DISCRETE
MATHEMATICS

Prime power divisors of binomial coefficients

Paul Erdős, Grigori Kolesnik*

Received 14 October 1997; accepted 14 January 1998

Abstract

It is known that for sufficiently large n and m and any r the binomial coefficient $\binom{n}{m}$ which is close to the middle coefficient is divisible by p^{r} where p is a 'large' prime. We prove the exact divisibility of $\binom{n}{m}$ by p^{r} for $p>c(n)$. The lower bound is essentially the best possible. We also prove some other results on divisibility of binomial coefficients. (c) 1999 Elsevier Science B.V. All rights reserved

AMS classification: primary 11A05; secondary 11L03
Keywords: Divisibility of binomial coefficients

1. Introduction

Paul Erdős asked many questions about the divisibility of binomial coefficients by prime powers [1,2]. One of his well-known conjectures was that $\binom{n}{m}$ is not squarefree if $n>4$. This conjecture was proved by Sárközy [11] for sufficiently large n and proved independently by Velammal [12] and by Granville and Ramare [4] for all $n>4$. Granville and Ramare have, in fact, proved more-they showed that $p^{2} \|\binom{ n}{m}$ for some $p \geqslant \sqrt[2]{n / 5}$, among some other results. Another well-known conjecture of Erdős is that for any n and any $m \in[3, n / 2]$ there exists a prime $p \geqslant m$ such that $p \|\binom{ n}{m}$. Granville [3] proved that this is true for a large n and $(\log m)^{3} \gg(\log n)^{2} \log \log n$. Sander considered divisibility of $\binom{n}{m}$ by prime powers [6-10]. He proved that for any $a \in N$ and any $\varepsilon \in(0,1)$ there exists $m_{0}=m_{o}(a, \varepsilon)$ such that for all $m>m_{0}$ and all n satisfying $|n-2 m|<m^{(1-\varepsilon)}, p^{a} \|\binom{ n}{m}$ for some prime $p>1 / 2 m^{1 /(1+a)}$. He also proved [6] that for every j satisfying $c_{0} \leqslant j^{10}(\log j)^{3} \leqslant \log n$ there exist $\gg\left(\log n /(\log \log n)^{3}\right)^{1 / 10}$ primes $p \geqslant n^{1 /(1+j)}$ such that $p^{j} \|\binom{ n}{m}$. Sander also proved that if $m_{i}+m_{j} \geqslant c_{0}$ and $\left|m_{i}-m_{j}\right|<\left(m_{i}+m_{j}\right)^{(1-\varepsilon)}$ for some $1 \leqslant i<j \leqslant k$ then there exists $p \geqslant p_{0}$ such that $p^{\chi} \mid\left[m_{1}, \ldots, m_{k}\right]=\left(m_{1}+\cdots+m_{k}\right)!/\left(m_{1}!\cdots m_{k}!\right)$. The second author became interested

[^0]in the problem after Andrew Granville gave him a preprint of his paper [3]. Erdős and Kolesnik had several conversations regarding the problems and had an extensive correspondence in which we shared our ideas how to solve the problems. Unfortunately, Erdős died before our paper was completed so that the second author had to finish it alone. We improved and generalized all mentioned above results as well as answered a question of Erdős on how large is an integer d such that $d^{r} \|\binom{ n}{m}$. We proved

Theorem 1. Let n be a sufficiently large integer. Assume that $r \leqslant \sqrt[4]{\log n / \log \log n}$ and $n^{1-a / r} \leqslant m \leqslant n / 2$ for some $a<\frac{1}{4}$. Then every subinterval $\left[P, P_{1}\right]$ of $\left[(n-m)^{1 / r}, n^{1 / r}\right]$ with $P_{1}-P \geqslant n^{a_{1} / r}$ and $a_{1}>1-a$ contains $\approx 2^{1-r}\left[\pi\left(P_{1}\right)-\pi(P)\right]$ primes such that $p^{r} \|\binom{ n}{m}$. Also, if d is the largest square-free number such that $d^{r} \|\binom{ n}{m}$, then $d=$ $\exp \left(2^{1-r} m^{1 / r}\left(c_{0}+o(1)\right)\right)$, where $c_{0}=c_{0}(b)=\sum_{t=1}^{\infty}\left[1-(1-\delta(v))^{1 / r}\right]>\frac{1}{8}, b=m / n, \delta(v)=$ $\delta(b, v)=(v-\lfloor b v\rfloor)$ if $\{b v\} \leqslant 1-b$ and $\delta(v)=\|b v\| /(b v+\|b v\|)$ otherwise. If b is small then $c_{0}=(1 / r) \int_{0}^{\infty}\{x\} x^{1-1 / r} \mathrm{~d} x+\mathrm{O}\left(1 / r b^{1-1 / r}\right)$ if $r>1$ and $c_{0}=\log 1 / b+1+\mathrm{O}(b)$ if $r=1$. If $b=\frac{1}{2}+\varepsilon$ for a small ε then $c_{0}=\sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right)^{-1 / r}\left[1-(1-1 /(2 n+2))^{1 / r}\right]+\mathrm{O}(\varepsilon)$.

Theorem 2. Let r, m, n be positive integers satisfying

$$
1 \leqslant r^{4} \ll(\log m)^{3} /\left((\log n)^{2} \log \log n\right) \text { and } m \leqslant n / 2 .
$$

Then there are $\gg r m^{1 / r} /\left(4^{r} \log m\right)$ primes $p \in\left[m^{1 / r}, n^{1 / r}\right]$ such that $p^{r} \|\binom{ n}{m}$.
A simple corollary of Theorem 2 is:
Theorem 3. Let $r \in N$. Assume that for some $i, j m_{i}$ is a sufficiently large integer such that $\left(\log m_{i}\right)^{3} \gg\left(\log m_{j}\right)^{2} \log \log m_{j}$. Then there are $\gg\left(m_{i}\right)^{1 / r} / \log m_{i}$ primes $p \in\left[\left(m_{i}\right)^{1 / r},\left(m_{i}+m_{j}\right)^{1 / r}\right]$ such that $p^{r} \mid\left[m_{1}, \ldots, m_{k}\right]$.

Proof. To prove Theorem 3 we notice that

$$
\left[m_{1}, \ldots, m_{k}\right]=\left[m_{i}, m_{j}\right]\left[m_{1}, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{j-1}, m_{j+1}, \ldots, m_{k}\right]
$$

so that Theorem 3 follows from Theorem 2.
For the sake of completeness we prove:
Theorem 4. Let $2 \leqslant m \leqslant n / 2$ and let n be large. Then there exist $\gg m / \log m$ primes $p>m$ such that $p \left\lvert\,\binom{ n}{m}\right.$.

Proof. To prove Theorem 4 we write

$$
\begin{equation*}
\log (n!/(n-m)!)=\sum_{p \leqslant m} \alpha_{p} \log p, \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha_{p} & =\sum_{j=1}^{J}\left(\left\lfloor n / p^{j}\right\rfloor-\left\lfloor(n-m) / p^{j}\right\rfloor-\left\lfloor m / p^{j}\right\rfloor\right) \\
& =\sum\left(\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}+\left\{m / p^{j}\right\}\right)
\end{aligned}
$$

$J=\lfloor\log n / \log P\rfloor$. Since

$$
\sum_{p \leqslant m} \alpha_{p} \log p<m \sum_{k \leqslant m} \Lambda(k) / k+\pi(m) \log n
$$

and

$$
\sum_{k=n-m+1}^{n} \log k>m \log (n-m)-n \log (1-m / n)-m
$$

$-\frac{1}{2} \log (1-m / n)+1 /(6 n)$ and, for $p>m, \alpha_{p} \log p \leqslant \log n$, (1) implies that the number of primes $>m$ which divide $n!/(n-m)$! (and, therefore, $\binom{n}{m}$) is $\geqslant 1 / \log n(m \log (n-$ $\left.m)-m-n \log (1-m / n)-\frac{1}{2} \log (1-m / n)-1 /(6 n)-m \sum_{k \leqslant m} \Lambda(k) / k-\pi(m) \log n\right)$. The above expression is $\gg m$ if $m<c n$ for appropriate c. If $c n \leqslant m \leqslant n / 2$ then $\alpha_{p}=1$ for all $p \in(n-m, n]$; the number of such primes, as well-known, is $\gg m / \log m$.

