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We present a general algorithm for constructing the holographic dictionary for Lifshitz and hyperscaling 
violating Lifshitz backgrounds for any value of the dynamical exponent z and any value of the 
hyperscaling violation parameter θ compatible with the null energy condition. The objective of the 
algorithm is the construction of the general asymptotic solution of the radial Hamilton–Jacobi equation 
subject to the desired boundary conditions, from which the full dictionary can be subsequently derived. 
Contrary to the relativistic case, we find that a fully covariant construction of the asymptotic solution 
for running non-relativistic theories necessitates an expansion in the eigenfunctions of two commuting 
operators instead of one. This provides a covariant but non-relativistic grading of the expansion, according 
to the number of time derivatives.
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1. Introduction

In recent years, great effort has been devoted to the use of 
holographic models in order to gain a deeper understanding of 
the strong coupling physics in condensed matter systems. The 
gauge/gravity duality has proven an instrumental tool in study-
ing the strongly coupled dynamics near quantum critical points 
exhibiting Lifshitz [1,2] or Schrödinger [3,4] symmetry. More re-
cently, gravity duals to non-relativistic systems that transform non-
trivially under scale transformations have been put forward [5–8]. 
The geometries dual to such hyperscaling violating Lifshitz (hvLf) 
quantum systems are of the form

ds2
d+2 = du2 − u−2(z−1)dt2 + d�x2

�−2u2(d−θ)/d
, (1)

where d is the spatial dimension, z and θ are respectively the Lif-
shitz and hyperscaling violation exponents, and � is the Lifshitz 
radius. This metric transforms non-trivially under scale transfor-
mations as

�x → λ�x, t → λzt, u → λu, ds2
d+2 → λ

2θ
d ds2

d+2. (2)

By computing the energy of supergravity fluctuations around the 
background (1) one can unambiguously determine the location of 
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the ultraviolet (UV) of the dual quantum field theory, correspond-
ing to the conformal boundary of the geometry (1), to be at u → 0, 
independently of the value of the exponents z and θ [7,9]. The only 
restriction we shall impose on the exponents z and θ is the null 
energy condition, which leads to seven distinct cases for the val-
ues of z and θ [10]. However, the only two solutions that allow for 
z < 1 require θ > d + z, in which case the on-shell action is UV fi-
nite and as a result there are no well defined Fefferman–Graham 
asymptotic expansions [10]. The marginal case θ = d + z requires 
separate analysis. Our discussion here and in [10] therefore focuses 
on the case z > 1.

For earlier work on asymptotically Lifshitz backgrounds, their 
hyperscaling violating versions and various string theory embed-
dings we refer the reader to the following recent papers and refer-
ences therein [11–15]. The literature primarily relevant to us here 
though concerns earlier work on holographic renormalization and 
the holographic dictionary for asymptotically Lifshitz backgrounds. 
In particular, holography for the Einstein–Proca theory with Lif-
shitz boundary conditions has been discussed from a bottom up 
perspective in [16–23], while in [24–30] AdS embeddings (or lim-
its) of Lifshitz backgrounds were utilized in order to deduce the 
non-relativistic dictionary from the relativistic one in special cases.

Our aim in this Letter and the accompanying main paper [10]
is to present a general algorithm for the construction of the holo-
graphic dictionary of non-relativistic theories, that can be applied 
to theories with or without a UV fixed point and for any value 
of the dynamical exponents that is consistent with the null en-
ergy condition. The main tool for deriving the holographic dic-
tionary, which includes the Fefferman–Graham expansions, the 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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identification of the sources and the dual operators, as well as the 
boundary counterterms required to render the variational problem 
well posed, is a general covariant asymptotic solution of the radial 
Hamilton–Jacobi (HJ) equation. Our main result is a general and 
efficient algorithm for the recursive solution of the HJ equation, 
based on the covariant expansion in eigenfunctions of two com-
muting operators, which are related to the dilatation operator [31]
and its generalization for running theories [32].

