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CONFIGURATION SPACES OF POSITIVE AND 
NEGATIVE PARTICLES 
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(Received 4 May 1974) 

$1. INTRODUCTION 

THE AIM of this paper is to investigate the topology of two “ configuration spaces ” associated 

to a smooth manifold M. The first is the space C(M) of all finite subsets of M. Its points can 

be thought of as sets of indistinguishable particles moving about on M, and it is topologised 

so that particles cannot collide. (cf. [4], where configurations of distinguishable particles on 

a manifold are studied.) The second space, denoted C*(M), has as its points pairs of finite 

subsets of M, to be thought of as I‘ positive ” and “ negative” particles. It is topologised so 

that particles of the same sign cannot collide, but a pair of particles of opposite sign can 

collide and annihilate each other. (More precise definitions are given in $2.) 

When M is euclidean space l%” the space C(M) has been studied in [l], [5] and [7]. If 

C,(M) is the part of C(M) consisting of sets of k particles, then there is a map C,(M) * Fk , 

where Fk is the space of base-point preserving maps of degree k from the sphere S” to itself, 

which induces an isomorphism of homology groups up to a dimension tending to co with k. 

Thinking of s” as obtained from R” by adding a point at co, one can as well describe Fk as 

the space of maps from R” to R” u 03 which have compact support and degree k. If one 

likes, one can think of the map C,(M) + Fk as assigning to a set of particles a “ field ” which 

it produces (cf. [7]). For a general n-dimensional manifold M (without boundary) the maps 

R” + R” u cc should be replaced by tangent vector fields on M which are allowed to become 

infinite. Let E&, be the space obtained from the tangent bundle of M by adding a point at 

infinity to each fibre (thus EM is a fibre bundle on M with fibre P), and let r(M) be the 

space of cross-sections of E,,, with compact support. Such a cross-section has a degree: 

let r,(M) be the cross-sections of degree k. Our first main results are: 

THEOREM 1.1. Let M be a closed compact manifold. Then there are maps C,(M) 4 T,(M) 

which, .for each II, induce isomorphisms H,,(C,(M)) -) H,(r,(M)) when k is suficiently large. 

THEOREM 1.2. Let M be an open, paracompact manifold (i.e. it has no closed components). 
Tiler1 there are maps C,(M) + r,(M) which induce an isomorphism 

!& H,(C,(M)) z h H&,(M)). 
k--r k-x 

Moreover, if M is the interior of a compact manifold with boundary, H,(C,(M))+ 

H,,(r,(M)) is an isomorphism for large k. 
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(The sense in which H,(C,(M)) and H,(T’,(,M)) form a direct system will be explained 

in $4. Roughly speaking, one maps C,(M) to C,+,(M) by “adding a particle from infinity *’ 

in a standard way.) 

The theorem about C’(M) is both stronger and simpler to state. The reason is that the 

spaces C,(M) are different for different k, and become more complicated as k increases, 

while if A4 is open the homotopy-type of T,(M) is independent of k, so that one can at most 

expect to prove something as k tends to infinity. But when one allows oppositely charged 

particles and annihilation, the situation is different: for open M the homotopy-type of 

C,*(M), the part of C*(M) where the total charge is k, is independent of k. For this reason 

it was first conjectured that C’(M) Y T(M). But this is false. There is a fibre bundle E,(’ 

on M whose fibre is a 2n-dimensional space X, obtained by attaching a 2/r-cell to S”, and 

one has 

THEOREM 1.3. If M is a manifold without boundary, there is a 1lomotop.v equiralnrce 

C*(M) -, T*(M), where r*(M) is the space of cross-sections of E,W’ with compact support. 

This result is new even if M = R”, when it can be restated as C’(Iw”) z Q”X,, where 

WX,, is the n-fold loop space of X, (cf. $2). 

The proofs of these theorems make no appeal to the known results in the case of euclid- 

ean space. Thus they include in particular a new proof of the theorem about R”S” which 

is perhaps simpler and more conceptual than the known ones. The idea of the proof can be 

described very simply. 

First let us remark that in the foregoing M was a manifold without boundary, not 

necessarily compact, If M is compact but has a boundary ?M then it is clear that C(M) 1: 

C(Int M) and C*(M) z C*(Int M), where Int M = M - 2M is the interior of M. Also 

r(lnt M) is contained in, and homotopy equivalent to, T(M. ?M), the sections of E,,, which 

vanish on the boundary dM. And similarly r*(Int M) v T’(M. ?M). In future it will be 

more convenient to work entirely with compact manifolds. with or without boundary. 

This suffices to prove Theorems I .2 and I .3, for even though a given open manifold CM may 

not be the interior of a compact manifold with boundary it is still the countable union of 

such manifolds, and the theorems about C(M) and C’(M) can be obtained by a simple 

limit argument. 

The proof depends on considering more general configuration spaces in which one 

allows particles to be created or annihilated in some closed subset f. of M. which in practice 

will be contained in the boundary. Thus C(M, L) will denote the quotient space of C(.M) by 

the equivalence relation which identifies two finite subsets s and s’ of M ifs n (44 - L) = 

s’ n (M - L). C(M, dM) will be abbreviated to c(M). One defines C’(M. L) and C?‘(M) 

similarly. 

The spaces c(N), where IV is a submanifold of M of the same dimension as M. are in 

some sense local versions of C(M). for the restriction map which takes s c M to s n ;V 

maps C(M) to c(N), and not C(N). They have very simple properties. For instance, if :M is 

a closed disc in R”, then by radial expansion, pushing particles out to the boundary where 
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they vanish, one has a deformation of e(M) onto the part consisting of configurations with 

at most one particle. This is homeomorphic to M/aM, an n-sphere. Furthermore, if M is 

the union of two parts M, and M, with intersection M,, , then under suitable hypotheses 

(see (3.6)) C(M) is the homotopy fibre product of C(M,) and c(M,) over C(M,,). Using 

these two remarks one can find the homotopy type of c(M) by building M up step by step 

out of simple pieces, more precisely by induction on the number of handles in a handle- 

decomposition of M. Thus one obtains 

THEOREM I .4. [f A4 is a compact manifbld with no closed components, then C(M, 8M) 5 

J-(M). 

There is an analogous result for C’(M, dM), but one need not require dM # 4. From 

this one deduces Theorem 1.3. The proofs of Theorems 1.1 and 1.2 are also based on this, 

but require considerably more work (see $4 and $5). 

