-

P
brought to you by, CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Journal of Biomedical Informatics 48 (2014) 160-170

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

PARAMO: A PARAllel predictive MOdeling platform for healthcare
analytic research using electronic health records

@ CrossMark

Kenney Ng**, Amol Ghoting?, Steven R. Steinhubl >, Walter F. Stewart ¢, Bradley Malin ', Jimeng Sun*®

2IBM TJ Watson Research Center, Yorktown Heights, NY, United States

b Scripps Translational Science Institute, Lajolla, CA, United States

€ Geisinger Medical Center, Danville, PA, United States

dsutter Health, Concord, CA, United States

€ Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN, United States

fDepartment of Electrical Engineering and Computer Science, School of Engineering, Vanderbilt University, Nashville, TN, United States

ARTICLE INFO ABSTRACT

Article history:

Received 17 September 2013
Accepted 17 December 2013
Available online 25 December 2013

Keywords:

Predictive modeling
Electronic health records
Scientific workflows
Parallel computing

Map reduce

Objective: Healthcare analytics research increasingly involves the construction of predictive models for
disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this
process, it is critical to support a pipeline of tasks: (1) cohort construction, (2) feature construction, (3)
cross-validation, (4) feature selection, and (5) classification. To develop an appropriate model, it is nec-
essary to compare and refine models derived from a diversity of cohorts, patient-specific features, and
statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform
that can be used to simplify and expedite this process for health data.
Methods: To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which
(1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, (2)
schedules the tasks in a topological ordering of the graph, and (3) executes those tasks in parallel. We
implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster
computing environment. Different task scheduling preferences are also supported.
Results: We assess the performance of PARAMO on various workloads using three datasets derived from
the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an
anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency
against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient
data set in 3 h in parallel compared to 9 days if running sequentially.
Conclusion: This work demonstrates that an efficient parallel predictive modeling platform can be devel-
oped for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research
workflow and reuse of health information. This platform is only a first step and provides the foundation
for our ultimate goal of building analytic pipelines that are specialized for health data researchers.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

a more optimal outcome [2]. For example, chronic diseases emerge
over time, mediated by early physiologic and pathological changes

Predictive modeling is one of the most important methodolo-
gies used in clinical and healthcare research. According to PubMed
[1], since 2005, over 22,000 papers have been published which in-
clude the phrase “predictive model”. The publication rate of these
papers has increased every year, from 1782 in 2005 to 3748 in
2012.

One application of predictive modeling is to accurately derive
insights from diverse sets of longitudinal patient data in a manner
that can influence disease progression by recommending actions
that can effectively change the clinical pathway of the patient for

* Corresponding author. Address: IBM, 550 King St., Littleton, MA 01460, USA.
E-mail address: kenney.ng@us.ibm.com (K. Ng).

1532-0464/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jbi.2013.12.012

which can be measured using overt or surrogate indicators. The
primary goal of predictive modeling in this context is to move
detection of the disease from a frank disease state to a pre-clinical
disease and to quantify the expected risk and time span of disease
onset. Population-level data can be mined to detect robust signals
before an event or to influence the course of events (e.g., optimiz-
ing choice of treatment) [3]. The time scale for prediction depends
on the clinical context. For example, effective use of a signal of fu-
ture risk of chronic progressive diseases like heart failure would
likely require detection one to two years before the usual diagnosis
for early treatment to influence disease progression. In contrast,
the time scale for predicting 30-day readmission risk is days to
weeks. Quantitative signals of this type have many potential

https://core.ac.uk/display/81183352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2013.12.012&domain=pdf
http://dx.doi.org/10.1016/j.jbi.2013.12.012
mailto:kenney.ng@us.ibm.com
http://dx.doi.org/10.1016/j.jbi.2013.12.012
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin

K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170 161

applications during routine encounters or for population level
screening or management as shown in Table 1.

Beyond early detection of disease, predictive modeling can also
facilitate greater individualization of care. Predictive models can
enable clinicians to distinguish between individuals who will ben-
efit from a specific therapeutic intervention from those that will
not [3,4]. For example, it is known that obesity, with or without
the metabolic syndrome, increases an individual’s risk for develop-
ing diabetes [5], yet the majority of these individuals do not devel-
op diabetes. The ability to refine the predictive ability for
developing diabetes would allow for therapies to be better targeted
to the individuals more likely to benefit. Indeed, as our under-
standing of genomic information increases, the combination of
genomic, environmental, and clinical variables in predictive mod-
eling will likely be critical for the individualization of care in a
broad array of disease processes [6].

The increasing adoption of electronic health record (EHR) sys-
tems introduces new challenges and opportunities in the develop-
ment of predictive models for several reasons. First, EHR data is
collected over time on patients in a healthcare system and is
becoming part of the “big data” revolution [7]. EHRs are increas-
ingly documenting a large quantity of information on a broad pa-
tient population, which varies in completeness, certainty, and
detail per patient [8]. Second, EHR data is often generated to sup-
port clinical operations or healthcare business processes (e.g., bill-
ing) and is not necessarily curated for biomedical research [8,9]. As
a consequence, researchers may need to spend significant effort to
prepare EHR data for predictive modeling [10]. In particular, the
independent and dependent variables need to be constructed and
selected carefully. Third, EHRs contain heterogeneous data such
as diagnoses, medications, lab results, and clinical notes. Such data
heterogeneity requires diverse modeling techniques and offers
many options for their combination. The descriptive and temporal
differences among patients may also be useful predictors and need
to be considered.

Despite the challenges associated with the use of EHRs for re-
search purposes, there is growing evidence that clinical pheno-
types fit for scientific investigations can be extracted from EHR
data. For instance, certain phenotypes, such as smoking status,
can be precisely discovered through International Classification
of Disease Version 9 (ICD-9) codes, with recall improved through
natural language processing of text in the EHR [11,12]. Other phe-
notypes, however, require more complex multi-modal methodolo-
gies, which incorporate laboratory reports, medication lists, and
clinical narratives (e.g., cataracts [13], type 2 diabetes [14], and
rheumatoid arthritis [15]).

Predictive models have been developed based on EHR data and
applied successfully to a wide variety of targets including heart
failure [16-19], chronic obstructive pulmonary disease [20], bipo-
lar disorder [21], cancer [22], life expectancy and physiology status
[23,24], kidney disease [25], and HIV [26].

Although the specific targets, data sets, and final models differ
in each of the aforementioned studies, the predictive models are
built using approaches that can be represented by a generalized
predictive modeling pipeline. This pipeline is depicted in Fig. 1A
and has five core processing tasks:

Table 1
Examples of applications of predictive modeling on EHR data.

e Cohort construction: Create a patient cohort consisting of a set of
patients with the specified target condition and a corresponding
set of control patients without the condition.

e Feature construction (or feature extraction): Compute a feature
vector representation for each patient based on the patient’s
EHR data.

e Cross-validation: Partition the data into complementary subsets
for use in model training and validation testing.

e Feature selection: Rank the input features and select a subset of
relevant features for use in the model.

e Classification: The training and evaluation of a model for a spe-
cific classifier.

To develop an accurate and useful predictive model, a research-
er generally needs to build and compare many different models as
part of the discovery workflow. Each model can be viewed as an
instance of the modeling pipeline and consists of a unique
combination of the data, algorithms, and/or certain parameter
configurations in the task components.

