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Summary

The predictability of evolution is debatable, with recent

evidence suggesting that outcomes may be constrained by
gene interaction networks [1]. Whole-genome duplication

(WGD; polyploidization—ubiquitous in plant evolution [2])
provides the opportunity to evaluate the predictability of

genome reduction, a pervasive feature of evolution [3, 4].
Repeated patterns of genome reduction appear to have

occurred via duplicated gene (homeolog) loss in divergent
species following ancient WGD [5–9], with evidence for

preferential retention of duplicates in certain gene classes

[8–10]. The speed at which these patterns arise is unknown.
We examined presence/absence of 70 homeologous loci

in 59 Tragopogon miscellus plants from five natural popula-
tions of independent origin; this allotetraploid arose w80

years ago via hybridization between diploid parents and
WGD [11]. Geneswere repeatedly retained or lost in clusters,

and the gene ontology categories of the missing genes
correspond to those lost after ancient WGD in the same

family (Asteraceae; sunflower family) [6] and with gene
dosage sensitivity [8]. These results provide evidence that

the outcomes of WGD are predictable, even in 40 genera-
tions, perhaps due to the connectivity of gene products [8,

10, 12]. The high frequency of single-allele losses detected
and low frequency of changes fixed within populations

provide evidence for ongoing evolution.

Results and Discussion

Frequency of Homeolog Loss

Analyses of synthetic polyploids show that rapid gene loss
may occur after whole-genome duplication (WGD) [13–22],
but we know little about this process in young natural poly-
ploids. Tragopogon miscellus (Asteraceae) is a natural allote-
traploid (2n = 24; Figures 1A and 1B) that arose approximately
80 years ago (40 generations, because the species is biennial)
in eastern Washington and adjacent Idaho, USA, from two
diploids introduced from Europe in the early 1900s: T. dubius
*Correspondence: r.buggs@qmul.ac.uk
and T. pratensis, each with 2n = 12 [23]. Tragopogonmiscellus
has formed repeatedly in different localities from separate
populations of the diploid progenitors [11, 23], yielding repli-
cated independent natural allopolyploid lines. Seventy Seque-
nom MassARRAY assays were used to detect homeolog loss
in 59 T.miscellus plants from five natural populations (Figure 1;
Table 1). An average of 13 (w20%) of the 70 loci investigated
in each plant of T. miscelluswere missing alleles of one home-
olog, with high variation (min = 0, max = 33, SD = 6.8). Of these,
an average of 8.6 (SD = 5.9) loci per plant were missing both
alleles of a homeolog, and 4.4 (SD = 4.3) were missing only
one allele. Assuming that immediately after WGD each in-
dividual had two alleles from T. dubius and two from
T. pratensis at each pair of homeologous loci (see Figure 1B),
on average at least 7.7% (SD = 4.3) of the original 280 allele
copies have been lost in an individual plant’s lineage since
WGD. The five populations studied differ in total frequency of
homeolog losses (Table 1), possibly indicating slight differ-
ences in the timing of independent origins of T. miscellus pop-
ulations within the last 80 years [24].
The high frequency of single-allele absences found here

suggests ongoing evolution in these populations, as does
the fact that few homeolog losses are fixed in populations.
The rates of homeolog loss are higher than those found
previously using a smaller number of cleaved amplified poly-
morphic sequence (CAPS) markers [25–27], in part because
CAPS cannot detect absence of single alleles of one homeo-
log. Here we also report the first instance in T. miscellus of
the same homeolog being absent in every individual of a pop-
ulation (the T. dubius-derived homeolog of gene 07259_1241 in
Garfield). Other studies have shown considerable loss of
bands in amplified fragment length polymorphism or restric-
tion fragment length polymorphism profiles of polyploid plants
in Brassica [16, 19], Aegilops [20], Nicotiana [28], Triticum
[13, 21], Eragrostis [22], and Paspalum [29], but the relation-
ship between loss of bands and true loss of alleles or loci
cannot be determined using these methods [see 24].

Patterns of Loss among Loci

The frequency of homeolog loss varied considerably among
loci. On average, a locus showed homeolog loss in 11 plants
(of 59; excluding caseswhere neither homeologwasdetected),
and variationwashigh (min. = 0,max. =36, SD=9.2). Homeolog
losses among plants and loci were investigated by average
linkage hierachical clusteringwith a Spearman rank correlation
metric. This analysis showed that 12 clusters of loci follow
recurrent patterns of presence/absence in populations with
uniqueorigins (Figure 1C). Therefore, the subsequent evolution
of genes duplicated via polyploidy appears to be repeated in
independent lineages. Clustering hasbeenpreviously reported
for genes retained as pairs in Arabidopsis [10] and maize [5],
but clustering of genes lost in maize was not found despite
focused analyses [5]. The discovery reported here of clustered
patterns of missing genes in Tragopogon is therefore novel.