2. The model

We consider the class of theories defined by the action

Sξ = 1

2κ2

∫
M

dd+2x
√−gedξφ

× (
R − αξ (∂φ)2 − Zξ F 2 − Wξ B2 − V ξ

)
+ 1

2κ2

∫
∂M

dd+1x
√−γ 2edξφ K , (3)

where αξ and ξ are arbitrary parameters and Zξ (φ), Wξ (φ) and 
V ξ (φ) are unspecified functions of the real scalar field φ. In or-
der to maintain the U (1) gauge symmetry in the presence of a 
mass for the vector field we have introduced a Stückelberg field ω
so that Bμ = Aμ − ∂μω is gauge invariant. The parameter ξ has 
been introduced to allow us to interpret our results in any de-
sired Weyl frame. In particular, the ξ dependence of (3) follows 
from the Weyl transformation g → e2ξφ g of the ξ = 0 (Einstein 
frame) action. Under such a transformation the various parame-
ters and functions of the action transform as αξ = α − d(d + 1)ξ2, 
Zξ (φ) = e−2ξφ Z(φ), Wξ (φ) = W (φ), and V ξ (φ) = e2ξφ V (φ), where 
quantities without the subscript ξ refer to the Einstein frame. The 
advantage of keeping ξ arbitrary in our analysis is that we can im-
pose Lifshitz boundary conditions in a generic ξ frame and cover 
both Lifshitz and hvLf boundary conditions in the Einstein frame 
[10]. In the relativistic case, z = 1, this trick has been employed in 
the study of holography for non-conformal branes [33].

3. Lifshitz and hyperscaling violating Lifshitz

The action (3) admits asymptotically locally Lifshitz solutions of 
the form

ds2 = dr2 − e2zrdt2 + e2rd�x2, B = Qeεr

ε Zo
dt, φ = μr, (4)

if V ξ ∼ Voe2(ρ+ξ)φ , Zξ ∼ Zoe−2(ξ+ν)φ , and Wξ ∼ Woe2σφ asymp-
totically, where the parameters of the theory, Vo , Zo , Wo , ν , ρ , σ , 
αξ , ξ , are related to the Lifshitz boundary condition parameter z
and the integration constants μ, ε and Q as

ρ = −ξ, ν = −ξ + ε − z

μ
, σ = z − ε

μ
,

Q2 = 1

2
Zo(z − 1)ε,

ε = (αξ + d2ξ2)μ2 − dμξ + z(z − 1)

z − 1
,

Wo = 2Zoε(d + z + dμξ − ε),

Vo = −d(1 + μξ)(d + z + dμξ) − (z − 1)ε. (5)

In practice, the parameters we choose to specify at will are z > 1, 
α > 0, Zo > 0, ξ and μ. In the Einstein frame (4) are hvLf solu-
tions with θ = −dξμ and are equivalent to the solutions presented 
in [13].
4. Radial Hamiltonian formalism

Our starting point for the derivation of the full holographic 
dictionary is the radial Hamiltonian formalism for the action (3), 
where the radial coordinate plays the role of Hamiltonian ‘time’. 
Decomposing the bulk fields as

ds2 = (
N2 + Ni N

i)dr2 + 2Nidrdxi + γi jdxidx j,

A = Ardr + Aidxi, (6)

the Hamiltonian takes the form

H =
∫

dd+1x
(
NH+ NiHi + ArF

)
, (7)

where N , Ni and Ar are Lagrange multipliers imposing the Hamil-
tonian, momentum and U (1) gauge constraints, respectively

0 = H

= − κ2

√−γ
e−dξφ

{
2

(
π i jπi j − 1

d
π2

)
+ 1

2α
(πφ − 2ξπ)2

+ 1

4
Z−1

ξ (φ)π iπi + 1

2
W −1

ξ (φ)π2
ω

}
+

√−γ

2κ2
edξφ

(−R[γ ] + αξ∂
iφ∂iφ + Zξ (φ)F ij F i j

+ Wξ (φ)Bi Bi + V ξ (φ)
)
,

0 = Hi = −2D jπ
ji + F i

jπ
j + πφ∂ iφ − Biπω,

0 = F = −Diπ
i + πω. (8)

