
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 22, 178-197 (1981)

SR(s, k) Parsers: A Class of
Shift-Reduce Bounded-Context Parsers

DAVID A. WORKMAN

Department of Computer Science, University of Central Florida,
Orlando, Florida 32816

Received May 16, 1978; revised November 7, 1979

We introduce a class of bottom-up parsers called SR(s, k) parsers, where s denotes a stack
bound and k the lookahead bound. The importance of this class of parsers is the fact that
states are formed by the union of item-sets associated with a canonical LR(k) parser. One of
our major results states that the class of SR(s, k) grammars properly includes the (s, k)-weak
precedence grammars but is properly included within the class of (s, k)-bounded right-context
grammars.

INTRODUCTION

Knuth’s algorithm [7] for generating LR(k) parsers produced sets of “items” that
served to characterize the states of a general bottom-up parser. Early [2] employed
the “item-set” framework to describe an even more general, but generally less efficient
algorithm for parsing any context-free grammar. More recently, Geller and Harrison
[4] have developed the “item-set” framework and used it to describe strict-
deterministic, SLR(L) and LALR(k) parsers. We present in this paper yet another
application of Knuth’s algorithm to describe precedence and bounded right-context
parsers. In our adaptation of Knuth’s algorithm we add a parameter “s” which
represents a bound on the number of stack symbol employed by the resulting parser
in determing the next “action” to perform. The algorithm produces a canonical
collection of item-sets from which “action” and “goto” tables are constructed; these
tables are defined in the same fashion as those for an LR(k) parser.

Section I contains definitions and notational conventions used throughout the
paper. One method for generating the canonical collection of (s, k)-consistency sets is
presented in section II. In section III we describe the procedure for constructing a
shift-reduce parser based on the canonical collection of item-sets. We designate such
parsers as “SR(s, /c),’ parsers. In Section IV we describe the properties of SR(s, k)
grammars in relation to the classes of (s, k)-weak precedence and (s, k)-bounded
right-context grammars. The paper is completed with a few comments regarding prac-
tical considerations for implementing SR(s, k) parsers followed by our conclusions.

0022-0000/8 l/020 178-20%02.00/O
Copyright 0 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.

178

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81183353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We assume the reader is familiar with the basic definitions, notation and
terminology found in Aho and Ullman [11. In particular we assume familiarity with
Knuth’s algorithm [7] for generating LR(k) parsers where “states” are sets of
“LR(k)-items.” In the paragraphs to follow, we give many of these definitions for the
reader’s convenience.

SR(s, k) PARSERS

I. PRELIMINARIES

179

A grammar is denoted by a 4-tuple, G = (N, T, P, S), where N, T and P are the sets
of nonterminals, terminals and productions, respectively. S E N denotes the start
symbol of G. The vocabulary of G will be denoted by V,(VG = N U T’). Throughout
the paper we will be dealing exclusively with reduced context-free grammars. The null
string will be denoted by “E.”

DEFINITION 1. If a is some string in I’* and s > 0, then:

PREF,(a) = a, if]a(<s;

= P, if 1 a / > s and a = /3y, where]/3] = s.

SUFF,(a) = a, if]a]<s;

Y, if]a]>sanda=,$,where/y]=s.

For k > 0,

FIRST,(a) = { PREF,(x) / a G x E F }

and

EFF,(a) = PREF,(a), if aEp

={PREF,(x)]a--*4oy==>xET3 rm rm

andeitherae ToraE Nand yfx}.

DEFINITION 2. A k-item [X-, a - /? / u] is said to be validfor Ba, a viable prefix of
G, if there is a rightmost derivation, S + r*, 8Xw arm t9a/?w, for which u = PREF,(w).

In Knuth’s algorithm for constructing LR(k) parsers, states of the parser are
characterized by sets of k-items. For example, if the parse stack contains the string y,
then the state of the parser is defined by the set A(y) of all k-times valid for y.
Because the set /i(y) is determined by y, an LR(k) parser effectively uses the entire
stack contents in deciding the action to perform at each step of the parse.

Our objective is to construct shift-reduce parsers in a manner similar to that of
Knuth’s but with one important difference; states will incorporate information deter-
mined only by the top s symbols of the stack. With this goal in mind we proceed with
the next definition.

180 DAVID A. WORKMAN

DEFINITION 3. The k-item Z= [X-+a.p]~] is said to be s-consistent with y,
s > 0, iff Z is valid for some viable prefix Ba, where y = SUFF,(&).

Notation. For given values of s and k, and y E v;E” we let n:,(y) denote the
(s, k)-consistency setfor y and contains all k-times s-consistent with y. The subscripts
and superscript will be dropped whenever s, k and G are understood. We use 59&(G)
to denote the collection of all non-empty (s, k)-consistency sets, n(y), for G.