A number of factors combine to increase the number of models
that need to be explored, resulting in a large set of pipelines that
have to be processed. First, the volume, variability, and heteroge-
neity of EHR data require significant processing in building predic-
tive models [10]. Second, there is uncertainty in knowing a priori
which feature construction, feature selection, and classification
algorithms are most appropriate for the specific target application
[27]. As such, composition of an appropriate predictive model re-
quires exploring a potentially large space of possible algorithms
and parameters and their combinations. Third, for some biomedi-
cal applications, the ability to interpret how the model works is
just as, if not more, important than the accuracy of the model.
Here, it is important to explore a variety of classification algo-
rithms (e.g., decision trees, Bayesian networks, and generalized
regression models) that produce trained models which can be
interpreted by domain experts to verify and validate that the mod-
el is clinically meaningful [28]. It is likely that multiple models can
have similar performance in terms of prediction accuracy, but may
differ significantly in their internal model parameters. By building
multiple models, it becomes possible to select ones that have more
clinically meaningful interpretations. Fourth, it is critical to statis-
tically validate the models to ensure generalizability and accuracy.
Cross-validation techniques can help with this endeavor, but can
dramatically increase the number of models that need to be built
and evaluated.

As a result, there is an important need for a platform that can be
used by clinical researchers to quickly build and compare a large
number of different predictive models on EHR data.

In this paper, we describe a scalable predictive analytics plat-
form that can be used for many different predictive model building
applications in the healthcare analytics domain. Specifically, we
propose a PARAllel predictive MOdeling (PARAMO) platform that
implements the generalized predictive modeling pipeline de-
scribed above. PARAMO takes a high level specification of a set of
predictive modeling pipelines, automatically creates an efficient
dependency graph of tasks in all pipelines, schedules the tasks
based on a topological ordering of the dependency graph, and

Examples Time scale

Value of predictive model

Who benefits?

Risk of chronic progressive disease 12-36 months
Risk of disease progression 12-60 months
Optimizing choice of interventions and treatments Variable

Time to inpatient discharge Days

Risk of 30-day readmission Days to weeks

Identifying future costly patients 12-36 months

Slowing progression, preventing onset

Slowing progression, preventing rapid decline

Improve chance for more optimal outcome

Improve discharge preparation, reduce readmission
Reduce risk of readmission

Prevention and case management to reduce cost of care

Patient and payer
Patient and payer
Patient and others
Hospital, payer, and patient
Hospital, payer, and patient
Payer and patient

K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170

Feature

Gl Classification

Output

Cross Validation
Fold=1

162
A Start Cohort Feature Cross
Construction Construction Validation
Cohort Feature Construction
Construction Medication, Symptom, Lab, Diagnosis

Feature Selection Classification
InfoGain RandomForest

Cohort Feature Construction Cross Validation Feature Selection Classification Ol
Construction Medication, Symptom, Lab, Diagnosis Fold=1 InfoGain LogRegression utp!
Cohort Feature Construction Cross Validation Feature Selection Classification Output
Construction Medication, Symptom, Lab, Diagnosis Fold=1 InfoGain NaiveBayes
""" “Cohort - P . N R
" Gonstruction -7 » Feature Construction fpem e e r Cross Validation . Feature Selection : - - - # Classification - - - > Output :
Cohort Feature Construction Cross Validation Feature Selection Classification Outout
Construction Medication, Symptom, Lab, Diagnosis Fold=2 FisherScore NaiveBayes i

Feature Construction

Classification
RandomForest

Classification
LogRegression

/

Feature Selection Classification
InfoGain NaiveBayes

Cohort
C ‘ Start Construction

Feature Construction
Lab Merge

Feature Construction

Classification

Feature Construction
Diagnosis

NaiveBayes

Classification

——'J Cross Validation

RandomForest

Classification
‘ RandomForest Output |

Feature Selection
InfoGain

Medication
Feature Construction
Symptom Classification
LogRegression
Feature Selection
FisherScore
l\j

Classification
LogRegression H Output |

Classification
NaiveBayes »> Output |

Feature Selection Classification
FisherScore RandomForest H Output |

~

Classification

LogRegression » Output |

Classification
NaiveBayes Output |

Fig. 1. (A) A single predictive modeling pipeline consisting of the following computational tasks: cohort construction, feature construction, cross-validation, feature selection,
and classification. The healthcare domain specific information would typically reside in the cohort construction and the feature construction components. (B) The set of
predictive modeling pipelines needed to evaluate two different feature selection approaches (e.g., Information Gain and Fisher Score) and three different classification
algorithms (e.g., Naive Bayes, Logistic Regression, and Random Forest) using 2-fold cross-validation on one patient data set using four different types of input features (e.g.,
Medication, Symptom, Lab, and Diagnosis). (C) The dependency graph generated for the set of pipelines shown in B.

executes the independent tasks in parallel as Map-Reduce [29]
jobs. It is important to note that this platform is only a first step to-
wards our ultimate goal of building analytic pipelines that are spe-
cialized for health data researchers. The platform provides the
foundation on which we can build specialized functional layers
that can facilitate specific biomedical research workflows, such
as refinement of hypotheses or data semantics.

We demonstrate the generality and scalability of PARAMO by
testing the platform using three real EHR data sets from different
healthcare systems with varying types of data and detail ranging
from 5000 to 300,000 patients. We build predictive models for
three different targets: (1) heart failure onset, (2) hypertension
control, and (3) hypertension onset. It is important to note that
the scope and purpose of these experiments is to analyze the com-
putational performance of the platform and not to perform discov-
ery-based research. As such, we focus on the scalability of
PARAMO, as opposed to the specific accuracy of the predictive

models. As expected, PARAMO achieves significant speedups.
Thanks to the parallel model building capability, PARAMO can,
for instance, complete 800 model building pipelines on a 300,000
patient data set in 3 h, while the same job takes over 9 days run-
ning sequentially. The reduction in processing time allows a larger
number of hypotheses to be evaluated in the same amount of time
which can lead to more accurate predictive models.

2. Background

Scientific workflows are used to describe multi-step computa-
tional tasks. They capture the tasks to run, the dependencies be-
tween the tasks, and the data flow among the tasks. A number of
traditional scientific workflow systems such as Kepler [30], WINGS
[31], Pegasus [32], and Taverna [33] have been developed for a
variety of applications. More recently, a number of Map-Reduce

K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170 163

workflow systems such as Kepler + Hadoop [34], MRGIS [35], and
Oozie [36] have also been developed. However, these workflow
systems are not ideal for use in the healthcare analytics domain
for several reasons. First, some of these systems are specialized
for different domains and the built-in assumptions and semantics
around data partitioning and domain specific processing would
be difficult to adapt to healthcare analytics. Second, other systems
provide only low-level programming tools and APIs that are not
well-suited for researchers who are not parallel programming ex-
perts. Although the general workflow systems do provide tools
and support for creating workflows, the composition of the work-
flow is still left to the user who must either assemble the workflow
manually or select and customize one from an existing inventory of
workflow templates.

In the healthcare analytics domain, and especially in predictive
modeling, it is common to build, evaluate, and compare many
models with varying cohorts, features, algorithms, and parameters.
This typically results in very large and complex workflow graphs
containing thousands of nodes that would be very difficult to con-
struct manually or to encapsulate in a set of templates. It would be
more convenient to allow the user to specify a small number of
high-level parameters that describe the desired set of modeling
pipelines and have the system automatically generate a complete
and optimized workflow graph. PARAMO is designed to fill this
functionality gap. It supports Map-Reduce for efficient parallel task
execution and accepts different task scheduling preferences. In
addition, PARAMO includes several healthcare domain specific pro-
cessing tasks such as patient cohort construction and feature vec-
tor construction that incorporate biomedical vocabularies, such as
ICD (International Classification of Diseases), CPT (Current Proce-
dural Terminology), and UMLS (Unified Medical Language System),
and constraints on the data permitted, such as prediction and
observation windows [37].

3. Methods

As shown in the high-level architecture diagram in Fig. 2, PARA-
MO consists of three major components: (1) a dependency graph
generator, (2) a dependency graph execution engine, and (3) a par-
allelization infrastructure.

