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Abstract 

A crucial issue in bike-sharing systems (BSS) is the unbalanced distribution in space and time of the bikes among the stations. 
Literature shows several methods, to solve the vehicle reallocation problem and most of them are based on rigid control 
thresholds and refer to car-sharing systems. In this paper a more flexible fuzzy decision support system for redistribution 
process in BSS is presented. The aim of the proposed method is to minimize the redistribution costs for bike-sharing 
companies, determining the optimal bikes repositioning flows, distribution patterns and time intervals between relocation 
operations, with the objective of a high level for users satisfaction. The proposed method allows to define the best bikes 
repositioning jointly to the best route for the carrier vehicles. The optimization method has been applied to a simulated BSS  
that can be considered as a module of a wider real BSS thanks to the scalable architecture of the decision support system. The 
results of this first tests are interesting even if further investigation are in progress. 
 
© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Program Committee. 
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1. Introduction 

In recent years sustainable transport systems have been gained increasing attention due to the growth of the 
energy use, noise and air pollution. Different transportation systems with low impact on the environment have 
been implemented in many industrialized countries such as green vehicles use for public transport, car-pooling, 
car-sharing or bike-sharing systems. Moreover, there is an improvement of mobility, since a reduction of traffic 
jam is obtained, due to a decrease in the number of cars moving around and to an increase in the shared use of 
electric or low pollutant vehicles. In addition to the sustainability of the system, the development of Bike-Sharing 
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Systems (BSS) is mainly due to its door-to-door feature (DeMaio, 2009). BSS allow to access areas of the city 
that are forbidden for other kind of vehicles, including electric cars. BSS are also often employed to connect users 
to public transit networks (for ex. connection between transport hub and final destination). A BSS is generally 
based on a bike fleet, bike stations and a given (known) number of users. In these systems, customers arrive to 
rental stations, utilize bicycles for some amount of time, and then return the bicycle to the same or to a different 
bike station.  

The first BSS have been started with small and few expensive systems with low usage rates. The most recent 
BSS have become high-tech systems with thousands of bikes and major investments requirements. These 
advanced systems, including electronically-locking racks or bike locks, telecommunication systems, smartcards, 
mobile phone access, and on-board computers, have made BSS more attractive (Midgley, 2009). The success of a 
BSS, from a strategic planning point of view, depends on the optimal design of the system in term of number, 
location and capacity of stations as well as on the consistency of the available bikes fleet. 

Nevertheless, a greater diffusion and usage of the BSS is limited by its own drawbacks (Büttner et al., 2011). 
BSS is used mainly for medium-short distances and for one-way trips. Such a behavior leads to an unbalanced 
distribution of the bikes over the time and space and consequently to the increase of the probability to find a full 
(no available slot) or empty station (no available bike). Thus, from the real-time management stand point, to 
increase the system capacity and users satisfaction, it is necessary to properly relocate the bikes among the 
stations of the BBS.  

As in technical literature, redistribution scheme relevant to systems operating with shared vehicles can be 
mainly divided into two standard categories: “user based” and “operator based” (Allouche et al., 1999; Barth and 
Todd, 2001; Kek et al., 2006; Vogel and Mattfeld 2010). In the former the users are stimulated to return to a non-
saturated station in order to balance the distribution of the bikes among the stations. In the latter, the relocation is 
assigned to the service staff. While the indirect customer base redistribution is feasible for mid-term operations, 
the direct operator based redistribution may be effective in short-term period.  

The operator based reallocation problem is defined as Pickup and Delivery Problem (PDP). In literature 
several methods to solve the vehicle or resources reallocation problem have been presented (Cheung and Powell, 
1996; Kochel et al., 2003; Nair and Miller-Hooks, 2011). These models are generally applied to freight 
transportation (Du and Hall, 1997; Crainic, 2000) or to car-sharing systems (Barth and Todd, 2001; Kek et al., 
2006 and 2009).  

