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Chemical modifications of histones and DNA, such as histonemethylation, histone acetylation, and
DNAmethylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or
remove such chemical modifications are known, or might be suspected, to be sensitive to changes
in intracellular metabolism. This knowledge provides a conceptual foundation for understanding
howmutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly,
for how alterations in metabolism and nutrition might contribute to disease. Here, we review litera-
ture pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic
cells.
Introduction
Central to themany definitions of ‘‘epigenetics’’ is the knowledge

that genes contain regulatory information beyond their nucleo-

tide sequences. This information can either be dynamic and tran-

sitory in nature or be relatively stable, capable of being passed

on to somatic daughter cells, as occurs during lineage commit-

ment, and in some cases to offspring via the germline, as occurs

with parentally imprinted genes. The most thoroughly under-

stood epigenetic mechanisms influence gene expression and

do so as a result of changes in chemical modifications of the

DNA (for example, methylation of CpG dinucleotides within

gene promoters) or the physical accessibility of the DNAby virtue

of its association with histones, nonhistone proteins, or noncod-

ing RNAs (for example, XIST).

The basic building block of chromatin is the nucleosome core

particle, consisting of approximately 147 base pairs of DNA

wrapped around a histone octamer that contains two copies

each of histones 2A, 2B, 3, and 4. The tails of histones H3 and

H4 are subject to a variety of posttranslational modifications

including acetylation, methylation, phosphorylation, sumoyla-

tion, and ubiquitylation. In general, histone acetylation is associ-

ated with a more open chromatin configuration (euchromatin)

that is permissive for transcription. Histone deacetylation is

usually associated with condensed, compacted chromatin

(heterochromatin) and transcriptional repression. The positions

of nucleosomes relative to the DNA strand also influence which

genes are capable of being transcribed and are regulated by

chromatin remodeling complexes such as SWI/SNF complexes.

Histone acetylation leads to an increased negative charge,

which loosens the interaction between the histone and the nega-

tively charged DNA. In addition, acetylated histones recruit

specific chromatin-associated proteins that contain bromodo-

mains. Histone methylation, by contrast, does not alter histone
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charge but instead creates a docking site for chromatin-associ-

ated proteins that contain specific methyl histone-binding

domains, such as plant homeodomain (PHD) domains, tudor

domains, or chromodomains. These chromatin-associated

‘‘reader’’ proteins often recruit other proteins that contain addi-

tional chromatin-modifying activities (including ‘‘writers’’ and

‘‘erasers’’ that add or remove specific histone posttranslational

modifications, respectively). The consequences of histonemeth-

ylation are influenced by the specific histone residue that is

modified, the number of methyl groups added (mono-, di-, or tri-

methylation), and other contextual factors. Methylation of H3K4,

H3K36, and H3K79 is often associated with transcriptionally

active euchromatin. By contrast, methylation of H3K9, H3K27,

andH4K20 helps specify transcriptionally repressed heterochro-

matin.

Histone methylation can also influence DNA methylation and

vice versa. Specific methyltransferase enzymes are involved in

de novo and maintenance DNA methylation. Methylation of

CpG dinucleotides in promoter regions typically inhibits tran-

scription. DNA methylation tends to be a more stable modifica-

tion than histone methylation but can undergo changes during

embryogenesis and aging. It has been appreciated for many

years that cancers can display global DNA hypomethylation

while, at the same time, exhibiting hypermethylation of genomic

regions responsible for the expression of tumor suppressor

genes.

Many enzymes that play important roles in epigenetic gene

regulation utilize cosubstrates generated by cellular metabolism,

thereby providing a potential link between nutrition, metabolism,

and gene regulation. In this review, we describe examples of

such enzymes as well as evidence that altered metabolism,

through altered epigenetics, can contribute to disease. As this

topic has recently also been reviewed by others (e.g., Dawson
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Figure 1. Metabolism and Acetylation/Deacetylation
Histone acetylases use acetyl-CoA (Ac-CoA) as an acetyl donor, whose
synthesis requires coenzyme A (CoA). Ac-CoA can be regenerated in chemical
reactions involving pyruvate, citrate, acetate, and various amino acids such as
threonine and by fatty acid beta oxidation. Deacetylation by Sirtuin family
histone deacetylases requires NAD+, leading to the generation of O-acetyl-
ADP ribose and nicotinamide (NAM). NAD+ is produced from NMN (nicotin-
amide mononucleotide), which can be salvaged from NAM or produced de
novo from tryptophan. For simplicity, enzymes catalyzing the various reactions
are not shown.
and Kouzarides, 2012; Lu and Thompson, 2012; Teperino et al.,

2010) we focus particular attention on pertinent studies that

might have been overlooked. We have also purposely been

provocative by raising questions and, in some cases, chal-

lenging existing dogma in the field.

Acetyl-CoA: ‘‘Activated Acetate’’ and Histone
Acetylation
Acetyl-CoA fuels the TCA cycle for the production of ATP under

aerobic conditions and is a critical building block for cholesterol,

lipids, amino acids, and other components required for cell

growth. It was discovered as the ‘‘activated’’ form of acetate,

so named because of its favorable energetic state for two-

carbon donation in anabolic biochemistry (Lipmann and Kaplan,

1946). Acetyl-CoA is also the substrate used by histone acetyl

transferase (HAT) enzymes to modify histone tails as an integral

determinant of the epigenetic state of chromatin in eukaryotic

cells (Figure 1) (Lee and Workman, 2007; Shahbazian and Grun-

stein, 2007).

Acetyl-CoA Generation

Acetyl-CoA can be produced through a variety of metabolic

pathways, both catabolic and anabolic (Figure 1). Principal

among these is the conversion of pyruvate into acetyl-CoA via

the mitochondrial pyruvate dehydrogenase complex late during

the oxidation of glucose and the b-oxidation of fatty acids. Given

its polarity and relative chemical complexity, acetyl-CoA does

not readily diffuse across membranes. As such, metazoan cells
have evolved the malate-citrate antiporter system to move mito-

chondrial citrate to the cytoplasm, where it can combine with

ATP and CoA to be converted to acetyl-CoA and oxaloacetate

via the ATP citrate lyase enzyme, thereby affording a cytoplasmic

pool of acetyl-CoA for lipid biosynthesis. Acetyl-CoA can also be

produced catabolically from threonine via a mitochondrial threo-

nine dehydrogenase enzyme uniquely expressed in mouse

embryonic stem cells; anabolically from acetate, ATP, and CoA

via acetyl-CoA synthase enzymes localized in mitochondrial,

cytoplasmic, or nuclear compartments of mammalian cells;

and via an anaplerotic pathway through reductive carboxylation

of a-ketoglutarate.