2. Notation

Throughout the paper we will use the following notation: $\{x\}$ - fractional part of x; $\lfloor x\rfloor=x-\{x\} ;\lceil x\rceil=-\lfloor-x\rfloor ;\|x\|=\inf \{|n-x|: n \in N\} ; e(x)=\exp (2 \pi \mathrm{ix}) ; f(x) \ll g(x)$ means $f(x)=\mathrm{O}(g(x)) ; f(x) \sim g(x)$ means $1 \ll|f(x) / g(x)| \ll 1 ; f(x) \approx g(x)$ means $f(x)=g(x)(1+\mathrm{o}(1)) ;|A|$ - the cardinality of the set A.

3. Lemmas

Lemma 1. Let $\chi(x)=\chi_{[\alpha, \beta)}(x)$ be the characteristic function of $[\alpha, \beta) \subseteq[0,1)$ modulo 1. Then for any $\delta>0$ and any positive integer k we have $\chi(x) \leqslant \beta-\alpha+3 \delta+$ $\sum_{1 \leqslant|| | \leqslant L} a_{l} e(l x)$ and $\chi(x) \leqslant \beta-\alpha-3 \delta+\sum_{1 \leqslant|I| \leqslant L} b_{l} e(l x)$, where $L=\lceil k /(2 \pi \delta)(2 /$ $\left.(\pi k \delta))^{1 / k}\right\rceil, a_{l}=(e(\delta l-\alpha l)-e(-\beta l-\delta l)) /(2 \pi \mathrm{i} l)(\sin (2 \pi \delta l / k) /(2 \pi \delta l / k))^{k}$ and $b_{j}=-a_{j}$ with α and β interchanged.

Proof. Taking $\Delta=\delta / k$, we obtain

$$
\chi(x) \leqslant(2 \Delta)^{-k} \int_{-\Delta}^{\Delta} \cdots \int_{-\Delta}^{\Delta} \chi_{[x-\delta, \beta+\delta)}\left(x+t_{1}+\cdots+t_{k}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{k}
$$

and

$$
\begin{equation*}
\chi(x) \geqslant(2 \Delta)^{-k} \int_{-\Delta}^{\Delta} \cdots \int_{-\Delta}^{\Delta} \chi_{[x+\delta, \beta-\delta)}\left(x+t_{1}+\cdots+t_{k}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{k} . \tag{2}
\end{equation*}
$$

Expanding the characteristic function inside the integral sign into Fourier series we obtain

$$
\begin{aligned}
\chi(x) \leqslant & (2 \Delta)^{-k} \int_{-\Delta}^{\Delta} \cdots \int_{-\Delta}^{\Delta} \sum_{j=-\infty}^{\infty} \frac{e(\delta j-\alpha j)-e(\beta j+\delta j)}{2 \pi i j} \\
& \times e\left(j\left(x+t_{1}+\cdots+t_{k}\right)\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{k}=\beta-\alpha+2 \delta+\sum a_{j} e(j x) .
\end{aligned}
$$

Evaluating subsum of the last sum with $|j|>L$ trivially, we obtain the upper bound for $\chi(x)$. Using (2), we similarly obtain the lower bound.

Lemma 2. Let N be a sufficiently large number and $f(x)$ be $(2 r+1)$ times differentiable function such that for all $x \in\left[N, N_{1}\right]$ we have $\left|\mathrm{d}^{j} f(x) / \mathrm{d} x^{j}\right| \leqslant F x^{-j}(A+$ $j)^{j}, 0<j<2 r+2$ with some $0<A<\exp \left((\log N)^{2} / 6 \log F\right)$ and some large F, and that for all but at most one $j \in[1,2 r]$ we have $\left|\mathrm{d}^{j} f(x) / \mathrm{d} x^{j}\right| \geqslant F x^{-j}(A+j)^{-j}$, where $r=\lceil\log F / \log N\rceil \geqslant 2$. Assume that $N \geqslant N_{1}-N \geqslant N^{1+u} F^{-1 / 3}$ and $N_{1}-N \geqslant N^{1 / 2+u}$ for some $0<u<\frac{1}{3}$. Then $S=\sum_{N<x<N_{1}} e\left(f(x) \ll A\left(N_{1}-N\right) N^{-c / r^{2}}(\log N)^{1 /\left(64 r^{3}\right)}\right.$, where $c=\min \left\{u / 49 ; \frac{1}{64}\right\}$ and the implied in \ll constant is absolute.

Proof. The proof is similar to the proof of the corresponding result of [5]. However, since the conditions of the lemma are slightly different, we have to adjust the proof. We can obviously assume that $r \leqslant \sqrt{\log N}$. If $r \leqslant 12$, then we use van der Corput's estimates in the form

$$
\begin{align*}
S \ll & \left(N_{1}-N\right)\left(\lambda_{k}^{1 /(K-2)}+\left(N_{1}-N\right)^{-2 / K}\right. \\
& +\left(\min \left\{\left[\lambda_{k}\left(N_{1}-N\right)^{4-8 / K}\right]^{-2 / K} ;\left[\lambda_{k+1}\left(N_{1}-N\right)^{5-8 / K}\right]^{-4 /(3 K)}\right\}\right) \tag{3}
\end{align*}
$$

where $k \geqslant 1, K=2^{k}$ and $\left|\mathrm{d}^{j} f(x) / \mathrm{d} x^{j}\right| \sim \lambda_{j}$. Since this form of van der Corput's estimates is not well known, we will give the proof. If $k=2$, we use Poisson's summation formula and obtain $S=\sum_{n} \int_{N}^{N_{1}} e(f(x)-n x) \mathrm{d} x+\mathrm{O}(1)$, where the sum is over $n \in\left[f^{\prime}(N)-\frac{1}{3}, f^{\prime}\left(N_{1}\right)+\frac{1}{3}\right]$. By the mean value Theorem,

$$
\int_{N}^{N_{1}} e(f(x)-n x) \mathrm{d} x \ll \min \left\{\lambda_{2}^{-1 / 2} ; \lambda_{3}^{-1 / 3}\right\}
$$

and

$$
\sum_{n} 1 \leqslant f^{\prime}\left(N_{1}\right)-f^{\prime}(N)+2 \ll\left(N_{1}-N\right) \lambda_{2}+1
$$

so we obtain

$$
\begin{equation*}
S \ll\left(N_{1}-N\right) \lambda_{2}^{1 / 2}+\min \left\{\lambda_{2}^{-1 / 2} ; \lambda_{3}^{-1 / 3}\right\} . \tag{4}
\end{equation*}
$$

If $k \geqslant 2$ then we use Weyl-van der Corput inequality $l=k-2$ times to get

$$
|S|^{L} \ll\left[\left(N_{1}-N\right) / \sqrt[2]{Q}\right]^{L}+\left(N_{1}-N\right)^{L} Q^{1-L} \sum_{q_{1}=1}^{Q} \cdots \sum_{q_{1}=1}^{Q^{L / 2}}\left|\sum_{x} e\left(f_{1}(x)\right)\right|,
$$

where $L=2^{l}, f_{1}(x)=\int_{0}^{1} \cdots \int_{0}^{1} \partial^{l} f\left(x+t_{1} q_{1}+\cdots+t_{l} q_{l}\right) /\left(\partial t_{1} \ldots \partial t_{l}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{l}$ and the last sum is over $N \leqslant x \leqslant N_{1}-q_{1}-\cdots-q_{l}$. Here $\mathrm{d}^{2} f_{1}(x) / \mathrm{d} x^{2} \sim q_{1} \ldots q_{l} \lambda_{k}$. Using (4) to evaluate the sum over x and choosing an optimal $Q \leqslant\left(N_{1}-N\right)^{2}$ we prove (3). We estimate S using (3) with $k=r$ if $\{\log F / \log N\} \leqslant 1-u$ or $k=r+1$ otherwise. If $k=r=2$ then, since either

$$
\begin{aligned}
\lambda_{2}\left(N_{1}-N\right)^{2} & \geqslant F\left(N_{1}-N\right)^{2} N^{-2}(A+2)^{-2} \\
& \geqslant\left(N_{1}-N\right)^{2}(A+2)^{-2} \geqslant N^{2 u-1}(A+2)^{-2}
\end{aligned}
$$

or

$$
\lambda_{3}\left(N_{1}-N\right)^{3} \geqslant F\left(N_{1}-N\right)^{3} N^{-3}(A+3)^{-3} \geqslant N^{3 u}(A+3)^{-3}
$$

and since $\lambda_{2} \leqslant F(A+2)^{2} N^{-2} \leqslant x(A+2)^{2} N^{-u}$, we obtain

$$
S \ll A\left(N_{1}-N\right) N^{-u / 2} \ll A\left(N_{1}-N\right) N^{-2 u / r^{2}} .
$$