It is perhaps worth mentioning that the methods of this paper prove also the following 

generalisations of these theorems. Suppose that the particles have some kind of internal 

structure expressed by a parameter with values in a parameter space P. Without loss of 

generality one can suppose that P has a zero-point p0 such that when its parameter becomes 

pO a particle annihilates itself. In the case of positive and negative particles one supposes 

that two opposite particles can annihilate each other only if their parameters are the same. 

Then the theorems still hold for such structured particles but the bundles Ew and EM’ must 

be replaced by bundles EM(P) and E,*(P) whose fibres are S”P and S’P x S”P/(diag) 

respectively. (S”P is the reduced n-fold suspension of P.) One could also let the space P vary 

from point to point of M forming a fibre bundle on M, with the same result. 

Finally, the author wishes to thank Graeme Segal for suggesting the problem, and 

discussing it with her. 

92. THE CONFIGURATION SPACES &Vf, AND C*(M) 

We will always suppose that M is a compact smooth manifold with possibly empty 

boundary and perhaps also with corners, unless it is explicitly stated to the contrary. Let 

CA(M) = {s c M: card s = k). Then C,(M) may be identified with 

((m,, . . . . m,)E Mk:mi#mj if i+j}/w, 

where (m,. . , mA) - On,‘. . , HI,‘) iff the sets {m,, . . . , mk} and {m,‘, . . . , m,‘} are equal. 

With C,(M) topologised as this quotient of Mk - A, where A denotes {(m,, . . . , mk) E Mh: 

mi = mj for some i #,j). C(M) is given the topology of the disjoint union u C,.(M). 
kz0 

If L is any closed subset of ?M, the points of the space C(M, L) are equivalence classes 

[s] of finite subsets s of Ad. where s - s’ iff s n (M - L) = s’ n (M - L). C(M, L) is topolo- 

gised as a quotient of C(M). It can be considered either as the configuration space where 

particles are annihilated and created in L or as the space where particles may vanish, or 

appear. by crossing the boundary at L. We write f(M) for C(M, 8M). 
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LEMMA 2. I. C(M) and c(M) have the homoropy-type of C W complexes. 

Proof. This is clear for C(M) since C,(M) is obviously a manifold. Now C,(M) has a 

subcomplex D, = {s : s n dM # c#I}, And if Ck = {[s] E C(M): card s I kj, then Ck is obtain- 

ed from Ck-’ by attaching C,( M tot’-‘byamapD,+ ) eke’. Therefore each ck is homo- 

topic to a CW complex, and since C(M) = !ir~ rk, C(M) is too. 
k 

The configuration space C*(M) of positive and negative particles is defined to be 

C(M) x C(M)/- where (s, I)- (s’, t’) iff s - t = s‘ - f‘ and t - s = t’ - s‘. Similarly 

C*(M, L) is C(M) x C(M)/- where (s, I) - (J’, t’) iff (s - t) n (M - f.) = (s’ - 1’) n 

(M - L) and (t - s) n (M - ,5) = (f’ - s’) n (M - L). These spaces are given the quotient 

topology. As before we write C*(M) for C’(M, aM>. 

LEMMA 2.2. C*(M) andc*(M)h aue the homoropy-type of’ C W complexes. 

ProoJ We prove this for C*(M). Let Czl = ([s, f] E C’(M) : card s = k, card f = fj. 

Each C& is closed in C*(M), and clearly C’(M) = !ir~ Ck:(. By Lemma 2. I each Cz O, 
k. 1 

k 2 0, and Cg iI I 2 0, is homotopic to a CW complex. Now the group .Xk x t, acts freely 

on (Mk - A) x (M’ - A) (& is the symmetric group on k fetters), preserving the subspace 

Dk,t=f((mll -.-, m,), (m,‘, . _ _, ml’>): mi = mjt for some i, j). Therefore 0;. I = I&. J 

(I& x Zi) is a subcompIex of the CW complex CL. f = (ML - A) x (M’ - A)/(& x X,). 

But C’: ( is obtained by attaching CL. I to Ct_ 1, I-t by a map 0;. 1 + Ct_ , . ,_ 1. It follows 

by induction on k, f that each Cz, is homotopic to a CW complex. Therefore C’(M) is 

also. 

One knows similarly that all configuration spaces discussed here are homotopic to CW 

complexes. 

Now suppose that M has a Riemannian metric d, and, if E > 0 write M, for (XE M: 

d(x, JM) 2 E}. (If dM = 4, take M, = M.) We will always assume that E > 0 is chosen so 

that M - Mt, is a collar neighbourhood of dM. homeomorphic to aM x [0, 2~). 

Let C(M, E’) be the closed subset of c(M) where the particles have pairwise separation 

2 2~‘. Then C(M, E’) can be considered to be the configuration space of disjoint open discs 

6,‘(.u) = (,y : dfx, y) < E’) in M,’ which can disappear across the boundary, by associating to 

each particle the centre of a disc (cf. [7]). Form the disc space 

c&M)= U C(M, E’) x {E’} c C(M) x R. 
0 <L’_<E 

There is an obvious projection p: cc(M) -+ C(M). 

LEMMA 2.3. p: C,(M) + c(M) is LI homotopy equivalence. 

proof. It is easy to see that c(M) is topologically the direct limit I& C(M, 6). On the 
4,0 

other hand r?‘,(M) is I& c(M, 6) x [8, E]. Hence the projection p : C,(M) --* c(M) is a 
czd>0 

weak homotopy equivalence. But both spaces are homotopic to C W complexes, so p is a 

homotopy equivalence. 
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A similar result is true for positive and negative particles. Let c*(M, E’) be the closed 

subset of z’*(M) where particles of the same sign have pairwise separation 2 2.6, and put 

c;,‘(M) = u c*(M, E’) x {a’} c C’(M) x [w as before. 
0 <E’Sc: 

LEMMA 2.4. The projectiotl p : e,‘(M) 4 c*(M) is a homotopy equivalence. 

Proof as for (2.3). 

Our object is to show that c:(M) and c*(M) have the same homotopy type as spaces 

of continuous sections of certain bundles E, and EM* over M. It is convenient to define 

these bundles in the following way. Let D, be the unit disc in the tangent space T(M), to M 

at x, and let S, be DA/3 D,. Then Eu (resp. E,*) is the bundle associated to T(M) with 

fibre S, (resp. (S, x S,)/A,) at X. Here AX is the diagonal {(y, y) : ~1 E S,J. The fibres of E, 

(resp. E,‘) are based, with base point *X equal to the image of dD, (resp. A,) in the fibre. 

