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Is Neurotoxicity of Metallic Nanoparticles
the Cascades of Oxidative Stress?
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Abstract

With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely
used in many fields such as cosmetics, the food and building industries, and bio-medical instruments.
Widespread applications of metallic NP-based products increase the health risk associated with human exposures.
Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target
of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory
response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies
have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by
decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing
the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the
neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional
research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs,
to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve
the bio-safety of metallic NP-based products.
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Review
Introduction
Metallic nanoparticles (NPs), with particle sizes ranging
from 1 to 100 nm, possess superior physicochemical
characteristics. This makes them useful in cosmetics [1],
as food additives [2], in the biomedical industry [3], for
environmental applications [4], and in the construction
industry [5]. The widespread application of metallic NPs
in many fields increases the risk human exposures. After
exposure, NPs may be absorbed into the body and redis-
tributed into secondary target organs. Numerous in vivo
studies have revealed that, after animals were exposed to
metallic NPs through intravenous injection [6], oral ad-
ministration [7], intranasal instillation [8], and intraperi-
toneal injection [9], these particles can be absorbed and
detected in many organs including the brain, liver, lung,
spleen, and kidneys. The brain, as the most important
organ, is vulnerable to the toxic effects induced by accu-
mulated metallic NPs. Feng et al. [10] concluded that

oxidative stress (OS), apoptosis, autophagy, the inflam-
matory response, and disturbed signaling pathways
might be the main mechanisms underlying the neuro-
toxicity of metallic NPs. However, the interrelationships
among those mechanisms remain obscure.
In view of the core role of OS (Fig. 1), we have sum-

marized relevant in vivo and in vitro studies about the
relationship between metallic NP-induced OS status and
neurotoxicity. We conclude from available data that OS
is implicated in the neurotoxicity of NPs in most situa-
tions. In addition to OS, other mechanisms are involved
in the neurotoxicity of metallic NPs. Furthermore, a few
rescue studies have exposed neuronal cells or animals to
metallic NPs together with antioxidants. Findings from
these studies show that antioxidants can reverse the
neurotoxicity of metallic NPs by decreasing ROS pro-
duction, up-regulating the activities of antioxidant
enzymes, suppressing inflammation, and reducing the
proportion of apoptotic cells. These findings suggest
that the neurotoxicity of metallic NPs might involve a
cascade of events following NP-induced OS. However,
available data from rescue studies are insufficient to
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draw the definite conclusion that OS are the central
mechanism of NP-induced neurotoxicity. We expect
that the potential central role of OS in the neurotox-
icity induced by metallic NPs might explain the compli-
cated correlations among their neurotoxic mechanisms.
However, additional rescue research is needed to deter-
mine whether OS induced by metallic NPs plays a core
role in neurotoxicity.

Applications of Metallic NPs and Their Bio-distribution in
the Brain
With the rapid development of nanotechnology, metal-
lic NPs or NP-based products, due to their outstanding
physicochemical characteristics, are widely used in many
fields such as cosmetics [11–13], the food industry
[14–17], building materials [18, 19], biomedical applica-
tions [20–23], painting [24–26], and decontaminants
[27–29]. However, widespread applications imply that
humans might be unintentionally exposed to metallic
NPs. After exposure, metallic NPs can be absorbed into
the body and re-distributed into the main organs, possibly
leading to tissue damage. Hence, metallic NP-based prod-
ucts become a potential threat to human health [30–32].
The brain is the most important organ, and injury to

this organ is generally irreversible. Recent in vivo studies
have shown that, after animals are exposed to metallic
NPs such as titanium dioxide (TiO2), zinc oxide (ZnO),
iron oxide, silica dioxide (SiO2), silver (Ag), or gold,
these particles can enter into the body and be translo-
cated into the brain. The limited excretion rate out of
the brain leads to a gradual accumulation of metallic
NPs in this organ. This, in turn, could damage neuronal
cells and impair brain function, leading to permanent
brain injury.