These constraints provide a full description of the dynamics in the 
Hamilton–Jacobi (HJ) formalism – there is no need to use the sec-
ond order equations of motion. This is achieved by expressing the 
canonical momenta in two different ways. Firstly, they are written 
as gradients of the Hamilton’s principal function S[γ , A, φ, ω] as

π i j = δS
δγi j

, π i = δS
δAi

, πφ = δS
δφ

, πω = δS
δω

, (9)

and the constraints (8) are interpreted as functional partial differ-
ential equations (PDEs) for S[γ , A, φ, ω]. However, only the Hamil-
tonian constraint provides a non-trivial dynamical equation. The 
momentum constraint simply requires that S be invariant with 
respect to diffeomorphisms on the radial slice, while the U (1)

constraint implies that S depends on Ai and ω only through the 
gauge-invariant field Bi . Once a complete integral of these PDEs is 
known, equating the gradients (9) with the standard expressions 
for the momenta in terms of the velocities leads to first order 
flow equations that can be integrated to obtain the full radial de-
pendence of the fields. We refer to [10] for the full set of flow 
equations for our model.

The radial Hamiltonian formulation of the dynamics is partic-
ularly suited for developing the holographic dictionary, both for 
asymptotically AdS and non-AdS backgrounds. The radial coordi-
nate plays the role of energy scale in the dual field theory, and 
so it is natural that it is singled out. From the point of view 
of the bulk theory, the presence of the boundary naturally gives 
rise to a Gaussian normal radial coordinate. Moreover, the func-
tional S is precisely the on-shell action, which is interpreted 
holographically as the generating function of connected correla-
tion functions. The long distance divergences of the on-shell ac-
tion correspond to a certain asymptotic solution of the HJ equa-
tion. The boundary term required to remove these divergences 
can be defined in terms of such an asymptotic solution of the 
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HJ equation [34,35]. The same boundary term, both for asymptot-
ically AdS and non-AdS backgrounds, ensures that the variational 
problem is well posed [35,36]. Moreover, the integration functions 
parameterizing the symplectic space of asymptotic solutions are 
automatically organized into sources and 1-point functions in the 
Hamiltonian formalism, the latter appearing as integration func-
tions parameterizing a complete integral of the HJ equation, while 
the former emerging as integration functions of the first order 
flow equations. More generally, given the asymptotic solution of 
the HJ equation, the flow equations can be integrated to obtain 
the Fefferman–Graham expansions. Multi-scale expansions, where 
e.g. every power is dressed with an infinite series of logs as for 
Improved Holographic QCD [32], can be handled much more effi-
ciently than directly solving asymptotically the second order equa-
tions of motion.

Our main objective, therefore, is to develop a general algorithm 
for solving the HJ equations asymptotically for the class of theories 
(3) and for Lifshitz asymptotics with any z > 1. The full holo-
graphic dictionary can then be constructed using this asymptotic 
solution [10].

5. Superpotential vs. boundary conditions

The first order flow equations relate the leading term of the 
asymptotic solution of the HJ equation to the leading asymptotic 
form of the fields. In order for unconstrained sources to appear 
there must be no conditions involving transverse derivatives on 
the leading terms of the asymptotic expansions. This implies that 
the leading asymptotic form of the fields must follow from a zero 
derivative solution of the HJ equation, i.e. from a ‘superpoten-
tial’. In the presence of a massive vector field, diffeomorphism and 
gauge invariance dictate that the most general zero derivative so-
lution of the HJ equation takes the form

S(0) = 1

κ2

∫
dd+1x

√−γ U
(
φ, B2), (10)

for some superpotential U (φ, B2). Using this ansatz for Hamilton’s 
principal function in the flow equations and demanding that the 
resulting asymptotic form of the metric be asymptotically locally 
Lifshitz not only determines the asymptotic form of U (φ, B2) and 
its first derivatives, but also imposes a (second class) constraint on 
the asymptotic form of the vector field Bi , namely