If $k=3=r+1$, then $\lambda_{3} \leqslant F(A+3)^{3} N^{-3} \leqslant(A+3)^{3} / N$ and either

$$
\lambda_{3}\left(N_{1}-N\right)^{3} \geqslant F\left(N_{1}-N\right)^{3} N^{-3}(A+3)^{-3} \geqslant N^{3 u}(A+3)^{-3}
$$

or

$$
\begin{aligned}
\lambda_{4}\left(N_{1}-N\right)^{4} & \geqslant F\left(N_{1}-N\right)^{4} N^{-4}(A+4)^{-4} \\
& \geqslant\left(N_{1}-N\right)^{4} N^{-2-u}(A+4)^{-4} \geqslant N^{3 u}(A+4)^{-4}
\end{aligned}
$$

so that

$$
S \ll\left(N_{1}-N\right) A N^{-u / 2} \ll A\left(N_{1}-N\right) N^{-2 u / r^{2}} .
$$

If $r=k=3$ then, as above, $\lambda_{3} \leqslant(A+3)^{3} N^{-u}$ and either

$$
\lambda_{3}\left(N_{1}-N\right)^{-3} \geqslant(A+3)^{3} N^{3 u}
$$

or

$$
\lambda_{4}\left(N_{1}-N\right)^{4} \geqslant(A+4)^{-4}\left(N_{1}-N\right)^{4} F N^{-4} \geqslant(A+4)^{-4} N^{4 u}
$$

and therefore

$$
S \ll A\left(N_{1}-N\right) N^{-u / 6} \ll A\left(N_{1}-N\right) N^{-3 u /\left(2 r^{2}\right)} .
$$

Now we can assume that $3<k<13$ or $k=13=r+1$. If $r=k$ then $\lambda_{k} \leqslant(A+k)^{k} N^{-u}$ and either

$$
\begin{aligned}
\lambda_{k}\left(N_{1}-N\right)^{4-8 / K} & \geqslant F(A+k)^{-k} N^{-k}\left(N_{1}-N\right)^{4-8 / K} \\
& \geqslant\left(N_{1}-N\right)^{3}(A+k)^{-k} / N \geqslant N^{u}(A+k)^{-k}
\end{aligned}
$$

or

$$
\begin{aligned}
\lambda_{k+1}\left(N_{1}-N\right)^{5-8 / K} & \geqslant F\left(N_{1}-N\right)^{4} N^{-k-1}(A+k+1)^{-k-1} \\
& \geqslant\left(N_{1}-N\right)^{4} N^{-2}(A+k+1)^{-k-1} \geqslant N^{4 u}(A+k+1)^{-k-1} .
\end{aligned}
$$

If $r=k-1$ then $\lambda_{k} \leqslant(A+k)^{k} / N$ and either

$$
\begin{aligned}
\lambda_{k}\left(N_{1}-N\right)^{4-8 / K} & \geqslant F\left(N_{1}-N\right)^{4-8 / K} N^{-k}(A+k)^{-k} \\
& \geqslant\left(N_{1}-N\right)^{3} N^{-1-u}(A+k)^{-k} \geqslant N^{2 u}(A+k)^{-k}
\end{aligned}
$$

or

$$
\begin{aligned}
\lambda_{k+1}\left(N_{\mathrm{l}}-N\right)^{5-8 / K} & \geqslant F\left(N_{1}-N\right)^{5-8 / K} N^{-k-1}(A+k+1)^{-k-1} \\
& \geqslant N^{3 u}(A+k+1)^{-k-1}
\end{aligned}
$$

In both cases we have

$$
S \ll A\left(N_{\mathrm{I}}-N\right) N^{-u k^{2} r^{-2} /(K-2)} \ll A\left(N_{\mathrm{I}}-N\right) N^{-u /\left(29 r^{2}\right)}
$$

Now we assume that $r \geqslant 12$. We take $X=N^{1 / 2} F^{-1 /(4 r)}$ and write

$$
S=X^{-2} \sum_{N \leqslant n \leqslant N_{1} 1 \leqslant x, y \leqslant X} \sum_{n} e(f(x y+n))+\mathrm{O}\left(N^{1 / 4}\right) \ll X^{-2} \sum_{n}|S(n)|+N^{1 / 4},
$$

where

$$
\begin{aligned}
S(n) & =\sum_{x, y} e(f(n+x y)) \\
& =\sum_{x, y} e\left(\sum_{j=1}^{2 r} \alpha_{j} x^{j} y^{j}\right)+\theta(A+2 r+1)^{2 r+1} F X^{4 r+4} N^{-2 r-1}(2 r+1)!
\end{aligned}
$$

and $|\theta| \leqslant 1, \alpha_{j}=\left(\mathrm{d}^{j} f(n) / \mathrm{d} n^{j}\right) /(j!)$. Here $F X^{4 r+4} N^{-2 r-1} \leqslant X^{2} N^{-1 / 4}$. We take $k=16 r^{2}$ and obtain

$$
\begin{aligned}
\left|S_{1}\right|^{2 k} & \equiv\left|\sum_{x, y} e\left(\sum_{\alpha_{j}} x^{j} y^{j}\right)\right|^{2 k} \leqslant\left(\sum_{x=1}^{x} 1\right)^{2 k-1} \sum_{x}\left|\sum_{y} e\left(\sum_{j} \alpha_{j} x^{j} y^{j}\right)\right|^{2 k} \\
& =X^{2 k-1} \sum_{x} \sum_{\underline{\lambda}} J_{k, 2 r}(\underline{\lambda}) e\left(\sum_{j} \alpha_{j} \lambda_{j} x^{j}\right)
\end{aligned}
$$

where $J_{k, m}(\underline{\lambda})$ denotes the number of solutions of the system

$$
\sum_{i=1}^{k}\left(y_{i}^{j}-y_{i+k}^{j}\right)=\lambda_{j}(j=1, \ldots, m), 1 \leqslant y_{i} \leqslant X(i=1, \ldots, 2 k),\left|\lambda_{j}\right| \leqslant k X^{j}
$$

It is well known (see, for example, [5]) that if $k \geqslant m^{2}(1+d)$ then

$$
\begin{equation*}
J_{k, m}(\underline{\lambda}) \leqslant J_{k, m}(0) \leqslant(4 m)^{4 k d m} X^{2 k-m(m+1) / 2+(1-1 / m)^{m d} m(m+1) / 2} \tag{5}
\end{equation*}
$$

We use Cauchy's inequality again:

$$
\begin{aligned}
\left|S_{l}\right|^{2 k^{2}} & \leqslant X^{2 k^{2}-k}\left(\sum_{\underline{\underline{x}}} J_{k, 2 r}(\underline{\lambda})\right)^{k-1} \sum_{\underline{\underline{\lambda}}} J_{k, 2 r}(\underline{\lambda})\left|\sum_{x} e\left(\sum_{j} \alpha_{j} \lambda_{j} x^{j}\right)\right|^{k} \\
& =X^{4 k^{2}-3 k} \sum_{\underline{i}} J_{k, 2 r}(\underline{\lambda})\left|\sum_{x} e\left(\sum \alpha_{j} \lambda_{j} x^{j}\right)\right|^{k}
\end{aligned}
$$

and

$$
\begin{align*}
\left|S_{\mathbf{l}}\right|^{4 k^{2}} & \leqslant X^{8 k^{2}-6 k} \sum_{\underline{\underline{a}}} J_{k, 2 r}(\underline{\lambda})^{2} \sum_{\underline{\underline{\lambda}}}\left|\sum_{x} e\left(\alpha_{j} \lambda_{j} x^{j}\right)\right|^{2 k} \\
& =X^{8 k^{2}-6 k} J_{2 k, 2 r}(X) \sum_{\underline{\underline{i}}} \sum_{\underline{\mu}} J_{k, 2 r}(\underline{\mu}) e\left(\sum_{j} \alpha_{j} \mu_{j}\right) \\
& \leqslant X^{8 k^{2}-6 k} J_{2 k, 2 r}(X) J_{k, 2 r}(X) \prod_{j=1}^{2 r} \sum_{\mu_{j}} \min \left\{2 k X^{j} ; 1 /\left\|\alpha_{j} \mu_{j}\right\|\right\} . \tag{6}
\end{align*}
$$