Acetyl-CoA Fluctuation

A recurring theme woven throughout this review asks the ques-

tion of how the levels of consumable nutrients, enzyme

substrates, and even molecular oxygen are sensed by cells as

a means of adaptation. More specifically, we focus on the

possibility that gene expression is modulated via epigenetic

modification of chromosomal proteins in accord with the abun-

dance of essential metabolites. The activity of almost all

enzymes involved in intermediary metabolism is regulated as

a function of the abundance of both enzyme substrate and

product. By contrast, many enzymes involved in key aspects

of intracellular signaling are not regulated in this way. Take, for

example, the hundreds of protein kinase enzymes that, using

ATP as a substrate, modify target proteins by phosphorylation.

With the exception of the adenosine monophosphate-regulated

protein kinase (Hardie, 2011), almost no protein kinase enzymes

are built to sense the level of cellular ATP in the context of their

regulatory function. Unless a cell is in a deathly sick state of

ATP under abundance, protein kinase enzymes are capable of

functioning perfectly well irrespective of ATP levels. This obvi-

ously results from the fact that protein kinases are endowed

with affinity for substrate that is considerably more avid than

the ambient levels of intracellular ATP.

Turning to enzymes involved in epigenetic regulation, starting

with HATs, we ask the following: are we to consider them as

being analogous to substrate-limited metabolic enzymes, or

are they instead protein kinase-like in having evolved properties

that shield themselves from fluctuation in the level of intracellular

acetyl-CoA? Before considering whether acetylase enzymes

might be substrate regulated, it is first important to ask whether

the intracellular levels of acetyl-CoA fluctuate in biological

settings. Studies of two different eukaryotic cells have indeed

given evidence of significant fluctuation in acetyl-CoA. For

example, prototrophic (wild-type) strains of yeast grown in the

nutrient-limiting environment of a chemostat spontaneously

enter a synchronous and highly robust metabolic cycle (Klevecz

et al., 2004; Tu et al., 2005; Tu and McKnight, 2006, 2009;

Tu et al., 2007). Over a 4–5 hr cycle the cells rhythmically

oscillate between oxidative and reductive growth (Figure 2).

Mitochondrial respiration during the oxidative phase of this yeast

metabolic cycle (YMC) helps accumulate appropriate levels of

energetically valuable building blocks required for transition

into a reductive, glycolytic phase wherein the cells commit to

DNA synthesis and cell division. Acetyl-CoA levels fluctuate

dramatically as a function of the YMC. Acetyl-CoA levels peak

at a 6-fold-higher level at the transition of the oxidative (Ox)
Cell 153, March 28, 2013 ª2013 Elsevier Inc. 57



Figure 2. Evidence of Transient Acetylation of Histone H3 Only

during the Oxidative Phase of the Yeast Metabolic Cycle
(A) Periodic fluctuation in oxygen levels in a chemostat growing prototrophic
yeast. The yeast metabolic cycle (YMC) is roughly 5 hours in duration and
defined by sequentially repeating oxidative (Ox), reductive building (RB), and
reductive charging (RC) metabolic phases (adapted from Tu et al., 2005).
(B) Quantitative measurement of acetyl-CoA levels over the YMC reveal
elevated levels of themetabolite during the Ox phase of the YMC.Western blot
measurements of H3K9 acetylation over the YMC reveal dynamic acetylation
temporally correlate with the peak abundance of acetyl-CoA.
(C) ChIP-seq analysis of H3K9 acetylation on the promoter of the gene en-
coding the RPS7B ribosomal protein reveals modification limited to the Ox
phase of the YMC.
(D) Transcript abundance of the RPS7B mRNA peaks during the Ox phase of
the YMCprecisely when acetyl-CoA levels are of highest abundance andwhen
the promoter of the RPS7B gene is modified by H3K9 acetylation.
phase to the reductive building (RB) phase relative to the meta-

bolically quiescent, reductive charging (RC) phase of the YMC

(Cai et al., 2011; Tu et al., 2007). One likely means by which intra-
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cellular levels of acetyl-CoA peak at the Ox/RB boundary is the

coordinated induction of all enzymes required to convert ethanol

into acetylaldehyde, acetylaldehyde into acetate, and acetate

into acetyl-CoA at this precise temporal window of the YMC. In

this way, ethanol fermented via the consumption of glucose

during the RB phase of the YMC and accumulated in the extra-

cellular reservoir of the chemostat can be retrieved and rebuilt

into a valuable cellular building block. That the ‘‘recycled’’ hydro-

carbon of ethanol enzymatically converted into acetyl-CoAmight

be directly relevant to the epigenetic state of yeast cells is

strongly hinted by the fact that the terminal enzyme in the

pathway, acetyl-CoA synthase, has been shown to be localized

to the nucleus (Takahashi et al., 2006).

Significant fluctuation in the abundance of acetyl-CoA has

also been observed as a function of the differentiation of mouse

embryonic stem cells (ESCs). Undifferentiated ESCs contain

significantly higher levels of acetyl-CoA than the embryoid

body (EB) cells induced to differentiate by the combined with-

drawal of leukemia-inhibitory factor (LIF) and application of reti-

noic acid (RA) (Wang et al., 2009a, 2011). The observed fluctua-

tion of acetyl-CoA levels correlates with dramatic changes in the

expression of the threonine dehydrogenase (TDH) enzyme,

which is rate limiting for the conversion of threonine into glycine

and acetyl-CoA. Undifferentiated mouse ESCs express levels of

TDH upward of 1,000-fold higher relative to any other source of

mouse cells or tissues, and the gene encoding TDH is stringently

repressed immediately upon induction of ESC differentiation in

response to LIF withdrawal and RA administration. When undif-

ferentiated ESCs are exposed to a specific chemical inhibitor of

the TDH enzyme, intracellular levels of acetyl-CoA drop precipi-

tously (Alexander et al., 2011). As will be discussed subse-

quently, it has been hypothesized that the ability of the TDH

enzyme to convert threonine into glycine and acetyl-CoA may

not only fuel mouse ESCs in a specialized manner but also

help dictate an equally specialized epigenetic state.