After exposure via various routes of administration,
metallic NPs are translocated into the rat/mouse brain.
Wu et al. [33] demonstrated that, when hairless mice
were treated with TiO2 NPs through dermal exposure
for 60 days, the Ti content in their brains was increased.
Similarly, the Ti level increased in the rat brain when
these animals were exposed to TiO2 NPs through intra-
venous injection [34, 35]. Female mice administered
TiO2 NPs through intranasal instillation for 30 days ex-
hibited an increased Ti concentration in the brain [36].
After male mice were injected intravenously with ZnO
NPs, Zn ions were detected in their brain [37]. Repeated
oral administration of ZnO NPs led to increased Zn ion
content in the rat brain [38]. Gold NPs were detected in
the brain after rats/mice were treated with gold NPs
through intravenous injection [6, 39] or inhalation [40].
The Ag content in the brain increased after rats were
exposed to Ag NPs through subcutaneous injection [41],
intravenous injection [42, 43], oral gavage [44], other
oral exposure [7, 45], or intranasal instillation [8]. The
Ag level in the brain increased when mice were exposed
to silver NPs through intraperitoneal injection [9], re-
peated oral administration [46], or intravenous injection
[47]. Rabbits that were treated with Ag NPs intraven-
ously demonstrated increased Ag content in the brain
[48]. TiO2 and silica NPs even passed the placental barrier
to accumulate in the fetal brain when pregnant mice were
exposed to TiO2 NPs [49], which suggested a potential for
neurodevelopmental toxicity.
TiO2 and Ag NPs are employed frequently to examine

the bio-distribution of metallic NPs after systematic ad-
ministration. In order to fully illustrate how metallic NPs
are absorbed into the body, translocated into the brain,
and excreted from the brain, more relevant research that

Fig. 1 Roles of ROS in cellular responses [104]. CDK-2 cyclin-dependent kinase 2; COX-2 cyclooxygenase-2; GSH glutathione; HSP70 70 kDa heat
shock protein; IGF insulin-like growth factor; IL interleukin; NAC N-acety-L-cysteine; NF-kB necrosis factor kappa B; NOS nitric oxide synthase; ROS
reactive oxygen species
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employs different metallic NPs besides TiO2 and Ag is
needed. In addition, the potential for neurodevelopmental
toxicity of metallic NPs should be investigated.

The Role of OS Induced by Metallic NPs in Neurotoxicity
Brief Description of Oxidative Stress and its Relationship
with Brain Disorders
OS can be defined as disturbed redox homeostasis
caused by excessive reactive oxygen species (ROS) or/
and reactive nitrogen species (RNS) production, or de-
creased activities of antioxidant enzymes in response to
harmful stimuli. Excessive ROS and RNS production
can, in turn, damage DNA (determined by measuring
the level of 8-hydroxy-2′-deoxyguanosine), oxidize pro-
teins (determined by measuring the level of carbonyls),
and induce lipid peroxidation, all of which can lead to
tissue damage. In the process of OS, the activities of anti-
oxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GSH-Px), are
inhibited in most situations. Meanwhile, non-enzymatic
antioxidants such as vitamin C, vitamin E, and glutathione
(GSH), are also depleted [50].
Lipids are abundant in brain tissue, and oxygen con-

sumption in the brain accounts for nearly a quarter of the
whole body’s consumption. Hence, the brain is more sen-
sitive to hypoxic injury than other tissues and is vulnerable
to oxidative damage. The pathology of neurodegenerative
diseases [51–53] such as Alzheimer’s disease, Parkinson’s
disease, and psychiatric disorders [54–56] (e.g., anxiety,
autism, major depression) are closely related to the OS
status in the brain. Meanwhile, environmental stimuli,
such as air pollution, can induce oxidative damage in the
brain, potentially leading to neurodegenerative diseases
[57, 58].
OS is involved in heavy metal-induced neurotoxicity

[59–61]. Metallic NPs, as another type of “environmental
stimuli,” also affect the OS status in the brain. Recent
studies have revealed that OS is implicated in the neuro-
toxicity of metallic NPs [62, 63]. In addition to oxidative
stress, the inflammatory response, apoptosis, autophagy,
and cell signaling pathways are the main mechanisms
underlying the neurotoxicity of metallic NPs [10]. How-
ever, the correlations among these mechanisms are com-
plex. It is possible that one mechanism plays a dominant
role in the neurotoxicity of metallic NPs. In view of the
pivotal role of OS in brain disorders, we have summa-
rized relevant in vivo and in vitro published articles deal-
ing with the correlations between metallic NP-induced
OS and neurotoxicity.