If α_{j} is small then we divide the interval $\left[-k X^{j}, k X^{j}\right]$ into $\leqslant 2 k X^{j} \alpha_{j}+1$ subintervals of the length $\leqslant 1 / \alpha_{j}$. The sum over μ_{j} in a subinterval is $\leqslant 4 k X^{j}+2 \sum_{1 \leqslant x \leqslant 1 /\left(2 \alpha_{j}\right)} 1 /\left(\alpha_{j} x\right) \leqslant$ $4 k X^{j}+2 \log \left(1 / \alpha_{j}\right) / \alpha_{j}$, and

$$
\sum_{\mu_{j}} \min \left\{2 k X^{j} ; 1 /\left\|\alpha_{j} \mu_{j}\right\|\right\} \leqslant 4 k^{2} X^{2 j} \alpha_{j}+4 k X^{j} \log \left(1 / \alpha_{j}\right)+2 k X^{j}+2 / \alpha_{j} \log \left(1 / \alpha_{j}\right),
$$

where for all but at most one j we have $F N^{-j}(A+j)^{-j} \leqslant \alpha_{j} \leqslant F N^{-j}(A+j)^{j}$. Substituting this and (5) into (6), we get

$$
\begin{aligned}
& \left|S_{1}\right|^{4 k^{2}} \\
& \\
& \leqslant X^{8 k^{2}-6 k} J_{2 k, 2 r}(X) J_{k, 2 r}(X) \prod_{j=1}^{r} 4 k^{2} X^{2 j} \prod_{j=r+1}^{2 r-1}\left(\alpha_{j}+X^{-j} \log N+X^{-2 j} \log N / \alpha_{j}\right) \\
& \\
& \ll X^{8 k^{2}-6 k} J_{2 k, 2 r}(X) J_{k, 2 r}(X) 4^{2 r} k^{4 r} X^{4 r^{2}+2 r}(2 \log N)^{r-1}(A+2 r)^{2 r} \\
& \quad \times \prod_{j=r+1 ., j \neq j_{0}}^{2 r-1}\left(F N^{-j}+N^{j} X^{-2 j} / F\right)
\end{aligned}
$$

$$
\begin{aligned}
& \ll(A+2 r)^{2 r} k^{4 r} X^{8 k^{2}-6 k}(8 r)^{80 k r} 5^{4 r} X^{4 k-4 r^{2}-2 r+r(2 r+1)(1-1 /(2 r))^{14 r}} \\
& \times(8 r)^{4 k r} X^{2 k-2 r^{2}-r+r(r+1)(1-1 /(2 r))^{6 r}} X^{4 r^{2}+2 r} N^{4 / 3 r-7 /\left(6 r^{2}\right.}(\log N)^{r-1} \\
& \ll\left(48 k^{2} r\right)^{2 r}(8 r)^{120 k r} X^{8 k^{2}} N^{r(r+1)\left(\mathrm{e}^{-3}+\mathrm{e}^{-7}\right) / 4+4 / 3 r-7 / 6 r^{2}}(\log N)^{r}, \\
& S_{1} \ll A X^{2} N^{-1 /\left(64 r^{2}\right)}(\log N)^{1 /\left(64 r^{3}\right)},
\end{aligned}
$$

and

$$
S \ll A\left(N_{1}-N\right) N^{-c r^{-2}}(\log N)^{1 /\left(64 r^{3}\right)}
$$

with $c=\min \left\{\frac{1}{64} ; u / 29\right\}$.
Lemma 3. Let $f(x)$ be a function satisfying the conditions of Lemma 2. Assume also that for all $j<2 r+2$ we have $\left|j \mathrm{~d}^{j} f(x) / \mathrm{d}^{j}+x \mathrm{~d}^{j+1} f(x) / \mathrm{d} x^{j+1}\right| \leqslant F(A+j)^{j} N^{-j}$ and for all but at most one $j<2 r+1,\left|j \mathrm{~d}^{j} f(x) / \mathrm{d}^{j}+x \mathrm{~d}^{j+1} f(x) / \mathrm{d} x^{j+1}\right| \geqslant F(A+j)^{-j} N^{-j}$, where F, N, A are as in Lemma 2 and $r=\lceil 2 \log F / \log N\rceil$. Let $N \geqslant N_{1}-N \geqslant N^{3 / 4+u}$ for some $u \in\left(0, \frac{1}{4}\right]$ and $N_{1}-N \geqslant N^{1+u} F^{-1 / 4}$. Then

$$
S=\sum_{N \leqslant p s N_{1}} e(f(p)) \ll A\left(N_{1}-N\right) N^{-c_{1} / r^{2}}(\log N)^{1 /\left(64 r^{3}\right)} r^{4} / u^{2},
$$

where $c_{1}=c / 4=\min \left\{\frac{1}{256} ; u / 120\right\}$ and the implied in \ll constant is absolute.
Proof. We can obviously assume that $\log N \geqslant(\log F)^{2 / 3}$. Using Abel's summation formula and Vaughan's identity we obtain

$$
S \ll \sqrt{N}+1 / \log N\left|\sum_{N \leqslant n \leqslant N_{2} \leqslant N_{1}} \Lambda(n) e(f(n))\right| \leqslant \sqrt{N}+1 / \log N\left(\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|\right),
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{N \leqslant m k \leqslant N_{2}, m \leqslant M} \mu(m)(\log k) e(f(m k)), \\
& S_{2}=\sum_{N \leqslant m k N_{2}, m \leqslant M^{2}} b(m) e(f(m k)), \\
& S_{3}=\sum_{N \leqslant m k \leqslant N_{2}, k \geqslant M, m \geqslant M} a(m) \Lambda(k) e(f(m k)), \\
& b(m)=\sum_{r k=m, r \leqslant M, k \leqslant M} \mu(r) \Lambda(k), \quad M=N^{1 / 4}, \quad a(m)=\sum_{r k=m, r \leqslant M} \mu(r) .
\end{aligned}
$$

Here

$$
\begin{aligned}
\sum_{X \ll m \ll X} a(m)^{2} & =\sum_{r_{1}, r_{2} \leqslant M} \mu\left(r_{1}\right) \mu\left(r_{2}\right) \sum_{r_{1} k_{1}=r_{2} k_{2}} 1 \ll \sum_{r_{1} r_{2} r_{3} \leqslant N} \frac{X}{r_{1} r_{2} r_{3}} \ll X \log ^{3} N, \\
\sum_{Y \ll y \ll Y} b^{2}(y) & =\sum_{r \leqslant M} \sum_{r_{1}, r_{2} \leqslant M / r} \mu\left(r_{1} r_{2} r\right) \sum_{r_{1} k_{1}=r_{2} k_{2}} \Lambda\left(k_{1}\right) \Lambda\left(k_{2}\right) \ll Y \log ^{2} N, \\
\sum_{X \ll m \ll X} \Lambda^{2}(m) & \ll X \log N .
\end{aligned}
$$

We can obviously assume that $N_{2}-N \geqslant\left(N_{1}-N\right) N^{-c_{1} / r^{2}}$.
To estimate S_{1} we use Abel's summation formula and Lemma 2 to the sum over k. Here

$$
\left(N_{2}-N\right) / m>(N / m)^{1 / 2+u} \quad \text { and } \quad\left(N_{2}-N\right) / m>(N / m)^{1+u / 2} F^{-1 / 3}
$$

so that by Lemma 2 we get

$$
\begin{aligned}
S_{1} & \ll \sum_{m \leqslant M}|\mu(m)| A\left(N_{2}-N\right) / m(N / m)^{-c /\left(2 r^{2}\right)}(\log N)^{1 /\left(64 r^{3}\right)} \\
& \ll A\left(N_{1}-N\right) N^{-c /\left(64 r^{3}\right)} r^{2} / u .
\end{aligned}
$$

We can similarly estimate S_{2} and obtain

$$
S_{2} \ll A\left(N_{1}-N\right) N^{-c /\left(4 r^{2}\right)}(\log N)^{1 /\left(64 r^{3}\right)} r^{4} / u^{2}
$$