Bi ∼ Boi = √−Yo(φ)ni, (11)

where ni is the unit normal to the constant time surfaces and 
Yo(φ) := −(z − 1)/2ε Zξ (φ), so that B2

o = Yo(φ). Moreover, denot-
ing φ =: X and B2 =: Y , the superpotential and its derivatives must 
take the asymptotic form

U
(

X, Yo(X)
) ∼ edξ X(

d(1 + μξ) + z − 1
)
,

U Y
(

X, Yo(X)
) ∼ −εedξ X Zξ (X),

U X
(

X, Yo(X)
) ∼ edξ X(−μαξ + dξ(d + z)

)
. (12)

To determine the full superpotential we need to solve the PDE re-
sulting from inserting (10) in the HJ equation, subject to these 
asymptotic conditions. The resulting superpotential generically is 
a Taylor expansion in Y − Yo , or equivalently Bi − Boi . The field 
Y − Yo sources a scalar operator which can be relevant, marginally 
relevant, or irrelevant depending on the values of the various pa-
rameters defining the model. When the dual operator is relevant 
then only a finite number of terms in the Taylor expansion are 
required to obtain an asymptotic complete integral, while in the 
marginally relevant case the full Taylor expansion is required. If 
the dual operator is irrelevant then the source of Y − Yo must be 
set to zero to preserve the Lifshitz boundary conditions.
6. Recursive solution of the HJ equation

Given the leading solution (10) of the HJ equation, we seek to 
determine the subleading terms in the form of a covariant expan-
sion in the eigenfunctions of a suitable operator. There are two 
essential requirements for this operator. Firstly, the covariant ex-
pansion in eigenfunctions of this operator must be compatible 
with the radial asymptotic expansion in the sense that terms in 
the covariant expansion are also radially subleading relative to the 
preceding terms. Secondly, (10) must be an eigenfunction for any 
superpotential U . This requirement is necessary in order to apply 
the algorithm to models dual to theories with running couplings 
in the UV, such as non-conformal branes, holographic QCD [32], or 
hvLf asymptotics in the present case. For boundary conditions cor-
responding to a UV fixed point, relativistic or not, all fields have 
definite scaling dimensions and one can use the dilatation opera-
tor [31]. In the presence of running couplings though we need an 
operator that is blind to these couplings, such as the generalized 
dilatation operator introduced in [32]. Of course, the generalized 
dilatation operator can be applied to theories with UV fixed points 
as well – the resulting expansion will simply be a particular re-
summation of the one obtained with the usual dilatation operator.

There are in fact two operators that satisfy these conditions for 
(10), namely

δ̂ :=
∫

dd+1x

(
2γi j

δ

δγi j
+ Bi

δ

δBi

)
,

δB :=
∫

dd+1x

(
2Y −1 Bi B j

δ

δγi j
+ Bi

δ

δBi

)
. (13)

Indeed, for any U , δ̂S(0) = (d + 1)S(0) , δBS(0) = S(0) . Moreover, 
these operators commute with each other, which means that we 
can construct simultaneous eigenfunctions of both. The eigenfunc-
tions of ̂δ are easy to understand. Any local covariant quantity that 
contains a fixed power of the induced metric γi j and the vector 
Bi , as well as their covariant derivatives, is an eigenfunction of δ̂. 
Since any function of the quantity B2 – not just powers – is an 
eigenfunction, however, covariance implies that only the factors of 
γi j and Bi that are contracted with transverse derivatives count in 
determining the eigenvalue of δ̂. In fact, it can be shown that δ̂
counts the number of transverse derivatives. Namely, a covariant 
local functional S(2k) containing 2k derivatives is an eigenfunction 
of ̂δ with eigenvalue d + 1 − 2k, where d + 1 is the contribution of 
the volume element.