Control of Gene Expression by Acetyl-CoA

Do the unusually high levels of acetyl-CoA present in undifferen-

tiated mouse ESCs, or yeast cells poised at the Ox/RB boundary

of the YMC, play a determinative role in epigenetic regulation of

gene expression? Where this has only been hypothesized for

mouse ESCs, data have been gathered to affirmatively answer

this question in yeast cells (Figure 2).

As described by Tu and colleagues (Cai et al., 2011; Cai and

Tu, 2011, 2012), numerous acetylation marks on the K9, K14,

K23, and K27 residues of histone H3 and the K5, K8, and K12

residues on histone H4 only appear over a 30–45 min window

corresponding exactly with the Ox/RB boundary that is coinci-

dent with the peak abundance of intracellular acetyl-CoA. The

fact that these acetylation marks peak at the Ox/RB boundary

gives evidence that this form of epigenetic regulation is unusually

dynamic, consistent with reports that the half-life of histone acet-

ylation may be as short as 3 min (Waterborg, 2002). Further DNA

microarray and ChIP-seq experiments led to the identification of

roughly 1,000 growth genes selectively acetylated and activated

only when intracellular levels of acetyl-CoA peak (Cai et al., 2011,

Tu et al., 2005). These include genes encoding ribosomal

components, translation factors, and the regulatory D1 cyclin,

corresponding precisely to the set of genes known to gate entry



of yeast cells into the cell division cycle (Jorgensen et al., 2002).

The precision of temporal induction of these 1,000+ genes is

astounding; the entire gene set is coordinately induced within

a single-digit number of minutes within the 4–5 hr YMC (Rowicka

et al., 2007).

Acetyl-CoA and Histone Acetyltransferase Enzymes

The GCN5 histone acetylase enzyme of the SAGA complex has

been identified as the critical enzyme responsible for transient

acetylation of growth genes at the Ox/RB boundary (Cai et al.,

2011). This conclusion derives from ChIP-seq experiments

showing the selective association of the SAGA complex with

the promoters of the entire battery of growth genes only during

thewindow of peak acetyl-CoA accumulation, alongwith genetic

experiments wherein it has been demonstrated that catalytically

active GCN5 is critically required for YMC oscillation (Cai et al.,

2011). What properties of the SAGA complex and GCN5 might

uniquely qualify it as an acetyl-CoA sensor? Several regulatory

subunits of the SAGA complex are themselves transiently acet-

ylated only during the Ox/RB window, raising the possibility

that a complex pathway of allosteric regulation is at the heart

of the sensing ability of SAGA (Cai et al., 2011). More simplisti-

cally, it is possible that GCN5 requires high levels of acetyl-

CoA and that the enzyme is less active in other phases of the

YMC relative to the Ox/RB window wherein acetyl-CoA levels

peak. In this regard it may be notable that the off-rate of

acetyl-CoA binding to the yeast GCN5 enzyme is more than an

order of magnitude more rapid than that of human p300/CBP

HAT enzyme, human GCN5, or Tetrahymena GCN5 (Langer

et al., 2002).

Cancer Connection

The genes whose promoter regions and chromatin are differen-

tially acetylated exactly when acetyl-CoA levels peak during the

YMC encode precisely those protein and RNA products

required to enable cell growth. This yeast growth gene battery

matches closely with the genes induced by the c-Myc oncopro-

tein in mammalian cells (Ji et al., 2011), which have been re-

ported to be codependent upon c-Myc and GCN5/SAGA

(McMahon et al., 1998, 2000). This precisely orchestrated

pattern of yeast growth gene induction in response to ambient

levels of intracellular acetyl-CoA probably represents an evolu-

tionarily ancient regulatory pathway allowing cells to properly

link the commitment of cell growth and division to nutritional

state. Future studies will help assess whether this same

pathway is employed by mammalian cells, especially the

nutrient-limited cells of solid tumors. In this vein, it is noteworthy

that the production of acetyl-CoA in HeLa cells necessary to

drive histone acetylation has been attributed to the enzymatic

conversion of citrate into oxaloacetate and acetyl-CoA via the

ATP citrate lyase enzyme (Wellen et al., 2009). Whereas

mammalian cells contain three paralogous enzymes capable

of converting acetate into acetyl-CoA, the latter study provides

evidence that cancer cells make acetyl-CoA via a fundamentally

different pathway than prototrophic yeast. The observations of

Wellen and colleagues do conclude, however, that the GCN5

histone acetyltransferase enzyme of the SAGA complex is of

critical importance for histone acetylation in response to the

combined provision of glucose and growth factors to otherwise

quiescent cells. As such, both yeast and human cancer cells
may employ similar strategies to couple nutrient availability to

the control of gene expression.

NAD+ and Deacetylation
The burning of metabolic fuels usesmolecular oxygen as the ulti-

mate electron acceptor. Instead of being directly transferred to

O2, electrons evolving from oxidative reactions use pyridine

nucleotides as specialized carriers, with the reduced forms of

these carriers then being able to transfer electrons to molecular

oxygen. Nicotinamide adenine dinucleotide (NAD) is a key elec-

tron carrier in the oxidation of hydrocarbon fuels. The nicotinate

moiety of NAD (niacin or vitamin B6) is derived from tryptophan

and combines with 5-phosphoribosyl-1-pyrophosphate (PRPP)

to yield nicotinate ribonucleotide and inorganic pyrophosphate.

