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We introduce a class of bottom-up parsers called SR(s, k) parsers, where s denotes a stack
bound and k the lookahead bound. The importance of this class of parsers is the fact that
states are formed by the union of item-sets associated with a canonical LR(k) parser. One of
our major results states that the class of SR(s, k) grammars properly includes the (s, k)-weak
precedence grammars but is properly included within the class of (s, k)-bounded right-context
grammars.

INTRODUCTION

Knuth’s algorithm |[7] for generating LR (k) parsers produced sets of “items” that
served to characterize the states of a general bottom-up parser. Early [2] employed
the “item-set” framework to describe an even more general, but generally less efficient
algorithm for parsing any context-free grammar. More recently, Geller and Harrison
[4] have developed the “item-set” framework and used it to describe strict-
deterministic, SLR(k) and LALR(k) parsers. We present in this paper yet another
application of Knuth’s algorithm to describe precedence and bounded right-context
parsers. In our adaptation of Knuth’s algorithm we add a parameter “s” which
represents a bound on the number of stack symbol employed by the resulting parser
in determing the next “action” to perform. The algorithm produces a canonical
collection of item-sets from which “action” and “goto” tables are constructed; these
tables are defined in the same fashion as those for an LR (k) parser.

Section I contains definitions and notational conventions used throughout the
paper. One method for generating the canonical collection of (s, k)-consistency sets is
presented in section II. In section III we describe the procedure for constructing a
shift-reduce parser based on the canonical collection of item-sets. We designate such
parsers as “SR(s, k)” parsers. In Section IV we describe the properties of SR(s, k)
grammars in relation to the classes of (s, k)-weak precedence and (s, k)-bounded
right-context grammars. The paper is completed with a few comments regarding prac-
tical considerations for implementing SR(s, k) parsers followed by our conclusions.
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I. PRELIMINARIES

We assume the reader is familiar with the basic definitions, notation and
terminology found in Aho and Ullman [1]. In particular we assume familiarity with
Knuth’s algorithm [7] for generating LR(k) parsers where “states” are sets of
“LR(k)-items.” In the paragraphs to follow, we give many of these definitions for the
reader’s convenience.

A grammar is denoted by a 4-tuple, G= (N, T, P, S), where N, T and P are the sets
of nonterminals, terminals and productions, respectively. S € N denotes the start
symbol of G. The vocabulary of G will be denoted by V (V.= NU T). Throughout
the paper we will be dealing exclusively with reduced context-free grammars. The null
string will be denoted by *“&.”

DerFINITION 1. If @ is some string in V* and s > 0, then:
PREF (a)=q, if || < 53
=p, if |a| > s and a = fly, where |§] = .
SUFF (a) = q, if|a] <53
=7, if |a| > s and a = fy, where |y| = .
For k >0,
FIRST,(a) = {PREF,(x) | =:> xeT*)
and
EFF,(a) = PREF,(a), if a€T*
= {PREF(x) |a ::km» oy==>x€ T™*
and either 0 € Tor 0 € N and y # X|.

DEFINITION 2. A k-item [X — a - B|u] is said to be valid for fa, a viable prefix of
G, if there is a rightmost derivation, S =% 6Xw = . fafiw, for which u = PREF,(w).

In Knuth’s algorithm for constructing LR(k) parsers, states of the parser are
characterized by sets of k-items. For example, if the parse stack contains the string y,
then the state of the parser is defined by the set A(y) of all k-times valid for y.
Because the set A(y) is determined by p, an LR (k) parser effectively uses the entire
stack contents in deciding the action to perform at each step of the parse.

Our objective is to construct shift-reduce parsers in a manner similar to that of
Knuth’s but with one important difference; states will incorporate information deter-
mined only by the top s symbols of the stack. With this goal in mind we proceed with
the next definition.
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DEFINITION 3. The k-item I=[X—>a-f|u] is said to be s-consistent with v,
s 20, iff I is valid for some viable prefix fa, where y = SUFF (6a).

Notation. For given values of s and k, and y € V** we let AZ,(y) denote the
(s, k)-consistency set for y and contains all k-times s-consistent with y. The subscripts
and superscript will be dropped whenever s, k and G are understood. We use Z; ,(G)
to denote the collection of all non-empty (s, k)-consistency sets, 4(y), for G.

In the next section we describe how to form the canonical collection, #(G), of
(s, k)-consistency sets for G from the canonical collection of LR(k) sets for G.
Having computed #(G), a set of parsing tables can easily be obtained which form the
basis for an SR(s, k) parser for G. Before formally introducing these concepts we
present some notational conveniences via the following definitions.

DEFINITION 4. Let G=(N, T, P, S) and I" be a set of k-items for G. Furthermore,
let I=[X- a-0f|u], where o € V. Then

MOVE() = [X— ao - | u],
START(G) = {[S—~ -6|¢]| S~ 6 € P},
CORE(l, 0)= {MOVE()|I=[X—> a-0of|u] €T for some x, a, § and u}.

DEfFINITION 5. The close relation, o, is defined on the set of k-items for G as
follows.

[Yoa-AB|u]>[4~-6|v] iff A > & € P and v € FIRST,(Bu).

Let “ox” and “>+4” denote the reflexive—-transitive and transitive closures of o,
respectively.
If I' is a set of k-items, then

CLOSE(I')= {I|J>*I and JE ).

II. COMPUTING (s, k)-CONSISTENCY SETS

We have defined %, ,(G) to be the collection of all non-empty (s, k)-consistency
sets, A(y), where y € V*5, In this section we show that each A(y) € #(G) is the union
of some of the members of the canonical collection, #(G), of LR(k) sets for G.