In Vivo Studies About the Involvement of OS in the
Neurotoxicity of Metallic NPs
TiO2 NPs impair mitochondrial functions and lead to
OS in the rat and mouse brain [64, 65]. Although TiO2

NPs could not be detected in the brain zones after mice
were exposed through nasal instillation, the activities of
SOD, CAT, GSH-Px, and acetylcholine esterase were
inhibited in the brain, probably indirectly [66]. After
mice were administered TiO2 NPs orally, OS biomarkers
showed differentiated responses. Although the activities
of SOD and GSH-Px in the cortex and hippocampus
were inhibited, levels of malondialdehyde (MDA; an index
of lipid peroxidation) and ROS production remained un-
affected [67]. Ze et al. [68] treated mice with three doses
of TiO2 NPs nasally for 90 days and found that the levels
of superoxide (O2

−), H2O2, MDA, protein carbonyls, and
8-hydroxy-2′-deoxyguanosine in the mouse brain were
increased in all groups compared with control animals.
Furthermore, microarray analyses showed that the expres-
sion of OS-related genes in the mouse brain was also
changed.
Inhalation exposure of mice to TiO2 NPs increased

the brain levels of H2O2 and MDA [69]. After Meena et
al. [70] injected rats with TiO2 NPs intravenously, the Ti
content in the brain increased, leading to excessive ROS
production and MDA, accompanied by inhibited activ-
ities of SOD and GSH-Px. In addition to OS, the propor-
tion of apoptotic cells increased and the expression of
nuclear factor-kB (NF-kB), p38, nitric oxide, interferon-
γ, and tumor necrosis factor-α in the brain were ele-
vated. Based on those findings, they concluded that
TiO2 NP-induced OS in the rat brain might lead to in-
flammation and apoptosis, which contributed to the
neurotoxicity of TiO2 NPs. Hu et al. [71] also reported
that, after exposure to TiO2 NPs, the Ti content in the
mouse brain increased, inducing ROS production and
inhibiting antioxidant activities in the hippocampal
areas, and increasing the proportion of apoptotic cells.
They concluded that apoptosis was initiated by NP-
induced OS in the brain. After rats were administered
TiO2 and Ag NPs through a single injection, there was a
change in the expression of OS-related genes in the rat
brain [72]. At the same time, the antioxidant capability
as well as the renin-angiotensin system in the brain was
disrupted.
Ag NPs up-regulated heme oxygenase-1 (HO-1) expres-

sion at both the gene and protein levels in the hippocam-
pus, but not in the cortex, after mice were exposed
through intranasal instillation [73]. Another study using
microarray analyses [74] found that, after mice were
treated with Ag particles (25 nm), the expression of 18
genes in the caudate nucleus, 14 in the frontal cortex, and
29 in the hippocampal area were altered. Ag NPs (23 and
29 nm) administered by intraperitoneal injection for 7 days
inhibited the activities of SOD and GSH-Px and increased
MDA production in the temporal cortex of rats. In
addition, the short-term memory of rats was impaired,
and they performed poorly in behavioral tests [75]. These
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findings suggested that the expression of OS-related bio-
markers in response to NPs might be regionally specific in
the brain.
OS, determined by increased ROS production and de-

creased expression of CuZn-SOD and Mn-SOD, was in-
duced in the mouse brain after administration of TiO2,
ZnO, or Al2O3 NPs [76]. In another study, ZnO NPs
inhibited the activities of SOD and GSH-Px and increased
the MDA content in the mouse brain after intraperitoneal
injection [77]. These effects appeared to contribute to im-
paired learning and memory ability.
Wu et al. [78] found that, after rats received SiO2

NPs through intranasal instillation, oxidative damage
that induced an inflammatory response and disturbed
neurotransmitters was observed in the striatum. They
confirmed those findings in vitro by exposing rat
pheochromocytoma cell line (PC12) to SiO2 NPs and
showing that excessive ROS caused by the NPs was ac-
companied by increased apoptosis and a decreased
number of cells in the G2/M phase of the cell cycle
through the p53-mediated signaling pathway and re-
duced dopamine production. The same research group
conducted another in vivo and in vitro study to exam-
ine the neurotoxicity of iron oxide NPs. They found
that, after rats received iron oxide NPs through intrana-
sal instillation, the expression of OS-related biomarkers
in the brain showed region-specific changes. Although
the GSH content in the striatum was increased, it
remained unchanged in the hippocampus. H2O2 levels
were elevated in the striatum and hippocampus, but
SOD activity and MDA levels were unaffected in these
areas. Findings obtained from PC12 cells exposed to
iron oxide NPs were consistent with their previous re-
search [79].
Parveen et al. [80] exposed rats to silica NPs through in-

tranasal instillation and discovered that the silica content
in the rat corpus striatum was elevated. This accumulation
increased levels of H2O2, O2