3.1. Dependency graph generator

The dependency graph generator facilitates the translation of a
set of predictive modeling pipelines into an efficient computational
workflow. It frees the user from having to (1) manually identify
redundant tasks, (2) specify the dependency relationships between

Dependency Graph
Pipeline Generator Dependency
Specifications + Remove Redundancies Graph

* Identify Dependencies

!
Dependency Graph
Execution Engine

* Prioritization
+ Scheduling
« Parallel Execution

i

Parallelization Infrastructure |

Fig. 2. High level architecture of the Parallel Predictive Modeling Platform
(PARAMO).

the tasks, and (3) partition the tasks into independent groups that
can be run in parallel.

The dependency graph generator takes as input a set of pipeline
specifications and automatically generates a dependency graph
that efficiently implements those pipelines. The graph is a directed
acyclic graph (DAG) where the nodes represent the tasks and the
edges represent the dependencies between the tasks. Redundant
tasks in the pipelines are collapsed into a single task that is com-
puted once but whose output is shared by multiple tasks later in
the pipeline. Dependencies between the tasks are identified and
used to create the edges connecting the tasks. Tasks that can be
executed in parallel are reflected in the topology of the graph.
Associated with each node is the entire configuration needed for
the task to be executed.

The dependency graph generator can handle a wide variety of
pipeline specifications. For each pipeline task, the user can specify
the methods and parameters to be used. Each task has a prebuilt
set of methods but custom methods can be added.

In the cohort construction processing, predefined patient co-
horts can be selected for use or new patient cohorts can be defined.
The creation of a new patient cohort requires the specification of a
list of patients and the following information for each patient: a
unique identifier for each patient, the diagnosis date of the condi-
tion, and the target condition label (e.g., 1 for case and O for
control). The process of identifying the case and control patients
is application dependent and is outside the scope of the pipeline
node. However, once the patients are identified, the cohort
construction task can be used to create a new patient cohort for
subsequent use in the pipelines.

The feature construction task computes a feature vector
representation for each patient based on the patient’s EHR data.
EHR data can be viewed as multiple event sequences over time
(e.g., a patient can have multiple diagnoses of hypertension at
different dates). To convert such event sequences into feature
variables, an observation window (e.g., one year) is specified. Then
all events of the same feature within the window are aggregated
into a single or small set of values. The aggregation function can
produce simple feature values like counts and averages or complex
feature values that take into account temporal information (e.g.,
trend and temporal variation). A set of basic aggregation functions
(e.g., count, minimum, maximum, mean, and variance) is provided,
but additional user-defined aggregation functions can be added as
necessary.

In the feature selection task, a number of standard selection
algorithms (e.g., information gain, Fisher score, least angle regres-
sion (LARS)) [38-40] are available, but we have also added custom
algorithms such as scalable orthogonal regression (SOR) feature
selection for optimally combining knowledge-based and data-
driven features [41].

In the classification task, all the classifiers in the open source
machine learning packages Orange [42] and SciKit-Learn [43] are
available, but custom classification algorithms can also be added.

We anticipate that the majority of PARAMO users will work
with the predefined configuration APIs or the web interface to
specify the pipeline using the standard predefined components
and algorithms. Expert users, however, can use our extension
framework to programmatically add new components and
algorithms.

The following is a simple pipeline specification example:

e Cohort construction: One patient data set (the Medium data set
defined in Section 4.1).

e Feature construction: Four types of features: diagnoses, labs,
medications, and symptoms. “Mean” aggregation is used for
labs and “count” for the others.

e Cross-validation: 2-fold cross-validation.

164 K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170

o Feature selection: Two approaches: Information Gain and Fisher
Score [38,39].

o Classification: Three classifiers: Naive Bayes, Logistic Regression,
and Random Forest [38,44].

This specification results in a set of 12 pipelines, as shown in
Fig. 1B. The corresponding dependency graph that is generated is
shown in Fig. 1C. Since the feature construction task processes dif-
ferent feature types independently of each other, they can be run in
parallel and the results merged for subsequent use. The cross-val-
idation task partitions the data into multiple subsets. For each sub-
set, the different feature selection and classification algorithms can
be run independently and in parallel as illustrated in the depen-
dency graph. The output tasks are used to clean up intermediate
files and to put results into their final locations.

3.2. Dependency graph execution engine

As shown in Fig. 2, the dependency graph execution engine
takes a dependency graph as input. It parses the graph, assigns pri-
orities to the tasks, schedules the tasks based on a topological
ordering of the graph, and executes the independent tasks in par-
allel to produce the final set of the results. The execution engine
uses a list scheduling approach [45]. It maintains a producer-con-
sumer priority queue of tasks that are awaiting execution. A task in
the dependency graph is added to the priority queue only if it is
“ready” to be executed. A task is “ready” if it either has no depen-
dencies or all its dependencies have already completed execution.
The priority of the tasks in the queue is updated based on user
preference and on the results of already completed tasks. As task
execution slots become available, the highest priority tasks are
removed from the queue and submitted to the parallelization
infrastructure for execution. The execution engine continues pro-
cessing until all tasks in the dependency graph have been
executed.

Fig. 3 shows an analysis of the execution of the dependency
graph from Fig. 1C on a Map-Reduce cluster with 20 concurrent
tasks. The analysis shows the start time, end time, and duration
of each task. The execution of dependent and parallel tasks is
clearly visible. The cohort construction task is executed first,
followed by the parallel execution of the four different feature con-
struction tasks, and then the feature construction merge task. The
processing time of the feature construction tasks can vary

classification_LogRegression
classification_NaiveBayes
classification_NaiveBayes |
classification_RandomForest
classification_LogRegression
classification_RandomForest
classification_RandomForest
classification_NaiveBayes
classification_LogRegression
classification_RandomForest
classification_NaiveBayes
classification_LogRegression
feature_selection_FisherScore
feature_selection_FisherScore
feature_selection_InfoGain
feature_selection_InfoGain |
feature_construction_merge
feature_construction_lab ||

feature_construction_diagnosis 269.88
feature_construction_symptom 91.39
cross_validation | 4152
feature_construction_medication 210.65

cohort construction ||5.52

0 200 400 600 800 1000
Time (s)

Fig. 3. Dependency graph execution analysis showing the start time, end time, and
duration of each task in the dependency graph from Fig. 1C. The graph was executed
on a Map-Reduce cluster with 20 concurrent tasks.

dramatically depending on the feature type. We observe that the
cross-validation task is executed in parallel at this stage, which
creates two sets of training and testing partitions of patients (i.e.,
4 out-going edges). Next, the four feature selection tasks are run
in parallel and, finally, the twelve classifier tasks are run in parallel.
The classifier processing times can be very different depending on
the classification algorithm. The time gaps between task execu-
tions are due to overhead in the Map-Reduce tasks management
processing.

PARAMO supports different scheduling preferences that allow a
researcher to influence the order in which the models are built.
Flexible scheduling can be useful when there are many models
and the processing times are lengthy or when the analytics are
conducted in a time-constrained environment such as in a consult-
ing engagement. Three different scheduling algorithms have been
implemented: (1) uniform, (2) fast model first and (3) accurate
model first. In the uniform approach, the priority of all tasks is
the same. This causes the tasks to be executed solely based on
the topological ordering of the dependency graph. In the fast model
first approach, the priorities of the feature selection and classifier
tasks are based on the average execution time of previously com-
pleted tasks of the same type. This causes models that run faster
to be executed before models that take more time. In the accurate
model first approach, the priority of the classifier tasks are based on
the average accuracy measure of previously completed classifier
tasks of the same type. The priority of the feature selection tasks
is set to the highest priority of its dependent classifier tasks. This
causes models that have higher accuracy to be executed before
models that perform worse. The priorities of the tasks waiting in
the execution queue are continually updated using information
from recently completed tasks. If the researcher is evaluating a
set of models where the accuracy can be vastly different, he could
use the accurate models first priority to quickly get a sense of the
models that work well. However, if he is refining a set of models
that have similar accuracy, he could use the fast models first priority
so more models are built sooner in the processing. The researcher
can examine the models that have completed so far to decide
whether to stop the processing to save unneeded computation
without having to wait for everything to finish. We note that
although PARAMO enables these workflows, it does not specify
(at this time) which is the best. This is left for future research be-
cause it will need to be specialized to specific healthcare analytics
problems.