The structure of the eigenfunctions of δB can be understood 
using the fact that δB annihilates the projection operator σ i

j :=
δi

j − Y −1 Bi B j , i.e. δBσ
i j = 0. An eigenfunction S(2k) of δ̂ with 2k

derivatives can be split into a sum of up to k + 1 terms containing 
respectively 0, 1, . . . , k factors of σ i j . This is achieved systemati-
cally as follows. Terms in which all 2k derivatives are contracted 
with Bi are eigenfunctions of δB with eigenvalue 1 − 2k, since ev-
ery factor of Bi contributes −1 to the eigenvalue and the 1 comes 
from the volume element. Terms where 2k − 2 derivatives are con-
tracted with Bi and 2 derivatives are contracted with γ i j are not 
eigenfunctions of δB but they can be written as a sum of two 
eigenfunctions of δB with eigenvalues respectively 1 − 2(k − 1)

and 1 − 2k by writing γ i j = σ i j + Y −1 Bi B j . This process can 
be repeated for all terms with 2k derivatives in order to split 
S(2k) into a sum of eigenfunctions of δB with eigenvalues 1 − 2�, 
� = 0, 1, . . . , k.

This procedure provides a grading of any eigenfunction of ̂δ and 
allows us to look for a solution of the HJ equation in the form of 
a double covariant expansion in simultaneous eigenfunctions of δ̂
and δB , namely
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S =
∞∑

k=0

S(2k) =
∞∑

k=0

k∑
�=0

S(2k,2�), (14)

where δ̂S(2k,2�) = (d + 1 − 2k)S(2k,2�) and δBS(2k,2�) = (1 − 2�)×
S(2k,2�) . This grading becomes especially meaningful in the context 
of Lifshitz boundary conditions. The constraint (11) imposed by 
such boundary conditions forces Bi to be asymptotically aligned 
with the unit normal, ni , to the constant time slices. This in turn 
implies that the projection operator σi j , asymptotes to the spatial 
metric σi j := γi j + nin j , and the operator δB counts time deriva-
tives.

Our algorithm for solving the HJ equation beyond the lead-
ing order solution (10) therefore involves two expansions. Firstly, 
a graded covariant expansion of the form (14) in simultaneous 
eigenfunctions of ̂δ and δB , and secondly a functional Taylor expan-
sion in Bi − Boi around the second class constraint (11) imposed by 
the Lifshitz boundary conditions. In particular, every term in (14)
admits an expansion in Bi − Boi . Inserting this multiple expansion 
of S in the HJ equation leads to a tower of recursion relations in 
k, � for every order in the Taylor expansion in B − Bo . Writing

S(2k,2�) =
∫

dd+1xL(2k,2�), (15)

the recursion relations for the zeroth order in the B − Boi expan-
sion take the form [10]

K−1(φ)

(
δ

δφ

∫
dd+1x′ − Ck,�A′(φ)

)
L0

(2k,2�) = R0
(2k,2�), (16)

where Ck,� = (d + 1 − 2k) + (z − 1)(1 − 2�) and the inhomogeneous 
term R0

(2k,2�)
is determined by the 2-derivative terms of the HJ 

equation at order k = 1, and by the lower order momenta for order 
k > 1. Moreover,

eA(φ) = Z
− 1

2(ε−z)
ξ ∼ eφ/μ, (17)

and the kernel K(φ) ∼ 1/μ can also be expressed in terms of the 
potentials of the model. Similar recursion relations can be derived 
for the higher orders in the B − Boi expansion [10]. These re-
cursion relations are the key element in our iterative algorithm. 
By expanding the solution of the HJ equation in a graded covari-
ant expansion in eigenfunctions of the operators δ̂ and δB and in 
a functional Taylor expansion around the second class constraint 
imposed by Lifshitz asymptotics we have reduced the problem of 
solving the HJ equation at each order in the Bi − Boi expansion to 
the recursion problem of the relativistic case studied in [32].