In the next section we describe how to form the canonical collection, Q(G), of
(s, k)-consistency sets for G from the canonical collection of LR(k) sets for G.
Having computed v(G), a set of parsing tables can easily be obtained which form the
basis for an SR(s, k) parser for G. Before formally introducing these concepts we
present some notational conveniences via the following definitions.

DEFINITION 4. Let G = (N, T, P, 5’) and Z be a set of k-items for G. Furthermore,
let Z= [X-+a.o/3]~], where oE I’. Then

MOVE(Z)= [X+au.pIu],

START(G)= ([S*d(e]IS+6EP},

CORE@-‘, u) = (MOVE(Z)] Z = [X ~a.~pI~]ETforsomex,a,pandu}.

DEFINITION 5. The close relation, 3, is defined on the set of k-items for G as
follows.

[Y+a.A~(u]z[[A-+.61v] iff A + 6 E P and u E FIRST,@).

Let “XX” and “x+” denote the reflexive-transitive and transitive closures of 2,
respectively.

If Z is a set of k-items, then

CLOSE(T) = {Z] J z* Z and J E T}.

II. COMPUTING (s, k)-CONSISTENCY SETS

We have defined %&(G) to be the collection of all non-empty (s, k)-consistency
sets, /i(y), where y E P”. In this section we show that each n(y) E Q(G) is the union
of some of the members of the canonical collection, Yk(G), of LR(k) sets for G.

From Definitions 2 and 3 it follows that an item Z belongs to A(y) if and only if Z
is valid for some viable prefix, f?, for which y = SUFF,(B). Thus if C is the member of
P,,(G) representing the set of all k-items valid for 8, then clearly 6 E /1(y). Our next
definition suggests a simple algorithm for computing exactly those JY in 9,(G) which
contribute to /1(y) for a given y E P” as well as those y for which /i(y) E Q(G).

DEFINITION 6. Let G’ = (N, T, P’, S’) be the augmented from of some grammar

SR(s, k) PARSERS 181

G and let Y,,(G) denote the canonical collection of LR(k) sets constructed from G’.
Furthermore, let &, = CLOSE(I), where I = [S’ -+ .S 1 E] and let g denote the usual
GOTO-function defined on 9”(G) extended to strings in V*. Given s > 0 we define
sets T(y), y E v*“, as follows.

(i) For 1 yI < s, T(y) = g(C,, y) whenever g(2,,, v) is defined;

(ii) For 1 y(= s, T(y) = lJ { g(.& y) I C E Yk(G) and g(z, y) is defined}.

If y E v*” such that IyI (s, then Z is s-consistent with y if and only if y is a viable
prefix of G. Thus (l:(y) = g(C,, y) whenever g(,Y,, y) is defined. For I yl = s, y must
occur as a suffix of some viable prefix 8, where 101 > s. Letting 8 = 8’~ we have
g(C,, 0) = g(g(z,, el), y) c T(y). On the other hand, let C be any member of ‘Yk(G)
for which g(C, y) is defined, then there is some 8’ such that g(C,, 0’) = Z: and it
follows that B’y is a viable prefix of G. Thus T(y) = /iF*,Jy) for each y a suffix of
length s or less of some viable prefix of G. We have the following:

THEOREM 1. The canonical collection of (s, k)-consistency sets, gS,,(G), for a
grammar, G, is specified according to Definition 6, where each member of Q(G) is the
union of valid LR(k) sets for G.

III. THE CLASS OF SR(s, k) PARSERS

In this section we show that the canonical collection of consistency sets, 53&(G),
forms the basis for a nondeterministic right-parser for G. Each member of Q(G)
represents a state in a Shift-Reduce parser defined in the same manner as the
canonical LR(k) parser for G. For this reason we designate such a parser as the
canonical SR(s, k) parser for G and denote it by 9$,JG). Deterministic SR(s, k)
parsers will be taken up in the next section.

To the end of demonstrating 9,,,(G) is in fact a right-parser, we establish the more
general result that any “cover” for Yk(G) consistent with the GOTO-function, g, of
an LR(k) parser defines a basis for a right-parser for G. The notion of a cover for G
is made precise by the next definition.

DEFINITION 7. A pair (0, !P) is a k-cover for G if R = {Qo, Q, ,..., Q,} is a
collection of non-empty sets satisfying

(i) For each i, 0 < i f n, there is a subset, pi, of ,IPk(G) such that Qi = U Qi;
(ii) U R = U Y’(G);

and Y is a partial function, !K J2 X VG --) J2, satisfying

(iii) For each Q E R and 2 E VG for which Y(Q, Z) is defined, there exists
z E Q such that g(Z; Z) is defined and furthermore, for all 2Y E Q for which g(.?Y:, Z)
is defined, it holds that g(& Z) E Y(Q, Z); that is, g(z, 2) E Y(Q, Z).