Patterns Due to Parentage

We investigated whether the maternal versus paternal direc-
tion of cross in the origins of populations affected rates of
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Figure 1. Genome Evolution in Allotetraploid Tragopogon miscellus

(A) Sketches of inflorescences L to R: T. pratensis (2x), T. miscellus (4x, short liguled, with T. dubius as paternal parent), T. miscellus (4x, long-liguled, with

T. pratensis as paternal parent), and T. dubius (2x).

(B) Chromosome diagram for T. miscellus, illustrating terminology.

(C) Genotype calls at 70 loci in 59 plants from five natural populations of T. miscellus. Colors show different homeolog presence calls (see Key). Loci

are clustered by similarity of pattern of homeolog presence among plants; the tree shows an average linkage hierarchical clustering with a Spearman

rank correlation similarity metric; 12 groups arising from this clustering are shown in red. Plants in each population are ordered by number of homeolog

losses.
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Table 1. Presence/Absence of Homeologs at 70 SNP Loci in Natural Populations of Tragopogon miscellus

Short-liguled Long-liguled

Moscow Oakesdale Garfield Spangle All short-liguled Pullman

Number of plants 18 9 7 8 42 17

Number of data points 1260 630 490 560 2940 1190

Genotypes

D only 7.0% 1.6% 1.2% 4.5% 4.4% 4.4%

P only 10.3% 9.5% 6.3% 6.6% 8.8% 5.6%

D and P: balanced 72.3% 74.8% 69.4% 62.1% 70.4% 69.9%

D and P: one D allele absent 3.3% 6.7% 4.7% 3.2% 4.3% 0.8%

D and P: one P allele absent 2.5% 1.9% 4.9% 5.0% 3.2% 2.8%

No call 4.6% 5.6% 13.5% 18.6% 8.9% 16.6%
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loss of homeologs from each parent. Some analyses of gene
loss in synthetic polyploids have shown a bias against one
parental genome [5, 16, 19, 24]. In the present study, four
T. miscellus lines had T. dubius as the paternal parent, but
one (Pullman) had T. pratensis as the paternal parent (Fig-
ure 1A). In the Pullman population (n = 17), there was a
small but nonsignificant bias toward losses of both alleles
from the maternal parent (one-tailed Mann-Whitney U test,
W = 123, p = 0.2316), and in the other four populations (n =
42), there was a significant bias toward losses of both alleles
from the paternal parent (one-tailed Mann-Whitney U test,
W = 573.5, p = 0.00272). The Pullman population also has
a nonsignificant bias toward the loss of single paternal alleles
(one-tailed Mann-Whitney U test, W = 105, p = 0.0575), as did
the other four populations (one-tailed Mann-Whitney U test,
W = 935, p = 0.34524). Previous CAPS studies [25–27] showed
significant bias toward loss of T. dubius homeologs in
T. miscellus populations but were not able to distinguish an
effect due to reciprocal parentage.

Comparisons with Ancient Polyploids
Plants considered to be ancient polyploids show repeated
patterns in the genes that are retained as duplicates based
on function [5–9], but we do not know whether similar patterns
occur in recent polyploids. We compared our data from
T. miscellus to a study of 18 species from the Asteraceae (to
which Tragopogon belongs), which have evidence for ancient
whole-genome duplications and parallel patterns of subse-
quent loss or retention of duplicated genes [6]. We asked
whether homeolog presence/absence in young Tragopogon
polyploids paralleled these patterns. The Sequenom assay
targets were annotated using Blast2GO with database
b2g_may10 (see Table S1B available online). In seven cases,
two assays hit different parts of the same gene; within each
of these pairs, highly similar patterns of presence/absence
were found, and we took an average of the two assays in
measuring occurrence of that gene. Eighteen genes in the
current study had gene ontology (GO) categories that tended
to be lost in Asteraceae [6], and these had mean homeolog
loss of 20.5% in T.miscellus (SD = 16.1). A comparison of these
18 genes versus all other genes (45 genes, with a mean
absence of 14.0% and SD of 14.8) showed significantly higher
homeolog loss in the 18 genes (one-tailed Mann-Whitney U
test, W = 689.5, p = 0.0427). Thus, gene loss in T. miscellus,
a young Asteraceae polyploid, appears to repeat patterns
found in ancient Asteraceae polyploids. We also compared
patterns of gene loss in T. miscellus to the model plant
Arabidopsis thaliana (Brassicaceae), but as with Barker et al.
[6] who found Asteraceae species to show different patterns
of gene loss versus retention from Arabidopsis after ancient
WGD, we did not find a similar pattern (see Supplemental
Information).