If N is some subset of M we write F(N) (resp. r*(N)) for the space of continuous 

sections of Enr (resp. E,*) over N. 

Now suppose that E > 0 is small enough so that for each x E M, exp, : ED, + C?,(E) = 

[y : d(_y, x) 5 &j is a diffeomorphism. Then define 4, : C,(M)+ r(M,) as follows. For 

([s], a’) E S;(M. 6) X is’;, and x f M, put #,([s], E’)(X) = ax unless d(x, xi) < E’ for some 

xi E s. In this case put (b,([s], E‘)(X) = d(x, xi)/&‘. t(x, xi), where t(x, xi) is the unit tangent at x 

to the minimal geodesic from xi to x. (This geodesic exists by our assumption on E.) Note 

that fp, is well defined. For a disc of radius E and centre on dM does not intersect M,, and, 

also, e,(M) consists of sets of disjoint discs. Sometimes we will write 4M, E for 4, if we wish 

to emphasize that it has been defined relative to M. It is clear that different choices of metric 

d on M give rise to homotopic maps 4,. 

THEOREM 2.5. If M is compact and has no closed components, then 4, : c’,(M) + I-( M,) 

is a homotopy equivalence. 

Note that 5’,(M) is homotopic to e(M) by Lemma 2.3. Also the restriction map T(M) + 

r(M,) is an equivalence for small E. Therefore this theorem is equivalent to Theorem 1.4. 

Proqfqf’2.5. When M = D, the unit disc in BY. 

There is a commutative diagram 

c(D, s’) - J-(k) 

where the horizontal maps are induced by do,, the right hand vertical map is evaluation at 

the origin. and the left hand vertical map is given by the radial expansion [s] -+ [(~/E’)s]. 

Since the other three maps are equivalences, 4, . . c(D, E’) -+ T(D,) is too. Thus $, : e,(D) + 

r( D,) is an equivalence. 

The proof for general M will be given in $3. 
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For the spaces C(M, L) one can prove the following. 

Let M be a compact manifold (without corners), and suppose that its boundary SM is the 

union of two submanifolds L and L’ of the same dimension as dM and with boundaries 

8L = aL’ = L n L’. Let r(M, L’) be the space of sections of EM over M which vanish 

(i.e. equal *.J on L’. 

THEOREM 2.6. If M is connected and L # 4, there is an equivalence C(M, L) -+ T(M, L’). 

What the map is here will be clear from the proof in $3. Note that this is false if L 

consists of a single point, or is empty (see (4.2), (4.5)). Also, since C(M, L) z C(M - L’), 

the result may be reformulated as C(M - L’) -2 r(M, L’), for certain L’ G dM. 

The results for positive and negative particles are simpler than those for positive 

particles alone since there are no exceptional cases. We define 4E* : C,*(M) + lY*(M,) by 

&*(([s, t], E’))(X) is the image in (S, x &)/A, of (&([s], E’)(X), +,([t], E’)(X)). This is well 

defined since particles in s n t give rise to elements of A,, and so make no contribution to 

4C’. 

THEOREM 2.7. dz* : C,*(M) -+ r*(M,) is a homotopy equivalence. 

Similarly, if dM = L u L’ as above, one has 

THEOREM 2.8. For any L, there is an equivalence C*(M, L) -+ r*(M, L’). 

Theorem 1.3 is an immediate consequence of this. For putting L = 4 gives 

C*(M) 5 r*(M, JM), which implies that C*(Int M) ‘. T*(Int M), where Int M is 

M - dM. By taking limits, one sees that C’(M) & r(M) for all manifolds without 

boundary. 

When M is D, the unit disc in KY’, this theorem says that C*(D), or C*(R”), is homo- 

topic to Map,, (9, (S” x .!?)/A), the space of base-point preserving maps S” -+ (S” x S”)/A 

(where A is the diagonal {(y, y) : y E 27)). Now Segal’s theorem in [7] may be interpreted as 

saying that the monoid C(R”), where composition is by “juxtaposition “, has classifying 

space Q “-‘S”, and hence that the H-space obtained by “ adjoining homotopy inverses ” 

to C(P) is homotopy equivalent to Q’S” 2 Map, (S”, S”). One might hope that adding 

negative particles to C(P) would be equivalent to forming this H-space, but Theorem 2.8 

says this is not so. However C’(R”) is related to R”S”. In fact there are inclusions 

R”S” 4 C*(P) 4 R”+lS”+’ 

whose composition is the suspension. These maps are induced by inclusions 

S” G (S” x 9)/A 4 RS”+ ’ , 

where the first map is XH (x, *) E (S” x 9)/A, and the second is obtained as follows. Think 

of S” as included in G!S”+’ and define f : S” x S” + fW”’ by (i., ;l)~ 1. v (-p) where v 

denotes addition of loops. Sincef], is null-homotopic, f is homotopy equivalent to a map 

f ‘, constant on A. 
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$3. PROOFS OF THE THEOREMS OF 52 

These theorems are proved in the following way. First we show that for suitable sub- 

manifolds N of A4 the restriction maps iJ( M) -+ C(N) and c*(M) --) c*(N) are quasifibra- 

tions. Then, using this and the fact that Theorems 2.5 and 2.7 are true when M is a disc, we 

deduce them for genera1 M by induction on the number of handles in a handle decomposi- 

tion of M. Theorems 2.6 and 2.8 now follow fairly easily, since C*(M, L), for instance, is 

the fibre of a quasifibration c*(M u .,(L’ x I)) -+ c*(L’ x I). 

Let N and N’ be two manifolds of the same dimension as M, and with boundaries aiV 

and aN’. We suppose that they are embedded as closed submanifolds of M in such a way 

that M = N u N’, and N n N’ = aN n aN’ = B say. If, also, B is a submanifold of aN and 

of aN’, we will say that the inclusion N 4 M is nice. Sometimes we will require that the fol- 

lowing condition is satisfied : 

(*) each connected component of B has non-empty intersection with aM. 

Define the restriction map r : C(M) + C(N) by [$]I+ [s n N], and r* : C*(M) + i**(N) 

by [s, t] H [s n N, t n N]. Clearly each fibre r-l([s]) of r is homeomorphic to C(N’, ah” - B) 

by the map [t] H [t n N’]. Similarly the fibres of r* are homeomorphic to C*(N’, aN’ - B). 

