supermultiplets that do not contain off-shell central charges are represen-

tations of GR(d, N) algebras that can be described by unconstrained Salam-

Strathdee superfields uniquely determined by the highest engineering dimension

component fields with no spacetime derivatives.

7 Conclusion

We hope to have convinced the reader that our efforts have uncovered a new quantum

number (χo) in supersymmetrical field theory. The value of this quantum number for some

familiar 4D, N = 1 supermultiplets is shown in the table below.

This table implies that there are two distinct ways to construct Dirac particles in

supersymmetrical theories. A standard approach to embedding Dirac particles into 4D,

N = 1 models is to use a pair of chiral superfields that may be denoted by Φ+ and Φ−

corresponding to a χo = 2 system. In a number of our past works [28, 31–33], and [34–38],

it has been advocated that an alternate approach to embedding Dirac particles into 4D,

N = 1 models is to use a ‘CMN pair’ consisting of one chiral superfield Φ and one complex

linear superfield Σ corresponding to a χo = 0 system.

One of the amusing analogies to note is that with respect to off-shell 4D, N = 2 su-

persymmetry, the adinkra quantum number χo defined on 4D, N = 1 supermultiplets acts

just like color in hadronic physics! It seems likely that off-shell 4D, N = 2 supersymmetry

representations must have vanishing adinkra quantum number χo just as baryons must

have vanishing color.
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CM VM TM RSS CLS cSG mSG 6mSG

χ0 1 −1 −1 0 −1 −2 −1 −3

Table 1. The new quantum number χ0 for the 4D, N = 1 chiral (CM), vector (VM), tensor (TM),

real scalar (RSS), complex linear (CLM), conformal supergravity (cSG), old-minimal supergravity

(mSG), and non-minimal supergravity ( 6mSG) multiplets [18, 29, 30].

Our present work shows that with regard to 4D, N = 2 SUSY this new quantum

number matters. As far as we can tell, all Dirac fermions in off-shell 4D, N = 2 systems

have χo = 0. This raises numbers of questions. Does this have implications for 4D, N = 1

SUSY systems, including phenomenology? It is known that there exist 4D, N = 1 duality

transformations between χo = 0 and χo = 2 systems. Do our results imply that no such

4D, N = 2 duality transformations exist? Needless to say all of this is very strange and

‘funny’.

“The most exciting phrase to hear in science,

the one that heralds new discoveries, is not ‘Eureka!’

but ‘That’s funny. . . ’ ” — Isaac Asimov
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A Chiral + chiral L, R matrices

In the following series of appendices, we give the explicit forms of the L-matrices and

R-matrices discussed in the third section. We use the compact ‘Boolean Factor/Cycle’

notation introduced in our work of [19]. The explicit form of the 8 × 8 L-matrices and

R-matrices that appear in (3.22) are found to be:

(L1) =

[
(10)b(243) 0

0 (10)b(243)

]
, (L2) =

[
(12)b(123) 0

0 (12)b(123)

]
,

(L3) =

[
(6)b(134) 0

0 (6)b(134)

]
, (L4) =

[
(0)b(142) 0

0 (0)b(142)

]
,

(L5) =

[
0 (15)b(243)

(0)b(243) 0

]
, (L6) =

[
0 (9)b(123)

(6)b(123) 0

]
,

(L7) =

[
0 (3)b(134)

(12)b(134) 0

]
, (L8) =

[
0 (5)b(142)

(10)b(142) 0

]
.

B Chiral + vector L, R matrices

The explicit form of the 8× 8 L-matrices and R-matrices derived from the case of case of

the chiral + vector supermultiplets and that are analogous to those that appear in (3.22)

are found to be:

(L1) =

[
(10)b(243) 0

0 (10)b(1243)

]
, (L2) =

[
(12)b(123) 0

0 (12)b(23)

]
,

(L3) =

[
(6)b(134) 0

0 (0)b(14)

]
, (L4) =

[
(0)b(142) 0

0 (6)b(1342)

]
,

(L5) =

[
0 (2)b(243)

(13)b(1243) 0

]
, (L6) =

[
0 (4)b(123)

(11)b(23) 0

]
,

(L7) =

[
0 (14)b(134)

(7)b(14) 0

]
, (L8) =

[
0 (8)b(142)

(1)b(1342) 0

]
.

C Chiral + tensor L, R matrices

The explicit form of the 8× 8 L-matrices and R-matrices derived from the case of case of

the chiral + tensor supermultiplets and that are analogous to those that appear in (3.22)
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are found to be:

(L1) =

[
(10)b(243) 0

0 (14)b(234)

]
, (L2) =

[
(12)b(123) 0

0 (4)b(124)

]
,

(L3) =

[
(6)b(134) 0

0 (8)b(132)

]
, (L4) =

[
(0)b(142) 0

0 (2)b(143)

]
,

(L5) =

[
0 (11)b(243)

(0)b(234) 0

]
, (L6) =

[
0 (13)b(123)

(10)b(124) 0

]
,

(L7) =

[
0 (7)b(134)

(6)b(132) 0

]
, (L8) =

[
0 (1)b(142)

(12)b(143) 0

]
.