A number of task schedulers have been developed for the Map-
Reduce framework including performance-driven schedulers that
dynamically adjust resource allocation to maximize each job’s
chance of meeting its runtime performance goal [46], network-
aware schedulers that try to reduce network traffic by enforcing lo-
cal computations [47], and resource-aware schedulers that try to
improve resource utilization across machines [48]. The scheduler
in PARAMO differs from these in that the prioritization scheme is
based on higher level application-specific objective functions that
can be specified by the user instead of lower level infrastructure
and application independent metrics.

3.3. Parallelization infrastructure

Healthcare organizations have a wide range of computing archi-
tectures and capabilities. As such, PARAMO allows for execution of
the dependency graph tasks on a number of different parallel sys-
tems, ranging from a single machine running a multiple worker
process pool to a large compute cluster. A variety of tools may be
used for parallelization on large compute clusters. Open-source
tools such as Apache Hadoop’s Map-Reduce [49] afford graceful
handling of large data sets and built-in resilience against failures.
The Hadoop API, however, is too low-level and ill-suited for

K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170 165

implementing analytics tasks. High-level programming tools built
on top of Hadoop such as Cascading [50] and NIMBLE [51] allow
the programmer to specify parallel computations. Cascading sup-
ports setting up a DAG of Map-Reduce jobs but is not suited to
specifying task parallelism, as is needed in our case. NIMBLE is a
tool for data analytics algorithms with support for specifying data
parallelism, task parallelism, and DAGs of computations, all at a
higher level of abstraction than Map-Reduce. In this paper, we
use NIMBLE to execute our dependency graph using task
parallelism on top of Hadoop.

4. Results and discussion
4.1. Experimental setup

We stress tested the computational performance of PARAMO
using three sets of real EHR data ranging in scale from 5000 to over
300,000 patients as described in Table 2.

The Small dataset was collected from the Vanderbilt University
Medical Center (VUMC) de-identified EHR repository, Synthetic
Derivative, which is a completely de-identified, randomly date-
shifted version of the electronic health record [52]. All dates are
changed by a random offset per patient. At the time of this study,
the MyHealthTeam (MHT) cohort consisted of 1564 hypertension
patients enrolled between 2010 and 2012 who had at least one
transition point while in the program. A transition point is defined
as a time point at which the clinical blood pressure assessment
changes from in-control to out-of-control or vice versa. The data
analyzed included MHT program-specific measures, such as con-
trol status and home blood pressures, and was supplemented by
all longitudinal clinical information available in the EHR. Each pa-
tient received an average of 5 hypertension physician assessments
across 158 days while in the MHT program. The 1564 patient co-
hort contains 615 cases (blood pressure out of control) and 949
controls (blood pressure in control). This data set is used to predict
the transition points at which hypertension is brought into, as well
as pushed out of, control among those patients.

The Medium dataset comes from a case-control design study
utilizing a retrospectively identified cohort of primary care pa-
tients who eventually developed heart failure (HF) and controls
who did not [53]. Patient EHRs dating from 2001 to 2010 within
the Geisinger Health System were utilized to identify cases and
controls. The Geisinger Health System is an integrated health care
system that provides health services in 31 counties of central and
northeastern Pennsylvania and includes 41 community practice
clinics which has been utilizing the EPIC EHR since 2001. Data
for this study were derived from the approximately 400,000 pri-
mary care patients served by these clinics. From these EHRs, we
identified 4644 incident HF cases with a clinical diagnosis based
on meeting at least one of the following criteria: (1) HF diagnosis
appearing on the problem list at least once; (2) HF diagnosis ap-
peared in the EHR for two outpatient encounters; (3) at least two
medications prescribed with the ordering provider associating that
medication order with an ICD-9 diagnosis of HF; or (4) HF diagno-
sis appearing on one or more outpatient encounters and at least

Table 2

one medication prescribed with an associated ICD-9 diagnosis for
HF. The diagnosis date was defined as the first appearance of a
HF diagnosis in the EHR. Approximately 10 eligible clinic-, sex-,
and age-matched (in five-year age intervals) controls were selected
for each incident HF case. Primary care patients were eligible as
controls if they had no history of HF diagnosis before December
31, 2010. Control patients were required to have had their first Gei-
singer Clinic office encounter within one year of the incident HF
case’s first office visit and had at least one office encounter 30 days
before or anytime after the case’s HF diagnosis date in order to en-
sure similar durations of observations among cases and controls. In
situations where 10 matches were not available, all available
matches were selected (28,031 eligible controls retained). There-
fore, for the purposes of this study we extracted the clinical notes
portion of the EHRs for 32,675 patients. All patient encounters pre-
ceding the diagnosis of HF in cases, and the matched date in con-
trols were analyzed. This data set is used to predict the onset of
HF 6 to 24 months prior to their clinical diagnosis.

The Large dataset comes from an anonymous longitudinal claims
database and consists of 319,000 patients over 4 years. This data set
used a similar study design as the Medium dataset but for hyperten-
sion disease instead of heart failure. The resulting patient cohort
consists of 181,128 patients for hypertension diagnosis prediction
with 16,385 cases and 164,743 controls. In particular, the cases are
the patients who had (incident) hypertension diagnosis in the last
2 years of the data (not in the first 2 years); controls are group
matched to the cases on age and gender but without hypertension
diagnosis in all 4 years. The EHR data from first 2 years of the cases
and controls are used in the predictive modeling. This data setis used
to predict the onset of hypertension diagnosis.

All three data sets contain diagnoses, medications, and lab re-
sults. The Small and Large sets also contain procedure information
while the Medium set contains HF symptoms extracted from clini-
cal notes [54]. Although these patient data sets have been created
for use in clinical application studies, they are used in these exper-
iments only as representatives of predictive modeling applications
using real EHR data at different scales.

For our parallelization infrastructure, we use a Hadoop cluster
with 160 Intel Xeon 2.13 GzH processors distributed across 40
nodes with 4 GB of RAM per processor that can support running
up to 160 concurrent tasks. All the nodes run Linux (kernel
2.6.18-164.el5) with IBM Java v1.7.0 and Hadoop v1.0.4.

To measure runtime performance we used elapsed time in sec-
onds and for classifier accuracy we used the AUC (area under the
ROC curve) measure.

4.2. Parallel execution experiments

Identical predictive modeling pipeline structures were created
for all three data sets consisting of the following components:

e One patient data set: Small, Medium, or Large.

e A fixed set of input feature types: diagnoses, medications, labs,
procedures, and symptoms with a mean aggregation function
for the labs feature and a count aggregation function for the
other features.

Description of the three EHR data sets used to evaluate the performance of PARAMO. For each data set, the origin, the number of years of data, the unique number of patients, the
unique number of features, and the total number of records (feature instances) are shown.

Data set Origin Years of data Number of patients Number of features Number of records
Small Vanderbilt University Medical Center 3 4758 25,932 3,312,558
Medium Geisinger Health System 10 32,675 46,117 24,719,809
Large Anonymous longitudinal claims database 4 319,650 49,269 33,531,311

166 K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170

e Two feature selection approaches: Information Gain and Fisher
Score.

e Four classification algorithms: K-Nearest Neighbor, Naive Bayes,
Logistic Regression, and Random Forest.

e 10 times 10-fold cross-validation.