Test of the Gene-Balance Hypothesis
Repeated patterns in the loss versus retention of duplicated
genes might be explained and predicted within the realm of
evolutionary systems biology, linking the evolution of genes
to their function within networks [1, 30]. One such explanation,
known as the gene-balance hypothesis [8, 10, 12], holds that
genes coding for products that are highly connected—within
protein complexes or biochemical pathways—are sensitive
to dosage (‘‘dosage-sensitive’’) in that they must be present
in the same number of genomic copies as the genes with
whose products they interact. These connected genes are
hypothesized to be retained together in duplicate copies to
preserve stoichiometry, unlike other (‘‘dosage-insensitive’’)
genes that will revert to singleton status one by one over
time [8]. Evidence in support of the gene-balance hypothesis
has been found in patterns of whole-genome sequences of
putative ancient polyploids [8, 10]. However, the tempo and
mode of gene loss and retention are unclear. We used the
Tragopogon gene descriptions and GO categories to classify
(Table S1B) the dosage sensitivity of genes according to Free-
ling [8]. The mean homeolog absence of 26 putatively dosage-
sensitive genes was 4.8% (SD = 5.0), whereas for 24 putatively
dosage-insensitive genes, the mean was 10.8% (SD = 8.2); the
remaining 13 genes could not be categorized. This difference
was statistically significant (one-tailed Mann-Whitney U test,
W = 744.5, p = 0.0052), suggesting that dosage sensitivity
may play a role in determining the loss versus retention of
homeologs.
Clusters of genes (see above and Figure 1C) that were re-

tained together in lineages of T. miscellus of separate origin
could represent genes whose products interact or classes of
genes that are selected for in a similar way. For example,
cluster 9 comprises a set of genes that have mostly been re-
tained in duplicate across all populations, and three of the
five genes in this cluster are involved in biosynthesis of
secondary metabolites (Table S1B). We also found some
evidence for functional similarity in genes showing similar
patterns of loss: clusters 4 and 11, which showed much gene
loss, included two electron carrier proteins and two genes
involved in amino acid and nucleotide sugar metabolism,
respectively. Clusters of lost genes could also result from the
loss of large fragments of chromosomes or perhaps even
entire chromosomes [18, 24], on which the ‘‘clustered’’ genes
are located. Genomic in situ hybridization karyotyping of
T. miscellus plants has revealed homeologous recombination
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as well as frequent translocations and reciprocal monosomy/
trisomy and nullisomy/tetrasomy [31, 32], processes that
may provide mechanisms for coordinated homeolog loss.
The gene-balance hypothesis and chromosomal linkage
hypotheses for patterns of homeolog loss are not mutually
exclusive. Several studies have shown that genes with similar
patterns of expression and/or function are often physically
clustered in the genome [33–36]. Spatial clustering of similar
genes could enhance the fitness effects of the loss of the
section of chromosome on which they occur, increasing the
strength and accelerating the action of natural selection.

Conclusion
This detailed population-level study of homeolog presence/
absence in a young natural allopolyploid species—which for
the first time documents absences of single allelic copies of
homeologs—shows that, in the midst of genome turmoil, clus-
ters of genes tend to be lost or retained together. Furthermore,
the patterns of gene loss and retention show repeatability
among independently formed lineages within a polyploid
species, among polyploids of contrasting age in the same
plant family, and in the retention of dosage-sensitive genes.
Our data suggest that the evolution of genomes after WGD is
to some degree governed by the attributes of gene interaction
networks; evolutionary systems biology can therefore make
evolution after WGD predictable.

Experimental Procedures

Genomic DNA Sources

Seeds were germinated and grown in a greenhouse at the University of

Florida (Gainesville, FL, USA) from the following: five natural populations

of T. miscellus (Table S2); their diploid parent species, T. dubius and

T. pratensis; and F1 hybrid plants formed through controlled pollinations

of T. pratensis with T. dubius pollen [37] (crosses 63-1, 79-1, 86-2, 88-5,

and 63-4 [37]). Leaf tissue was collected from seedlings four weeks after

germination and flash frozen in liquid nitrogen [26]. DNA was extracted

from leaf tissue using a modified CTAB protocol.

Single Nucleotide Polymorphism Assays

Sequenom MassARRAY iPLEX genotyping [38] multiplexes locus assays

and allows for the detection of losses of single alleles (of which each home-

olog normally has two immediately after WGD, see Figure 1B). This method

is especially suited for detecting homeologs that differ at only a few nucle-

otide positions (for details see [38]). Assays were previously designed for

139 putative single nucleotide polymorphisms (SNPs) identified using

next-generation sequencing ([38]; Table S1A). These were used to analyze

genomic DNA from the five natural populations at Iowa State University,

and the traces were analyzed using the Sequenom Typer 4.0 software

package (Sequenom, Inc., San Diego, CA, USA). We examined 139 putative

SNP loci in 93 plants: 13 T. pratensis, 16 T. dubius, 59 T. miscellus, and five

synthetic F1 hybrids. Of the 139 assays, 88 provided scorable results in

genomic DNA.