−, and protein carbonyls, inhib-
ited activities of SOD, GSH-Px, and CAT, and decreased
the GSH level in the rat corpus striatum. Meanwhile, the
expression of genes and proteins related to apoptosis, such
as bax, p53, bcl-2, and cytochrome c, was changed in the
rat corpus striatum. Together, these findings indicated
that silica NP-induced OS in the rat corpus striatum
might lead to apoptosis, which contributed to the poor
performance of animals in behavioral tests.
Although OS is clearly implicated in the neurotoxicity

of metallic NPs, how these NPs regulate the OS status in
the brain remains unclear. Ze et al. [81] reported that
TiO2 NPs were detected in the mouse brain after intra-
nasal instillation. This accumulation induced OS in the
mouse brain that was characterized by excessive levels of
H2O2, O2

−, MDA, protein carbonyls, and 8-hydroxy-2′-
deoxyguanosine. TiO2 NP-induced OS contributed to

spongiocyte proliferation and hemorrhage in the mouse
brain. Further experiments showed that the expression
of p38, Jun N-terminal kinase, NF-kB, nuclear factor-2
(Nrf-2), and HO-1 was up-regulated. This suggested that
oxidative impairments were probably mediated through
the p38-Nrf-2 signaling pathway. Other studies revealed
that OS can be mediated by Nrf-2 [82, 83]. More re-
search is needed to investigate comprehensively how
metallic NPs mediate OS in the brain.

In Vitro Studies About the Involvement of OS in the
Neurotoxicity of Metallic NPs
Long et al. [84, 85] demonstrated that TiO2 NPs
increased the levels of ROS, H2O2, and O2

− in BV2 cells
(an immortalized mouse microglial cell line). These NPs
also increased ROS production in the primary astrocytes
as well as induced mitochondrial dysfunction and altered
mitochondrial morphology, leading to decreased cell via-
bility [86]. Wu et al. [87] discovered that TiO2 NPs
reduced the viability of PC12 cells, enhanced production
of ROS and MDA, decreased GSH levels, and inhibited
SOD activity. They concluded that NP-induced OS re-
duced the mitochondrial membrane potential, induced
apoptosis, and inhibited the cell cycle. Kim et al. [88]
showed that OS and DNA damage were involved in the
toxic effects of silica NPs on human neuronal cells (SH-
SY5Y). After Yang et al. [89] exposed SK-N-SH (human
neuroblastoma cell line) and neuro2a (mouse neuroblast-
oma cell line) cells to silica NPs, they found that ROS
production was enhanced and cell viability reduced in
both cell lines. In another study, silica NPs increased
the production of ROS, RNS, and IL-1β in rat primary
microglial cells [90]. Similarly, mesoporous silica NPs
increased the production of ROS and MDA and de-
creased the level of GSH-Px in PC12 cells [91].
Ag NPs increased ROS production and up-regulated

the expression of OS-related genes, such as those encod-
ing HO-1 and matrix metalloproteinases-3, in PC12 cells
in a size- and dose-dependent way. Apoptosis was also
observed [92]. Kim et al. [93] found that, after primary
cerebral cortical neurons were exposed to Ag NPs, cell
viability was reduced, ROS production was elevated, and
the proportion of apoptotic cells was increased. This
indicated that NP-induced OS led to cell apoptosis.
Copper oxide NPs reduced the viability of primary rat
brain astrocytes and enhanced ROS production [94]. Xu
et al. [95] reported that copper NPs reduced the viability
of PC12 cells, increased ROS production, decreased SOD
activity, and enhanced the proportion of apoptotic cells.
Wang et al. [96] demonstrated that PC12 cells incubated
with manganese, Ag, or copper NPs exhibited alterations
in the expression of dopaminergic system-associated
genes. At the same time, copper NPs up-regulated the
expression of thioredoxin reductase 1. Down-regulated
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GSH-Px expression was detected in the copper and Ag
NPs groups. Manganese NPs did not change the expres-
sion of thioredoxin reductase 1 or GSH-Px. These findings
indicated that the expression of OS-related biomarkers
was differentiated when neuronal cells were exposed to
different metallic NPs.
Iron oxide NPs increased ROS production in SH-SY5Y