To estimate S_{3} we divide it into $\ll \log N$ subsums with $M \leqslant X \leqslant m \leqslant 2 X \leqslant N_{1} / M$ (and $\left.M \leqslant Y \leqslant N /(2 X) \leqslant k \leqslant N_{1} / X=Y_{1}\right)$. We assume first that $X \geqslant \sqrt{N}$ and, assuming that X corresponds to the largest subsum, we obtain

$$
\begin{align*}
\left|S_{3}\right|^{2} & \ll \log ^{2} N \sum_{X \leqslant m \leqslant 2 X} a^{2}(m) \sum_{X \leqslant m \leqslant 2 X}\left|\sum_{k} e(f(m k))\right|^{2} \\
& \leqslant X \log ^{3} N \sum_{Y \leqslant k_{1} \leqslant k_{2} \leqslant Y_{1}} \Lambda\left(k_{1}\right) A\left(k_{2}\right)\left|\sum_{m} e\left(f\left(m k_{1}\right)-f\left(m k_{2}\right)\right)\right|, \tag{7}
\end{align*}
$$

where the last sum is over $m \in\left[N / k_{1}, N_{2} / k_{2}\right]$. Here $\left(k_{2}-k_{1}\right) / k_{1} \leqslant\left(N_{2}-N\right) / N$ and $N_{2} / k_{2}-N / k_{1} \leqslant\left(N_{1}-N\right) / k_{2}$; also,

$$
\begin{aligned}
\mathrm{d}^{j} / \mathrm{d} m^{j}\left(f\left(m k_{2}\right)-f\left(m k_{1}\right)\right) & =k_{2}^{j}\left(f^{(j)}\left(m k_{2}\right)-k_{1}^{j} f^{(j)}\left(m k_{1}\right)\right) \\
& =\left(k_{2}-k_{1}\right) m^{1-j}\left[j x^{i-1} f^{(j)}(x)+x^{j} f^{(j+1)}(x)\right]
\end{aligned}
$$

for some $x \in\left(N, N_{1}\right)$. If $\left|k_{2}-k_{1}\right| \leqslant\left(N_{1}-N\right) X^{-1} N^{-2 c_{1} / r^{2}}$ or if $N_{2} / k_{2}-N / k_{1} \leqslant$ $\left(N_{1}-N\right) Y^{-1} N^{-2 c_{1} / r^{2}}$ then we denote the corresponding part of the sum in (7) by S_{4}
and obtain

$$
\begin{aligned}
\left|S_{4}\right| & \leqslant X \log ^{4} N \sum_{Y \leqslant k \leqslant Y_{1}} \Lambda(k)\left(N_{1}-N\right) X^{-1} N^{-2 c_{1} / r^{2}}\left(N_{1}-N\right) / k \\
& \leqslant\left(N_{1}-N\right)^{2} N^{-2 c_{1} / r^{2}} \log ^{4} N .
\end{aligned}
$$

If $k_{2}-k_{1}>\left(N_{1}-N\right) X^{-1} N^{-2 c_{1} / r^{2}}$ then the function $g(m)=f\left(m k_{1}\right)-f\left(m k_{2}\right)$ satisfies the conditions of Lemma 2 with $\left(k_{2}-k_{1}\right) F / Y$ instead of F; using it,we get

$$
\begin{aligned}
\left|S_{3}\right|^{2} & \ll X \log ^{3} N \sum_{k_{1}, k_{2}}\left[\Lambda^{2}\left(k_{1}\right)+\Lambda^{2}\left(k_{2}\right)\right]\left(N_{1}-N\right) / N X^{1-c / r^{2}} \\
& \ll\left(N_{1}-N\right)^{2} X^{2-c / r^{2}} Y N^{-2} \sum_{Y \leqslant k \leqslant Y_{1}} \Lambda^{2}(k) \log ^{3} N \ll\left(N_{1}-N\right)^{2} N^{-2 c_{1} / r^{2}} \log ^{4} N .
\end{aligned}
$$

If $Y \geqslant \sqrt{N}$ then we change the order of summation and, as above, we obtain the same estimate.

4. The main results

To prove Theorem 1 we use the well known formula for α_{p} such that $p^{\alpha_{p}} \|\binom{ n}{m}$:

$$
\begin{aligned}
\alpha_{p} & =\sum_{j=1}^{J}\left(\left\lfloor n / p^{j}\right\rfloor-\left\lfloor m / p^{j}\right\rfloor-\left\lfloor(n-m) / p^{j}\right\rfloor\right) \\
& =\sum_{j=1}^{J}\left(\left\{(n-m) / p^{j}\right\}+\left\{m / p^{j}\right\}-\left\{n / p^{j}\right\}\right)
\end{aligned}
$$

with $J=\lfloor\log n / \log p\rfloor$. If $n^{1 /(r+1)}<p \leqslant n^{1 / r}$ then $\alpha_{p}=r$ if and only if

$$
\begin{equation*}
\left\{m / p^{j}\right\}+\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}=1 \quad \text { for } j=1,2, \ldots, r . \tag{8}
\end{equation*}
$$

Also, since $\left\{(n-m) / p^{j}\right\}=\left\{\left\{n / p^{j}\right\}-\left\{m / p^{j}\right\}\right\}$, (8) holds if and only if $\left\{n / p^{j}\right\}<$ $\left\{m / p^{j}\right\}$. We denote $A=\left\{p \in\left[P, P_{1}\right]: \alpha_{p}=r\right\}$. If $p \in\left[P, P_{1}\right]$, then $\left\{n / p^{r}\right\}=n / p^{r}-1$, $\left\{m / p^{r}\right\}=m / p^{r}$ and $\left\{(n-m) / p^{r}\right\}=(n-m) / p^{r}$, so that (8) holds for $j=r$, and

$$
|A|=\sum_{p \leqslant p \leqslant P_{1}} \prod_{j=1}^{r-1}\left(\left\{m / p^{r}\right\}+\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}\right)
$$

We take $\delta=n^{-1 /(10 r)}$ and denote $B=\left\{p \in\left[P, P_{1}\right]:\left\|n_{i} / p^{j}\right\| \leqslant \delta\right\}$ for some $j<r$ and $n_{i}=m, n$ or $n-m$. Since for $\|t\|>\delta$ we have

$$
\begin{aligned}
\{t\} & =1 /(2 \delta) \int_{-\delta}^{\delta}\{t+u\} \mathrm{d} u=1 /(2 \delta) \int_{-\delta}^{\delta}\left(1 / 2-\sum_{|k|=1}^{\infty} 1 /(2 \pi i k) e(k(t+u)) \mathrm{d} u\right. \\
& =1 / 2+\sum_{|k|=1}^{\infty} a_{k} e(k t)
\end{aligned}
$$

where $a_{k}=-\sin (2 \pi k \delta) /\left(4 \pi^{2} k^{2} i \delta\right)$. Using this we obtain

$$
\begin{align*}
|A|= & \mathrm{O}(|B|)+\sum_{P \leqslant p \leqslant P_{1}} \prod_{j=1}^{r-1}\left(1 / 2+\sum_{|k|=1}^{\infty} a_{k}\left[e\left(k m / p^{j}\right)+e\left(k(n-m) / p^{j}\right)-e\left(k n / p^{j}\right)\right]\right) \\
= & \mathrm{O}(|B|)+2^{1-r}\left[\pi\left(P_{1}\right)-\pi(P)\right] \\
& +\sum_{u=1}^{r-1} \sum_{\underline{j}} 2^{u+1-r} \sum_{\underline{k}} a_{k_{1}} \ldots a_{k_{u}} \sum_{P \leqslant p \leqslant P_{1}} e\left(k_{1} n_{1} p^{-j_{1}}+\cdots+k_{u} n_{u} p^{-j_{u}}\right), \tag{9}
\end{align*}
$$

where $n_{i}=m, n$ or $n-m$ and $1 \leqslant j_{1}<j_{2}<\ldots<j_{u} \leqslant r-1$. Denoting with $\sum_{\underline{k}}^{(1)}$ the sum over \underline{k} such that $\left|k_{i}\right| \geqslant(1 / \delta) \log ^{r} n$ for at least one i we trivially obtain

$$
\left|\sum_{\underline{k}}^{(1)} \sum_{p} e(f(p))\right| \leqslant \delta\left[\pi\left(P_{1}\right)-\pi(P)\right] \approx \delta\left(P_{1}-P\right) / \log P,
$$