Recall that the homotopy theoretic fibre F(r, x) of a map r : Y + X at the point x E X 

consists of all pairs (y, y) where y E Y and y is a path in X fromS(y) to x. There is an inclu- 

sion r-‘(x) 4 F(r, x) given by ye (y, y), where y is the constant path. The map r is called a 

quasifibration if this inclusion induces an isomorphism of homotopy groups for all x E X. 

PROPOSITION 3.1. Zf N G M is a nice inclusion for which condition (*) is satisfied, then 

r : z?(M) + c(N) is a quaszjibration with jibre F = C(N’, aN’ - B). 

PROPOSITION 3.2. For all nice inclusions N G M, r* : C*(M) + z?*(N) is a quaszjibration 

with Jibre F = C*(N’, dN’ - B). 

These propositions are proved in a standard way, using the following lemma (see [3], 

(2.2), (2.10) (2.15)): 

LEMMA3.3.LetX=UX~,whereeachX,isclosedandX,cX2C....Letr: Y-+Xbe 

a map. Suppose that for each k 

(i) r : r-‘(X, - X,_,) + X, - X,_, is ajbration withjibre F, and 

(ii) there is an open subset U, of X, which contains X,_, and there are homotopies 
It, : U, + U, and H, : r-l(U,.) + r-‘(U,) such that 

(a) h, = id. Ir,(X,_,) c Xk-r, h,(U,) G X,_,; 

(b) HO = id, r 2 H, = h, c r; 

(c‘) H, : r-‘(s) + r-l (h,(x)) is a homotopy equivalence for all x E U, . 

Then r ; Y -+ X is a quasifibration with fibre F. 

TOP Lol. 14 No I-G 
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As in May [5, p. 621, we will filter C(N) by the sets C’(N) where ck(N) consists of all 

configurations of j k particles. Write vk for Ck(N) - Ck-‘(N), and F for C(N’, dN’ - B). 

Embed F in C(M) as {[s] : s c N’}. Since V, = {[s] E c(M) : s c N - dN, card s = k], the 

map ([s], [s’])~ [s u s’] is a homeomorphism V, x F + r-I( V,). Thus condition (i) of 

Lemma 3.3 holds. 

By our assumptions on B, we may choose E > 0 so that the set {y E M: d(_r, B) < 2&J is 

homeomorphic to B x (-2s, 2~). Also, for small E > 0, N - N,, is homeomorphic to 

dN x [0, 2s). It follows that there is a homotopyf, : (M, dM> + (M, ahf) such that& = id, 

fi(N,) = N and f,Ifr-‘(M - 8W is always injective. Because of this injectivity off,, ft 

induces a homotopy (f,)* : C(M) --, C(M). 

Now let uk be {[s] E Ck(N): card (s n N,) I k - 1}, and let h,, H, be the appropriate 

restrictions of (_& . Clearly conditions (a) and (b) of Lemma 3.3 are satisfied. Thus Proposi- 

tion 3.1 will follow once we have proved : 

LEMMA 3.4. rf (*) is satisfied, then H,: r-‘([s]) + r-’ (h,[s]) is a homotopy equivalence 

for a/l [s] in uk. 

Proof. As was pointed out before, each fibre r-l([s]) is canonically isomorphic to 

F = C(N’, aN’ - B). In terms of this identification H1 : r-‘([s]) + r-‘(h,[s]) is a map 

HI : F + F. In fact it is [t]t+ V;(t)] u [w] where [w] = [fi(s) n Iv’] is a configuration in the 

neighborhood W =f,(N) n N’ of B in N’. Now V;(t)] lies outside W for all [t] E F. Also 

condition (*) implies that each component ~of B has non-empty intersection with dM, so 

that [w] can be connected to the empty configuration through configurations in W. There- 

fore the map [t]- [h(t)] u [w] is homotopic to [t] H [f,(t)], and this is homotopic to id,, 

since fi 'Y id. 

The proof of Proposition 3.2 is essentially the same as that of 3.1. C’(N) is filtered by 

the sets C,*(N) = c’(N) x Ck(N)/_, uk is taken to be{([.xJ, [t]) c ck*(N) : card ((s u t) n 

N,) I 2k - I>, and h, and H, are induced by ft as before. Then parts (a) and (b) of condition 

(ii) in Lemma 3.3 are clearly satisfied. Also condition (i) holds with F = C*(N’, dN’ - B) by 

the same argument as for positive particles. Thus we need only prove 

LEMMA 3.5. For ally in uk, H, : r-‘(y) + r-‘(h,(y)) is a homotopy equivalence. 

Proof. As in the proof of (2.4) we may identify r-‘(y) and r-‘(h,(y)) canonically with F, 

thus getting a map H, : F -+ F given by d++ h,(6) u w. As before, w is a configuration in 

W (w is the restriction of h,(y) to N’), while h,(6) lies outside W for all 5 E F. Suppose that 

w = [s, t], and let w’ = [t, s]. Then w and h,(w’) are disjoint. Also, w u h,(w’) is a configura- 

tion in W u h,(W) which may be contracted to the empty configuration inside W u h,(W). 

For w’ has negative particles where w has positive ones, and vice versa, so that the particles 

of w u h,(w’) cancel each other in pairs. Similar remarks apply to w’ u /I,. It follows 

easily that the map k : F+ F given by 6~ h,(6) u w’ is homotopy inverse to H,. 

Suppose now that M is the union of two submanifolds M,, M1 and that all four 

inclusions M, n M, 4 Mi , Mi 4 M (where i = 1, 2) satisfy the conditions of Proposition 
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3.1. Write M,z for M, n M, and consider the square 

C(M) - C(M,) 

where all maps are restrictions, and so are quasifibrations. This square is commutative, and 
Cartesian. It follows from [3], Satz (2.7) that c(M) is weakly equivalent to the homotopy 
theoretic fibre product of C(M,) and C(M,) over c(M,,). Therefore, since all these spaces 
are homotopic to CW complexes (see (2.1)) this is a proper equivalence and the square is 
homotopy Cartesian. 

LEMMA 3.6. Let M, M, and M2 be as above. Then, tf Theorem 2.5 is true for M, n Mz , 

M, and M, it is also true for M. 