cells. This was accompanied by impaired mitochondrial
function and an increased proportion of apoptotic cells
[97]. However, ROS production was not enhanced by
iron oxide NPs in oligodendroglial cell lines [98]. How-
ever, it is not possible to conclude that OS was not in-
duced because other OS-related biomarkers were not
assessed.
Gold NPs induced ROS in the C17.2 neural progenitor

cell line in a dose-dependent manner [99]. Although
gold NPs did not induce cytotoxicity in human astro-
cytes, they increased ROS production, up-regulated the
activity of NF-kB, and reduced micronuclei formation
[100]. After Sruthi et al. [101] treated C6 cells (a rat glial
cell line) with ZnO NPs for 3 and 6 h, ROS production
was enhanced. However, after a 24-h exposure, the ROS
levels in ZnO NP-treated cells decreased to the control
group level. Additional studies examining other OS-
related biomarkers, such as SOD and GSH-Px, are
needed to further assess the NP-induced OS status in
this system. Recently, zirconium oxide NPs were re-
ported to reduce cell viability, enhance the production of
ROS and MDA, reduce GSH levels, and induce geno-
toxic effects in the PC12 and N2a cell lines [102].
Huerta-Garcia et al. [103] found that TiO2 NPs-

induced changes in ROS production and the activities of

antioxidant enzymes in C6 and U373 (human glial cell)
cells were not always consistent. Thus, TiO2 NP-induced
OS is complicated and may be associated with exposure
time. Future research should focus on the correlation
between exposure time and metallic NP-induced OS.
Findings from the abovementioned studies suggested

that OS was involved in the neurotoxicity of NPs in
most situations. Although numerous studies have shown
that OS can increase apoptosis (Fig. 2) [104], activate
signaling pathways [105] (Fig. 3), affect cell cycling
(Fig. 4) [106], and induce inflammation (Fig. 5) [107], it
is still not possible to draw the definite conclusion that
the cellular responses involved in the neurotoxicity of
metallic NPs are mediated by NP-induced OS.

Rescue Studies About the Involvement of OS in the
Neurotoxicity of Metallic NPs
Rescue studies examining the role of OS in the neuro-
toxicity of NPs might help determine whether the
neurotoxicity of metallic NPs involves a cascade of
events following NP-induced OS. N-acetyl-L-cysteine
(NAC) exhibited both antioxidant and neuroprotective
capabilities and decreased the production of ROS induced
by ZnO NPs in rat primary astrocytes [108–110]. At the
same time, the Jun N-terminal kinase signaling pathway
was suppressed, mitochondrial impairment was relieved,
and the proportion of apoptotic cells was decreased in
cells pretreated with NAC 6 h before NP exposure. In an-
other study [111], NAC reversed the elevated proportion
of apoptotic cells induced by ZnO NPs in U87 human glial
cells. These findings suggested that NP-mediated OS
activated cell signaling pathways, mitochondrial injury,

Fig. 2 Schematic representation of apoptosis signals induced by ROS [104]. AIF apoptosis-inducing factor; Apaf-1 apoptotic protease activating
factor 1; DISC death-inducing signaling complex; ROS reactive oxygen species; TRAIL tumor necrosis factor-alpha-related apoptosis-inducing ligand
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and apoptosis. ZnO NPs reduced cell viability, enhanced
ROS production, increased the glutathione disulfide level,
inhibited GSH-Px activity, and increased apoptosis in SH-
SY5Y cells. Those toxic effects were reversed by pretreat-
ing cells with NAC or esculetin [112]. Esculetin possesses
antioxidant properties [113–115].