Recently just a few papers have been dealing with the Bike Sharing Pickup and Delivery Problem (BS-PDP) as 
a variation of classical PDP. The BSS reallocation can be carried out either during the night when the bikes 
demand is negligible (static repositioning, as defined in literature), or during the day when the bikes distribution 
among the stations rapidly changes due to the high demand level (dynamic repositioning). Most of the literature 
presents static BS-PDP (Benchimol et al., 2011; Shu et al., 2010; Chemla et al., 2011; Forma et al., 2010). Even 
less authors deal with the dynamic case. In particular Contrado et al. (2012) propose a mathematical formulation 
of the dynamic problem on a space-time network. In general the dynamic BS-PDP is investigated without 
focusing at redistribution patterns and time periods (Vogel and Mattfeld, 2010). Some works propose a fixed 
repositioning time interval (Nair and Miller-Hooks, 2011; Sayarshad et al., 2012) or assume redistribution 
vehicles moving at random from saturated stations to empty ones (Fricker and Gast,  2012).  

Furthermore the relocation rules proposed in literature are usually based on a binary logic with rigid thresholds 
that could not give a suited demand adaptive system. In addition, when space-time network problem is considered 
then the optimal route over the road network is not considered. This problem is very important when 
redistribution have to be made on congested networks and travel time between bikes station is a crucial variable. 

In this paper a modular Decision Support System (DSS) for dynamic bike redistribution process is presented. 
The method is based on a Fuzzy Inference Systems to minimize the vehicles repositioning costs for bike-sharing 
companies, keeping at a high level users satisfaction, assuming that it increases with the probability to find an 
available bike or a free docking point in any station at any time. The proposed model considers the dynamic 
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variation of the demand (for both bikes and free docking slot) and also micro-simulate the BSS in space and in 
time suggesting optimal repositioning flows, distribution patterns and time intervals between relocation 
operations by explicitly considering the route choice among the stations. The method has been applied to the case 
of a single area covered by BSS made up of 5 stations and one carrier vehicle that represents the typical scheme 
for a part of a wider real BSS. Thanks to the scalability of the approach the DSS can be is easily expended to 
more complex BSSs. 

2. Bike sharing system simulator 

In order to apply the proposed DSS, we have represented and modeled all the operations of a BSS. We assume 
that the system runs an advanced control of the number of bicycles in each station as most of the systems 
currently implemented. The design variables that describe a BSS are the number of stations (Ns) and their 
location in the city network, the number (Nrt) and the capacity (Crt) of the redistribution pick-up or open trailers 
(proper carrier vehicles used to carry several bikes at the same time), for each station: the number of docking slots 
(Nd) and free ones (Np) and the number of available bikes (Nb). The architecture with relevant functions of the 
BSS operations simulator are depicted by the flow-chart in the Fig. 1. 

With respect to the system dynamics, we assume the operating day is divided in Z discrete time intervals. For 
each time interval z and for each station j, given the pickup bikes demand (Db), the model simulate the 
destination choice (Dp) in order to assess the arrival time for each users. The choice model is based on relative O-
D attractiveness and the nature of trip (one-way or round trip). Since in this first stage we have developed the 
simulation for a low density stations distribution, we assume that each bike request that cannot be satisfied (empty 
station) turn user away (demand decreasing); as well as each give back not satisfied demand (full station) 
generate undesired waiting time for user.  

At the begin of each interval z the number of bikes and the available docking points are updated by taking into 
account in-out users flow (turn-over) and the relocated bikes. 

The Decision Support System (Fig. 2) is activated at variable gap time as better explained in the next section. 
At the end of the day (end of service time period), a static redistribution is carried out in order to restore the 
starting bikes distribution among the stations. 