The solution of the recursion relations (16) depends crucially on 
the parameter μ, which determines whether the scalar is asymp-
totically running (μ 	= 0) or asymptotically constant (μ = 0). The 
latter case corresponds to a UV fixed point and the recursion 
relations become algebraic, providing an extremely efficient algo-
rithm for constructing the holographic dictionary for the Einstein–
Proca theory [18–22], or the Einstein–Proca-Scalar model stud-
ied in [26–28], including the Lifshitz conformal anomalies. When 
μ 	= 0 the functional integration over the scalar can be carried out 
using the method developed in [32]. This is necessary to study 
holography for hvLf backgrounds since the hyperscaling violating 
parameter θ in the Einstein frame is proportional to μ. However, 
when the various potentials defining the model are exactly expo-
nentials the recursion relations become effectively algebraic even 
for μ 	= 0 [10].

The iterative procedure using the recursion relation (16) for 
the O(B − Bo)

0 solution of the HJ equation need only be car-
ried out as long as Ck,� − dμξ ≤ 0, or equivalently (d + 1 − 2k) +
(z − 1)(1 − 2�) − θ ≤ 0. At order O(B − Bo)

m in the Taylor expan-
sion the corresponding inequality takes the form (d + 1 − 2k) +
(z − 1)(1 − 2�) − θ − mΔ− ≤ 0, where Δ+ := d + z + θ − Δ− is the 
dimension of the scalar operator dual to the mode Y − Yo [10]. 
The sum of all terms Sm

(2k,2�)
for which this inequality holds are 

UV divergent and can be identified with (minus) the local covariant 
boundary counterterms required to regularize the variational prob-
lem and the on-shell action [10]. If the values of z, θ and Δ− are 
such that there exist non-negative integers k and 0 ≤ � ≤ k saturat-
ing this inequality, then the corresponding term S0

(2k,2�)
will have 

a pole which needs to be regularized by introducing explicit cut-
off dependence, as is well known from the relativistic case. When 
μ = 0 such terms give rise to non-relativistic conformal anomalies, 
but in the presence of a running dilaton (μ 	= 0) the corresponding 
logarithmic divergences can absorbed into the dilaton, thus avoid-
ing any explicit dependence on the cut-off [10] and hence the 
appearance of a conformal anomaly. It is important to note that, 
in contrast to the relativistic case, terms with different number of 
spatial and time derivatives can contribute to the non-relativistic 
conformal anomaly, as has been observed before for the d = z = 2
Einstein–Proca theory [21].

Moreover, there is always an independent solution of the HJ 
equation starting with a term Ŝreg that has dilatation weight zero, 
and hence is UV finite [10]. This term can be parameterized as

Ŝreg =
∫

dd+1x
(
γi jπ̂

i j + Biπ̂
i + φπ̂φ

)
, (18)

where π̂ i j , π̂ i and π̂φ are undetermined integration functions, only 
subject to the momentum constraint in (8). The term Ŝreg con-
taining the integration functions is required in order to have an 
asymptotic complete integral of the Hamilton–Jacobi equation. The 
holographic dictionary identifies Ŝreg with the regularized gener-
ating function of correlation functions in the dual quantum field 
theory, and the integration functions π̂ i j , π̂ i and π̂φ are related to 
the regularized one-point functions of local operators [10].

7. Asymptotic expansions and Ward identities

Having obtained the asymptotic solution of the HJ equation in 
the form of a covariant graded expansion in eigenfunctions of the 
operators δ̂ and δB Taylor expanded in Bi − Boi , the Fefferman–
Graham expansions are determined by integrating the first order 
flow equations. To account for the anisotropic scaling of the met-
ric and the gauge field due to the Lifshitz boundary conditions we 
parameterize the induced metric and the gauge field as

γi jdxidx j = −(
n2 − nana)dt2 + 2nadtdxa + σabdxadxb,

Aidxi = adt + Aadxa, (19)

where a, b run over the spatial directions only. The flow equations 
determine the leading asymptotic behavior of the anisotropic fields 
to be [10]

n ∼ ezrn(0)(x), na ∼ e2rn(0)a(x), σab ∼ e2rσ(0)ab(x),

φ ∼ μr + φ(0)(x), ψ ∼ e−Δ−rψ−(x), ω ∼ ω(0)(x), (20)

where ψ := Y −1
o Bi

o(Bi − Boi) and n(0)(x), n(0)a(x), σ(0)ab(x), ω(0)(x), 
φ(0)(x) and ψ−(x) are arbitrary sources. Note that there is no inde-
pendent source for the gauge field allowed by the Lifshitz bound-
ary conditions since its asymptotic form is completely determined 
by the rest of the fields according to