Chlorophyllin is an effective ROS scavenger. It also
possesses antioxidant properties [116–118]. DNA damage,
determined by the comet assay, was detected in the
mouse brain after mice were exposed to TiO2 NPs. This
damage was prevented by co-treatment with chloro-
phyllin [119]. This indicated that NP-induced OS can

Fig. 3 Signaling pathways activated by ROS [127]. ROS reactive oxygen species; NADPH reduced nicotine adenine dinucleotide phosphate; MAPK
mitogen-activated protein kinase; HIF-1 hypoxia-inducible factor 1; NF-kB necrosis factor kappa B; NFAT nuclear factor of activated T cells; AP-1
activator protein-1

Fig. 4 The effects of ROS on cell cycle regulation [106]. EGFR epidermal growth factor receptor; EGF epidermal growth factor; ROS reactive
oxygen species
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lead to DNA damage. Niska et al. [120] found that,
after HT22 cells were incubated with copper NPs, cell
viability was reduced, the activities of GSH-Px and
SOD were inhibited, ROS production was increased,
and the proportion of apoptotic cells was elevated.
However, pretreating cells with crocetin (an antioxidant
with neuroprotective capabilities that can counteract
OS [121–123]) 1 h before NP exposure prevented those
changes. Pretreating PC12 cells with N-(mercaptopro-
pionyl)-glycine (another type of ROS scavenger [124])
inhibited the apoptosis induced by TiO2 [125] and ZnO
NPs [126]. The reduced cell viability caused by TiO2

NPs was also ameliorated [125]. These findings sug-
gested that NP-induced OS can lead to cell apoptosis.

Brief Summary
The findings described in this review support the con-
clusion that OS is involved in the neurotoxicity of metal-
lic NPs. However, the NP-induced OS status was mainly
assessed by measuring ROS production and the activities
of antioxidant enzymes. Including measurements of RNS
production and levels of non-enzymatic antioxidants
would provide an improved basis for assessing the NP-
induced OS status comprehensively.
Other studies reviewed here implicate apoptosis, inflam-

mation, and cell cycle arrest in the neurotoxicity of metal-
lic NPs. Findings from a few rescue studies suggest that
pretreatment or co-treatment with antioxidants can in-
hibit the inflammatory response, reduce the proportion of
apoptotic cells, and reverse NP-induced neurotoxicity.
These findings indicate that NP-induced OS might be a
central mechanism underlying the neurotoxicity of metal-
lic NPs. However, more rescue research studies are needed

to understand the core role of OS in the neurotoxicity of
metallic NPs.

Conclusions
With the widespread application of metallic NP-based
products, the toxic effects induced by these particles have
become a significant threat to brain health. Relevant stud-
ies have revealed that OS and other mechanisms, such as
apoptosis and the inflammatory response, are involved in
the neurotoxicity of metallic NPs. However, correlations
among these mechanisms are unclear and do not fully
support causality. In view of the purported central role of
OS, a few recent rescue studies pretreating neuronal cells
or co-treating animals, with antioxidants suggest that the
neurotoxicity of metallic NPs might involve a cascade of
events triggered by OS.
Based on the potentially pivotal role of OS in the neuro-

toxicity of metallic NPs, here are some suggestions for
future research:

1) The bio-distribution of different metallic NPs should
be investigated comprehensively

2) More rescue research is needed to ascertain the core
role of OS

3) The mechanisms by which metallic NPs trigger OS
and how NP-induced OS mediates other mecha-
nisms of neurotoxicity should be studied in detail

4) The correlation among OS status, OS-related
biomarkers, and biological effects induced by NPs
should be explored

5) NP-induced OS status should be investigated in
more detail by assessing multiple biomarkers such as
the production of both ROS and RNS, activities of

Fig. 5 Inflammatory response mediated by OS [107]. DAMPs damage-associated molecular pattern molecules; TLR toll-like receptor
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antioxidant enzymes, and the levels of non-
enzymatic antioxidants

6) Because OS-related biomarkers are probably region-
specific in the brain, it is inappropriate to measure
biomarkers in whole brain tissue

7) Additional comparisons about the OS status in the
brain induced by different metallic NPs are needed

8) Changing the physicochemical property of metallic
NPs to inhibit NP-induced OS should be investi-
gated as a feasible means for reducing their
neurotoxicity

Overall, we expect that in-depth investigations of the
central role of OS in metallic NP-induced neurotoxicity
will help define how best to prevent this toxicity and can
help us unravel the complicated correlations among
neurotoxic mechanisms of metallic NPs.
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