Desamido-NAD is then formed via the transfer of an AMPmoiety

from ATP to nicotinate ribonucleotide, with the final step in the

synthesis of NAD involving the transfer of the ammonia gener-

ated from the amide group of glutamine to the nicotinate

carboxyl group. NADP, the related, phosphorylated derivative

of NAD, is made via the transfer of a phosphoryl group from

ATP to the 20-hydroxyl group via an NAD kinase enzyme. Upon

electron acceptance, NAD+ and NADP+ are converted to the

reduced forms of these pyridine nucleotides. The ambient intra-

cellular ratio of NAD+/NADH is roughly 100:1, whereas the ratio

of NADP+/NADPH is 1:100. These ratios reflect the evolved

necessity for NAD+ to function primarily as an electron acceptor

in the burning of hydrocarbon fuels and the necessity for NADPH

to fulfill anabolic biosynthetic reactions including the synthesis of

cholesterol, bile acids, steroid hormones, and triglycerides.

Considerable attention has been paid to the hypothetical role

of fluctuating NAD+ levels as a function of nutritional state and

the activity of deacetylase enzymes. These enzymes come in

two flavors, those that catalyze deacetylation in an NAD+-inde-

pendent manner, yielding the deacetylated substrate and free

acetate as products; and those that are NAD+-dependent,

yielding O-acetyl-ADP-ribose, the deacetylated substrate, and

nicotinamide as products (Denu, 2005; Feldman et al., 2012;

Haberland et al., 2009; Sauve et al., 2006). The latter proteins

are members of the sirtuin family of deacetylases (Figure 1),

which include two isoforms that are primarily housed in the nuclei

of mammalian cells (SIRT6 and SIRT7), three that are localized to

mitochondria (SIRT3, SIRT4, and SIRT5), and two that are found

in both cytoplasmic and nuclear compartments (SIRT1 and

SIRT2) (Finkel et al., 2009; Guarente, 2011a; Haigis and Sinclair,

2010; Verdin et al., 2010).

NAD+ and Sirtuin Deacetylases

For the purpose of simplicity, one can consider the action of sir-

tuin deacetylase enzymes as being a counterbalance to nutrient-

driven protein acetylation. On a more microscopic level, the

involvement of the mitochondrial SIRT3 enzyme in the deacety-

lation of the acetyl-CoA synthase enzyme AceCS2 is revealing

(Hallows et al., 2006; Schwer et al., 2006). Under appropriate

nutritional conditions, AceCS2 is acetylated on a specific lysine

residue that inhibits the ability of the enzyme to convert acetate

into acetyl-CoA, a regulatory scheme conserved from

Salmonella to mammals (Hirschey et al., 2011; Starai et al.,

2002). SIRT3-mediated deacetylation of AceCS2 reactivates

the enzyme. One potential reason for justifying why AceCS2 is
Cell 153, March 28, 2013 ª2013 Elsevier Inc. 59



deacetylated by a sirtuin enzyme is that the product of the reac-

tion is not acetate, which might create a futile cycle, but instead

O-acetyl-ADP-ribose and nicotinamide. Alternatively, sirtuin-

mediated production of the latter metabolite might avail it for

biosynthetic or regulatory purposes (Hassa et al., 2006). On

a more macroscopic level, one can consider the ability of

SIRT1 to deacetylate the PGC1a transcriptional coactivator.

PGC1a coordinately regulates many genes whose products

conspire to control intermediary metabolism in many tissues of

the body. When heavily acetylated, PGC1a is inactive (Lerin

et al., 2006; Rodgers et al., 2005). SIRT1-mediated deacetylation

reactivates PGC1a (Lerin et al., 2006). In the cases of both

AceCS2 and PGC1a, access to ample nutrients can simplisti-

cally be understood to inhibit the activities of the two proteins

via acetyl-CoA-mediated acetylation. This inhibition, in turn,

can be respectively counterbalanced by the mitochondrial

SIRT3 and nuclear SIRT1 enzymes.

Caloric restriction would logically be expected to demand the

activity of the sirtuin family of deacetylase enzymes. For

example, SIRT3-mediated deacetylation of AceCS2 would be

desired to maximize production of acetyl-CoA from acetate

under conditions of caloric restriction, and SIRT1-mediated de-

acetylation of PGC1a would help activate transcription of the

appropriate battery of nuclear genes important for adaptation

to starvation or caloric restriction. Evidence has been reported

that the levels of expression of sirtuin enzymes can adapt to

metabolic state (Hirschey et al., 2011). It has likewise been re-

ported that NAD+ levels may increase upon caloric restriction,

thereby offering an alternative means of sirtuin activation.

Although it is counterintuitive to consider that cells or tissues

would produce higher levels of NAD+ under conditions of caloric

restriction, where the need of the cofactor as an electron

acceptor for oxidation of hydrocarbons should be diminished,

this interpretation has gained widespread acceptance (Cantó

and Auwerx, 2011; Guarente, 2011b). Such interpretations

contradict classical studies showing that NAD+ levels do not

increase as a function of starvation. The collective work of Krebs

and Veech exhaustively demonstrated that NAD+/NADH levels

do not change as a function of starvation, irrespective of whether

one measures bound or free fractions of the cofactors (Krebs

and Veech, 1969; Veech et al., 1969).

It has also been reported that NAD+ levels fluctuate as a func-

tion of the circadian cycle, thereby instructing nuclear sirtuin

enzymes to control the epigenetic state of chromatin in an

NAD+-regulated manner. Mouse embryo fibroblast (MEF) cells

deficient in the CLOCK transcription factor were reported to

contain only 4%–5% as much NAD+ as wild-type MEF cells

(Nakahata et al., 2009). When NAD+ levels were measured in

liver tissue of wild-type mice, two ultradian sets of peaks and

troughs of NAD+ abundance were observed per 24 hr cycle

(Ramsey et al., 2009). The peak-to-trough fluctuation in NAD+

abundance varied by 20%–30%, as reported in the latter study.

By contrast, when NAD+ levels were measured as a function of

the YMC, which is far more robust in amplitude than metabolic

fluctuation taking place as a function of the circadian cycle, no

changes in NAD+ levels were observed (Tu et al., 2007). Like-

wise, extensive studies of yeast cells exposed to a variety of

nutritional states, including caloric restriction, have shown no
60 Cell 153, March 28, 2013 ª2013 Elsevier Inc.
alteration in NAD+ or nicotinamide levels that could be inter-

preted to increase the activity of sirtuin enzymes upon glucose

restriction (Evans et al., 2010). Thus it remains unclear whether

sirtuin activity is operatively linked to metabolic state via fluctu-

ations in the intracellular levels of NAD+.