Proof Consider the following diagram : 

i 

&W + CM) 7 ‘%M) + ~:,W,) T UM,) + Wf,,,) 

df,, 4 CA, i i 
1 

C,(M,) i 
1 1 1 

CAM,,) 1 i r(M,,,) + Wf,,,,) 1 

where all maps inside the squares are restrictions, and those between squares are as indicated. 
The diagram commutes strictly. Furthermore, all maps between squares are homotopy 
equivalences except, possibly, for 4, on C,(M) (see Lemma 2.3 for the maps p). The right- 
hand square is obviously homotopy Cartesian. By the remarks above, so is the left-hand 
square. Hence so is the one in the middle. It follows that 4, : t?,(M) -+ T(M,) is an equiva- 
lence. 

LEMMA 3.7. Theorem 2.5 is true for Sk x Dnwk, where 0 2 k < n. 

Proof(by induction on k). We have already shown that the theorem holds for S” x D”. 

Suppose it holds when k = k, - 1, and let k = k, < n. Then Sk is the union of two copies 
of Dk with intersection z Sk-’ x I. Also, if M = Sk x Dnek, M, = Mz = Dk x D”-k and 

M, n M, = Sk-’ x Z x Dnmk, it is clear that the conditions of Lemma 3.6 are satisfied. 

(Note that k must be -C n if condition (*) is to hold.) Thus the result follows. 

LEMMA 3.8. Suppose that Theorem 2.5 is true for M, and let M’ be M with a handle of 

index k attached, where k c n. Then the theorem holds for M’. 

Proof. M’ = M u (Dk x Dnek) where Dk x Dnek is attached to M by an embedding 

Ic, 1 Sk-’ x LI”-~ G dM. Since aM has a collar dM x Zin M, \I/ may be extended to an embed- 
ding (Sk-’ x I) x DnTk 4 dM x I. Thus M’ may be considered as M u (Dk x Dnwk) where 

M n (Dk x Dnmk) is (Sk-’ x Z) x DnVk. If k < n, this decomposition of M’ satisfies the 

conditions of Lemma 3.6. Therefore, since the theorem holds for Sk-’ x Dnbk+’ (Lemma 

3.7) for D” and for M, it holds also for M’. 

Now recall that any compact connected n-dimensional manifold M with non-empty 

boundary may be built up from the disc D” by attaching a finite number of handles of index 
< n (see, for instance, [6]). Therefore, Lemma 3.8 implies that Theorem 2.5 holds for all 

finite unions of such manifolds. 
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Theorem 2.7 is proved in exactly the same way. The only change is that since c*(M) + 

c*(N) is a quasifibration whether or not condition (*) holds, there is no need to restrict the 

attached handles to those of index < n. Thus the theorem holds for all compact manifolds. 

Proof of Theorem 2.6. Suppose first that L’ has no closed components. We may attach 

L’ x Z to M by identifying L’ x (0) with L’ c dM, so getting a manifold with corners 

M u ,.(L’ x I), called X say. Then the inclusion L’ x Z G X is nice, and it satisfies condition 

(*) since L’ has no closed components. Consider the diagram 

CCL’ x z) A C,(L’ x I) % r((L' x I),) +L- T(L’ x I), 

where the vertical maps and the maps p are appropriate restriction maps. It is homotopy 

commutative, and all horizontal maps are equivalences. Therefore these maps induce equiva- 

lences of the homotopy fibres of the vertical maps. But, since by Proposition 3.1 r is a 

quasifibration where the spaces and all fibres are homotopic to CWcomplexes, its homotopy 

fibres are equivalent to its actual fibres and these, in turn, are equivalent to C(M, L). Also 

the fibre of r(X) + T(L’ x I) is T(M, L’). Therefore there is an equivalence C(M, L) -+ 

r(kf, L’). 

In the general case let L’ = A’ u B’ where A’ is the union of the closed components of 

L’. Then dM - A’ is closed. Let us call it A. It will suffice to prove that C(M. A) ; r( M, A’). 

This is proved in the same way as Theorem 2.5. For the result is obviously true if M g 

A’ x Z, with A’ identified with A’ x (0) and A identified with A’ x {I}. And if M is any 

connected manifold whose boundary dA4 is the disjoint union of A’ with SM - A’, there is 

a finite sequence of triples (Mi; A’, dMi - A’) which starts with (A’ x I: A’ x (01, A’ x { 1)) 

and ends with (M; A’, dM - A’) and where M,+, is obtained from Mi attaching a handle 

of index < dim M to dMi - A’ (see [6]). By using the argument of Lemma 3.8 one shows that 

each C(Mi, dMi - A’) + r(M,, A’) is an equivalence. The result follows. 

The proof of Theorem 2.8 is the same, except that no conditions need to be placed on L 

since z’(X) + C(L’ x I) is always a quasifibration. 

54. THE CONFIGURATION SPACE C(M) 

In this section we prove Theorems 1.1 and 1.2. 

Let M be a compact connected, manifold with non-empty connected boundary ?M. 

As in the case of positive and negative particles (see the proof of (2.6) above), the restriction 

map r : C(M u d,(aM x I)) 4 C(dM x I) has fibres each homeomorphic to C(M). However 

the inclusion dM x Z 4 M u &,(aM x I) does not satisfy the condition (*) of $3, so that r 

is not a quasifibration. This is remedied by “making a hole” in c’,M x I, which gives us 

something more nearly a quasifibration. 
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Choose a point m in JM and let A be the “ annulus with a hole” (8M - m) x [0, 11. 

Then JA = A, u A,, where Ai is (Z!M - m) x {i}, i = 0, 1. Further, let X be A4 u A,A, 

where A, is identified with aM - m G M, with the amalgamation topology (so that U is 

open in X iff U n M and U n A are open). Its boundary dX is m u A,. One checks that 

the restriction map r : c( A’) + C(A) given by [s] H [s n A] is well-defined and continuous. 

Its fibres are each homeomorphic to C(M, m), the space of subsets s of M, modulo s w s’ iff 

sn(M-m)=s’n(M-m). 

LEMMA 4.1. r : c(X) -+ C(A) is Q homology Jibration. That is, the canonical inclusions of 

the actualfibres of r into its homotopy fibres induce isomorphisms on homology. 

The proof is given in $5. 