182 DAVID A. WORKMAN

We can now formally introduce a class of right-parsers based on a k-cover for a
grammar, G.

DEFINITION 8. For k > 0, a k-purser for G = (N, T, P, S) is a 4-tuple
(Q, Q,, r, y?, where (f& Y) is a k-cover for G, Q, E 0 is the initial state and must
satisfy 2, E QO,, where Z, is the initial state of the canonical LR(k) parser and
finally, r is the action relation from a x Pk to subsets of {error, accept, shift} U
{reduce p) p E P}. Furthermore, for Q E Q, r satisfies

(i) If [X+ a. /3] U] E Q, p # E, then shift E s(Q, E) if k = 0; for k > 0, shift E
z(Q, v) for every u E EFF,@).

(ii) If [X-t a.) U] E Q then reduce p E r(Q, u) where p =X+ a.

(iii) If [S’ + S. 1 E] E Q, then accept E 7(Q, E).

(iv) 7(Q, u) = {error} whenever 7(Q, v) is not defined by one or more of
(i)-(iii).

A k-parser operates similar to an LR(k) parser and begins with the stack initialized
to Q,. A shift causes the next input symbol, a, to be pushed on the stack along with
the “next state,” Y(Q, a), where Q denotes the current state of the parser (the state
symbol originally on top of the stack). If reduce p is selected as the parsing action,
where p =X-+ w, then the parser outputs “p” if and only if the rightpart, w, actually
occurs on top of the stack (ignoring state symbols) and Y(Q’, X) is defined where Q’
is the state symbol immediately below the handle w. A reduction by p causes the top
2) w 1 symbols of the stack to be replaced by XY(Q’, x). When accept is executed, the
parser halts and outputs “accept” provide the stack contains Q,S!P(Q,, S) and
otherwise outputs “error.”

The requirement that the handle, w, actually agree with the stack contents during a
reduction is a necessary condition, for otherwise a parser could accept a string not in
L(G). This point will be demonstrated later by Example 2. We note further that this
constraint is natural in the sense that it is a condition guaranteed with canonical
LR(k) parsers.

We now formally establish the fact that every k-parser for a reduced cfg, G, defines
a right-parser for G.

THEOREM 2. Let G = (N, T, P, S) be a reduced cfg. For k > 0, every k-purserfor
G produces “zaccept” us output if and only if its input, x, belongs to L(G), where
s =q; x.

Proof: The result is established in two steps. First, we show that if x E L(G), then
any k-parser, A, for G can duplicate an accepting computation of the canonical
LR(k) parser for G. Finally, we show that if A produces output “mzccept” for some
input, x E T*, then S =+-:i x in G.

To begin we recall some notation frequently used to describe the action of a shift-
reduce parser (see [1,4]). Let (7, x, p) denote a parser configuration, where y denotes

SR(s,k) PARSERS 183

the stack contents with top on the right, x denotes the remainder of the input with
lookahead, PREF,(x), and p denotes the current output. Furthermore, i--,,,, will
denote the “move relation” on configurations of parser, A.

Let A = (Q, Qo, 7, ul) be any k-parser for G. Let C = (,Yk(G), C,, f, g) denote the
canonical LR(k) parser for G, where f and g are the action and goto functions,
respectively, and JY,, E Yk(G) is the initial state. Now suppose x E L(G), then there
exists a sequence of moves of C accepting x; that is,

(qlrx, E) $- (&Z,C, ‘*. z,z,, ~1, p) c (&SC,, E, naccepth

where S 3;: x in G. To show x is also accepted by A, we establish the following

Claim 1. (CO, x, E) F: (zO, Z,C, -.. Z,C,, x’, p) implies (Qo, x, E) I--‘:
(QJ,Q, . ..ZmQ.,x’,p), where.!YiEQi,O<i<m.

A formal proof of Claim 1 proceeds by induction on the number of moves, n. This
is done by considering the conditions that must prevail for each type of move C could
make in a given configuration and the showing the same move can be duplicated by
A. The crucial observations are first, C, E Q,, and second, Ci+, = g(~i, Z) or
!?'(Qi,z)=Qi+l* From this the details are straightforward and have been omitted.

Now consider
Claim 2. If (Q,, x, E) t-; (QOZ, Q, -.a Z,Q,, x’, x), with 7c E P*, then

z,z, 3.. Z,x’ =s$ x in G.
Claim 2 is also established by induction on the number of moves, n, where each

move must be a shift or reduce action. The crucial observation is that a reduction by
p =X-+ w is successful only if w actually appears on top of the stack and that
Y(Qj, X) is defined, where Qj is the state symbol immediately below w. Again the
details are straightforward and not presented here.

tQ:kQ,
complete the proof suppose (Qo, x, E) kt (Y, E, naccept). If
a.. Z, Q,, E, or) is the configuration just prior to the accept move, then

Q,z,Q, ... Z,Q, = QOS!P(Q,, S). By Claim 2, S 3;: x in G. Thus x E L(G). This
concludes the proof.