From Definitions 2 and 3 it follows that an item 7 belongs to A(y) if and only if 7
is valid for some viable prefix, 8, for which y = SUFF (#). Thus if X is the member of
(G) representing the set of all k-items valid for 6, then clearly ¥ < A(y). Our next
definition suggests a simple algorithm for computing exactly those £ in %, (G) which
contribute to A(y) for a given y € V** as well as those y for which A(y) € #(G).

DEFINITION 6. Let G'=(N, T, P', S') be the augmented from of some grammar
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G and let %,(G) denote the canonical collection of LR (k) sets constructed from G'.
Furthermore, let £, = CLOSE(/), where I =[S’ — -S| ¢] and let g denote the usual
GOTO-function defined on .%,(G) extended to strings in ¥*. Given s >0 we define
sets I'(y), y € V**, as follows.

(i) For |y| < s, I'(y) = g(Z,, y) whenever g(Z,,y) is defined;
(ii) For |y|=s I(y)=U {g&,y)| £ € ¥ (G) and g(Z, y) is defined}.

If y € V** such that |y| < s, then [ is s-consistent with y if and only if y is a viable
prefix of G. Thus A% ,(y) = g(Z£,, y) whenever g(Z,, y) is defined. For |y| =5, y must
occur as a suffix of some viable prefix 6, where |#| >s. Letting =60y we have
g(Z,,0) = g(g(Zy, ), y) < I'(y). On the other hand, let Z be any member of .%,(G)
for which g(Z, y) is defined, then there is some & such that g(X',,8)=2 and it
follows that &'y is a viable prefix of G. Thus I'(y) = A¢,(y) for each y a suffix of
length s or less of some viable prefix of G. We have the following:

THEOREM 1. The canonical collection of (s, k)-consistency sets, €, ,(G), for a
grammar, G, is specified according to Definition 6, where each member of € (G) is the
union of valid LR(k) sets for G.

III. THE CLASS OF SR(s, k) PARSERS

In this section we show that the canonical collection of consistency sets, €, ,(G),
forms the basis for a nondeterministic right-parser for G. Each member of #(G)
represents a state in a Shift-Reduce parser defined in the same manner as the
canonical LR(k) parser for G. For this reason we designate such a parser as the
canonical SR(s, k) parser for G and denote it by 7 ,(G). Deterministic SR(s, k)
parsers will be taken up in the next section.

To the end of demonstrating .#; ,(G) is in fact a right-parser, we establish the more
general result that any “cover” for #,(G) consistent with the GOTO-function, g, of
an LR(k) parser defines a basis for a right-parser for G. The notion of a cover for G
is made precise by the next definition.

DEfFINITION 7. A pair (2, ¥) is a k-cover for G if 2=1{Q,,0y,..0,} is a
collection of non-empty sets satisfying

(i) For each i, 0 < i n, there is a subset, Q,., of #(G) such that Q, = {J Q,-;
(i) Ue=050G);
and ¥ is a partial function, ¥: 2 X V; — £, satisfying

(iii) For each Q€ 2 and Z € V; for which ¥(Q, Z) is clefmed, there exists
Z € Q such that g(ZX, Z) is defined and furthermore, for all ¥ € Q for which g(%, Z)
is defined, it holds that g(Z, Z) € ¥(Q, Z); that is, g(X, Z) € ¥(Q, 2).




182 DAVID A. WORKMAN

We can now formally introduce a class of right-parsers based on a k-cover for a
grammar, G.

DerFINITION 8. For k>0, a k-parser for G=(N,T,P,S) is a 4-tuple
(02, Qy, 7, V), where (2, ¥) is a k-cover for G, Q, € Q is the initial state and must
satisfy Z, € Q,, where X, is the initial state of the canonical LR(k) parser and
finally, 7 is the action relation from 2 X T** to subsets of {error, accept, shift} U
{reduce p| p € P}. Furthermore, for Q € £, t satisfies

(i) If [X>a.B|u] €Q, f+e¢, then shift € 1(Q, ¢) if k=0; for k > 0, shift €
7(Q, v) for every v € EFF, (fu).
(ii) If [X— a.|u] € Q then reduce p € ©(Q, u) where p=X- a.
(iii) If [S"—> S.|€] € Q, then accept € 1(Q, €).
(iv) ©(Q,v)= {error} whenever t(Q,v) is not defined by one or more of
(i)-(iii).

A k-parser operates similar to an LR(k) parser and begins with the stack initialized
to O,. A shift causes the next input symbol, a, to be pushed on the stack along with
the “next state,” ¥(Q, a), where Q denotes the current state of the parser (the state
symbol originally on top of the stack). If reduce p is selected as the parsing action,
where p = X — w, then the parser outputs “p” if and only if the rightpart, w, actually
occurs on top of the stack (ignoring state symbols) and ¥(Q’, X) is defined where Q'
is the state symbol immediately below the handle w. A reduction by p causes the top
2 |w| symbols of the stack to be replaced by X¥(Q’, X). When accept is executed, the
parser halts and outputs “accept” provide the stack contains Q,S¥(Q@,,S) and
otherwise outputs “error.”

The requirement that the handle, w, actually agree with the stack contents during a
reduction is a necessary condition, for otherwise a parser could accept a string not in
L(G). This point will be demonstrated later by Example 2. We note further that this
constraint is natural in the sense that it is a condition guaranteed with canonical
LR(k) parsers.

We now formally establish the fact that every k-parser for a reduced ¢fg, G, defines
a right-parser for G.