What is clear, however, is that sirtuin enzymes sit in diametric

opposition to protein acetylating and that protein acetylation can

be influenced by intracellular levels of acetyl-CoA. In the case of

the AceCS2 enzyme that uses acetate to produce mitochondrial

acetyl-CoA, SIRT3 serves to induce the catalytic activity of the

enzyme by removing an inhibitory acetylation mark. In the case

of PGC1a, the nuclear SIRT1 enzyme serves to deacetylate

this transcriptional coactivator, thereby liberating its capacity

to induce the expression of genes whose products are required

in energy-depleted cells. Recent studies have provided evidence

that the genes encoding SIRT3 and SIRT6 are tumor suppres-

sors (Kim et al., 2010; Sebastián et al., 2012). In this regard, it

is particularly intriguing that the battery of SIRT6 target genes

(Sebastián et al., 2012) has been reported to overlap significantly

with genes codependent on the c-Myc oncoprotein and the

SAGA/GCN5 histone acetylase complex (Cai et. al., 2011; Ji

et al., 2011; McMahon et al., 1998, 2000).

NAD+ Independent Histone Deacetylases

A recent study has raised the possibility of a different sort of

connection between an abundant metabolite and the NAD+-

independent class of histone deacetylase enzyme. b-hydroxy-

butyrate, which is one of the three ketone bodies, is produced

at mM quantities after prolonged exercise or starvation (Candido

et al., 1978). Like sodium butyrate, b-hydroxybutyrate inhibits

the activities of many NAD+-independent histone deacetylase

enzymes (Shimazu et al., 2013). By administering b-hydroxybu-

tyrate to laboratory mice via an intraperitoneal pump, Shimazu

and colleagues were able to demonstrate enhancement of

H3K9 and H3K14 acetylation, induced expression of FOXO3A-

regulated genes, and resistance to oxidative stress. These

data provide evidence that a distinct metabolite, b-hydroxybuty-

rate, is able not only to fuel metabolic adaptation to starvation

but also to help sustain a protective epigenetic state by inhibiting

the activities of NAD+-independent histone deacetylase

enzymes.

Methylation of DNA and Histones: SAM and the
‘‘Activated Methyl Cycle’’
S-adenosylmethionine (SAM) contains the active methyl donor

group utilized by most methyltransferase enzymes (Figure 3).

Tetrahydrofolate (THF), when methylated on its N-5 atom (N5-

MTHF), also acts as a methyl donor. Unlike SAM, the transfer

potential of themethyl donor group of N5-MTHF is not sufficiently

high for most biosynthetic methylation reactions. SAM is

produced by the condensation of methionine and ATP during

the first of nine steps required for the conversion of methionine

to succinyl-CoA. The methyl group of SAM is chemically acti-

vated via the positive charge on the adjacent sulfur atom, which

causes the SAM methyl group to be considerably more reactive

than the methyl group on N5-MTHF. Enzyme-catalyzed donation

of the methyl group of SAM to an acceptor macromolecule

yields S-adenosylhomocysteine (SAH), which, in turn, is hydro-

lyzed to homocysteine and adenosine. The activated methyl



Figure 3. Metabolism and Methyltrans-

ferases
DNA and histone methyltransferases use S-ad-
enosylmethionine (SAM), derived from methio-
nine, as a methyl donor, resulting in the
generation of S-adenosylhomocysteine (SAH).
SAH is converted to homocysteine, which is then
converted back to methionine in a vitamin B12-
dependent reaction that utilizes carbons derived
from either choline or folate. DHF, dihydrofolate;
THF, tetrahydrofolate; 5,10-MTHF, 5,10-methy-
lene THF; CH3, methyl. Also shown are steps
requiring vitamin B6 and B2. For simplicity,
enzymes catalyzing the various reactions are not
shown.
cycle can then be looped back via the transfer of a methyl group

from N5-MTHF to homocysteine, regenerating methionine.

SAM and Histone/DNA Methylation

Histone methylation represents a covalent modification that is of

equal importance to histone acetylation in defining the epige-

netic state of chromatin (Kouzarides, 2002; Zhang and Reinberg,

2001). DNA itself is also subject to methylation on the C5 atom of

cytosine (Bird, 2002). Intense studies reported over the past

decade have led to the identification of a multitude of enzymes

that afford the methylation and demethylation of both histone

and DNA substrates. Both histone and DNA methylation require

SAM as the high-energy methyl donor (Figure 3). Parallel with the

aforementioned thinking concerning the possibility that acetyl-

CoA levels might specify epigenetic state, the question can be

raised as towhether ambient levels of intracellular or intranuclear

SAM might help drive histone methylation. The conversion of

methionine to SAM is catalyzed in an ATP-dependent manner

by methionine adenosyltransferase (MAT) enzymes (Sakata

et al., 1993). A recent study has given evidence that one of the

MAT isoforms, MATIIa, associates with a gene-specific tran-

scription factor designated MafK. The latter protein is a small

bZip transcription factor that, depending upon its heterodimeric

partner, can either repress or activate gene expression (Hintze

et al., 2007; Igarashi and Sun, 2006; Muto et al., 1998; Ochiai

et al., 2006; Zhang et al., 2006). Affinity chromatography exper-

iments employing a tagged version of the MafK protein led to the

discovery of its interaction with MATIIa, raising the possibility

that the MafK transcription factor might recruit this enzyme

directly to its target genes (Katoh et al., 2011). Cytological exper-

iments revealed the nuclear localization of the MATIIa enzyme,

and the results of a variety of molecular biological experiments

were interpreted to indicate that the association of the MATIIa

methyltransferase enzyme with MafK target genes may be

required for transcriptional repression. If correct, these observa-

tions offer the possibility that a localized increase in the produc-

tion of SAM might help establish the epigenetic state of cells.