Recall that C,(M) is {s c M : card s = k}, and define g : C,(M) + C,+,(M) by g(s) = 

{JI(s)} u {m}, where f, : M -+ M is an injective homotopy such thatf, = id,f, = id except 

near m, and m #f,( M). Let Tel C,(M) be the telescope formed from C,(M) --% C,(M) -% 
C,(M) + . . _ . There is an obvious projection I[ : Tel C,(M) + C( M, m), up to homotopy. 

LEMMA 4.2. IL : Tel C,(M) --, C(M, m) is a homotopy equivalence. 

Proof. Let C?(M, m) = ([s] E C(M, m) : card s I k}. Consider the diagram 

C,(M) c C’(M, m) 
I r 

i 
9 ! 

Ck+,(W ( Ck+‘W,m) 
where all maps except for g are inclusions. Since the diagram commutes up to homotopy, 

and since C(M, m) = lim Ck(M, m), it suffices to show that the inclusion i : C,(M) CG 

Ck(M, m) is an equivalence. 

Define 9’: C(M - m) -+ C(M - m) by g’(s) = {fi(s)} u {f,(m)} (where f, is as in the 

definition of g), and let h : Ck(M, m) + C,(M) be given by: 

h(s) = g’ 0.. . 0 g’(S,(s n W - m)>), 

where g’ is applied k - card(s n (M - m)) times, and t E [0, l] is related to the distance 

d=d(m,sn(M-m)) by t=O ifdrsome s, and r-1 as d-,0. One checks that h is 

continuous, and is a homotopy inverse to j. 

It follows from this that H,(C(M, m)) = lim H,(C,(M)). Therefore, to prove Theorem 
k 

1.2 we need only relate the spaces e(X) and C(A) to certain spaces of cross-sections. Now, 

using Theorem 2.6 one sees that c(A) is homotopic to r(dM, m), the sections of the bundle 

E,+, over dM which vanish at m. However, c(X) does not have a simple description in terms 

of section spaces. Therefore we consider certain covering spaces c(A) and c(X) of c(A) 

and z’(X). 

A point of c(A) is a pair (s, n) : s c A, n E Z modulo the relation (s, n) N (s’, n’) iff s n 

(A - SA) = s’ n (A - ZA) and card (s n A,) - n = card (s’ n A,) - n’. Similarly, a point 

of e(X) is (s, n) : S c X, n E Z modulo (s, n) N (s’, n’) iff s n (X - 2X) = s’ n (X - 8X) 
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and card (s n {m}) - n = card (s’ n {m}) - n’. It is trivial that each c + 2; is a covering. 
Define ? : c(X) + c(A) by (s, n) H (s n (A - &4), card (s n M) - n). This is well-defined 
and continuous. Its fibres are homeomorphic to C(M, m), and, by Lemma 4.1, it is a 

homology fibration. 

LEMMA 4.3. C(X)- r(M,m). 

Proof. Let c”(X) be that part of c(X) which is representable as (s, n). Then I?,,(X)-, 

c(M - m), as may be proved by an explicit deformation of particles. By Theorem 2.6 
C(M-m)- T(M, m). Therefore we need only prove that C(X) u c.(X). This will follow, 
if we show that the inclusion j : C.(X) G c”(X) u cn+l(X) (the union being taken in C(X)) 
is an equivalence. However, let k : c”(X) u c,+,(X) + (?n+l(X) be the map which adds a 
particle atfi(m) to all elements of c,(X) (cf. the definition of h in the proof of (4.2)). And 
let I : c”+,(X) + c”(X) be (s, n + 1)~ (s, n). Clearly 10 k is a homotopy inverse to j. 

LEMMA 4.4. C(A) = r(c?M, m), rhe universal cover of r(dM, m). 

Prooj: We have already remarked that c(A) N T(dM, m). Now it follows from obstruc- 
tion theory that n,(T(dM, m)) G Z, and that the generator of this group-is a loop correspond- 
ing to the loop in c(A) which is described by a particle moving along the ray m’ x Z in 
A = (8M - m) x I from m’ x (0) to m’ x {l}, (where m’ E dM - m). Therefore C(A) is the 
universal cover of C(A), and the result follows. 

We are now ready to prove the version of Theorem 1.2 which is valid for compact 
manifolds. T,(M, aM> is the space of sections of EM over M which vanish on aM and have 
degree k. (This degree can be defined even for non-orientable M using the Thorn isomor- 
phism for the sphere bundle Eicr .) 

THEOREM 4.5. Let M be a connected compact manifold with non-empty boundary dM. 

Then there is a map C(M) + r(M, i3M) which takes C,(M) into r,(M, JM) for each k, and 

induces an isomorphism 

lim H,(C,(M)) z l& H,(l-,(M, dM)). 
k k 

Moreover, for each n, H,(C,(M)) + &,(rk(M, dM)) . IS an isomorphism for suficiently large k. 

Proof. Suppose first that dM is connected. Then it follows from Lemmas 4.3 and 4.4 
that there is a homotopy commutative diagram 

C(X) - T(-w, m) 

, I 
&4) A r(aif, m) 

where the right hand vertical map comes from the restriction T(M, m) -+ r(dM, m), and the 
horizontal maps are equivalences. Now, the fibre of r(M, m) + r(aM, m) is r(M, aM>, 

and, by obstruction theory, z,,(r(M, c?M) = Z. Also, since r(M, m) ‘v C(X) is connected 
and F(aM, m) is simply connected (see (4.4)), the fibre of T(M, m) + r(dM, m) is connected. 
Therefore it is just one component, ro(M, aM) say, of r(M, aM) and, by Lemmas 4.1 and 
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4.2 there are induced isomorphisms 

!h~ H,(C,(M)) + H,(C(M, m)) -5 H,(r,(M, ifJiM)). 
k 

To finish the proof of the first statement, we show how the r,JM, 8M) form a direct 

system compatible with C,,(M) A C,(M) 2 . . . . For each k there is a map yk: rk(M, 
13lw) + rk+,(M, 8M) which makes the diagram 

9 

I I 

Yk 

Ck,,,,(W~ rk+,w,af,) --,~k+,(cw 

commute up to homotopy. (yI. alters sections near m by “adding a section of degree 1 near 
m “. More precisely, let S, E r, (M, aiU> vanish except in the disc (y E M : d(y, m) < E}. Then 
yI, can be defined as the composite 

rk(M, a~) - r04,, 3~) +Sr rk + I w, aw, 

where, for s E rk(Mr., dM,), s + S, is the section over M which equals s on M, and s1 on 
M - IV, .) Notice that yk is an equivalence: its inverse corresponds to “adding a section of 
degree - 1 near m “. Therefore, if l& rk(M, 8M) is formed with respect to the yk , the 
inclusion r,(M, aM> 4 lim rk(M, aM) is an equivalence. One now verifies that the map 
lim H,(C,(M)) + !irr~ H,(T,(M, 8M)) z H,(T,(M, 8M)) obtained in this way is the same 
as that obtained previously. 