As a corollary to Theorem 2 we formally establish that the canonical SR(s, k)
parser for G is a k-parser and therefore a nondeterministic right-parser for G.

COROLLARY. The canonical SR(s, k) parser, YsJG) = (q’,,,(G), Ar,k(~), t, vl) is a
k-parser for G where for all A(y) E Q(G) and Z E V, for which there exists an item
[X- a. Z/? / u/ E A(y) we define Y(A(y), Z) =/i(SUFF,(yZ)).

ProoJ To demonstrate this result we need only show (q(G), q is a k-cover for
G. In keeping with the notation of Definition 7, x(y) will denote the subset of 9Yk(G)
satisfying .4(y) = (_I z(y) according to Definition 6. To begin we observe that
conditions (i) and (ii) of Definition 7 follow immediately from Definition 6 and
Theorem 1.

To establish (iii) of Definition 7 consider first the case s = 0. Since SUFF&) = e
for all y E V$, then it follows that /YE x(e) for each .X E Yk(G). Since g(G) =
(A(E)} it follows at once that (‘%0,,(G), ul) is a k-cover for G.

184 DAVID A. WORKMAN

Now suppose s > 0 and !P(A(y), 2) = /i(y’) for some y E I$’ and Z E V,, where
y’ = SUFF,(yZ). By Definition 6 and the definition of Y there exists an item, 2 =
(X-t a. Za 1 u], and Z: E Yk(G) such that IE 27 Cx(y). We must show
g(C, Z) E x(y’). From ,X E sP,(G) and Definition 6 we know there exists 0 e G such
that .X = g(Z,, 0) and y = SUFF,(B). If] y(< s, then 8 = y and Definition 6 imply
z = ,4(y). But then we have g@, Z) = g(g(C,, S), Z) = g(g(l;, , y), Z) = g(z,, , yZ). If
(yZ(< s, then g(C,, yZ) =/i(yZ) =n(SUFF&Z)) =_.(y’). If lyZ\ = s, then since
g(z,, yZ) is defined, Definition 6 implies /i(yZ) = A(y’) contains g(z,, yZ). Thus
g(z, Z) E ;f(y’) for] y] < s. If 1 y(= s, then g(I;, Z) = g(g(C,, 8), Z) = g(z,, BZ) =
g(& , @yZ) = g(.&, 0’~‘) = g(g(&, O’), r’) E Jtr’>. In any case, vl(/i (Y>, Z) = II (7’)
implies g(& Z) E A(y’) for every 2‘ E x(y) and Z E V, for which g(X, Z) is defined.
We conclude (@s,k(G)r Y) is a k-cover for G and Ys,,(G) is a k-parser.

We illustrate the construction of a canonical SR(s, k) parser by the following
example.

EXAMPLE 1. Consider G = (Iv, T, P, S), where N = {S, T}, T = { +, (,), a) and
P={l:S-+S$T,2:S + T, 3: T-1 (S), 4: T+ a). The canonical SR(l, 1) parser for
G is constructed according to the following procedure.

Step 1. Construct Y,(G), the canonical collection of LR(l) sets for G and the
associated GOTO-function, g. For the sake of brevity, items will generally be of the
form [X-, a. ,8 1 z], where z denotes a string of symbols in (TV {E})+. This notation
is used to represent a set of items of the form [X-t tl. j? 1 u], where u E TV (E}.
.Y1(G) = (X,, C, a.. z,,}, where

~,=([S~-,.S~E],[S-~.S+TIE+I,[S~.T~~+~~

[T+ .a (e + 1, [T-r .(S) I E -t 11,

c,=g(~,,S)={(S’-*S.~~],[S--,S.+TI~+l~,

~z=g(~d,T)={[S-,T.l&+]},

~,=g(~o,a)={[T+al~+ II,

&=g(&,,()={[T+(.S)(s+],[S+.S+Tl)+]@-t~T])+]~

[T-t.al)t],[T~.(S)l)+l},

r;,=g(t;,,+)=([s-ts+.~~~-t],[~-r.~I~+l,[T-r.(S)l~+~~~
c, = g(.z,, S) = {[T+ (S.) l& + I, [S + s. + Tl) + 11,
c,=g(c,,T)={IS-,T.I)+l},
~,=g(C,,a)=([T4a.l)fl},
~,=g(~4,()={[T-,(.S)~)+],[S+.SfTl)f]r~S-,.Tl)+l~