The only differences in the pipeline specifications for the differ-
ent data sets are in the parameter values of the cohort construction
tasks, the feature construction tasks, and the feature selection
tasks. An initial set of experiments, described in Appendix A, was
used to determine the number of features and observation window
size parameter values to use.

The dependency graph generated using this set of pipeline spec-
ifications contains 1808 nodes and 3610 edges. There were 200
feature selection tasks and 800 classification tasks. The graph
structure is similar to the 36-node 42-edge graph shown in
Fig. 1C, but with many more feature selection and classification
task nodes and edges.

The dependency graph execution engine was used to run the
dependency graph for each data set on our Hadoop cluster. Fig. 4
shows the runtime performance as the number of concurrent tasks
varies from 10 to 160. The time to run the tasks serially is also plot-
ted as a reference point. There are three graphs, one for each data
set: Small (dotted line), Medium (dashed line), and Large (solid
line). There are several noteworthy observations. First, as expected,
processing larger data sets requires more time using the same
number of concurrent tasks. Second, the processing time decreases
as the number of concurrent tasks increases. The larger the data
set, the larger the performance improvement. Comparing the serial
and 160 concurrent task performance, the improvement is 1.6x for
the Small data set, 39x for the Medium data set, and 72x for the
Large data set. Third, for these dependency graphs, diminishing re-
turns appear after 80 concurrent tasks. There is a minimum run-
time for the dependency graph regardless of the number of
concurrent tasks, which corresponds to the sum of the runtimes
of the tasks in the “longest” single path through the graph. Fourth,
for small data sets where the individual task executions take little
time, it is possible for the overhead of managing the Map-Reduce
tasks to be more expensive than the tasks themselves. For the Small
data set, running with 40 or fewer concurrent tasks actually takes
more time than serial execution.

Table 3 shows the average runtime of the different pipeline
tasks. The feature construction and classification tasks take much
more time than other tasks. In general, the same task takes longer
to run when processing a larger data set. There is a notable

1000000
A
—a— Large
— ¢ - Medium
--3- - Small
4 100000
c *
o
o
[
ICA
[
5 10000 =
(4 o *o
N
~
. «
=0 S~
. -
o = T =e
D P
1000 SRS -
Serial 10 20 40 80 120 160

Number of Concurrent Tasks

Fig. 4. Runtime performance (in seconds) on the three different EHR data sets as a
function of the number of concurrent tasks on the Map-Reduce cluster. The time to
run all the tasks in the dependency graph serially is shown as a reference as the
leftmost point.

exception for the feature construction processing on the Medium
data set, which takes more time than the Large data set. This is
due to the fact that although the Medium data set has fewer unique
patients than the Large data set, it has many more years of data for
each patient. This causes the data selection and extraction process-
ing to be more expensive. There can be large differences in the run-
times of the various feature selection and classification algorithms
both within and across data sets.

Table 4 shows the AUC values for the various feature selection
and classification combinations in the predictive modeling pipe-
lines for the three different data sets. The average and standard
deviation of the AUC computed across 100 classification runs
(10 x 10-fold cross-validation) are shown. The highest average
AUC value for each data set is bolded. There is considerable vari-
ability in the accuracy of the classifiers. Across the three data sets,
the k-nearest neighbor classifier performs the worse, followed by
the Naive Bayesian classifier. The logistic regression and random

Table 3
Average runtime (in seconds) of the different predictive modeling pipeline task types
for the three different EHR data sets.

Task type Runtime (s)

Small Medium Large
Cohort Construction 6.14 6.53 9.32
Feature Construction (Diagnosis) 15.77 275.05 266.64
Feature Construction (Lab) 27.94 551.49 104.29
Feature Construction (Medication) 26.43 203.75 131.47
Feature Construction (Procedure) 13.93 - 199.25
Feature Construction (Symptoms) - 88.33 -
Feature Construction (Merge) 1.32 12.16 16.28
Cross-validation 7.00 42.37 248.41
Feature Selection (Fisher Score) 5.47 65.87 72.64
Feature Selection (Information Gain) 8.50 103.95 370.83
Classification (K-Nearest Neighbor) 0.16 64.02 1651.12
Classification (Naive Bayes) 0.20 7.74 34.25
Classification (Logistic Regression) 0.18 24.56 342.65
Classification (Random Forest) 1.21 190.66 1649.13

Table 4

Average AUC (area under the ROC curve) performance measures for the various
feature selection and classifier combinations in the predictive modeling pipelines for
the three different EHR data sets. The average and standard deviation is computed
over 100 classifier runs (10 x 10-fold cross-validation).

Naive Bayesian
Logistic Regression
Random Forest
K-Nearest Neighbor
Naive Bayesian
Logistic Regression
Random Forest

0.634 (0.007)
0.706 (0.006)
0.705 (0.006)
0.597 (0.023)
0.632 (0.007)
0.705 (0.006)
0.704 (0.006)

Fisher score

Data set Feature selection Classification Average AUC (std)
Small Information gain K-Nearest Neighbor 0.680 (0.075)
Naive Bayesian 0.687 (0.042)
Logistic Regression 0.690 (0.044)
Random Forest 0.717 (0.045)
Fisher score K-Nearest Neighbor 0.655 (0.102)
Naive Bayesian 0.690 (0.042)
Logistic Regression 0.689 (0.046)
Random Forest 0.713 (0.043)
Medium Information gain K-Nearest Neighbor 0.598 (0.013)
Naive Bayesian 0.692 (0.013)
Logistic Regression 0.746 (0.012)
Random Forest 0.752 (0.012)
Fisher score K-Nearest Neighbor 0.616 (0.013)
Naive Bayesian 0.688 (0.014)
Logistic Regression 0.741 (0.012)
Random Forest 0.749 (0.012)
Large Information gain K-Nearest Neighbor 0.602 (0.027)
(
(
(
(
(
(
(

K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170 167

forest classifiers are the top performers and have similar perfor-
mance. The difference between the two feature selection algo-
rithms is much smaller. Across the data sets, the information
gain criterion has slightly better performance than the Fisher score
criterion. Although the specific accuracy of the predictive models is
not the focus of our experiments, the AUC values are reported for
completeness. They are also used as in the priority scheduling
process.

4.3. Priority scheduling experiments

To evaluate the behavior of the different priority scheduling
algorithms, we ran the dependency graphs using the uniform, fast
model first and accurate model first settings. Fig. 5 plots the number
of completed classifier tasks as a function of runtime for the three
different priority scheduling approaches for the Medium data set.
Before 1000 s, most of the computation is spent on tasks before
classification, such as feature construction and feature selection.
Compared to the uniform scheduling (solid line), the fast model first
scheduling (dashed line) results in more classifier tasks being com-
pleted earlier in the processing. For example, at 1500 s, 362 classi-
fier tasks have completed compared to 237. This is clearly due to
the scheduling algorithm prioritizing the faster running classifier
tasks. On the other hand, using the accurate model first scheduling
(dotted line) results in many fewer classifier tasks being completed
at any given point in time. For example, at 1500 s, only 119 classi-
fier tasks have completed. This is because the high accuracy classi-
fiers, such as the random forest, generally take more processing
time as we saw in Table 3.