Threonine Dehydrogenase and SAM

Related interpretations have evolved from studies of mouse

ESCs. As mentioned earlier in this review, mouse ESCs express

exceptionally high levels of the TDH enzyme, which catabolizes

threonine into glycine and acetyl-CoA (Figure 4). When ESCs are

exposed to a selective chemical inhibitor of the TDH enzyme,
intracellular levels of acetyl-CoA drop significantly (Alexander

et al., 2011). Simultaneous increases in the intracellular abun-

dance of threonine and 5-aminoimidazole-4-carboxamide ribo-

nucleotide (AICAR) were observed upon TDH inhibition in

ESCs. The increase in threonine can logically be attributed to

diminution in the activity of the enzyme that degrades it.

Increases in AICAR, a biosynthetic intermediate that awaits N5-

MTHF-mediated one-carbon donation to continue along the

pathway of purine biosynthesis, could likewise be attributed to

attenuation in the production of mitochondrial glycine. The latter

catabolite of TDH-mediated degradation of threonine is known

to feed the mitochondrial glycine cleavage enzyme complex

responsible for converting tetrahydrofolate to N5-MTHF

(Figure 4). Not surprisingly, chemical inhibition of the TDH

enzyme in mouse ESCs causes a precipitous drop in the level

of intracellular N5-MTHF (Alexander et al., 2011). Having

observed reduced levels of N5-MTHF and increased levels of

the AICAR intermediate in purine biosynthesis upon chemical

inhibition of the TDH enzyme, it was straightforward to predict

that catabolism of threonine is vitally important for ESCs to bio-

synthesize the required building blocks for DNA synthesis. Given

that the cell division cycle for mouse ESCs (4–5 hr in length) is

more rapid than even the fastest growing of cultured cancer

cell lines, it may reasonably be concluded that these cells require

the specialized features of the TDH catabolic pathway to convert

threonine into both acetyl-CoA and the glycine-dependentmeth-

ylation capacity essential for the biosynthesis of nucleotides.

Perplexingly, unique among all primates, mammals, and—

perhaps—all metazoan species, humans do not encode a func-

tional TDH enzyme (Edgar, 2002). As such, the unique metabolic

properties engendered by copious expression of the TDH

enzyme in mouse ESCs cannot apply to human stem cells.

More recent work on mouse ESCs has led to the conclusion

that TDH-mediated catabolism of threoninemight also be impor-

tant for maintaining high levels of SAM (Shyh-Chang et al., 2013).

Knowing that N5-MTHF is required for the regeneration of methi-

onine from homocysteine, it was logical to predict that intracel-

lular levels of SAM might drop when ESCs are deprived of

threonine.

Intriguingly, threonine restriction was observed to dramatically

impede deposition of the H3K4me2 and H3K4me3 marks on

chromatin. These impediments were selective; threonine
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Figure 4. TDH-Mediated Catabolism of

Threonine
Threonine is catabolized to acetyl-CoA and glycine
via a two-step process, first involving the rate-
limiting threonine dehydrogenase (TDH) enzyme
yielding the short-lived intermediate 2-amino-3-
ketobutyrate. This intermediate is subsequently
subject to the 2-amino-3-ketobutyrate ligase (KBL)
enzyme that, supplemented by coenzyme A (CoA),
yields the final products of the reaction, acetyl-CoA
and glycine. Both steps of the catabolic reaction
take place in the mitochondria of eukaryotic cells.
The former product, acetyl-CoA, canbe fed into the
TCA cycle or used as an anabolic building block for
other metabolites. The latter product, glycine, is
used to feed the mitochondrial glycine cleavage
system for the conversion of tetrahydrofolate (THF)
into N5, N10-methylene-tetrahydrofolate (MTHF).
MTHF, in turn, is capable of one-carbon donation
in biosynthetic reactions involving purine and
pyrimidine synthesis, as well as the regeneration of
methionine from homocysteine.
deprivation had no effect on the deposition of H3K4me1,

H3K9me3, H3K27me3, H3K36me3, or H3K79me3 marks on

histone tails. If correct, these observations offer a logical inter-

pretation of the connection between nutritional and epigenetic

states analogous to what has been learned from studies of

acetyl-CoA levels driving the epigenetic state of prototrophic

yeast cells growing under nutrient-limited conditions (Cai et al.,

2011).

The H3K4me2 and H3K3me3 marks that disappear when

mouse ESCs are deprived of threonine (Shyh-Chang et al.,

2013) are part of a ‘‘bivalent’’ epigenetic state believed to be

uniquely important for keeping the chromatin structure of genes

encoding developmentally important transcription factors in

a properly repressed/poised state for subsequent induction as

a function of embryogenesis (Bernstein et al., 2006). It is there-

fore possible that, by catabolizing threonine along pathways

important for the production of both acetyl-CoA necessary for

histone acetylation and methylation capacity via the generation

of N5-MTHF and SAM, the TDH enzyme may be of fundamental

importance in controlling two unique properties of mouse

ESCs—their incredibly rapid rate of cell division and their unique

retention of developmental pluripotency.

FAD and Histone Demethylation
Flavin adenine dinucleotide (FAD) is derived from the vitamin

riboflavin (vitamin B2) and functions as the prosthetic group for

certain oxidation-reduction enzymes. Riboflavin is phosphory-

lated by riboflavin kinase to generate riboflavin 50-phosphate
(sometimes called flavin monucleotide or FMN), which is then

converted to FAD by FAD synthetase (also called FMN adenyl-

transferase). The former enzyme appears to be rate limiting for

FAD production.

In a landmark paper, Yang Shi and coworkers showed that

LSD1 (also called KDM1A or AOF2) is a nuclear FAD-dependent

enzyme capable of demethylating methylated H3K4 both

in vitro and in vivo, thereby establishing that histone methyla-

tion is a dynamic, reversible process (Shi et al., 2004). The

chemical reaction catalyzed by LSD1 requires a protonated

lysine epsilon amino group, thereby limiting its activity to mono-
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methylated and dimethylated H3K4 (Figure 5). LSD1 and its

paralog LSD2 (also called KDM1B or AOF1) can also influence

H3K9 methylation and DNA methylation, either due to their

participation in multiprotein complexes that contain additional

chromatin-modifying enzymes, including deacetylases and

methyltransferases, or due to indirect effects of H3K4 methyla-

tion on recruitment of such enzymes (Ciccone et al., 2009; Lan

et al., 2008; Wang et al., 2009b). It has also been argued that

the reactive oxygen species produced by the LSD1 histone

demethylation reaction can react with neighboring DNA and

other macromolecules and thereby affect transcription (Perillo

et al., 2008).