where

$$
f(x)=k_{1} n_{1} x^{-j_{1}}+\cdots+k_{u} n_{u} x^{-j_{u}}
$$

if $\left|k_{i}\right| \leqslant(1 / \delta) \log ^{r} n$ for $i=1, \ldots, u$, then $f(x)$ satisfies the conditions of Lemma 3 with $F=k_{1} n_{1} P^{-j_{1}}$ and $A=2$. Using it we obtain

$$
\left|\sum_{\underline{k}} \sum_{p} e(f(p))\right| \ll \delta\left(P_{1}-P\right) / \log P+\left(P_{1}-P\right) n^{-c / r^{3}} \log ^{r+4} n
$$

where $c=\min \left\{1 / 1024 ; 1 / 480\left(a_{1}-(a+2) / 3\right)\right\}$. To evaluate $|B|$ we use Lemma 1 with $n=1$ and get

$$
|B|=\delta\left[\pi\left(P_{1}\right)-\pi(P)\right]+\sum_{|k|=1}^{\infty} a_{k} \sum_{P \leqslant p \leqslant P_{1}} e\left(n_{1} k / p^{j}\right),
$$

where $n_{1}=m, n$ or $n-m$ and $0<j<r$. Using Lemma 3 or the trivial estimate to evaluate the last sum and the well known result $\pi\left(P_{1}\right)-\pi(P) \approx\left(P_{1}-P\right) / \log P$ we obtain $|B| \ll\left(P_{1}-P\right) n^{-c / r^{3}}$, and

$$
|A|=2^{1-r}\left(P_{1}-P\right) / \log p+\mathrm{O}\left(\left(P_{1}-P\right) n^{-c / r^{3}}\right)
$$

If $r \leqslant(\log n / \log \log n)^{1 / 4}$ then the O-term is smaller than the main term. To prove the second part of Theorem 1 we write $d_{1}=\prod_{p} p$, where the product is taken over all p with $\alpha_{p}=r$, and since

$$
\prod_{p \leqslant m^{(1), ~)},} p \leqslant \exp \left(\sum_{k \leqslant m^{(1-\varepsilon)}, r} \Lambda(k)\right) \leqslant \exp \left(2 m^{(1-c) / r}\right),
$$

we need to show that

$$
\prod_{p}^{(1)} p=\exp \left(\sum_{p}^{(1)} \log p\right)=\exp \left(2^{1-r} m^{1 / r}\left(c_{0}+\mathrm{o}(1)\right)\right),
$$

where $\prod_{p}^{(1)}$ and $\sum_{p}^{(1)}$ are over $p \in\left[m^{\left(1-\varepsilon_{1}\right) / r}, n^{1 / r}\right]=\left[P, P_{1}\right]$ with $\alpha_{p}=r$ and a sufficiently small constant ε_{1}. Here

$$
p^{r+1} \geqslant m^{(r+1)\left(1-\varepsilon_{1}\right) / r} \geqslant n^{(1+1 / r)(1-1 /(4 r))}>N
$$

so that $\alpha_{p}=r$ if and only if $\left\{m / p^{j}\right\}+\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}=1$ for $j=1, \ldots, r$. Denoting with $\sum_{p}^{(2)}$ the sum over all $p \in\left[P, P_{1}\right]$ satisfying

$$
\begin{equation*}
\left\{n / p^{j}\right\}<\left\{m / p^{j}\right\} \tag{10}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\sum_{p}^{(1)} \log p=\sum_{p}^{(2)} \log p \prod_{j=1}^{r-1}\left(\left\{m / p^{j}\right\}+\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}\right) . \tag{11}
\end{equation*}
$$

We divide the set of all p satisfying (10) into subsets with $u \leqslant m / p^{r}<u+1$ and $v \leqslant n / p^{r}<v+1$ for some non-negative integers u, v satisfying

$$
u \leqslant v \leqslant n m^{\varepsilon_{\mathrm{t}}-1} \equiv V .
$$

Then (10) becomes $(n-m) / p^{r}<u-v$, and

$$
\begin{equation*}
\max \{(n-m) /(v-u) ; m /(u+1)\}<p^{r} \leqslant \min \{m / u ; n / v\}, \tag{12}
\end{equation*}
$$

where we assume that $m / u=\infty$ if $u=0$. The set of p satisfying (12) is non-empty if and only if $u<b v<u+1$, and $u=\lfloor b v\rfloor$, so that (11) becomes

$$
\max \{(1-b) /(v-\lfloor b v\rfloor) ; b /(\lfloor b v\rfloor+1)\}<p^{r} / n \leqslant 1 / v,
$$

and

$$
1-\delta(v)<p^{r} v / n \leqslant 1, P(v)<p \leqslant P_{1}(v),
$$

where $P_{1}(v)=(n / v)^{1 / r}$ and $P(v)=P_{1}(v)(1-\delta(v))^{1 / r}$. Substituting this into (11) we get

$$
\begin{equation*}
\sum_{p}^{(1)} \log p=\sum_{v \leqslant V} \sum_{P(v) \leqslant p \leqslant P_{1}(v)} \log p \prod_{j=1}^{r-1}\left(\left\{\frac{m}{p^{j}}\right\}+\left\{\frac{n-m}{p^{j}}\right\}-\left\{\frac{n}{p^{j}}\right\}\right) . \tag{13}
\end{equation*}
$$

If v is such that $P_{1}(v)-P(v) \leqslant(n / v)^{(7-4 a)(8 r)}$ then the subsum over all such v in (13) is

$$
\leqslant \sum_{v \leqslant V}(n / v)^{(7-4 a) /(8 r)} \log n \ll n^{1+\varepsilon_{1}} m^{(7-4 a) /(8 r)-1}=\mathrm{o}\left(m^{\left(1-a_{1}\right) / r}\right)
$$

for some positive a_{1} if ε_{1} is sufficiently small. The remaining part of the sum in (13) can be evaluated in the same way as in the proof of the first part of the theorem. We obtain

$$
\begin{aligned}
\sum_{p}^{(1)} \log p & =\sum_{v \leqslant V}\left[P_{1}(v)-P(v)\right)\left(2^{1-r}+\mathrm{O}\left(P^{-c_{1} / r^{2}}(v)\right)\right]+\mathrm{O}\left(m^{\left(1-a_{1}\right) / r}\right) \\
& =2^{1-r}\left[\sum_{v \leqslant V}\left(P_{1}(v)-P(v)\right)+\mathrm{o}\left(m^{1 / r} / r\right)\right]
\end{aligned}
$$

Here

$$
\left.\sum_{v \leqslant V}\left[P_{1}(v)-P(v)\right]=m^{1 / r} \sum_{v \leqslant V}(b v)^{-1 / r}[1-\delta(v))^{1 / r}\right]=m^{1 / r}\left(c_{0}+o(1)\right) .
$$

If $b=1 / q$ for some integer q then

$$
\delta(v)=\{v / q\} /(v-\lfloor v / q\rfloor)=j /(q(q k+j-k))
$$

for $v=q k+j, k \geqslant 0,0<j<q$, and

$$
\begin{aligned}
c_{0} & =\sum_{k=0}^{\infty}(k+j / q)^{-1 / r}\left(1-(1-j /(q(q k-k+j)))^{1 / r}\right] \\
& \geqslant\left(\frac{1}{r q}\right) \sum_{j=1}^{q-1} j / q \sum_{k=0}^{\infty}(k+j / q)^{-1-1 / r}>1 /(r q) \sum_{j=1}^{q-1}(j / q)^{1-1 / r} r \\
& \geqslant \int_{0}^{1-1 / q} x^{1-1 / r} \mathrm{~d} x=(1-1 / q)^{2-1 / r} /(2-1 / r)>1 / 8
\end{aligned}
$$