[T-, .a I) + I,]T+ w(S) I) + 11,
C,,=g(C,,T)={[S-tS+T.(&f]),

SR(s, k) PARSERS 185

~,,=g(~,,))={[T-1(S).l&+l},
C,,=g(C,,+)={[S-,S+.~I)+], [~~.a/)+l,1T~.(S)/)+l~,
z,, = g(&, S) = { [T-, (S.) I I+ 17 P -+ s* + TI I+ 113

g(&, TI = C,,
g(G,a)=~,,
g(~,, 0 =C!Ir

C,, =gG,3,)) = IT--+ (0 I I+ I,
g(C,,, +I =cn,

Step 2. Construct g[.,(G) according to Definition 6.

A(&)=ql,

A(s)=c,uz,uz,,,

ff(T)=&U&U~,,U~,,,

A(a)=Z;,U2&,

A(+)=r:,UC,,,

~((>=~,U&,

~O)=~,,U~,,*

Step 3. Construct the action relation, r, and the GOTO-function Y.

r a + (1 E YSTu+$)

;
shift error shift error error STa (
error shift error error accept +

T error reduce 2, 1 error reduce 2, 1 reduce 2, 1
a error reduce 4 error reduce 4 reduce 4
+ shift error shift error error T a
(shift error shift error error S T :
> error reduce 3 error reduce 3 reduce 3

571/22/2-b

186 DAVID A. WORKMAN

This completes the construction. Note that Y,,,(G) appears to be nondeterministic
because of the multiple action entries for r(T, +), r(T,)) and r(T, E). However,
according to our definition of determinism presented in the next section, YIP(G) is
actually a deterministic SR(1, 1) parser for G. We will prove this statement later in
Section IV.

As we note following Definition 8, the requirement that the handle actually appear
on the stack during a reduction is a necessary condition for k-parsers. This fact is
demonstrated by our next example.

EXAMPLE 2. Let G= ((S, T,F), {-, a, (,)}, P, S), where P = (1: S -+ S - T,
2:S-+ T, 3: T-+-F, 4: T+F, 5:F+a, 6:F-+(S)}. The action and goto tables are
shown below for the canonical SR(1, 1) parser for G.

t - a () E

:
shift
shift

T reduce 2, 1
F reduce 4,3

shift
a reduce 5
(shift
) reduce 6

shift
error
error
error
shift
error
shift
error

shift error ’
error shift
error reduce 2, 1
error reduce 4,3
shift error
error reduce 5
shift error
error reduce 6

error
accept
reduce 2, 1
reduce 4,3
error
reduce 5
error
reduce 6

Y

&
S
T
F
-

a

(
)

S T F a ()

S T F a (
)

-

T F - a (

S T F a (

We now consider the behavior of Yi,i(G) when presented the input string “---a,”
which is not in L(G). Since the grammar symbols and the state names correspond, we
record only the grammar symbol in the stack. Whenever a stack reduction is called
for, we remove the top n symbols of the stack without verifying they actually agree
with the handle, w, where n = Iw(. The stack top is the rightmost symbol of the string
representing the stack.

SR(s, k) PARSERS 187

Stack

E
F-

&--
s_-_

E-----Q
E---F

E--T
ES

Input

-----Q
a

-a
a
&
E
E
E

Action

shift
shift
shift
shift
reduce 5
reduce 3
reduce 1
accept

It is not difficult to verify that the canonical LR(l) parser for G would halt and
report “error” after the first “shift.” Using Definition 8, the SR(1, 1) parser would
report “error” in attempting to perform “reduce 1” and finding “S - T’ does not
appear on top of the stack.

IV. PROPERTIES OF SR(s, k) GRAMMARS

The canonical SR(s, k) parser for a grammar, G, will generally be nondeterministic
if no restrictions are imposed on G. In this section we shall be interested in defining a
class of context-free grammars that give rise to deterministic, one-pass SR(s, k)
parsers; this class we designate the class of SR(s, k) grammars. The section will be
concluded with results that show the relationship of SR(s, k) grammars to the classes
of (s, k)-weak precedence and (s, k) bounded right-context grammars.

The notion of determinism for SR(s, k) parser is not as clear cur as it is for LR(k)
parsers; that is, simply requiring r@(y), u) contain at most one entry may indeed
yield a deterministic parser and, perhaps, an interesting class of grammars, but is a
much too severe restriction. To arrive at a suitable definition of determinism we
attempted to include the largest class of bounded-context grammars possible without
imposing artificial or unnatural conditions.

DEFINITION 9. Ys,k(G) is said to be deterministic if for every yE I’*‘,

(i) SHIFT(y) f7 REDUCE(y) = @.