FAD is produced in mitochondria. It has been suggested that

the nuclear location of LSD1 might render it particularly sensitive

to changes in FAD availability (and the ratio of FAD to FADH2)

arising from the activities of other flavin-linked dehydrogenases

and oxidases, including those associated with fatty acid

b-oxidation and the TCA cycle (Hino et al., 2012). LSD1, in

turn, regulates mitochondrial respiration and energy expendi-

ture. Specifically, LSD1 binds directly to genes such as PPARg

coactivator-1a (PGC1a),PDK4, FATP1, andATGL and represses

their transcription associated with loss of H3K4 methylation

(Hino et al., 2012).

2-Oxoglutarate-Dependent Dioxygenases
JmjC and TET Demethylases

A number of chromatin-modifying enzymes, including the

approximately 30 JmjC domain-containing histone demethy-

lases and the three TET (ten-eleven translocation) proteins, are

2-oxoglutarate-dependent dioxygenases (Loenarz and Scho-

field, 2011) (Figure 5). The JmjC histone demethylases, in

contrast to LSD proteins, are capable of demethylating trimethy-

lated lysines and arginines. Different JmjC histone demethylases

exhibit preferences for different histone methylation marks. For

example, KDM5A (also called RBP2 or JARID1A) specifically

recognizes methylated H3K4. TET proteins can oxidize 5-meth-

ylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formyl

cytosine (5fC), and 5-carboxylcytosine (5caC) (He et al., 2011;

Ito et al., 2011; Tahiliani et al., 2009). 5hmC in the nervous system



Figure 5. Histone Demethylase Reactions
LSD demethylases oxidize monomethylated and
dimethylated histones using FAD (flavin adenine
dinucleotide) as a cofactor. The oxidized methyl
group is unstable and, after attack by water, given
off as formaldehyde (HCHO). FAD is derived from
FMN (flavin mononucleotide), which in turn is
derived from riboflavin. JmjC demethylases
hydroxylate methylated histones in a reaction
coupled to decarboxylation of 2-oxoglutarate to
succinate. 2-oxoglutarate (also called a-ketoglu-
tarate) can be derived from several sources
including isocitrate and glutamic acid. Sponta-
neous release of the hydroxylated methyl group
results in demethylation.
is associated with actively transcribed genes and is recognized

by the histone-reader proteinMeCP2, which ismutationally inac-

tivated in the neurological disorder of Rett syndrome (Mellén

et al., 2012). TET-catalyzed oxidation of 5mC followed by decar-

boxylation or base excision is strongly suspected of contributing

to DNA demethylation (Cortellino et al., 2011; He et al., 2011; Ito

et al., 2011), yet there are currently conflicting reports regarding

the effect of TET inactivation on global DNAmethylation patterns

in somatic cells (Figueroa et al., 2010; Ko et al., 2010; Yamazaki

et al., 2012).

Iron and Oxygen

2-oxoglutarate-dependent dioxygenases require oxygen and Fe

(II) in addition to 2-oxoglutarate (also called a-ketoglutarate). The

latter metabolite is decarboxylated to succinate during the

oxidation reaction (Figure 5). These enzymes are also sensitive

to reactive oxygen species and their activity is enhanced in the

presence of ascorbic acid. These biochemical attributes render

these enzymes potentially susceptible to carcinogenic metals

such as nickel, arsenic, and chromium, which displace iron,

contribute to oxidative stress, or do both (Chervona and Costa,

2012).

Certain 2-oxoglutarate-dependent dioxygenases, such as the

EglN prolyl hydroxylases that mark the HIF transcription factor

for destruction, have O2 Km values at or near atmospheric

oxygen levels and hence their activity is sensitive to changes in

oxygen availability within a physiologically relevant range (Hirsilä

et al., 2003). By contrast, the collagen prolyl hydroxylases have

very low O2 Km, presumably so that they can function in environ-

ments such as poorly vascularized wounds (Hirsilä et al., 2003).

The O2 Km values for the JmjC histone demethylases and TET

proteins are not known, although indirect evidence suggests that

at least some of the former could be oxygen sensitive. Specifi-

cally, the messenger RNAs (mRNAs) for multiple JmjC histone
Cell 1
demethylase genes, including JMJD1A

(an H3K9 demethylase), JMJD2B (an

H3K9 demethylase), and JARIDC (an

H3K4 demethylase), are induced by

hypoxia andHIF, conceivably to compen-

sate for their diminished catalytic activity

under low-oxygen conditions (Chervona

and Costa, 2012; Xia et al., 2009)

(Figure 6A). Moreover, increased H3K4

and H3K9 histone methylation has been
documented in cells treated with hypoxia in vitro (Johnson

et al., 2008; Tausendschön et al., 2011; Zhou et al., 2010).

HIF synthesis is influenced by the PI3K-AKT-mTOR pathway,

which senses nutrients such as glucose and amino acids, while

its degradation is under the control of the EglN prolyl hydroxy-

lases, which respond to changes in oxygen and different Krebs

cycle intermediates (Figure 6A). Therefore, HIF provides another

link between metabolism and epigenetics through its transcrip-

tional regulation of JmjC histone demethylases and other modi-

fiers of epigenetic state.

2-Oxoglutarate

2-oxoglutarate is produced from isocitrate in the mitochondria

by the action of isocitrate dehydrogenases 2 and 3 (IDH2 and

IDH3) in the TCA cycle and can also be generated from several

amino acids including arginine, proline, histidine, and glutamine,

which can be converted to glutamic acid and transaminated to

produce 2-oxoglutarate. 2-oxoglutarate generated in the course

of the TCA cycle is converted to succinyl CoA by the action of the

2-oxoglutarate dehydrogenase complex and is also consumed

during the conversion of cysteine and lysine to pyruvate and

acetyl-CoA, respectively. 2-oxoglutarate generated in the mito-

chondria can enter the cytosol, either as 2-oxoglutarate or after

transamination to produce glutamic acid, via specific transporter

proteins such as the malate-2-oxoglutarate antiporter, which

participates in the malate-aspartate shuttle. A third IDH paralog,

IDH1, resides in the cytosol and peroxisomes and provides an

alternative source for nonmitochondrial 2-oxoglutarate.