3. The Proposed Decision Support System 

3.1. Theoretical issues 

The problem is to relocate the bicycles from overcrowded station to the stations with a shortage of bikes (i.e. 
balance the demand-supply system). The first essential data is the prediction of future demand among stations in 
order to forecast bikes and free docking point requests. The literature proposes different forecasting methods, in 
particular, for BSS, Borgnat et al. (2009) use a linear regression model; Froehlich et al. (2009) have developed a 
Bayesian network. 

  The core of the forecasting demand method in the proposed DSS is based on Artificial Neural Networks 
(ANN) and Fuzzy Logic. A first advantage of this approach is that, using Neural Networks (NN), there is no need 
to assume explicit functions for returned or picked up bikes, because a NN learns directly from observed data. 
Therefore, starting from the time series of bikes requests, the NN is able to relate the hour of the day to entering 
or exited vehicles number. Furthermore, the high capability and the goodness of NN with respect to forecasting 
methods proposed for shared use vehicle has been proved by Kek et al. (2005) for the case of car sharing systems. 

Another problem faced in the proposed DSS is the decision about when starting the relocation operations.  
Current approaches are based on binary logic, so their decisional mechanism is quite rigid: as soon as any 
threshold is exceeded, the relevant rule suggests that relocation should be performed, disregarding how much the 
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threshold is exceeded or its importance. On the contrary, fuzzy logic allows calculations using variables defined 
by approximate values, linguistic terms, or both and thus more flexible planning is possible. In fact, differently 
from traditional logic, fuzzy logic assumes that the truth of a given statement can have more than two values (i.e. 
true, untrue): every proposition may have a certain degree of truth, defined by the value of its membership 
function. That is, the degree of truth belongs to the interval [0, 1], rather than to the set {0, 1}. Therefore, a fuzzy 
logic based DSS could lead to better results than a traditional DSS (Dell’Orco et al., 2008 and 2011) in particular 
when dealing with uncertain, imprecise or ambiguous environment.  

3.2. Proposed algorithm 

In other studies, the relocation process is triggered when the number of available bicycles exceeds minimum or 
maximum fixed thresholds (Barth and Todd, 2001; Kek et al., 2006). In the model proposed in this paper, the 
DSS for relocation can start on variable Gap Times (GT) where the value of GT depends on the station status. GT 
is defined as the maximum time interval in which no station status variation is considered.  

The architecture of the proposed DSS is depicted in the Fig. 2 and it starts with the forecasting module that 
estimates entering and exiting bikes, based on given historical time series. For each station the estimation is 
performed on GT by two artificial NNs. The first NN is used to estimate the number of entering vehicles; the 
second one to forecast the exiting vehicles. Both NNs are feed-forward back-propagation networks with a training 
function that updates weight and bias values according to Levenberg-Marquardt optimization. The NNs have 
three layers with five neurons for the first and the second layer and one neuron for the third. Each day is divided 
into Z steps. The input data of NNs are the vectors of entered and exited bicycles in the station, for each step, 
during the previous months of the prediction. Actually, such a formulation depends on the available data. 

The outputs of the NNs are the entering (PDp) and exiting (PDb) number of bicycles forecasted for each step. 
Once the predicted request of each user is known, through the simulation of the whole BSS, it is possible to 
evaluate, in each GT, the availability of a free parking slot or a bicycle. In this paper we aim at describe the 
relocation algorithm so we will presents any specific test and validation with real data for this forecasting module.  

In other words at this stage the outputs are the estimated number of lost users (PLu; i.e. users whose service 
request cannot be satisfied) and waiting users (NWU; i.e. users that do not find free docking points at the desired 
station) as well as the estimated waiting time spent to return the bike (UWT).  

These parameters and the total predicted waiting time for all stations (STWT) are used as input data for the 
Fuzzy Inference System (FIS). A FIS simulates the behavior of a human decision-maker by using rules like: IF S 
is X THEN T is Y. Within the Fuzzy Logic framework, this rule means “the more S is X, the more T is Y”, and 
the variables X and Y can be represented (or be the representation) by linguistic or approximated values; in other 
words, fuzzy values. The degree of truth of a given rule depends on fuzzy variables, defined by their respective 
Membership Functions (MF). For more detail of a FIS structure refer to Zimmermann (1996). 