To prove that H,(C,(M)) + H,(T,(M, 8M)) is an isomorphism for large k one argues 
as fo1lows.t First recall that a “many-valued function f : X + Y”, i.e. a continuous map 
f : X-t Pm Y for some m, where PI” denotes the m-fold symmetric product, induces a 
homomorphism f+ : H*(X) -+ H,( Y). Forf extends to a homomorphism AX + A Y, where 
AX denotes the free abelian group on X, and x,(AX) z H,(X) by the results of [3]. In 

particular there is a map rk. I : H,(C,(M)) + H&C,(M)) fork 5 1 induced by the 
I 

0 
k -valued 

function SHPJS), where 9Js) is the set of subsets of s c M of cardinality k. Notice 
that if gr : C,_,(M) -+ C,(M) is the map which adds a particle at m E 8M then rk, l 0 (gJ* = 

Tk, I-1 + (gk)*ofk-l.I-lr because gk(s U {m)) = pk(s) + @k_1(s) U (m). It follows from 
Lemma2of [2] that(gk)*: H*(Ck_r(M)) -* H*(Ck(M))is the embedding of a direct summand. 

However we know that lim H*(Ck(M)) A ~IJ H,(T,(M, 8M)), and that the right-hand 
k k 

jinx is actually constant. Therefore H,(Ck(M)) 2 H,(rk(M, 8M)) for all large enough k, 

provided that H,(f-k(M, 8M)) is finitely generated. One sees that this is true by induction 
over the number of n-simplices in a smooth triangulation of (M, dM). For it is clearly true 
for the n-simplex (A”, aA”>, and the result when (M, 8M) = (M’ u A”, 8M) follows from 
that for (M’, 8M’) by considering the fibration 

r,(kf’, a~‘) + rk(bf, dhq + r(An, a~” n a~). 

t This argument and the proof of (1.1) are due to G. Segal. 
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This completes the proof of the theorem in the case when ZM is connected. If i-M is not 

connected, choose a component L of dM and let m EL. The result follows by replacing A 

and c(X) in the above argument by A’ =(L-m) x [0, 1]andC(MuA’,A,‘um)respec- 

tively. 

Proof of Theorem 1.2. Here M is a paracompact open manifold without boundary. 

We may suppose that M = lJnBO M,, , where M,, c M,,, and each M, is a compact con- 

nected manifold. Choose an end of M, that is an element, E say, of Iia n,(M - M,). Thus 

E = {E,} where, for each n, E,, is a connected component of M - MI and E,, c E,_ , . We 

may choose for each n a connected component L, of dM, in such a way that L, n E, # 4 

and L, and L,_ L belong to the same connected component of M, - Int IV,_,. Pick a point 

m, in L,, and let g,, : C,(M,) + C,+,(M,) be the map which adds a particle at m, . Then the 

diagram 

1 1 
G(Mn+,) 9n+l G+,(Mn+,) 

(where the vertical maps are induced by the inclusions M, 4 M,,,) commutes up to homo- 

topy, because m, and mn+L belong to the same component of M,,, - Int M, . Therefore 

theg, induce a mapg,: lim H,(C,(M,)) -tb H,(C,+,(M,,)). But, for each k, H,(C,(M)) = 

lim H,(C,(M,)). So we hffve g* : H,(C,(M;) + N,(C,+,(M)). If p H,(C,(M)) is defined 

uiing these maps g* and p H&r,(M)) is defined similarly, we see that the theorem holds 

for M, since (4.5) holds for each M,, . 

Notice that since Q H,(F’,(M)) = H,(T,(M)) does not depend on the choice of end E, 

the same is true for l$ H,(C,(M)). Also, if H,(T,(M)) is finitely generated, H,(f,(M)) g 
k 

H,(r,(M,)) for some I, and it follows that H,(C,(M)) --t H,(r,(M)) is an isomorphism for 

large k. in particular this is true if M is the interior of a compact manifold with boundary. 

Proof of Theorem I. 1. Choose E > 0 so that C,(M, E), the closed subset of C(M) where 

particles have pairwise separation 2 2.5, is homotopic to C,(M). Let U be an open disc in 34 

of radius < E and let N = M - U. Then the restriction map Ck(M, E) + c(U, E) z U’ 2 S” 

gives rise to a map p : C,(M) + S”. Over S” - a = U, p is a fibration with fibre C,_,(N), 

while p-‘(a3> = C,(N). Therefore the homology exact sequence for (C,(M), C,(N)) has as 

relative group A*(p(Ck_r(N)+)) = H,_,(C,_ ,(N)). Now consider the commutative diagram 

. . . +  ff,-,+,(Ck-l(N)) +  Hq(Ck(N)) -+ Hq(Ck(M)) +  Hq-,tCk-,(N)) --, . 

I 

I*) 

I I 

(*I 

i 

. . . -+ &,+,(rk(N, dN)> + &rk(N, ziv)) -+ qrk(hf)) -+ &,(rk(lv, &v>> + . . . 

where the bottom sequence is that of the pair (r,(M), rk(M, 0) 2 T,(N, SN)) identified with 

the Wang sequence of the fibration Tk(M, UT) + T,(M) + S”, and the vertical maps are the 
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obvious ones, except that  (*) is the obvious one composed  with adding a section o f  degree 
+ 1 at a point  o f  (?N. By Theorem 4.5 we may  apply the 5-1emma to conclude that  

Hn(C~(M)) , Hn(FR(M)) for  large n. 

§5. ON HOMOLOGY FIBRATIONS 

A m a p  r: Y-~ X is called a homology  fibration if the canonical inclusions o f  its real 
fibres r - l ( x )  into its h o m o t o p y  fibres F(r, x) induce isomorphisms on homology  for  all 

x e X. We prove  a result for  such fibrations similar to that  for  quasifibrations stated as 
L e m m a  3.3 above.  To  do this, it seems to be necessary to assume that  X has nice local 
properties.  Recall that  X is said to be uniformly locally connected (ULC)  if there is a neigh- 

bourhood  V of  the diagonal  in X x X a n d  a map  2 : V × I ~  X such that  2(x, y, 0) = x, 
2(x, y,1) = y and 2(x, x, t) = x for  all (x, y) ~ V, t ~ I (see [8, p. 490]). 