If $b=1 / Q$ with some non-integer $Q>2$ then we divide v 's into intervals [$Q k, Q(k+$ 1)) and within such interval we write $v=\lfloor Q k\rfloor+j$. Since $k \leqslant b v<k+1$, we have $\{b v\}=b v-k$, which is $\leqslant(1-b)$ if $v \leqslant(k+1) / b-1$, so that $\delta(v)=(b v-k) /(v-k)$ for

$$
0<j \leqslant\lfloor(k+1) Q\rfloor-\lfloor k Q\rfloor-1 \equiv J=\lfloor\lfloor k Q\rfloor+\lfloor Q\rfloor\rfloor-\lfloor k Q\rfloor-1
$$

if $k Q<1-Q$ and $J=\lfloor Q\rfloor$ otherwise, we obtain for $Q>3$:

$$
\begin{aligned}
& c_{0} \geqslant\left(Q^{1 / r} / r\right) \sum_{k=0}^{\infty} \sum_{j=1}^{j}(b\lfloor Q k\rfloor+b j-k) /(\lfloor Q k\rfloor+j-k)(\lfloor Q k\rfloor+j)^{1 / r} \\
&=\left(Q^{1 / r-1 / r)} \sum_{k=0}^{\infty} \sum_{j=1}^{j}(j-\{Q k\}) /(\lfloor Q k\rfloor+j-k)(\lfloor Q k\rfloor+j)^{-1 / r}\right. \\
& \geqslant\left(Q^{1 / r-1} / r\right) \sum_{j=2}^{\lfloor Q\rfloor-1} \sum_{k=0}^{\infty}(j-1) /(Q k+j-k-1)(Q k+j-1)^{-1 / r} \\
& \sum_{k=1}^{\infty} \min \left\{\frac{\{Q\}(Q k+1)^{-1 / r}}{(Q k+1-k)} ; \frac{(Q k+Q-1)^{-1 / r}(\lfloor Q\rfloor-1)}{(Q k+Q-k-1)}\right\} \\
&>\left[\sum_{j=1}^{\lfloor\rho\rfloor-2} j \sum_{k=0}^{\infty}(k+j / Q)^{-1 / r}(k+j /(Q-1))^{-1}+\min \{\{Q\} ; 2 / 3\}\right. \\
& \quad \times \sum_{k=1}^{\infty}\left[(k+1 / Q)^{-1 / r}\right] /[k+1 /(Q-1)] /(Q(Q-1) r) .
\end{aligned}
$$

Since

$$
\sum_{k=0}^{\infty}(k+j / Q)^{-1 / r} /(k+j /(Q-1))>\int_{1}^{\infty} x^{-1-1 / r} \mathrm{~d} x=r
$$

and

$$
\sum_{k=1}^{\infty}(k+1 / Q)^{-1 / r} /(k+1 /(Q-1))>\int_{1}^{\infty}(x+1 /(Q-1))^{-1-1 / r} \mathrm{~d} x=r(1-1 / Q)^{1 / r},
$$

we get

$$
c_{0}>\left(\sum_{j=1}^{\lfloor Q\rfloor-2} j+\min \{\{Q\} ; 2 / 3\}(1-1 / Q)^{1 / r}\right) /(Q(Q-1))>1 / 8
$$

if $Q>3$. Now we assume that $2<Q<3$ and $Q=1 / Q_{1}$. As above,

$$
\begin{aligned}
c_{0} \geqslant Q^{1 / r-1}[& \sum_{k=0}^{\infty} \frac{\left(1-\left\{k / Q_{1}\right\}\right)\left(Q k+1-\left\{k / Q_{1}\right\}\right)^{-1 / r}}{Q k+1-k-\left\{k / Q_{1}\right\}} \\
& \left.+\sum_{k=1}^{\infty} \frac{\left(2-\left\{k / Q_{1}\right\}\right)\left(Q k+2-\left\{k / Q_{1}\right\}\right)^{-1 / r}}{Q k+2-k-\left\{k / Q_{1}\right\}}\right] / r
\end{aligned}
$$

where the last sum is the sum over all positive integers k such that $\left\{k / Q_{1}\right\} \geqslant 1-1 / Q_{1}$. Trivially, $c_{0}>1 / 8$ if $r<4$, so we assume that $r>3$. We divide the k 's into subsets
with $i Q_{1} \leqslant k<(i+1) Q_{1}, i=0,1, \ldots$ and write $k=\left\lfloor i Q_{1}\right\rfloor+j, 1 \leqslant j \leqslant J$, where

$$
J=\left\lfloor(i+1) Q_{1}\right\rfloor-\left\lfloor i Q_{1}\right\rfloor=\left\lfloor Q_{1}\right\rfloor
$$

if $\left\{i Q_{1}\right\}+\left\{Q_{1}\right\}<1$ and $J=\left\lfloor Q_{1}\right\rfloor+1$ otherwise, so that

$$
\left\{k / Q_{1}\right\}=\left(j-\left\{i Q_{1}\right\}\right) / Q_{1} \geqslant 1-1 / Q_{1}
$$

if and only if $j=\left\lfloor Q_{1}\right\rfloor$ and $\left\{i Q_{1}\right\}+\left\{Q_{1}\right\} \leqslant 1$ or $j=\left\lfloor Q_{1}\right\rfloor+1$ (and $\left\{i Q_{1}\right\}+\left\{Q_{1}\right\} \geqslant 1$). We obtain:

$$
c_{0} \geqslant\left(Q^{1 / r-1} / r\right)\left[1+\sum_{i=0}^{\infty} \sum_{j=1}^{\left\lfloor Q_{1}\right\rfloor} \frac{\left(1-j / Q_{1}\right)\left(Q k_{1}+1\right)^{-1 / r}}{\left((Q-1) k_{1}+1\right)}+\sum_{i=0}^{\infty} \frac{\left(Q k_{2}+1\right)^{-1 / r}}{\left(Q k_{2}-k_{2}+1\right)}\right],
$$

where $k_{1}=\left\lfloor i Q_{1}\right\rfloor+j$ and $k_{2}=\left\lfloor(i+1) Q_{1}\right\rfloor$ so that, as above, we get

$$
\begin{aligned}
& c_{0} \geqslant Q^{1 / r-1}[1+ \sum_{j=1}^{\left\lfloor Q_{1}\right\rfloor} \frac{\left(1-j / Q_{1}\right) \sum_{i=0}^{\infty}\left(Q\left(i Q_{1}+j\right)+1\right)^{-1 / r}}{(Q-1)\left(i Q_{1}+j\right)+1} \\
&\left.+\sum_{i=0}^{\infty} \frac{\left(Q Q_{1}(i+1)+1\right)^{-1 / r}}{(Q-1) Q_{1}(i+1)+1}\right] / r \\
& \geqslant Q^{1 / r-1}\left[1 / r+\sum_{j=1}^{\left\lfloor Q_{1}\right\rfloor} \frac{\left(1-j / Q_{1}\right)\left(j / Q_{1}+1 /\left(Q_{1}(Q-1)\right)\right)^{-1 / r}}{(Q-1) Q_{1}\left(Q Q_{1}\right)^{1 / r}}\right. \\
&=\frac{Q^{1 / r}}{Q r}+\frac{\sum_{j=1}^{\left\lfloor Q_{1}\right\rfloor}\left(1-j / Q_{1}\right)(j+1 /(Q-1))^{-1 / r}}{Q(Q-1) Q_{1}} \\
&+\frac{\left.1 /\left((Q-1) Q_{1}\right)\right)^{-1 / r}}{Q(Q-1) Q_{1}\left(Q_{1}+1 /(Q-1)\right)^{1 / r}}>1 / 8
\end{aligned}
$$

for all $Q_{1}>1$. If b is small then, as above, we get: if $r>1$ then

$$
\begin{aligned}
c_{0} & =(1 / r) \sum_{v=1}^{\infty}(b v)^{-1 / r} \delta(v)+\mathrm{O}(b / r) \\
& =(1 / r) \sum_{r \leqslant Q} b^{1-1 / r} v^{-1 / r}+\left(1 /\left(Q^{2} r\right)\right) \sum_{k=0}^{\infty} \sum_{1 \leqslant j \leqslant Q} j(k+j / Q)^{-1-1 / r}+\mathrm{O}(b / r) \\
& =(1 / r) \int_{0}^{1} \sum_{k=0}^{\infty} x(k+x)^{-1-1 / r} \mathrm{~d} x+\mathrm{O}\left(b^{1-1 / r} / r\right) \\
& =(1 / r) \int_{0}^{\infty}\{x\} x^{-1-1 / r} \mathrm{~d} x+\mathrm{O}\left(b^{1-1 / r} / r\right),
\end{aligned}
$$

which is $<r /(2 r-1)$ and $>r\left(r-2^{1-1 / r}\right) /((2 r-1)(r-1))$; if $r=1$ then $c_{0}=\log Q+$ $1+\mathrm{O}(b)$.