THEOREM 2. Let G= (N, T, P, S) be a reduced cfg. For k > 0, every k-parser for
G produces “maccept” as output if and only if its input, x, belongs to L(G), where
S="x.

Proof. The result is established in two steps. First, we show that if x € L(G), then
any k-parser, A, for G can duplicate an accepting computation of the canonical
LR(k) parser for G. Finally, we show that if A produces output “maccept” for some
input, x € T*, then § =7, x in G.

To begin we recall some notation frequently used to describe the action of a shift-
reduce parser (see [1,4]). Let (3, x, p) denote a parser configuration, where y denotes
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the stack contents with top on the right, x denotes the remainder of the input with
lookahead, PREF,(x), and p denotes the current output. Furthermore, —,, will
denote the “move relation” on configurations of parser, 4.

Let A = (2, Q,, 7, ¥) be any k-parser for G. Let C = (HA(G), Z,, f; g) denote the
canonical LR(k) parser for G, where f and g are the action and goto functions,
respectively, and X, € .%(G) is the initial state. Now suppose x € L(G), then there
exists a sequence of moves of C accepting x; that is,

N
(29, x,€) l—Z— (ZeZ, 2, - Z,%2,,%,p) — (Z,SZ,, &, maccept),

where S =7 x in G. To show x is also accepted by 4, we establish the following

Claim 1. (Z,, x, ¢) —¢ (Zy, 2,2, -+ Z,X,,, X', p) implies (Q,, x, &) I
(Q0Z,Q, - Z,yQp» X', p)s where Z,€ Q;, 0 i< m.

A formal proof of Claim 1 proceeds by induction on the number of moves, n. This
is done by considering the conditions that must prevail for each type of move C could
make in a given configuration and the showing the same move can be duplicated by
A. The crucial observations are first, £, € Q,, and second, X, = g(X,,Z)<
Y(Q,;,Z)=Q,;,,. From this the details are straightforward and have been omitted.

Now consider

Claim 2. If (Qg,x,6)F2(Q0Z,Q,+ Z,Qm,x's7), with mE€P* then
Z,Z, Z,x' =" xin G.

Claim 2 is also established by induction on the number of moves, n, where each
move must be a shift or reduce action. The crucial observation is that a reduction by
p=X-w is successful only if w actually appears on top of the stack and that
¥(Q;,X) is defined, where Q; is the state symbol immediately below w. Again the
details are straightforward and not presented here.

To  complete the proof suppose  (Q,,x, &) b5 (9 & naccept). If
(02,0, Z,0Q,,¢ m) is the configuration just prior to the accept move, then
00Z,Q, Z Q= 0oS¥(Q,, S). By Claim2, §=7, x in G. Thus x € L(G). This
concludes the proof.

As a corollary to Theorem 2 we formally establish that the canonical SR(s, k)
parser for G is a k-parser and therefore a nondeterministic right-parser for G.

COROLLARY. The canonical SR(s, k) parser, 7, ,(G) = (%, (G), A (¢), 7, ¥) isa
k-parser for G where for all A(y) € €(G) and Z € V, for which there exists an item
[X - a. ZB | u| € A(y) we define Y(A(y), Z) = A(SUFF (yZ)).

Proof. To demonstrate this result we need only show (Z(G), ¥) is a k-cover for
G. In keeping with the notation of Definition 7, A(y) will denote the subset of .#,(G)
satisfying A(y) =) A(y) according to Definition 6. To begin we observe that
conditions (i) and (ii) of Definition 7 follow immediately from Definition 6 and
Theorem 1.

To establish (iii) of Definition 7 consider first the case s = 0. Since SUFF(y) =¢
for all y € V%, then it follows that X € A(e) for each X € ¥ (G). Since #(G) =
{4(e)} it follows at once that (% (G), ¥) is a k-cover for G.
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Now suppose s > 0 and ¥(A(y), Z) = A(y’) for some y € V¥® and Z € V;, where
v = SUFF (yZ). By Definition 6 and the definition of ¥ there exists an item, I =
[X>a.ZB|u], and Z€ %(G) such that I€EXE€A(y). We must show
g(Z,Z)€ A(y'). From X € .%,(G) and Definition 6 we know there exists 6 € V% such
that X = g(X,, 8) and y=SUFF,@). If |y| <s, then 8=y and Definition 6 imply
Z = A(y). But then we have g(Z, Z) = g(g(Z, 6), Z) = 8(8(Zo, ¥), Z) = 8(2o, ¥Z). If
[vZ| <s, then g(Z,,yZ)=A(Z)= ASUFF(yZ)) = A(y'). If |yZ|=s5, then since
g(Z,,7Z) is defined, Definition 6 implies A(yZ)=A(y') contains g(Z,,yZ). Thus
g(Z,Z)EA(Y) for |y|<s. If [yl =s, then g(Z,Z)= g(g(Zs,0), Z) = g(E,, 62) =
8%y, 0'vZ) =g(Zy, 0'y') = 8(8(Z,, 0), ') €E A(Y'). In any case, ¥(A(y), Z) =A(y')
implies g(X, Z) € A(y') for every Z € A(y) and Z € ¥V, for which g(Z, Z) is defined.
We conclude (&, ,(G), ¥) is a k-cover for G and F, 1(G) is a k-parser.

We illustrate the construction of a canonical SR(s, k) parser by the following
example.

ExaMpLE 1. Consider G= (N, T, P, S), where N={S,T}, T={+,(,),a} and
={1:S-8+4T,2:S-T,3: T (S), 4: T a}. The canonical SR(1, 1) parser for
G is constructed according to the following procedure.