PROPOSmON 5.1. Let X = U Xk where each Xk is closed and X1 ~- Xz ~- Xs . . . .  Let 
r : Y ~ X be a map. Suppose that 

(i) all spaces Xk, Xk -- Xk-1, r-l(Xk),  r-1(Xk -- Xk-O, have the homotopy type of  C W  
complexes; 

(ii) each Xk is ULC; 

(iii) each x ~ X has a basis of  contractible neighbourhoods U such that the contraction 

of  U lifts to a deformation retraction of  r-a(U) into r -  l(x); 

(iv) each r: r-a(Xk -- Xk-1)--* Xk -- Xk-1 is a fibration with fibre F; 

(v) for each k, there is an open subset Uk of  Xk such that Xk-1 ~-- Uk, and there are 

homotopies ht: Uk ~ Uk and lit: r-1(Uk) ~ r- '(Uk) satisfying 

(a) h o = id, ht(Xk_O ~_ Xk-I ,  hl(Uk) ~-- Xk-1; 

(b) H o = i d , r o H t = h t  or ;  

(c) /-/1: r -  l(Xk) ~ r- l (Hl(x))  induces an isomorphism on homology for all x E Uk. 

Then r : Y ~ X is a homology fibration with fibre F. 

The p r o o f  follows that  o f  the l emma for  quasifibrations (see [3], (2.2), (2.10), (2.15)). 

Using (v) one shows that  if r lr- l (Xk)  is a homology  fibration, so is r[r-l(Uk). Also, i f  
r[r-a(x~) is a homology  fibration for each k, r : Y ~  X is too,  because its h o m o t o p y  fibre 
is just  li2~n Fk, where Fk is the homotopy  fibre of  r[ r-l(Xk).  The p roo f  is completed by show- 

k 

ing that  if  rlr-l(Uk) and r [ r - l ( X k -  Xk-1) are homology  fibrations, then their union 
r[r-a(Xk) is tOO. It  is for this that  the extra Conditions (i), (ii), (iii) o f  (5.1) are needed. 

LEMMA 5.2. Let X =  V1 w V 2 (where each Vi is open), and let r : Y ~ X be a map such 

that r lr- l (Vi)  is a homology fibration for i = 1, 2. Suppose that 

(i) all the spaces X, Y, Vi, r-l(Vi),  have the homotopy type of  C W  complexes; 

(ii) X is ULC; 

(iii) condition (iii) o f ( 5 . 1 ) / s  satisfied. 
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Then r : Y + X is a homology fibration. 

Proof.? Choose x, E X, and let P be the space of paths in X beginning at x0. Let p: P --) 

X be the endpoint map. Then p is open, and, using (ii) and (iii) one sees that condition (iii) 

of (5.1) is satisfied for the map p* Y + P and all < E P. The fibres ofp* Y--+ P are just those of 

p. Also, p* Y is the homotopy fibre of r at .Y,. Therefore, it suffices to prove that the map 

p* Y + P, which we will call g, is a homology fibration. Note if Pi = p- ‘( l;), g is a homology 

fibration over P, and P,, since the maps P, + Vi are fibrations. 

By (i), all the spaces we are concerned with have the homotopy type of Clk’complexes. 

Therefore g will induce an isomorphism on homology if and only if it induces an iso- 

morphism on tech cohomology with coefficients in any abelian group. Now, one has the 

Leray spectral sequence HP(P, Hqg) * H*(p* Y), where Hqg is the sheaf associated to the 

presheaf UN Hq(g-‘(U)) on P. It will suffice to show that Hq,g is locally constant with stalk 

Hq(g-‘(5)) at 5 E P, since then the spectral sequence collapses. That the stalk is as asserted 

follows at once from condition (iii) (for g), for the stalk is lim Hq(g- ‘(CT)). As for local 

constancy, let U be a neighbourhood of ir satisfying (iii), and suppose that U c P,, say. Then 

we need only show that Hq(g-I(U)) 5 Hq(g-‘(q)) for any ye E U. Consider the diagram 

g-‘(V) -g-‘(U), u= g-‘(c) 

where F(t) and F’(q) are the homotopy fibres of g]g-‘(P,) at < and I], II is the homotopy 

theoretic fibre product of CJ and g-‘(P,) over P,, and all maps are the obvious inclusions. 

We wish to show that g-‘(q) -*g-‘(U) is a homology isomorphism. But the diagram com- 

mutes, and the maps marked Hz are known to be homology isomorphisms. Thus the 

result follows. 

Proof of Lemma 4.1. The proof is much the same as that of Proposition 3.1. C(A) is 

filtered by the sets Ck(A) = {s c A: card s 5 kj, and U, , h, and H, are defined as before. It 

is clear that conditions (iv) and (v) (a), (b) of (5.1) are satisfied, We must check that the 

others hold. Now (i) follows from Lemma 2.1, and it is not difficult to see that (ii) holds. 

Also (iii) follows from the remark that if CJ c c(A), any homotopy c, : Li --* U with c, = id 

may be lifted to r-‘(U) as long as it satisfies the condition: for all x E 0’ and t, E Z, 

c,Jx) E Ck(A) implies that c,(x) E Ck(A) for all t 2 t, . It remains to prove that H, : r-‘(x) --f 

r-‘(h,(x)) is a homology isomorphism for all x E U, . By arguing as in the proof of Lemma 

3.4 one sees that this follows from 

LEMMA 5.3. Let n # m be a point of i;M, and define h: C(A4, m) + C(M, rn) b,v [s] --t 

[g,(s)] u (n}, where g,: M --* M is an injectiee homotop+v such that g, = id. g, = id except 

near n, and n $ g,(M). Then h induces an isomorphism on homology. 

t This proof is an adaptation by G. Segal of an unpublished proof by D. Quillen of the group completion 
theorem for a topological monoid. 
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Proof. It is sufficient to prove this for the corresponding map It : Tel C,(M) ---t Tel C,(M) 

(see (4.2)). Let Tel’ U C, x [I\, k + 11. Then the inclusion i : Tel’L Tel is homotopic to 
even k 

17 = i and induces a surjection on homology. It follows that 17 induces an isomorphism on 

homology. 
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