Fig. 6 shows scatter plots of the AUC value for each classifier as a
function of completion time for the three different priority sched-
uling approaches for the Medium data set. As expected, the AUC
values for the uniform scheduling (Fig. 6A) are evenly distributed
over time since there is no preference imposed on which classifiers
to execute first. The AUC values for the fast model first scheduling
(Fig. 6B) show a clear clustering behavior. The classifier executions
are ordered by ascending runtime: naive Bayes, logistic regression,
k-nearest neighbor, and random forest with average runtimes (in
seconds) of 7.74, 24.56, 64.02, and 190.66 respectively. The AUC
values for the accurate model first scheduling (Fig. 6C) show a dif-
ferent clustering behavior. In this case, the classifier executions
are ordered by descending AUC value: logistic regression, random
forest, naive Bayes, and k-nearest neighbor with average AUCs of

900

— — - Priority = Fast model first

800 1
—— Priority = Uniform

700

600 ~ —
500 —
400 - .
300 //
200 - ~

P -
100 —

0 s - - -
500 1000 1500 2000 2500 3000

Completion Time (s)

- - - - Priority = Accurate model first

Number of Completed Classifier Tasks

Fig. 5. The number of completed classifier tasks as a function of runtime (in
seconds) for the three different priority scheduling approaches (fast model first,
uniform, and accurate model first) for the Medium data set. The dependency graph
was run on a Map-Reduce cluster with 80 concurrent tasks.

Priority: Uniform

o ¥ % © Random Forest
0.55 @ Logistic Regression
A Naive Bayes
¢ K Nearest Neighbor
0.5 T T T T
500 1000 1500 2000 2500 3000
Completion Time (s)
Priority: Fast Model First
B 0.8
0.75
0.7
(5]
S 0.65
<
0.6
© Random Forest
0.55 | Logis\ic Regression
A Naive Bayes
¢ K Nearest Neighbor
0.5 T T T T
500 1000 1500 2000 2500 3000
Completion Time (s)
Priority: Accurate Model First
0.8
C 8
0.75
07 i
(8] LN
3 0.65
<3
0.6 k)
© Random Forest
0.55 - | Logistio Regression
A Naive Bayes
¢ K Nearest Neighbor
0.5 T T T T
500 1000 1500 2000 2500 3000

Completion Time (s)

Fig. 6. Scatter plot of the AUC values for each classifier model (random forest,
logistic regression, naive Bayes, k-nearest neighbor) as a function of completion
time (in seconds) for the three different prioritization schemes: (A) uniform, (B) fast
model first, and (C) accurate model first for the Medium data set. The dependency
graph was run on a Map-Reduce cluster with 80 concurrent tasks.

0.74, 0.75, 0.69, and 0.61 respectively. Note that for scheduling, it
is the relative values of the AUC that are important, not the abso-
lute values. Also, since the priority is based on the average AUC va-
lue of already completed classifiers, it is possible (due to score
variability) for the execution order of classifiers that have similar
AUC values to be swapped (as we see here with the logistic regres-
sion and random forest classifiers). Finally, when the classifiers are
initially executed (around 1000 s), several instances of all classifier
types are run. This is because, at this time, no runtime or AUC esti-
mates are available for changing the priorities from the default
topological ordering.

168 K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170

5. Conclusions

Various initiatives, such as meaningful use in the United States
[55], are accelerating the adoption of EHRs and the volume and de-
tail of patient information is growing at a frenetic pace. As the
healthcare community looks to develop novel therapies and per-
sonalized clinical decision support, predictive modeling over data
derived from EHRs will continue to become more prevalent. To
accelerate the translation of predictive analytics for use in clinical
care, the healthcare community needs more efficient means of
developing, building, and testing models. In this regard, we believe
that a parallel predictive modeling platform like PARAMO can
serve to rapidly explore applications for a diversity of health prob-
lems and health services utilities.

PARAMO is currently tailored to handle predictive modeling
pipelines. However, there are additional modeling pipelines of
interest in the healthcare analytics domain such as patient similar-
ity, risk stratification, and treatment comparison [37,56,57]. One
area of future work is to extend the platform to handle these addi-
tional modeling pipelines. Other areas of opportunity include
expanding the priority scheduling to support more complex algo-
rithms and partitioning some of the pipeline tasks into finer
grained computations that can be run in parallel to further improve
computational performance. As previously mentioned, the PARA-
MO platform is only a first step towards our ultimate goal of build-
ing analytic pipelines that are specialized for health data
researchers. Much work remains in designing and building the spe-
cialized functional layers on top of the platform that can facilitate
specific biomedical research workflows.

Acknowledgments

This project was supported in part by IBM Research, a grant
from the National Center for Advancing Translational Sciences
(UL1TR0O00445) and a grant from National Heart, Lung, and Blood
Institute (1RO1HL116832-01). The authors would like to thank
Harry Stavropoulos from IBM Research for assistance in setting
up the parallel computing infrastructure used in our experiments.
The authors would like to thank Jacqueline Kirby from Vanderbilt
University and Zahra Daar from the Geisinger Center for Health Re-
search for facilitating the collection and exchange of research data.
The authors would also like to thank Dr. Candace McNaughton
from Vanderbilt University for insightful discussions regarding
the presentation of this material.

Appendix A

We determined the appropriate number of features to use for
building the predictive models in a separate set of experiments.
For each type of feature (diagnosis, medication, lab, procedure,
and symptom), we measured the AUC (area under the ROC curve)
as a function of the number of selected features using the informa-
tion gain criterion and the logistic regression classification algo-
rithm. The goal was to determine the smallest number of
features that maintained the highest classifier accuracy. In these
experiments, a fixed observation window size of 720 days was
used. The results are shown in Fig. A1(A-C) for the Small, Medium,
and Large data sets, respectively. We note that the different feature
types can have very different performance from one data set to
another.

The general trend across feature types and data sets is that the
AUC reaches a maximum value over a medium sized range of num-
ber of features. We use these results to determine the appropriate
number of features for each feature type and data set. For the Small
data set, the total number of features is 32: 10 diagnoses, 10 labs, 6

A 0.75
0.7
0.65 ——
[S] S AR
0.6 A AN
Ak "
--%-- Procedure \X
0.55 —{ = Lab 2
—e— Diagnosis "E:
4--- Medication
0.5 - . a2
1 10 100 1000
Number of Features
B 0.75

o M

/A AA -a

A A

oo X o %-X A
..

A
[

0.65 n ® Suguy
S -
<
0.6
—e— Diagnosis
0.55 4—]| 4 Medication
x-- Symptoms
--=- Lab
0.5 T T
1 10 100 1000
Number of Features
C 0.75
—— Diagnosis
07 1 Procedure

4--- Medication

=- Lab /MMQ
0.65

(5] A A A A aaad
2 P OO
0.6 res %
. x [
ST - [N A L]
0.55
0.5 T T
1 10 100 1000

Number of Features

Fig. A1. AUC for the different feature types as a function of the number of features
for the (A) Small data set, (B) Medium data set, (C) Large data sets.

procedures, and 6 medications. For the Medium data set, the total
number of features is 320: 150 diagnoses, 100 labs, 50 medications,
and 20 symptoms. For the Large data set, the total number of fea-
tures is 700: 300 diagnoses, 300 procedures, 75 medications, and
25 labs.

In another set of experiments, we determined the appropriate
observation window size to use for building the predictive models.
The observation window size determines how much data from the
patient record history is used to construct the input feature vec-
tors. We measured the AUC value as a function of the observation
window size using the logistic regression classification algorithm.
The goal was to determine the smallest observation window size
that maintained the highest accuracy. We used the number of fea-
tures for each feature type for each data set determined in the first
experiment described above. The results are shown in Fig. A2 for
the Small (square, dotted line), Medium (diamond, dashed line),
and Large (triangle, solid line) data sets. The general trend across
the data sets is for the AUC to increase as the observation window
size increases. The AUC improves rapidly for small window sizes

K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170 169

08
078
0.76
IUEDSEES e -
0.74 ———"
e o-
0.72 = e E—

y“/l'— fu] s
0.7 a8 _a—* * * > A

AUC

0.68

’/; /
0.66 +——- o Small
0.64 ‘;/‘/ / -~~~ Medium

—a— Large

D/
0.62 +—=
/

0.6 T T T T
0 200 400 600 800 1000

Observation Window (Days)

Fig. A2. AUC as a function of observation window size (in days) for the Small,
Medium, and Large data sets.

and then levels off after a certain window size. We use these
results to determine the appropriate observation window size for
each data set. For the Small data set, the observation window size
is 360 days. For the Medium data set, the observation window size
is 720 days. For the Large data set, the observation window size is
720 days.