Step 1. Construct .#}(G), the canonical collection of LR(1) sets for G and the
associated GOTO-function, g. For the sake of brevity, items will generally be of the
form [X — a.B]z], where z denotes a string of symbols in (7" {&})*. This notation
is used to represent a set of items of the form [X - a.B|u], where u € TU {¢}.
AG)={Zy, &, -+ L5}, where
Zo=1{|S'>.5e},[S».S+T)e+),[S>.Tle+),

[T-.ale+ |, [T-.(S)|e+]},

Z,=8Z,8)={[S">S.le.[S»>S.+Tle+ ]}
Z,=g&, T)={[S~>T. e+ ]}

=g, a)= ([T~ ale+]},
Z.=8E0, 0= [T~ (S) e+, [S=S+T)+LIS>.T)+],

[T-.aD)+L[T-.$)])+1}

Li=gZ,+)={[S->S+.Tle+ L [T-.ale+ L [T>(S)|e+]},
Zo=gZ, ,={{T>S)|e+],[S>S.+T|)+ 1}
Z;=gE,, D={S~>T.])+ ]}

=g, a)={[T~a])+]}

=&, 0={[T>(S))+ ] [S=>.S+T)+ ] [S>.T|)+],
[T-al)+ ], [T>.(9)])+]h
Zo=8E, T)={[S> S+ Tle+]},
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gZsa)=2,,
85, 0=2y,
2 =8Ze: ) ={[T~>(8)]e+]}
I,=8CuH)={[S->S+.TH+] [Toa)+ ]} [T-.(S))+ 1}
2, =8&, S)={[T->(S))+ |, [S=>8.+T|)+ ]}
g(Xy, T)=2,,
8%y, a) =2y,
8y, ) =2,
2,=8Z,N)={[S>S+T.|)+]}
82, a)=1y,
82, 0=2,,
Lis=2Z 5, N=[T-(S)-+]
8, +)=20,
Step 2. Construct #, ,(G) according to Definition 6.
A(e)=Z,,
AS)=2,VEUE,,,
AT =2,UE,UL,,UZ,,,
A@)=2,U Z,,
A(+)=ZU E,,,
AQ=Z,UZ,
A))=Z,UZ,,.

Step 3. Construct the action relation, 7, and the GOTO-function Y.

a + ( ) £ YS Ta+ ()

-~

€ shift error shift error error S T a {
S error shift error error accept +
T error reduce2,1 error reduce 2,1 reduce?2, 1

a error reduce4 error reduce4 reduced

+  shift error shift error error T a (
( shift error shift error error S T

) error reduce3 error reduce3 reduce3

571/22/2-6
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This completes the construction. Note that .7, (G) appears to be nondeterministic
because of the multiple action entries for (7, +), ©(T})) and t(7,¢). However,
according to our definition of determinism presented in the next section, .4, ,(G) is
actually a deterministic SR(1, 1) parser for G. We will prove this statement later in
Section IV.

As we note following Definition 8, the requirement that the handle actually appear
on the stack during a reduction is a necessary condition for k-parsers. This fact is
demonstrated by our next example.

ExampLE 2. Let G=({S,T,F}, {— a, (,)}, P, S), where P={1:§->S5—T,
2:8-T,3:T»—F, 4:T>F, 5 F->a, 6: F- (S)}. The action and goto tables are
shown below for the canonical SR(1, 1) parser for G.

T — a ( ) £

& shift shift shift error ° error

S shift error error shift accept

T reduce 2, 1 error error reduce 2,1 reduce 2, 1
F reduce 4, 3 error error reduce 4,3 reduce 4,3
— shift shift shift error error

a reduce 5 error error reduce 5 reduce 5

( shift shift shift error error

) reduce 6 error error reduce 6 reduce 6
v S T F — a ( )

€ S T F — a (

S )

T _

F

- T F — a (

a

( S T F — a (

)

We now consider the behavior of .#; |(G) when presented the input string “~——a,”
which is not in L(G). Since the grammar symbols and the state names correspond, we
record only the grammar symbol in the stack. Whenever a stack reduction is called
for, we remove the top n symbols of the stack without verifying they actually agree
with the handle, w, where n = |w|. The stack top is the rightmost symbol of the string
representing the stack.



SR (s, k) PARSERS 187

Stack Input Action
€ -~ shift
&— ——a shift
e~—— -a shift
£——— a shift
e———a f reduce 5
e~—~F £ reduce 3
e—T € reduce 1
eS € accept

It is not difficult to verify that the canonical LR(1) parser for G would halt and
report “‘error” after the first “shift.” Using Definition 8, the SR(1, 1) parser would
report “error” in attempting to perform “reduce 1” and finding “S — T"° does not
appear on top of the stack.

IV. PROPERTIES OF SR(s, k) GRAMMARS

The canonical SR(s, k) parser for a grammar, G, will generally be nondeterministic
if no restrictions are imposed on G. In this section we shall be interested in defining a
class of context-free grammars that give rise to deterministic, one-pass SR(s, k)
parsers; this class we designate the class of SR(s, k) grammars. The section will be
concluded with results that show the relationship of SR(s, k) grammars to the classes
of (s, k)-weak precedence and (s, k) bounded right-context grammars.

The notion of determinism for SR(s, k) parser is not as clear cur as it is for LR(k)
parsers; that is, simply requiring 7(A(y), #) contain at most one entry may indeed
yield a deterministic parser and, perhaps, an interesting class of grammars, but is a
much too severe restriction. To arrive at a suitable definition of determinism we
attempted to include the largest class of bounded-context grammars possible without
imposing artificial or unnatural conditions.