Primer Polymorphism Analysis

To ensure that our data on gene loss were not affected by polymorphisms

within Sequenom primer-binding sites, we analyzed variation in natural

Tragopogon populations as follows. Using Mosaik Aligner (version

1.1.0020), we aligned Roche 454 reads and Illumina cDNA 36 bp reads

from seven T. dubius populations (1.26 M 454 and 7.13 M Illumina reads),

four T. pratensis populations (0.16 M 454 and 6.84 M Illumina reads), and

three T. miscellus populations (82.5 M Illumina reads) to the T. dubius con-

tigs used in the initial design of the Sequenom assays [38]. The sequence

reads are available on the NCBI sequence read archive (SRA047022 and

SRA009218). Using Gigabayes (version 0.4.1), we counted the number of

polymorphisms in all primer-binding sites. The 51 failed assays had on

average 1.51 (SD = 1.41) polymorphic sites within their three primer-binding

sites. Of the 88 scorable loci, 14 showed polymorphism in T. dubius popu-

lations and were therefore excluded. Seventy-four loci showed different

alleles in T. dubius and T. pratensis and no polymorphism within each
diploid species and appeared suitable for reliably detecting homeolog

presence/absence. However, four of these assays showed only one allele

to be present in at least one diploid F1 plant: 33319_126 (2/5 plants),

06494_282 (2/5 plants), 02348_489 (2/4 plants), and 11285_699 (1/3 plants).

We designed PCR primers for two of these loci (06494_282 and 02348_489),

at different locations from the Sequenomprimers, and amplified these in the

F1 plants, finding both alleles to be present by Sanger sequencing. There-

fore, we excluded these four Sequenom assays when analyzing the allo-

polyploid T. miscellus populations. These four assays were also found to

have an average of 2.00 (SD = 1.83) SNPs within their primer-binding sites

in natural populations, whereas the 70 remaining assays had an average

of 0.70 (SD = 0.95) such SNPs. For these 70 assays, which we used to detect

homeolog loss, there was an insignificant and negative correlation (two-

tailed Spearman rank correlation Rs = 20.0871, p = 0.473993) between the

number of SNPs found in the three primer-binding sites and the number

of homeolog absences found at each locus, so the varying frequencies of

absence found among loci were not due to primer-binding problems.

Genotype Calling

For the 70 assays, we called genotypes using plots generated by Sequenom

Typer 4.0 software. For example, Figure S1 shows the Typer 4.0 plot of the

height of the T nucleotide (specific to the T. dubius genome) peak versus the

height of the C nucleotide (specific to the T. pratensis genome) peak for all

plants in the study for locus 30597_368. The data form six clear clusters. The

cluster labeled blue, and called as homozygous ‘‘C’’ by Typer 4.0, contained

all the T. pratensis diploid plants and some T. miscellus plants. The orange

cluster, called as homozygous ‘‘T’’ by Typer 4.0, contained all the T. dubius

diploid plants and some T. miscellus plants. The green cluster, called as

heterozygous ‘‘CT’’ by Typer 4.0, contained all the F1 hybrids and many

T. miscellus plants. The three clusters in red contained T. miscellus

plants and were not called by Typer 4.0. Two of these red clusters show

heterozygotes with dosage biased toward one particular nucleotide. We

called such intermediate genotypes as putative cases where a single allelic

copy of one homeolog was missing. Thus, for locus 30597_368, we called

the cluster of two red points and an orange point (circled in Figure S1) as

loss of a single ‘‘C’’ allele (i.e., ‘‘CTT’’ or ‘‘CTTT’’; the data do not allow us

to distinguish between these possibilities, the latter being possible due to

gene conversion, nonhomologous recombination or monosomy/trisomy),

and the other cluster of five red points as loss of a single ‘‘T’’ allele (i.e.,

‘‘CCT’’ or ‘‘CCCT’’).

Clustering Analysis

Patterns of homeolog loss and retention among loci were clustered using

Gene Cluster 3.0 (Michiel de Hoon, Human Genome Center, University of

Tokyo, Japan) using average linkage hierarchical clustering with a Spear-

man rank correlation similarity metric. These results were visualized using

Java Treeview [39] and arranged in Adobe Illustrator (Adobe Systems,

San Jose, CA, USA).

Accession Numbers

The NCBI sequence read archive submission number for the new EST

sequences reported in this paper is SRA047022.

Supplemental Information

Supplemental Information includes one figure, two tables, and Supple-

mental Results and can be found with this article online at doi:10.1016/j.

cub.2011.12.027.
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Coriton, O., Manzanares-Dauleux, M.J., Delourme, R., King, G.J., et al.

(2010). The first meiosis of resynthesized Brassica napus, a genome

blender. New Phytol. 186, 102–112.
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