(ii) If distinct items, [A + a. 1 u] and [B + pa. 1 u] belong to /1(y), then for no
y’ E V*” is it true that both [A + .a 1 u] and [B -+ fi.a 1 u] belong to A(Y’).

(iii) r(/i(SUFF,(S)), E) = {accept}, SHIFT(y) = {u E TXk 1 shifr E z(A(y), u)},
REDUCE(y) = {u E Pk (reduce i E z@(y), u) for some i E P}.

The intent of condition (i) is to avoid any confusion between shift and reduce
actions; this is consistent with all other deterministic shift-reduce methods with no
backup. Condition (ii) is similar to the condition on weak-precedence grammars that

188 DAVID A. WORKMAN

permits the resolution of multiple reductions by examining symbols below the handle
on the parse stack. Condition (iii) simply guarantees the parser can determine when
to halt in an accepting configuration.

As we noted in the previous Section, the grammar of Example 1 is an SR(1, 1)
grammar. Conditions (i) and (iii) of Definition 9 are clearly met. The reduction
conflicts result from the fact that items [S-t T. 1) + E] and [S+ S + T. 1) + E]
belong to II (5’). However, the items [S --t .T 1) + E] belong to A(E) U/1(() whereas
the items [S + S + .T 1) + E] belong to /i(+). Thus (ii) of Definition 9 is also met
implying G is an SR(I, 1) grammar. In resolving these conflicts during a parse, an
SR(I, 1) parser would examine the grammar symbol below “T’ in the stack; a
reduction by S + S + T would be attempted only if “+” is found; otherwise, S + T
would be attempted.

Our first result in this section relates SR(s, k) grammars to (s, k)-bounded right-
context grammars. Before presenting this result, we formally define the class of
SR(s, k) grammars. The definition we shall use for bounded right-context grammars
is found in [I] and due primarily to Floyd [3 1.

DEFINITION 10. A grammar, G, is said to be SR(s, k) if its canonical SR(s, k)
parser is deterministic.

THEOREM 3. If G is SR(s, k), then G is (s, k)-bounded right-context.

ProoJ We proceed by assuming G is not (s, k)-bounded right-context and then
show Ys,JG) is not deterministic. Suppose in the augmented grammar, G’, there are
rightmost derivations,

and

St*-aAw-a@
rm rm

S’ *. yBx - $X such that ySx = a’j?y,

where y E T*, 1x1 y[yl, SLFF,(a’) = SUFF,(a), PREF,(w) = PREF,(y) and
B -+ 6 #A -t/3. Now if x = y, then yS = a’/? and /I is a suffix of 6 or vice versa. In
either case [B + 6. 1 PREF,(_Y)] and [A -p.) PREF,(y)] belong to /i(SUFF($));
this follows because SUFF,(a/3) = SUFF,(SUFF,(a)@ = SUFF,(SUFF,(a’)P) =
SUFF,(a’P). Suppose 6 = 86. Then [B + f9.p) PREF,(v)] E li (SUFF,(yB)) =
/i (SUFF,(a’)) and [A + .p) PREF,(w)] = [A --$./lI PREF,(y)] E li(SUFF,(a)). Since
SUFF,(a) = SUFF,(a’), then condition (ii) of Definition 9 is violated and G is not
SR(s, k). The argument assuming /3 = 86 is similar and for the case x = y we have
shown G not to be SR(s, k).

Consider the case, Jx] < (y (. There are two subcases, (x] < 1 y I< (6x) and
Jx] <) y(>)6x(. In the first of these subcases we assume 6 = 6,6, for some 6,) 6,
such that 6, # E and $, = a//3. It follows from the second derivation above that

[3lvV+sl

(v)v

13 I Tlqq+sl

(a)v

I2 I 344’ + VI
Plv-~~s1

(v>v

*MOlaq UMOqS

an (~)“‘g JOJ alqw uo!po pua saws au *{aq c g:p ‘aqqe V:E ‘gqq t s :z

‘3VV t S :I} = d a.latjM ‘(S ‘d ‘(3 ‘q ‘V) ‘(8 ‘V‘S}) = fJ Jq ‘E TldiWXFJ

*uoyw!s syl swwsnII! aIdu.mxa 1x9~ mo ~.nmn.ue~%)xa)uoc+@!J papunoq
-(I ‘s) uf) s! 9 Jahauaqm aIpuay aqt MoIaq sIoqw6s s 8uymxa 6q paAIosaJ aq um
sJasJt3d paauo3-v@ papunoq u! %U!SIJB smguo~ ampal-y!ys asnmaq s! uoseaJ ayL
*awqsuot.uap Qoqs IIoqs aM SE aw IOU s! uraJoaq1 sno!AaJd ay) 30 aslam aqJ

wdu! d.IaAa uo ~Ioy lsnw (f))?“&’ leql SMOIIOJ

I! ‘[p] u! z’s waJoaq& JO 3ooJd aql 01 .mI!w!s wau.m%~ ue Ag fy)xq aJo3aJaqa
pw pawoD-lq8!1 papunoq-(y ‘s) s! 3 E uraJoaqJ_ Aq uaql ‘(y ‘s)aS s! 9 31 $ord