The optimal parameter values for the number of features for
each feature type and the observation window size determined
in these initial experiments are used in the predictive modeling
experiments presented in Section 4.2 of the main manuscript.

References

[1] PubMed - NCBI [Internet]. <http://www.ncbi.nlm.nih.gov/pubmed> [cited
24.05.13].

[2] Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues
and guidelines. Int] Med Inform 2008;77(2):81-97.

[3] Jensen PB, Jensen L], Brunak S. Mining electronic health records: towards
better research applications and clinical care. Nat Rev Genet
2012;13(6):395-405.

[4] Vickers AJ. Prediction models in cancer care. CA Cancer | Clin 2011. June 23.
<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189416/> [cited 25.11.13].

[5] Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature
2006;444(7121):881-7.

[6] Pittman], Huang E, Dressman H, Horng C-F, Cheng SH, Tsou M-H, et al.
Integrated modeling of clinical and gene expression information for
personalized prediction of disease outcomes. Proc Natl Acad Sci USA
2004;101(22):8431-6.

[7] Adler-Milstein], Jha AK. Healthcare’s “big data” challenge. Am J] Manag Care
2013;19(7):537-8.

[8] Botsis T, Hartvigsen G, Chen F, Weng C. Secondary use of EHR: data quality
issues and informatics opportunities. AMIA Summits Transl Sci Proc
2010:1-5.

[9] Weiskopf NG, Weng C. Methods and dimensions of electronic health record
data quality assessment: enabling reuse for clinical research.] Am Med Inform
Assoc JAMIA 2013;20(1):144-51.

[10] Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, et al.
Validation of electronic medical record-based phenotyping algorithms: results
and lessons learned from the eMERGE network.] Am Med Inform Assoc JAMIA
2013;20(e1):e147-54.

[11] Wiley LK, Shah A, Xu H, Bush WS. ICD-9 tobacco use codes are effective
identifiers of smoking status.] Am Med Inform Assoc JAMIA
2013;20(4):652-8.

[12] Uzuner O, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from
medical discharge records.] Am Med Inform Assoc JAMIA 2008;15(1):14-24.

[13] Peissig PL, Rasmussen LV, Berg RL, Linneman JG, McCarty CA, Waudby C, et al.
Importance of multi-modal approaches to effectively identify cataract cases
from electronic health records.] Am Med Inform Assoc JAMIA
2012;19(2):225-34.

[14] Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK,
Armstrong LL, et al. Use of diverse electronic medical record systems to
identify genetic risk for type 2 diabetes within a genome-wide association
study.] Am Med Inform Assoc JAMIA 2012;19(2):212-8.

[15] Carroll R], Thompson WK, Eyler AE, Mandelin AM, Cai T, Zink RM, et al.
Portability of an algorithm to identify rheumatoid arthritis in electronic health
records.] Am Med Inform Assoc JAMIA 2012;19(e1):e162-9.

[16] Agarwal SK, Chambless LE, Ballantyne CM, Astor B, Bertoni AG, Chang PP, et al.
Prediction of incident heart failure in general practice: the Atherosclerosis Risk
in Communities (ARIC) Study. Circ Heart Fail 2012;5(4):422-9.

[17] Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, et al. An
automated model to identify heart failure patients at risk for 30-day
readmission or death using electronic medical record data. Med Care
2010;48(11):981-8.

[18] Garvin JH, DuVall SL, South BR, Bray BE, Bolton D, Heavirland], et al.
Automated extraction of ejection fraction for quality measurement using
regular expressions in Unstructured Information Management Architecture
(UIMA) for heart failure.] Am Med Inform Assoc JAMIA 2012;19(5):859-66.

[19] Ross JS, Mulvey GK, Stauffer B, Patlolla V, Bernheim SM, Keenan PS, et al.
Statistical models and patient predictors of readmission for heart failure: a
systematic review. Arch Intern Med 2008;168(13):1371-86.

[20] Tabak YP, Sun X, Johannes RS, Hyde L, Shorr AF, Lindenauer PK. Development
and validation of a mortality risk-adjustment model for patients hospitalized
for exacerbations of chronic obstructive pulmonary disease. Med Care
2013.

[21] Busch AB, Neelon B, Zelevinsky K, He Y, Normand S-LT. Accurately predicting
bipolar disorder mood outcomes: implications for the use of electronic
databases. Med Care 2012;50(4):311-9.

[22] Zhao D, Weng C. Combining PubMed knowledge and EHR data to develop a
weighted Bayesian network for pancreatic cancer prediction.] Biomed Inform
2011;44(5):859-68.

[23] Escobar GJ, LaGuardia JC, Turk BJ, Ragins A, Kipnis P, Draper D. Early detection
of impending physiologic deterioration among patients who are not in
intensive care: development of predictive models using data from an
automated electronic medical record. | Hosp Med Off Publ Soc Hosp Med
2012;7(5):388-95.

[24] Mathias]S, Agrawal A, Feinglass], Cooper AJ], Baker DW, Choudhary A.
Development of a 5 year life expectancy index in older adults using predictive
mining of electronic health record data.] Am Med Inform Assoc JAMIA
2013.

[25] Matheny ME, Miller RA, Ikizler TA, Waitman LR, Denny JC, Schildcrout JS, et al.
Development of inpatient risk stratification models of acute kidney injury for
use in electronic health records. Med Decis Mak Int] Soc Med Decis Mak
2010;30(6):639-50.

[26] Nijhawan AE, Clark C, Kaplan R, Moore B, Halm EA, Amarasingham R. An
electronic medical record-based model to predict 30-day risk of readmission
and death among HIV-infected inpatients.] Acquir Immune Defic Syndr
2012;61(3):349-58.

[27] Wolpert DH, Macready WG. No free lunch theorems for search; 1995.

[28] Chen H, Fuller SS, Friedman C, Hersh W. Medical informatics: knowledge
management and data mining in biomedicine. 1st ed. Springer Publishing
Company, Incorporated; 2010.

[29] Dean], Ghemawat S. MapReduce: simplified data processing on large clusters.
In: OSDI'04 Proc 6TH Conf Symp Oper Syst Des Implement. USENIX
Association; 2004.

[30] Luddscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, et al. Scientific
workflow management and the Kepler system. Concurr Comput Pr Exp
2006:1039-65 [Special issue: workflow in grid systems].

[31] Gil Y, Ratnakar V, Kim], Moody], Deelman E, Gonzalez-Calero PA, et al. Wings:
intelligent workflow-based design of computational experiments. IEEE Intell
Syst 2011;26(1):62-72.

[32] Deelman E, Singh G, Su M, Blythe], Gil Y, Kesselman C, et al. Pegasus: a
framework for mapping complex scientific workflows onto distributed
systems. Sci Program J 2005;13:219-37.

[33] Oinn T, Addis M, Ferris], Marvin D, Carver T, Pocock MR, et al. Taverna: a tool
for the composition and enactment of bioinformatics workflows.
Bioinformatics 2004;20.