The rules defined in the FIS of this DSS are: 
 

“IF the sum of PLu AND NWU is medium, UWT is high, AND STWT is high, THEN the system is rather out of 
control”. 
 

Thus, the output of the FIS is the status of the station. If the status is in control then the GT is set as the longest 
allowed gap time GT0 for the bicycles relocation. The more the status is out of control the more the GT is set to a 
shorter established interval.  
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Fig. 1. BSS simulation flow chart 
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Fig. 2. Flowchart of proposed DSS 
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If the status identified by the FIS is different from “in control” (i.e. “balanced”), then the algorithm goes on to 
find whether the conditions exist to perform relocations (i.e. unbalanced system). In particular, since the 
forecasted entering-exiting bicycles are known, starting from the current number of bicycles in each station, 
through the simulator it is established the attribute of each station. More simply, the algorithm indicates whether a 
station is seller or receiver as a function of the forecasted occupation level of the station during the GT. Moreover 
for each station the DSS evaluates the possible maximum number of bikes that can be moved or docking points 
that can be made available. 

If the problem is over constrained, no relocation is feasible. For example if all station are receivers, no bikes 
can be delivered. 

On the basis of the forecasted in-out bikes within the GT interval, by solving the optimization problem given 
in eq. 1 we obtain the Relocations Matrix (RM), with rmik entries, and the Relocation Path (RelP) of the 
redistribution carrier vehicles that minimizes the total costs for the provider (sum of relocation costs, RelC, and 
lost users costs,  LuC). 

The RM matrix belongs to a set of matrix M such that if a station is seller it must not be receiver. The upper 
bound (UB with ubk entries) and the lower bound (LB with lbi entries) of the problem are calculated adjusting the 
possible maximum number of transferable bikes or free docking points. This correction is due to find the 
minimum number of relocated bikes that maximize the users satisfaction.  

 
 
 

  
   

 
       (1) 

 
 
 
 
 
 
 
 
 
 
 

 
This step is necessary to reduce the solution space because the provider costs do not change if the relocation 

path and lost users do not change.  
The relocation paths are carried out by solving a Travelling Salesman Problem in the same level of the 

optimization problem (fixed point problem). In particular the redistribution truck must previously pass through 
the seller stations. The lost users costs are calculated with the BSS simulation considering PDp and PDb slots and 
bikes demands. 

Differently from other approaches that use bi-level formulations, the proposed minimization problem is 
formulated as fixed point Non Linear Integer Optimization. The solution algorithm is based on a Branch and 
Bound procedure: the outputs are the optimal relocation matrix and the optimal relocation path and bikes 
distribution among the stations.  

If the system status identified by the FIS is “in control”, and if during the gap time GT0 at least one station is 
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almost full or almost empty then the DSS provides (or respectively asks for) the number of vehicles previously 
fixed. 

4. Numerical application 

The proposed algorithm, thanks to the modular properties of the approach, has been applied to a part of a BSS 
made up of 5 stations that represent the typical scheme of a wider real BSS. The station 1 is located in the city 
centre, the other four stations are located in the outskirts of the city. The distances in meters between the stations 
are reported in the Table 1.The DSS can be is easily scaled to more complex BSS with a larger number of central 
or peripheral stations. 

The method has been applied considering three working days with 24 hours/day of operations. Each day is 
divided into 288 steps (Z = 288), 5 minutes each long. The starting data are: the number of stations Ns = 5, the 
number of carrier vehicles (i.e. redistribution trucks) Nrt = 1 with a capacity Crt = 20 bikes, the number of 
docking points per station (Nd1, … Nd5) = (40, 30, 30, 20, 20), the number of available bikes (Nb1, … Nb5) = (10, 
10, 10, 10, 10), the Gap Time steps (GT0=11, GT1=9, GT2=8 and GT3=6) and the station occupation parameters 
(Tr max = 95% and Tr min = 5%).  