‘SIEVE SkDMl?.J (fy‘“& uayt ‘(7 ‘s)xs q 5 JI *aav?-loxo~

*3oold aq$ sapnIsuo3 s!qL ‘(7 ‘s)aS
$0~ sy 3 put? pawo!A s! 6 uopvgaa 30 (9 u@~ a=w *Q + ((tl,Wmns)axmm

U ((dP)“ddflS)JAIHS Wl sMoIlo3 Mou I! ((d?)‘&lnS)V 3 [(~)YtIIaXd 1 -d + VI
pwgqaw LpeaqE aAeq aM asu!s ‘((P)YddXXd zO)ydd13 3 (k)YdEIIId
pun 3 f ‘8 alarIM ‘((dP)‘~dnS)V 3 [(,x)“GIlrd 1 zt?*18 + z] ‘aAV aM s!w UC%

alo3aJaql utm uo!w~!.mp puoaas aqL ‘+J 3 0 amos .toJ xg0 =IIlaI uaql ‘(x91 < Ii\ 31
‘6 uoyugaa

30 (9 uowuos sawIo!h sw *Q f ((W”mx)mnaax u ((‘sV~dns)ums
4du! ((W&ms>v u! k%mId I ‘d+- VI PW ‘3 f ‘9 ‘[(x)Ymvd 1 z9”!? + al
~“TL. ‘(~)‘dZXd = ((x)“tEIlrd Z$?)YddZ ‘XZQ = k =u!S *((WCms)v
= (WVaans) v 01 s%uoIaq [(d)Ydgxd 1 *$ t p’] xq anoq aM ‘Jaysa
paqsgqalsa uogdwnsse pue sd!qsuoyv A8 *((d+ncIns) V 3 [(M)YrIaXd (‘d +- V]
‘aAeq OSIF! aM uoyeeb!lap wg aqi UIOJJ *((l@)saans>v 3 [(x)“dEIXd (‘p”q + 81

681 SIElSlIVd (y ‘S)‘tIS

190 DAVID A. WORKMAN

z a b c &

E

a
b

shift

error

error

shift

shift

shift

error

error

shift

error

error
error

c error
shift
reduce 3

reduce 4
reduce 1

A

B
s

error

error

error

error

error

error

shift

error

error

error

reduce 2

accept

SHIFT(c) n REDUCE(c) # @

G is not SR(1, l), but is (1, 1) bounded right-context; the shift-reduce conflict
when “c” appears on top of the stack can be resolved by looking one symbol below
the handle “bbc.”

Even though Example 3 denies the converse to Theorem 3, we can obtain a positive
result by choosing a larger value for s. This is the substance of our next theorem.

THEOREM 4. If G is an (m, n)-bounded right-context grammar and 1 is the
length of the longest right-part of any production in the augmented grammar, G’, then
$JG) is deterministic, where s = m + 1.

Proof We establish this result by contradiction; that is, we show that if any
condition of Definition 9 is not met, then G cannot be (m, n)-bounded right-context.

Case 1. By definition of I it follows that s > 1. Suppose I = 1, then assuming G is
BRC it follows that S does not appear in the right-part of any production of G. We
can conclude /i(S) = {[S’ -+ S.)] E and r@(S), E) = {accept}. Assume I > 1 and
r@(S), E) # {accept}. If shift E z@(S), E), then n = 0 and [X+ aS.p] u] E/1(S) for
some /?#E. Since s=m+Z> 1, we can conclude a=~ and [X-+.S,S]U]E~(E).
This implies there exist derivations

S’ _ s
rm

and

where y E T*. The existence of these derivations contradict the assumption that G is
(m, 0) BRC. Thus shift 6Z Q(S), E) if G is (m, n) BRC. Now suppose reduce p E
z(A (S), E) for some p = X-+ w in G. Since s > 1, it follows that w = S or w = E; that
is, [X+ S.) E] E d(S) or [X-P .] E] E/i(S). In the former case it follows that
S *+ S in G implying G is ambiguous and therefore contradicting the assumption G

SR(s, k) PARSERS 191

is (m, n) BRC. If [X-+ .I E] E A(S), then there exists an item, Z = [Y-, S.Z6 / u] E
A(S), where Z is a nonterminal, [X-+ . 1 E] E CLOSE(Z) and E E FIRST.(&). This
implies there exists derivations

S’ ====? S
rm

and
S/A Y--sz6~sx--S

rm rm m* rm

in G’. These derivations imply G is ambiguous and therefore not (m, n) BRC, a
contradiction. Thus if G is (m, n) BRC, then reducep 6? T@(S), E). We conclude
44 (S), E) = (accept}.