D Vector + vector L, R matrices

The explicit form of the 8 × 8 L-matrices and R-matrices derived from the case of the

vector + vector supermultiplets and that are analogous to those that appear in (3.22) are

found to be

(L1) =

[
b+(10)b(1243) 0

0 a+(10)b(1243)

]
, (L2) =

[
b+(12)b(23) 0

0 a+(12)b(23)

]
,

(L3) =

[
b+(0)b(14) 0

0 a+(0)b(14)

]
, (L4) =

[
b+(6)b(1342) 0

0 a+(6)b(1342)

]
,

(L5) =

[
0 b−(10)b(1243)

a−(10)b(1243) 0

]
, (L6) =

[
0 b−(12)b(23)

a−(12)b(23) 0

]
,

(L7) =

[
0 b−(0)b(14)

a−(0)b(14) 0

]
, (L8) =

[
0 b−(6)b(1342)

a−(6)b(1342) 0

]
,

where

a± = cos

(
mπ

2

)
± sin

(
mπ

2

)
, b± = cos

(
nπ

2

)
± sin

(
nπ

2

)
.

E Tensor + tensor L, R matrices

The explicit form of the 8 × 8 L-matrices and R-matrices derived from the case of the

tensor + tensor supermultiplets and that are analogous to those that appear in (3.22) are
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found to be

(L1) =

[
b+(14)b(234) 0

0 a+(14)b(234)

]
, (L2) =

[
b+(4)b(124) 0

0 a+(4)b(124)

]
,

(L3) =

[
b+(8)b(132) 0

0 a+(8)b(132)

]
, (L4) =

[
b+(2)b(143) 0

0 a+(2)b(143)

]
,

(L5) =

[
0 b−(14)b(234)

a−(14)b(234) 0

]
, (L6) =

[
0 b−(4)b(124)

a−(4)b(124) 0

]
,

(L7) =

[
0 b−(8)b(132)

a−(8)b(132) 0

]
, (L8) =

[
0 b−(2)b(143)

a−(2)b(143) 0

]
.

F Vector + tensor L, R matrices

The explicit form of the 8 × 8 L-matrices and R-matrices derived from the case of the

vector + tensor supermultiplets and that are analogous to those that appear in (3.22) are

found to be

(L1) =

[
b+(14)b(234) 0

0 a+(10)b(1243)

]
, (L2) =

[
b+(4)b(124) 0

0 a+(12)b(23)

]
,

(L3) =

[
b+(8)b(132) 0

0 a+(0)b(14)

]
, (L4) =

[
b+(2)b(143) 0

0 a+(6)b(1342)

]
,

(L5) =

[
0 b−(14)b(234)

a−(10)b(1243) 0

]
, (L6) =

[
0 b−(4)b(124)

a−(12)b(23) 0

]
,

(L7) =

[
0 b−(8)b(132)

a−(0)b(14) 0

]
, (L8) =

[
0 b−(2)b(143)

a−(6)b(1342) 0

]
.

G qGR bracket example calculations

In this appendix, we will simply demonstrate two example of how the qGR bracket defined

in section two can be used. In the first case we show it leads to a very different perspective

using the usual Pauli matrices.

We, of course, use their conventional definitions

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (G.1)

implying

σi σj = δi j I+ i ǫi j k σk →
[
σi , σj

]
= i2 ǫi j k σk, (G.2)

the usual commutator algebra. We note that

(σ1)t = +(σ1) , (σ2)t = −(σ2) , (σ3)t = +(σ3) . (G.3)
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Under the action of the qGR brackets for q = 1, we have

[
σ1 , σ2

]
(1)GR>

= 0 ,
[
σ2 , σ3

]
(1)GR>

= 0 ,
[
σ3 , σ1

]
(1)GR>

= i2σ2, (G.4)
[
σ1 , σ2

]
(1)GR<

= 0 ,
[
σ2 , σ3

]
(1)GR<

= 0 ,
[
σ3 , σ1

]
(1)GR<

= i2σ2. (G.5)

The results in (G.4) and the ones in (G.5) each separately result imply that a Jacobi-like

condition is satisfied by the qGR bracket for q = 1 and the Pauli matrices. So a structure

not dissimilar to a Lie algebra emerges. Since the Pauli matrices can be identified as the

generators of the su(2) algebra, replacing them by the generators for su(3) leads to more

interesting results. It might be of interest to investigate whether such a replacement also

lead to a structure not dissimilar to a Lie algebra.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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