Since all the distances between stations (Tab. 1) are lower than one kilometer we assume that the truck travel 
and operation time between two stations is lower than five minutes that is a truck movement takes place within 
one step.  

Table 1. Station distances [m] 

O/D 1 2 3 4 5 

1 0 400 500 300 300 

2 400 0 700 700 600 

3 500 700 0 400 800 

4 300 700 400 0 600 

5 300 600 800 600 0 

 
The total redistribution cost per kilometer is assumed to be 0.30 Euros (considering depreciation, taxes, fuel 

and tires consumption and maintenance costs); the cost for each lost user is fixed to 0.7 Euros (based on 
subscription and fees of the most of the major BSS). Actually, the costs for lost users should take into account all 
the impacts given to the consequent use of “no-green” transport means. 
      The historical data (fifty days input/output demand) are generated by random extractions from a Normal 
distribution, starting from Fixed Vectors of entering-exiting bikes (FV) (Angeloudis et. al, 2012). Each entry of 
FV is the number of bicycles entered or exited in each step; this number is drawn from the set {0, 1, 2, 3, 4, 5} 
where each value has different extraction probability as a function of the station position and time of the day. 
Since we carried out the numerical example for different levels of demand, a different FV has been established. 
The higher the level of demand is, the higher the probability of a high number extraction. 

We assumed triangular and trapezoidal shapes for the MFs in the FIS. For example in Fig. 3 the membership 
functions of the number of lost and waiting users are shown.  

 
To evaluate the performances of the proposed model, we have tested the algorithm considering two cases and 

three levels of demand. The two cases are: no relocation and relocation with variable gap time (proposed DSS).  
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Fig. 3. Membership functions of the number of users not immediately satisfied 

Table 2. Excerpt of results 

demand  level 1 2 3 

number of day 1 2 3 1 2 3 1 2 3 

pickup demand 263 302 282 477 505 494 781 720 811 

relocated bikes 59 88 76 156 153 172 87 83 70 

lost users (no rel.) 52 76 60 161 193 188 361 304 391 

lost users (rel.) 29 19 22 88 109 112 324 269 341 

lost users reduction (%) 44.2 75.0 63.3 45.3 43.5 40.4 10.2 11.5 12.8

relocation costs 63.9 76.5 59.4 114.6 114.9 134.1 60.9 62.4 55.5

 
Some results of the mentioned cases are reported in Table 2. In all cases considered cases, the proposed DSS 

leads to a reduction of the number of lost users. Also case of low demand level, positive results have been 
reached. Assuming higher level of demand, due to the congestion of the system, the proposed method shows a 
lower reduced number of lost users. 

5. Conclusions and further developments 

In this paper a DSS for optimal relocation of vehicles in bike-sharing systems has been presented. The method 
aims at overcome some draw-backs of the existing BSSs that lack in relocation operations or in most of case is 
made occasionally. In particular, differently from other methods, the proposed one jointly determines the 
relocation time windows, the optimal carrier vehicles route and the number of bikes to be repositioned. The 
optimization model has been applied for a single area of a simulated BSS and the early results show that the 
relocation management leads to the increase of users satisfaction in term of probability of finding available bikes 
or free slots. The method is modular so that it can be extended to wider and real sized systems. 

The proposed DSS reproduce in detailed way the system, thus it can be also used for real-time management 
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and the strategic design that is to determine the optimal layout of the BSS.  
Additional simulation for wider BSS and multiple carrier vehicles are needed and in progress in order to check 

the robustness of the method. Further research will deal with the implementation of the ANN based model for the 
real-time estimation of bikes demand based to a real systems with consequent validation using data collected on 
field data. 
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