Case 2. Suppose (i) of Definition 9 is violated. Then for some y E V*‘.
[B-+4.&/ul, [A-r6lu]CA(y), h w ere 8, #E and u E EFF,(B,v). From this we
have

S&6Aw- a@
rm rm

and

where u = PREF,(w), u = PREF,(x’) and SUFF,(M,) = SUFF,(aP) = y. Now if
19, E Tf, then ,M,B,x’ = a’/M?x for some a’ and u = EFF,(B,v) = EFF,(B,x’). In
addition, since s = m + 1, we have SUFF,(a’) = SUFF,(a). Thus we obtain a
violation of the definition of (m, n)-bounded right-context. In the case e2 contains
some nonterminal, then we can write,

where VSX E r*.
Since u E EFF,(B, v) = EFF,(B, PREF,(x’)) we assume V8#& and

u = PREF,(vax). Again, 10, = a’@ and SUFF,+@,) = SUFF,+,(a’/3) =
SUFF, +,(ap) implies SUFF,(a) = SUFF,(a’). Letting y = VSX we have
&3, VSX = a’&, where 1x1 < Jyj, PREF,(y) = PREF,(w) and SUFF,(a) = SUFF,(a’).
Since x # y we have a violation of the requirements for G to be (m, n)-bounded right-
context.

Case 3. If (ii) of Definition 9 does not hold, then for some y E V*‘, [A - j?. (u]
and [B+a/?.Iu]EA(y) where (A--+p)#(B-,clp) and [A-+.PIu] and [B-+a.p\u]
belong to /l(y’) for some y’. Thus we can write

s* eAw-epw,
rm rm

S & LBx ===G- La/lx,
rm rm

192 DAVID A. WORKMAN

where u = PREF,(w) = PREF,(x) and SUFF,@a) = SUFF,(B). Since Ox # loAx
we have a violation of the condition for (m, n)-bounded right-context.

Thus if 5$,(G) is not deterministic for s = m + 1, then G is not (m, n)-bounded
right-context. This concludes the proof.

We turn now to the relationship between extended weak-precedence grammars and
SR grammars. In view of our results for bounded right-context grammars, the
primary issue is not the direction of the inclusion relation between the classes, but
rather the values of s and k required to establish the inclusion. Since SR(s, k)
grammars need not be uniquely invertible nor restricted to nonerasing productions we
would expect SR grammars to properly include the extended weak-precedence
grammars. Indeed, this is the case. The definition we shall use for the extended
precedence relations is that given in [1] and due to Wirth and Weber [8] and Gray
PI*

DEFINITION 11. Let G = (N, T, P, S) be a reduced grammar with no E-
productions. For values of m, n > 1 the extended precedence relations, G, k and > are
subsets of (VU 1% })” x (VU {$I)” and are defined as follows. Let

$“S!$” “. BA w ==+ 06w
rm rm

be any rightmost derivation in G. Then

(i) SUFF,(@) b PREF,(w),

(ii) SUFF,(B) G y, where y = PREF,(Gw) or y E FIRSTJaw) if 6 E TV*,

(iii) for every 6,) 6, E V+ such that 6 = 6, 6,, SUFF,,@$) k y, where
y = PREF,(G, w) or y E FIRST,(G, w) if 6, E TV*.

Note that since G is e-free, EFF, could have been used in place of FIRST, in the
above definition. From Definition 11 it is easy to see that [A --) 6. (u] belongs to
A:,,(y) if and only if y’ > u”, where y’ = SUFF,($my) and u” = PREF,(u%“).
Relating items and (m, n)-consistency sets to the extended precedence relations is the
subject of our next porposition. .No formal proof is given as the result follows directly
from Definitions 11, 2 and 3.

PROPOSITION 2. Let G = (N, T, P, S) and Q, i, + be as described in
Definition 11. For z E v*” with)z I= i we shall let z’ denote %“-‘z; similarily, z”
shall denotes z$“-j whenever z E Vy”. Then

(i) there is [A -+ 6.1 u] E/if&~) if and onb if y’ -> a”,
(ii) y’ A y” if and only if there is [A + a./3 (v] in As,,(y) with a, /3 # E such

that y = PREF,(J?v) when y E NV* or y E EFFJ3v) when /3 E TV*.
(iii) y’ <. y” if and only if there is [A + $1 v] in A&(y) such that

y = PREF,(@) when /3 E NV* or y E EFF,@v) when p E TV*.

Parsing algorithms employing the extended precedence relations use the b relation