[34] Wang], Crawl D, Altintas I. Kepler + Hadoop: a general architecture facilitating
data-intensive applications in scientific workflow systems. In: Proc 4th
workshop work support large-scale science [Internet]. New York, NY, USA:
ACM; 2009. p. 12:1-8. doi: http://dx.doi.org/10.1145/1645164.1645176 [cited
17.05.13].

[35] Chen Q, Wang L, Shang Z. MRGIS: a MapReduce-enabled high performance
workflow system for GIS. In: IEEE fourth international conference on EScience
2008 EScience 08; 2008. p. 646-51.

[36] Islam M, Huang AK, Battisha M, Chiang M, Srinivasan S, Peters C, et al. Oozie:
towards a scalable workflow management system for Hadoop. In: Proceedings
of the 1st ACM SIGMOD workshop scalable work execution engines
technologies [Internet]. New York, NY, USA: ACM; 2012. p. 4:1-10. doi:
http://dx.doi.org/10.1145/2443416.2443420 [cited 18.05.13].

[37] Gotz D, Stavropoulos H, Sun], Wang F. ICDA: a platform for intelligent care
delivery analytics. AMIA Annu Symp Proc 2012;3(November):264-73.

[38] Duda PEH, David G, Stork Richard O. Pattern classification. 2nd ed. Wiley-
Interscience; 2000.

[39] Mitchell TM. Machine learning. 1st ed. McGraw-Hill Science/Engineering/
Math; 1997.

[40] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Annu Stat
2004;32(2):407-99.

[41] Sun], Hu], Luo D, Markatou M, Wang F, Edabollahi S, et al. Combining
knowledge and data driven insights for identifying risk factors using electronic
health records. AMIA Annu Symp Proc 2012;2012:901-10.

[42] Orange - data mining fruitful & fun [Internet]. <http://orange.biolab.si/> [cited
13.07.13].

http://www.ncbi.nlm.nih.gov/pubmed
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0290
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0290
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0295
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0295
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0295
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189416/
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0305
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0305
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0310
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0310
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0310
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0310
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0315
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0315
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0320
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0320
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0320
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0325
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0325
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0325
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0330
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0330
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0330
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0330
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0335
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0335
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0335
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0340
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0340
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0345
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0345
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0345
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0345
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0350
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0350
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0350
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0350
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0355
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0355
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0355
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0360
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0360
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0360
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0365
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0365
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0365
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0365
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0370
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0370
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0370
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0370
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0375
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0375
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0375
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0380
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0380
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0380
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0380
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0385
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0385
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0385
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0390
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0390
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0390
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0395
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0395
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0395
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0395
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0395
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0400
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0400
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0400
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0400
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0400
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0405
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0405
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0405
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0405
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0410
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0410
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0410
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0410
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0140
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0140
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0140
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0420
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0420
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0420
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0155
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0155
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0155
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0160
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0160
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0160
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0165
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0165
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0165
http://dx.doi.org/10.1145/1645164.1645176
http://dx.doi.org/10.1145/2443416.2443420
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0430
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0430
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0190
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0190
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0435
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0435
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0440
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0440
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0205
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0205
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0205
http://orange.biolab.si/

170 K. Ng et al./Journal of Biomedical Informatics 48 (2014) 160-170

[43] scikit-learn: machine learning in Python—scikit-learn 0.13.1 documentation
[Internet]. <http://scikit-learn.org/stable/> [cited 13.07.13].

[44] Breiman L. Random forests. Mach Learn 2001;45(1):5-32.

[45] Cooper KD, Schielke PJ, Subramanian D. An experimental evaluation of list
scheduling. Department of Computer Science, Rice University; 1998.

[46] Polo], Carrera D, Becerra Y, Torres], Ayguadé E, Steinder M, et al.
Performance-driven task co-scheduling for MapReduce environments.
2010 IEEE network operations and management symposium - NOMS;
2010. p. 373-80.

[47] Kondikoppa P, Chiu C-H, Cui C, Xue L, Park S-J. Network-aware scheduling of
mapreduce framework on distributed clusters over high speed networks.
Proceedings of the 2012 Workshop Cloud services, federation, and the 8th
Open Cirrus Summit [Internet]. New York, NY, USA: ACM; 2012. p. 39-44. doi:
http://doi.acm.org/10.1145/2378975.2378985 [cited 11.07.13].

[48] Polo], Castillo C, Carrera D, Becerra Y, Whalley I, Steinder M, et al. Resource-
aware adaptive scheduling for MapReduce clusters. In: Kon F, Kermarrec A-M,
editors. Middlew 2011 [Internet]. Berlin, Heidelberg: Springer; 2011. p.
187-207. <http://link.springer.com/chapter/10.1007/978-3-642-25821-3_10>
[cited 11.07.13].

[49] Apache Hadoop [Internet]. <http://hadoop.apache.org/> [cited 22.05.13].

[50] Cascading | application platform for enterprise big data [Internet]. <http://
www.cascading.org/> [cited 22.05.13].

[51] Ghoting A, Kambadur P, Pednault EPD, Kannan R. NIMBLE: a toolkit for the
implementation of parallel data mining and machine learning algorithms on
mapreduce; 2011. p. 334-42. <http://www.dblp.org/rec/bibtex/conf/kdd/
GhotingKPK11> [cited 17.05.13].

[52] Roden D, Pulley], Basford M, Bernard G, Clayton E, Balser], et al. Development
of a large-scale de-identified DNA biobank to enable personalized medicine.
Clin Pharmacol Ther 2008;84(3):362-9.

[53] Wu J, Roy], Stewart WF. Prediction modeling using EHR data: challenges,
strategies, and a comparison of machine learning approaches. Med Care
2010;48(Suppl. 6):5106-13.

[54] Byrd R], Steinhubl SR, Sun J, Ebadollahi S, Stewart WF. Automatic identification of
heart failure diagnostic criteria, using text analysis of clinical notes from electronic
health records. Int] Med Inform 2013. <http://linkinghub.elsevier.com/retrieve/
pii/S1386505612002468> [cited 31.07.13].

[55] Meaningful_Use [Internet]; 2013. <http://www.cms.gov/Regulations-and-
Guidance/Legislation/EHRIncentivePrograms/Meaningful_Use.htmI> [cited
17.09.13].

[56] Wang F, Hu], Sun]. Medical prognosis based on patient similarity and expert
feedback. In: 2012 21st International Conference on PatternRecognition —
ICPR; 2012. p. 1799-802.

[57] Sun], Wang F, Hu], Edabollahi S. Supervised patient similarity measure of
heterogeneous patient records. SIGKDD Explor Newsl 2012;14(1):16-24.

http://scikit-learn.org/stable/
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0445
http://doi.acm.org/10.1145/2378975.2378985
http://link.springer.com/chapter/10.1007/978-3-642-25821-3_10
http://hadoop.apache.org/
http://www.cascading.org/
http://www.cascading.org/
http://www.dblp.org/rec/bibtex/conf/kdd/GhotingKPK11
http://www.dblp.org/rec/bibtex/conf/kdd/GhotingKPK11
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0460
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0460
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0460
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0465
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0465
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0465
http://linkinghub.elsevier.com/retrieve/pii/S1386505612002468
http://linkinghub.elsevier.com/retrieve/pii/S1386505612002468
http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Meaningful_Use.html
http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Meaningful_Use.html
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0475
http://refhub.elsevier.com/S1532-0464(13)00203-7/h0475

	PARAMO: A PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records
	1 Introduction
	2 Background
	3 Methods
	3.1 Dependency graph generator
	3.2 Dependency graph execution engine
	3.3 Parallelization infrastructure

	4 Results and discussion
	4.1 Experimental setup
	4.2 Parallel execution experiments
	4.3 Priority scheduling experiments

	5 Conclusions
	Acknowledgments
	Appendix A
	References