DEFINITION 9. 7, ((G) is said to be deterministic if for every y € V**,

(i) SHIFT(y) "REDUCE(y) = @.
(i) If distinct items, [4 - a.|u] and [B - fa.|u] belong to A(y), then for no
y' € V** is it true that both [4 - .a|u] and [B — f.a | u] belong to A(y").
(iii) t(A(SUFF(S)), €)= {accept}, SHIFT(y)= {u € T**|shift € 1(A(y), u)},
REDUCE(y) = {u € T**| reduce i € t(A(y), u) for some i € P}.
The intent of condition (i) is to avoid any confusion between shift and reduce

actions; this is consistent with all other deterministic shift-reduce methods with no
backup. Condition (ii) is similar to the condition on weak-precedence grammars that
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permits the resolution of multiple reductions by examining symbols below the handle
on the parse stack. Condition (jii) simply guarantees the parser can determine when
to halt in an accepting configuration.

As we noted in the previous Section, the grammar of Example 1 is an SR(1, 1)
grammar. Conditions (i) and (iii) of Definition 9 are clearly met. The reduction
conflicts result from the fact that items [S—7.|)+¢] and [S>S+T.|)+¢]
belong to A(T). However, the items [S—.T'| )+ €] belong to A(g)\J A(() whereas
the items [S— S +.T|)+ €] belong to A(+). Thus (ii) of Definition 9 is also met
implying G is an SR(1, 1) grammar. In resolving these conflicts during a parse, an
SR(1, 1) parser would examine the grammar symbol below “7” in the stack; a
reduction by S— S + 7 would be attempted only if “+” is found; otherwise, S - T
would be attempted.

Our first result in this section relates SR(s, k) grammars to (s, k)-bounded right-
context grammars. Before presenting this result, we formally define the class of
SR(s, k) grammars. The definition we shall use for bounded right-context grammars
is found in [1] and due primarily to Floyd [3].

DEFINITION 10. A grammar, G, is said to be SR(s, k) if its canonical SR(s, k)
parser is deterministic.

THEOREM 3. If G is SR(s, k), then G is (s, k)-bounded right-context.

Progf. We proceed by assuming G is not (s, k)-bounded right-context and then
show .7, ,(G) is not deterministic. Suppose in the augmented grammar, G’, there are
rightmost derivations,

5 =5 adw = afiw
and
S’ = yBx => yOx suchthat  ydx =a'fy,

where y€ T*, |x|<|y|, SUFF (a’')=SUFF,(a), PREF,(w)=PREF,(y) and
B—-+3d#A-f Now if x=yp, then yd =¢’f and f is a suffix of é or vice versa. In
either case [B— J.| PREF,(y)] and [4 —B.|PREF,(y)] belong to A(SUFF(yd));
this follows because SUFF,(af)= SUFF (SUFF (a)f)= SUFF,(SUFF(a')8)=
SUFF (a’'f). Suppose d&=65. Then [B- 6.f|PREF,(y)] € A(SUFF,(y8))=
A(SUFF,(a’)) and |4 — .f| PREF,(w)] = [4 - .8 | PREF,(»)] € A(SUFF  (a)). Since
SUFF (a) = SUFF(a’), then condition (ii) of Definition 9 is violated and G is not
SR(s, k). The argument assuming § = 83 is similar and for the case x = y we have
shown G not to be SR(s, k).

Consider the case, |x|<|y]. There are two subcases, |x|<]|y|<|dx| and
|x| < |y|>|dx|. In the first of these subcases we assume d = 4,4, for some J,, 9,
such that d,+ ¢ and yd, = a’f. It follows from the second derivation above that
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[B—6,.6,| PREF,(x)] € A(SUFF(»d,)). From the first derivation we also have,
|4 - B.) PREF,(w)] € A(SUFF(aB)). By relationships and assumption established
earlier, we have that [4—pf.|PREF,(y)] belongs to A(SUFF(a'B))=
A(SUFF (y3,)).  Since y=4,x, EFF,(4,PREF,(x))=PREF,(y). Thus
|B> 5,.6,| PREF,(x)], 6,#¢, and |4-pB.|PREF,(y)] in A(SUFF,(4,)) imply
SHIFT(SUFF (y8,)) " REDUCE(SUFF(d,)) # ®. This violates condition (i) of
Definition 9.

If | y| > | dx|, then let y = vdx for some v € T*. The second derivation can therefore
be written

S =y Zx==>7'0,6,x' = a'f0,x' =, a’/iva—_j_—> a'fv ox = o'fy.
rm rm rm m

From this we have, [Z- 6,.0,| PREF,(x')] € A(SUFF (a'B)), where 6, ¢ and
PREF,(y) € EFF,(d, PREFF,(x")). Since we have already established
|4 > B.| PREF,()] € A(SUFF(«'B)) it now follows that SHIFT(SUFF(a'f))N
REDUCE(SUFF,(a’B)) # @. Once again (i) of Definition 9 is violated and G is not
SR(s, k). This concludes the proof.

CoroLLARY. If G is SR(s, k), then .7, ,(G) always halts.

Proof. If G is SR(s, k), then by Theorem 3 G is (s, k)-bounded right-context and
therefore LR(k). By an argument similar to the proof of Theorem 5.2 in [4], it
follows that .7 ,(G) must halt on every input,

The converse of the previous theorem is not true as we shall shortly demonstrate.
The reason is because shift-reduce conflicts arising in bounded right-context parsers
can be resolved by examining s symbols below the handle whenever G is an (s, k)-
bounded right-context grammar. Our next example illustrates this situation.