To prove Theorem 2 we can assume that $m<n^{1-a / r}$ for some $a<\frac{1}{4}$, otherwise the theorem follows from Theorem 1. We denote $A=\left\{p \in\left(P, P_{1}\right]: \alpha_{p}=r\right\}$, where $P=m^{1 / r}, P_{1}=(2 m)^{1 / r}$. Here $p \in A$ if and only if

$$
\sum_{j=1}^{J}\left(\left\{m / p^{j}\right\}+\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}\right)=r
$$

where $J=\lfloor\log n / \log P\rfloor$. Since $\left\{m / p^{j}\right\}+\left\{(n-m) / p^{j}\right\}-\left\{n / p^{j}\right\}=1$ if and only if $\left\{n / p^{j}\right\}<\left\{m / p^{j}\right\}$, we have

$$
\begin{aligned}
|A| & \geqslant \left\lvert\,\left\{p \in\left(P, P_{1}\right]:\left\{\frac{n}{p^{j}}\right\}<\left\{\frac{m}{p^{j}}\right\},\right.\right. \\
& \left.\quad 1 \leqslant j \leqslant r \text { and }\left\{\frac{n}{p^{j}}\right\} \geqslant\left\{\frac{m}{p^{j}}\right\}, r+1 \leqslant j \leqslant J\right\} \mid \\
& \geqslant\left|\left\{p \in\left(P, P_{1}\right]:\left\{\frac{n}{p^{j}}\right\}<\left\{m / p^{j}\right\}, 1 \leqslant j \leqslant r\right\}\right|-|B|,
\end{aligned}
$$

where $B=\left\{p \in\left(P, P_{1}\right]:\left\{n p^{-j-r}\right\} \geqslant 1 / m^{j}\right.$ for some $\left.j \in[1, J-r]\right\}$. Denoting $\chi_{1}(x)=$ $\chi_{[0,1 / 2]}(x), \chi_{2}(x)=1-\chi_{1}(x)$ and $\chi_{3}(x)=\chi_{[0, \eta)}(x), \eta=P^{-a / 3}$ (see Lemma 1), we obtain

$$
|A| \geqslant \sum_{P<p \leqslant P_{1}} \prod_{j=1}^{r} \chi_{1}\left(n / p^{j}\right) \prod_{j=1}^{r-1} \chi_{2}\left(m / p^{j}\right)-\sum_{j=1}^{J-r-1} \sum_{P<p \leqslant P_{1}} \chi_{3}\left(n x^{-j-r}\right)-\left|B_{1}\right|,
$$

where $B_{1}=\left\{x \in\left(P, P_{1}\right]:\left\{n / x^{j}\right\} \leqslant 1 / m\right\}$. If $\{\log n / \log P\} \leqslant \frac{3}{4}$ then we divide $\left(P, P_{1}\right]$ into $\leqslant\left(P_{1}-P\right) J n P^{-J-1}+1$ subintervals such that $\left\lfloor n / x^{J}\right\rfloor$ does not change within each interval, so that the number of $x \in B_{1}$ in each subinterval is $\leqslant P^{I+1} /(J n m)+1$, and

$$
\left|B_{1}\right| \leqslant\left(P_{1}-P\right) / m+P^{J+1} /(J n m)+\left(P_{1}-P\right) J n P^{-J-1}+1 \ll\left(P_{1}-P\right) P^{-1 / 6}
$$

If $\{\log n / \log P\}>\frac{3}{4}$ then we write

$$
\left|B_{1}\right| \leqslant 1 \sum_{P \leqslant p p P_{1}} \chi_{3}\left(n / x^{J}\right) \mid
$$

and estimate the sum as below. Using Lemma 1 with $\delta=\eta, L=P^{a / 2}$ and $k=3$, we obtain

$$
\begin{aligned}
|A| \geqslant & \sum_{P<p \leqslant P_{1}} \prod_{j=1}^{r}\left(1 / 2-3 / \log ^{3} n+\sum_{|k|=1}^{L} a_{k} e\left(n k / p^{j}\right)\right) \prod_{j=1}^{r-1}\left(1 / 2-3 / \log ^{3} n\right. \\
& \left.+\sum_{|k|=1}^{L} a_{k} e\left(m k / p^{j}\right)\right)-\sum_{r<j<J} \sum_{P<p \leqslant P_{1}}\left(4 \eta+\sum_{|k|=1}^{L} a_{k} e\left(n k / x^{j}\right)\right)-\left|B_{1}\right|
\end{aligned}
$$

$$
\begin{aligned}
\gg & \left(\pi\left(P_{1}\right)-\pi(P)+\mathrm{O}\left(P / \log ^{3} P\right)\right) 4^{-r} \\
& -\sum_{j} A_{\underline{j}}\left|\sum_{P<p \leqslant P_{1}} e\left(j_{1} n / p+\cdots+j_{r} n / p^{r}+j_{r+1} m / p+\cdots+j_{2 r-1} m p^{1-r}\right)\right| \\
& -\sum_{j=1}^{j_{1}} \sum_{k=1}^{L}\left|a_{k}\right|\left|\sum_{P<x \leqslant P_{1}} e\left(n k / x^{j}\right)\right|,
\end{aligned}
$$

where $A_{j}=\left|a_{j_{1}} \ldots a_{j_{2 r-1}}\right|, \underline{j}=\left(j_{1}, \ldots, j_{2 r-1}\right) \neq(0, \ldots, 0)$ and $J_{1}=J$ if $\{\log n / \log P\}>$ $3 / 4, J_{1}=J-1$ otherwise. The function

$$
f(x)=j_{1} n / x+\cdots+j_{r} n / x^{r}+j_{r+1} m / x+\cdots+j_{2 r-1} x^{1-r}
$$

satisfies the conditions of Lemma 3. Indeed, let i and k be the smallest integers in $[1, r]$ and $[r+1,2 r-1]$, respectively, such that $j_{i} j_{k} \neq 0$. Then $f^{(u)}(x)=\mathrm{d}^{u} / \mathrm{d} x^{u}\left(j_{i} n / x^{i}+\right.$ $\left.j_{k} m x^{r-k}+\cdots\right)$ and, because $m=\mathrm{o}(n / L)$ and either $i \neq j-r$ or $f(x)=j_{i} n / x^{i}(1+\mathrm{o}(1))$, the last derivative is $\sim\left(\left|j_{i}\right| n x^{-i-u}+\left|j_{k}\right| m x^{r-k-u}\right)$ for all but at most one u. Using Lemmas 3 and 2 to evaluate the sums over p and x respectively, we obtain

$$
|A| \gg 4^{-r} P / \log P-\mathrm{O}\left(P \eta+P^{1-c \log ^{2} m /(r \log n)^{2}} \log ^{5+2 r} n\right) \gg r m^{1 / r} 4^{-r} / \log m .
$$

Acknowledgements

We would like to thank Professor Andrew Granville for sharing with us his published and unpublished results.

References

[1] P. Erdős, Problems and results on number theoretic properties of consecutive integers and related questions, Proc. 5th Manitoba Conf. on Numerical Mathematics, 1975, pp. 25-44.
[2] P. Erdős, R.L. Graham, Old and new problems and results in combinatorial number theory, L'Enseign. Math., Geneva, 1980.
[3] A. Granville, On the scarcity of powerful binomial coefficients, to be published.
[4] A. Granville, O. Ramare, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Univ. of Georgia math preprint series \#12, 2 (1994).
[5] A.A. Karatsuba, Estimates for exponential sums by Vinogradov's method and some applications, Proc. Steklov Inst. Math. 112 (1971) 251-265.
[6] J.W. Sander, Prime power divisors of $\binom{n}{m}$, J. Number Theory 39 (1991) 65-74.
[7] J.W. Sander, On prime divisors of binomial coefficients, Bull. London Math. Soc. 24 (1992) 140-142.
[8] J.W. Sander, Prime power divisors of binomial coefficients, J. Reine Angew. Math. 430 (1992) 1-20.
[9] J.W. Sander, Prime power divisors of binomial coefficients: reprise, J. Reine Angew. Math. 437 (1993) 217-220.
[10] J.W. Sander, Prime power divisors of multinomial coefficients and Artin's conjecture, J. Number Theory 46 (1994) 372-384.
[11] A. Sárközy, On divisors of binomial coefficients I, J. Number Theory 20 (1985) 70-80.
[12] G. Velammal, Is the binomial coefficient $\binom{n}{m}$ squarefree? Hardy-Ramanujan J. 18 (1995) 23-45.

[^0]: * Corresponding author. E-mail: gkolesn@calstatela.edu.