Ai ∼
√

z − 1

2ε Zo
n(0)e

(ε−z)φ(0)
μ eεrδit

(
1 + e−Δ−rψ−

) + ∂iω(0). (21)
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This is a direct consequence of the second class constraint (11) and 
is in agreement with what has been found in the vielbein formal-
ism [18]. Note also that the source ω(0)(x) corresponds to a pure 
gauge transformation and so it does not source an independent 
operator.

The modes conjugate to these sources, i.e. the renormalized 
1-point functions, correspond to certain combinations of the in-
tegration functions π̂ i j , π̂ i and π̂φ in (18). Defining the linear 
combinations

T̂ i j := −e−dξφ

√−γ

(
2π̂ i j + Y −1

o Bi
o B j

o Bokπ̂
k),

Ôφ := e−dξφ

√−γ

(
π̂φ + (ν + ξ)Boiπ̂

i),
Ôψ := e−dξφ

√−γ
Boiπ̂

i, Ê i := e−dξφ

√−γ

√−Yoσ
i
jπ̂

j, (22)

(18) leads to the following source-1-point function pairs [10]: 

1-point function source

Π̂ i
j := σi

kσ jlT̂ kl ∼ e−(d+z−θ)rΠ i
j(x) σ(0)ab

P̂ i := −σi
knlT̂ kl ∼ e−(d+2−θ)rP i(x) n(0)a

Ê := −nknlT̂ kl ∼ e−(d+z−θ)rE(x) n(0)

Ê i ∼ e−(d+2z−θ)rE i(x) 0

Ôφ ∼ e−(d+z−θ)rOφ(x) φ(0)

Ôψ ∼ e−Δ+rOψ (x) ψ−

The modes Π i
j(x), P i(x), E(x), E i(x) are respectively the spa-

tial stress tensor, momentum density, energy density and energy 
flux, which comprise the energy–momentum complex of a non-
relativistic field theory [18]. In agreement with [18], the energy 
flux is an irrelevant operator and its source is set to zero by 
the Lifshitz boundary conditions. Inserting these 1-point functions 
in the momentum constraint for π̂ i j , π̂ i and π̂φ leads to the 
non-relativistic diffeomorphism Ward identities [10], which for flat 
boundary take the form

D jΠ̂
i
i + n j D jP̂i + ÔφDiφ + ÔψDiψ = 0,

ni Di Ê + Di Ê i + Ôφni Diφ = 0, DiP̂ i = 0, (23)

where Di denotes the covariant derivative with respect to the 
boundary metric σi j . Moreover, the transformation of (18) un-
der infinitesimal anisotropic Weyl transformations gives rise to the 
trace Ward identity

zÊ + Π̂ i
i + Δ−ψÔψ =

{
μÔφ, μ 	= 0,

A, μ = 0,
(24)

where A is the conformal anomaly [10].

8. Summary and conclusions

We present a general recursive algorithm for solving asymptot-
ically the radial Hamilton–Jacobi equation for an Einstein–Proca-
scalar theory with arbitrary scalar couplings, from which the full 
holographic dictionary is obtained. Lifshitz and hyperscaling vio-
lating Lifshitz asymptotics are imposed covariantly as constraints 
corresponding to turning off the source for the energy flux, which 
is an irrelevant operator. The asymptotic solution of the Hamilton–
Jacobi equation takes the form of a covariant expansion in eigen-
functions of two commuting operators, which provide a gener-
alization of the dilatation operator [31] to anisotropic and scale 
covariant boundary conditions. The full details of the algorithm, 
together with the explicit form of the asymptotic expansions and 
the holographic dictionary for a number of concrete examples are 
presented in the accompanying paper [10].
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