ExampLE 3. Let G=({S,4,B}, {a,b,c}, P, S), where P={1:S-adc,
2: S - bbB, 3:4-bbc, 4: B bee}. The states and action table for 7 (G) are
shown below.

A(g) A(b)
[S—.adc|&] [S$—bbB|e]
[S — .bbB | €] [S - bb.B|¢]
[B — .bec | €]
A(a) [B—b.ccle]
[S—adc|e] [4 = b.be|c]
[4 - .bbc|c] [4 - bb.c|c]
A(B) A(c)
[S — bbB. | €] [B - be.cle]
|B — bec. | €]
A(A) [S > adc. €]
[S—ad.c|e] [4 = bbe. | c]
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T a b c £
shift shift error error
a error shift error error
error shift shift error
c error error shift reduce 4
reduce 3 reduce 1
A error error shift error
B error error error reduce 2
S error error error accept
SHIFT(c) " REDUCE(c) # @

G is not SR(1,1), but is (1, 1) bounded right-context; the shift-reduce conflict
when “¢” appears on top of the stack can be resolved by looking one symbol below
the handle “bbc.”

Even though Example 3 denies the converse to Theorem 3, we can obtain a positive
result by choosing a larger value for s. This is the substance of our next theorem.

THEOREM 4. If G is an (m, n)-bounded right-context grammar and | is the
length of the longest right-part of any production in the augmented grammar, G', then
, n(G) is deterministic, where s =m + I.

Proof. We establish this result by contradiction; that is, we show that if any
condition of Definition 9 is not met, then G cannot be (m, n)-bounded right-context.

Case 1. By definition of / it follows that s > 1. Suppose [ = 1, then assuming G is
BRC it follows that .S does not appear in the right-part of any production of G. We
can conclude A(S)={[$' - S.|¢] and 7(A(S), €)= {accept}. Assume /> 1 and
7(A(S), €) # {accept}. If shift € 1(A(S), ¢), then n=0 and |X - aS.f|u] € A(S) for
some f+#¢. Since s=m+1>1, we can conclude a=¢ and [X - .S8|u] € A(e).
This implies there exist derivations

S'= S
rm

and .
S = Xz —> Spz = Sy,
rm rm rm

where y € T*, The existence of these derivations contradict the assumption that G is
(m, 0) BRC. Thus shift & 7(A(S),¢) if G is (m,n) BRC. Now suppose reduce p €
7(A(S), ) for some p=X— w in G. Since s > 1, it follows that w= S or w =¢; that
is, [X—>S.|e]€A(S) or [X—.|e] EA(S). In the former case it follows that
S=* § in G implying G is ambiguous and therefore contradicting the assumption G
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is (m,n) BRC. If [X—.|e] € A(S), then there exists an item, I =Y - S.Zd|u| €
A(S), where Z is a nonterminal, [X —.|¢] € CLOSE(l) and ¢ € FIRST,(du). This
implies there exists derivations

S' =S

and
gt Y §Z6 = SX==>§

in G'. These derivations imply G is ambiguous and therefore not (m,n) BRC, a
contradiction. Thus if G is (m, n) BRC, then reduce p & 1(A(S), ). We conclude
7(A(S), €) = {accept}.

Case 2. Suppose (i) of Definition 9 is violated. Then for some y& V*,
[B—8,.0,|v], [A>B.|u] € A(y), where 8,+ ¢ and u € EFF,(6,v). From this we
have

SééAw:aﬁw

and

S =25 ABx' = 46,0,

where u = PREF,(w), v =PREF, (x') and SUFF(A6,)=SUFF,(af)=y. Now if
6, €T, then A0,0,x' =a'B0,x' for some o' and u = EFF,(f,v) = EFF,(8,x'). In
addition, since s=m+ /I, we have SUFF, (a')=SUFF, (a). Thus we obtain a
violation of the definition of (m, n)-bounded right-context. In the case @, contains
some nonterminal, then we can write,

S =5 ABx' == 1,6, x' = 10,vCx == 16, v3x,

where vdx € T*,

Since  u € EFF,(6,v) = EFF,(f, PREF,(x')) we assume uvd#¢ and
u=PREF ,(vdx). Again, A6,=a’f and SUFF, _,(A6,)=SUFF, (af)=
SUFF,,, (aB) implies SUFF,(a)=SUFF,(a'). Letting y=0vdx we have
A8, vdx = o' By, where | x| < | y|, PREF,(») = PREF,(w) and SUFF ,(a) = SUFF ,(¢').
Since x # y we have a violation of the requirements for G to be (m, n)-bounded right-
context.

Case 3. If (ii) of Definition 9 does not hold, then for some y € V*, |4 - f. | u]
and [B - aB.|u] € A(y) where (4 - )+ (B— af) and {4 - B|u] and [B - a.B|u|
belong to A(y') for some . Thus we can write

5= BAw == Gfw,

S . ABx=—> Aafx,
rm rm
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where u = PREF,(w)=PREF,(x) and SUFF (Aa)=SUFF(0). Since ABx + ladx
we have a violation of the condition for (m, n)-bounded right-context.

Thus if % ,(G) is not deterministic for s =m + [, then G is not (m, n)-bounded
right-context. This concludes the proof.

We turn now to the relationship between extended weak-precedence grammars and
SR grammars. In view of our results for bounded right-context grammars, the
primary issue is not the direction of the inclusion relation between the classes, but
rather the values of s and k required to establish the inclusion. Since SR(s, k)
grammars need not be uniquely invertible nor restricted to nonerasing productions we
would expect SR grammars to properly include the extended weak-precedence
grammars. Indeed, this is the case. The definition we shall use for the extended
precedence relations is that given in [1] and due to Wirth and Weber [8] and Gray

[5].

DEfFINITION 11. Let G=(N,T,P,S) be a reduced grammar with no ¢-
productions. For values of m, n > 1 the extended precedence relations, <, = and > are
subsets of (VU {$})" X (VU {$})" and are defined as follows. Let

$mS$” == GAw — Gow

be any rightmost derivation in G. Then

(i) SUFF,(86) > PREF (w),
(iiy SUFF,,(6) < y, where y = PREF (6w) or y € FIRST,(w) if 6 € TV*,
(iii) for every 4,, 6,€ V* such that =9, d,, SUFF,(65,)= y, where
y = PREF,(d,w) or y € FIRST,(d,w) if §, € TV*.

Note that since G is ¢-free, EFF, could have been used in place of FIRST, in the
above definition. From Definition 11 it is easy to see that (4 — J.|u] belongs to
A% (y) if and only if ' >u”, where y =SUFF,(8"y) and u"= PREF,(u8").
Relating items and (m, n)-consistency sets to the extended precedence relations is the
subject of our next porposition. No formal proof is given as the result follows directly
from Definitions 11, 2 and 3.

ProposITION 2. Let G=(N,T,P,S) and <,=, > be as described in
Definition 11. For zZ E VX" with |z| =i we shall let 2’ denote $™ 'z; similarily, z"
shall denotes z8" ' whenever z € V*". Then

(i) there is [A—8.|u) € AS (v) if and only if y' > u”,

(ii) ¥ =y" if and only if there is [A - aB|v] in AS () with a, B+ € such
that y = PREF ,(Bv) when y € NV* or y € EFF,(Bv) when B € TV*.

(i) ¥ < y" if and only if there is [A— B|v] in AS ,(y) such that
y=PREF,(Bv) when B € NV* or y € EFF ,(v) when € TV*,

Parsing algorithms employing the extended precedence relations use the > relation
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to locate the right-end of the handle in a bottom-up parse. The relation < is used to
isolate the left-end of handle in the parse stack. The handle can always be uniquely
determined if the extended precedence relations are pairwise disjoint and the
underlying grammar is uniquely invertible. The notion of “weak” precedence parsing
was introduced by Ichibiah and Morse [6] and applies to a more general class of
grammars by virtue of relaxing the requirement of disjointness between < and =. To
uniquely determine the handle in this situation, the rule normally applied is to reduce
by the production with the longest right part in instances where the unique inver-
tibility property cannot be applied. The notion of weak precedence is generalized in
our next definition.

DEeFINITION 12, Let G= (N, T, P, S) be a uniquely invertible proper' grammar.
G is said to be (m, n)-weak precedence provided,

(i) > N(=U<)=9¢, where <,=and > are the extended precedence
relations and

(ii) if p=A->0of and B-f are two productions with az¢ and
$7S8" =>* 6Aw=,, 00w is any rightmost derivation involving p, then
(SUFF,,(fa), z) in (= U <) implies z # Bz’ for any z'.

Condition (i) of the previous definition guarantees there are no conflicts between
shift and reduce actions of extended weak-precedence parsers. In view of
Proposition 2, this is consistent with condition (i) of Definition 9. Condition (ii)
states that if two productions could be used to reduce the stack, then the production
with the longest right-part should be used; this together with the unique invertibility
property resolve all potential conflicts when a reduction is called for. Theorem 5
establishes that, indeed the weak-precedence conditions are sufficient to guarantee the
canonical SR-parser is deterministic.

THEOREM 5. Let G=(N,T,P,S) be an (m, n)-weak precedence grammar. Then
G is an SR(m, n) grammar; that is, 7, ,(G) is deterministic.

Proof. We proceed by showing that if .7}, ,(G) is not deterministic for some &-free
grammar, G, and some m,n > 1, then G is not (m, n)-weak precedence.

If condition (iii) of Definition 9 is not met, then by an argument similar to that
given in the proof of Theorem 4, G can be shown to possess the cycle, S=>* S, and
thus G cannot be an (m, n)-weak precedence grammar. If condition (i) of Definition 9
is violated, then for some y € V*™, [4—é.|u] and [B— a.f|v] belong to A4S ,(y)
such that §+ ¢ and u € EFF ,(fv). By Proposition 2 we have y’ > u” and if § € TV*,
then y' =u” or y' < u”. If f € NV*, then because G is ¢-free and by definition of
CLOSE there is [C— .8|x] € A% ,(y) such that § € TV* and u € EFF ,(6x). Again,
by Proposition 2 we have ' < u”. Thus for either form of § we find > is not disjoint
from <. U = and hence G cannot be (m, n)-weak precedence. Finally, suppose (ii) of

" A grammar is proper if it is e-free, reduced and cycle-free (see |1}).
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Definition 9 is violated. Then there exist items [4 — a.f |u] and [B—> f|u]in A5 .(7)
for some y in V*™. [B— f|u]in 4, ,(y) implies there exists an item [Z - J,.BJ, | v]
in A% (y) such that u € EFF,(d,v). From Definition 11 we conclude y =
PREF,(Bd,v). Thus (ii) of Definition 12 is violated and G is not (m, n)-weak
precedence. This concludes the proof.

Our next example illustrates a uniquely invertible proper grammar that is SR(1, 1)
but is not (1, 1)-weak precedence.

EXAMPLE 4. Let G=({S,4,B}, {0,1}, P, S), where P={1: S—» A1, 2: § - 0B0,
3:4 - 01, 4: B 1}. The matrix of precedence relations for G is given below.

A B 0 1 $
A =
B =
0 = =< >
1 > > >
$ < <

G fails to be (1, 1)-weak precedence because it violates (ii) of Definition 12. This
hold because of the productions 4 = 01 and B — 1 and the relation 0 = B.

The state sets, action and goto tables for the canonical SR(1, 1) parser are shown
next.

AE)=1{[S">.S|e],[S— .41 |¢], [S—~.0BO|¢], [4>.01]|1]},
A(S)={[8" > S.[¢]},
AA)={[S—=A4.1]¢]},

{

{

{
AB)={[S—0BO|¢]},

{

{

I

I

A(0)={[S—0.B0|0], [4~0.1|1],[B~.1]|0], [S— 0BO.|¢]},
A(l)={[S~> AL |¢], [A—>0L[1], (B~ 1.|O]}.

T 0 1 € v § A B 0 1
£ shift error error S A4 * 0 *
S error error accept * * * * *
A error shift error * * * * 1
B shift error error * * * 0 *
0 error shift reduce 2 * * B * 1
1 reduce4 reduce3 reducel * * * * *
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Clearly .4, (G) is deterministic. Observe that G fails to be (1, 1)-weak precedence
parsable because the conflict between productions 3: 4 — 01 and 4: B — 1 can only be
resolved by taking into account the lookahead symbol when “01” is on top of the
stack. .77 |(G) correctly reduces the stack in this situation.

As our final example, we illustrate an SR(1, 1) grammar that is not uniquely inver-
tible and also contains an ¢-production.

ExampLE 5. Consider G=({S,4,B,C},{0,1},P,S), where P=1:5-04,
2:S-1BC,3:4-01,4:B-1,5:C-0,6:C—¢, T:4- 0}

A(e) A(0) A(S)
[S"—.S|¢] [$-04]¢] [S"> 8. ¢]
[S—.04 €] |4 —.01]¢]
|S—.1BC|¢] {4 -.0]¢]
A(A4) [4-0.1{¢]
[S—04.¢] [4-0.]¢]
[C—0.|¢]
A(B)
[S— 1B.C|¢] A(l)
[C-.01}¢] [S— 1.BC|¢]
[C—.]¢] [B—.1]0¢]
[4 —>01.]¢]
A(C) {B—1.]0¢]
[S— 1BC.|¢]
T 0 1 £
I3 shift shift error
S error error accept
A error error reduce 1
B shift error reduce 6
C error error reduce 2
0 shift shift reduce 5
reduce 7
1 reduce 4 shift reduce 3
reduce 4

There are clearly no shift-reduce conflicts or conflicts with accept in 7(S, ¢). The
reduce conflicts in 7(0, ¢) are resolved by observed that [C — .0 | ¢} belongs to A(B)
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while [4 > .0]¢] belongs to A(0). Similarly, the conflicts in (1, ) resolve by
observing [B—.1|e] belongs to A(1) while [4—0.1]|e] belongs to A(0). Thus
.1(G) satisfies Definition 12 and G is an SR(1, 1) grammar.

We conclude this section with our final result.

CoOROLLARY. The class of SR(s, k) grammars properly includes the (s, k)-weak
precedence grammars. :

V. PrAcTICAL CONSIDERATIONS

One of the advantages of the conceptual framework surrounding SR(s, k) parsing
is that it brings into sharper focus the trade-offs between precedence and bounded-
context parsing. To clarify this point consider an SR(s, k) grammar. If the underlying
grammar is also an (s, k)-weak precedence grammar, then stack reductions can be
made by examining at most r stack symbols, where r is the length of the handle; this
is normally done by comparing right-parts with the top of the stack in descending
order by length. On the other hand suppose the grammar is SR(s, k) but not (s, k)-
weak precedence. In this case the reduction procedure described above is not
sufficient; at least one symbol below the handle must be examined to resolve conflicts
like those found in (0, ¢) or 7(1, ) of Example 5. Thus the canonical SR(s, k) parser
must be augmented with additional tables and/or logic to permit the resolution of all
reduction conflicts. Enlarging the class grammars that can be parsed deterministically
from (s, k)-weak precedence to SR(s, k) carries with it a penalty of space and time in
almost direct proportion to the number of conflicts that must be resolved by
examining left-context of the handle.

Concerning the implementation of SR(s, k) parsers there are one or two points we
wish to emphasize. First of all, the action and goto tables frequently can be made
significantly smaller by merging rows that are “similar” in their action structure; that
is, merging rows that result only in additional reduction conflicts. Although row
merger often produces a savings in space it may not always be desirable because of
the additional overhead involved in resolving new conflicts and/or because of induced
delays in error detection due to the destruction of some error entries in the goto-table.
Finally, we observe that a more practical definition of determinism for SR(s, k)
parsers obtains if (ii) of Definition 9 replaced by

(ii') If distinct items, |4 - a.|u] and [B - fa.|u] belong to A, ,(y), then for
some m>s it holds that not both items, [4 —.a|u] and [B—f.a|u] belong to
A iy’ ) ¥ EVF™

This change suggests parsing tables should be constructed using the smallest value
of s for which (i) and (iii) are satisfied provided all reduction conflicts can be
resolved by examining bounded left-context of the handle. In effect, this approach
yields a mixed strategy type of parser.
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V. CONCLUSION

We have presented here an algorithm for constructing efficient bounded-context
and precedence parsers using the same conceptual framework employed by Knuth
(7], Early (2] and Geller and Harrison {4 ]. Our work has added one more part to an
emerging unified theory of bottom-up parsing.
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