Intracellular 2-oxoglutarate levels are estimated to be in the

low millimolar range, well above the 2-oxoglutarate Km values

of the JmjC histone demethylases and TET proteins determined

to date (Chowdhury et al., 2011; Pritchard, 1995). A caveat,

however, is that such Km values are typically determined under

idealized in vitro conditions using purified enzymes in the
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Figure 6. Mutant Metabolic Enzymes, Epigenetics, and Cancer
(A) The abundance of the HIF transcription factor is regulated by the 2-oxoglutarate-dependent EglN dioxygenases, which are sensitive to changes in oxygen and
metabolism, and by the PI3K-AKT-mTOR pathway, which is involved in nutrient sensing and frequently mutationally activated in cancer. HIF induces the
transcription of a number of JmjC histone demethylases.
(B) Mutational inactivation of the Krebs Cycle Enzymes SDH and FH leads to the accumulation of succinate and fumarate, respectively, whereas tumor-derived
IDH1 and IDH2 mutants produce high levels of R-2-hydroxyglutarate (R-2HG). Succinate, fumarate, and R-2HG can inhibit 2-oxoglutarate-dependent dioxy-
genases, including JmjC histone demethylases and TET DNA hydroxylases.
absence of endogenous inhibitory molecules such as fumarate,

succinate, and reactive oxygen species. In this regard, intracel-

lular fumarate and succinate concentrations are estimated to be

in the high micromolar and low millimolar range, respectively

(Johnson et al., 2008). In model systems, many metabolic

enzymes display Km values in vivo that are higher than their cor-

responding in vitro values and certainly closer to the concentra-

tions of their cosubstrates (Bennett et al., 2009; Yuan et al.,

2009). This presumably allows such enzymes to respond to

changes in the concentrations of available agonists and antago-

nists. Moreover, the concentrations of 2-oxoglutarate in specific

subcellular compartments such as the nucleus are not known,

nor is it known how much 2-oxoglutarate is free versus tightly

bound to other proteins. It thus remains possible, but not proven,

that JmjC proteins and TET proteins can respond under physio-

logical conditions to changes in agonists such as 2-oxoglutarate

or antagonists such as succinate and fumarate. The functions of

these proteins do, however, appear to be deregulated as a result

of altered metabolism under the pathological conditions found in

the specific cancers described below.

SDH, FH, and IDH Mutations and Cancer
Inactivating mutations affecting the mitochondrial succinate

dehydrogenase (SDH) complex subunits and fumarate hydra-

tase (FH) have been identified in cancers, particularly in familial

paragangliomas and papillary renal cancers, respectively (Kae-

lin, 2009). These mutations lead to the marked accumulation of

succinate and fumarate, respectively (Figure 6B). Somatic muta-

tions affecting cytosolic IDH1 andmitochondrial IDH2 have been

identified in gliomas, acute myelogenous leukemia, chondrosar-

comas, and cholangiosarcomas. Somatic mosaicism for such

mutations causes Ollier Disease syndrome and Maffucci

syndrome, which are characterized by the development of endo-

chondromas and spindle cell hemangiomas (Amary et al., 2011;

Pansuriya et al., 2011). Tumor-associated IDH mutations
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unmask a latent ability of these enzymes to produce the R enan-

tiomer of 2-hydroxyglutarate, which accumulates to low milli-

molar levels in IDH mutant tumors (Dang et al., 2009; Gross

et al., 2010; Ward et al., 2010).

R-2HG, succinate, and fumarate are all capable of inhibiting

multiple 2-oxoglutarate-dependent dioxygenases, including

the JmjC histone demethylases and TET proteins, when present

at sufficiently high concentrations (Figure 6B) (Cervera et al.,

2009; Chowdhury et al., 2011; Figueroa et al., 2010; Koivunen

et al., 2012; Lu et al., 2012; Smith et al., 2007; Turcan et al.,

2012; Xiao et al., 2012; Xu et al., 2011). The challenge for the field

is to determine which of these enzymes are actually inhibited by

these metabolites in vivo in tumors bearing the appropriate

mutations and which of these enzymes are causally linked to

the transformed phenotype. For example, the HIF1a transcrip-

tion factor accumulates in SDH and FH mutant tumors, presum-

ably due to inhibition of the EglN prolyl hydroxylases (Dahia et al.,

2005; Isaacs et al., 2005; Pollard et al., 2005, 2007; Selak et al.,

2005). Moreover, it is plausible that HIF1a promotes the forma-

tion of such tumors based on its repertoire of downstream

targets. Deletion of HIF1a, however, worsened the pathological

changes observed in mice engineered to lack FH, suggesting

that it normally constrains, rather than promotes, the emergence

of FH-defective tumors (Adam et al., 2011).

A number of 2-oxoglutarate-dependent enzymes that act on

chromatin are themselves targets of inactivating mutations in

cancer, including the UTX H3K27 demethylase (also called

KDM6A), JARID1C H3K4 demethylase (KDM5C), and TET2,

making them attractive candidates for pathogenically relevant

inhibition by succinate, fumarate, and R-2HG (Abdel-Wahab

et al., 2009; Dalgliesh et al., 2010; Tefferi et al., 2009; van Haaften

et al., 2009). In this regard, TET2 and IDH mutations are both

found in acute myelogenous leukemia and are mutually exclu-

sive, consistent with the idea that R-2HG produced by mutant

IDH provides an alterative means of inactivating TET2 (Figueroa



et al., 2010). Moreover, IDH mutant tumors have been reported

to display DNA hypermethylation changes consistent with

TET2 inactivation. In addition, TET2 inactivation is sufficient to

promote hematopoietic stem cell self-renewal and to block

differentiation (Figueroa et al., 2010; Li et al., 2011;Moran-Crusio

et al., 2011; Noushmehr et al., 2010; Turcan et al., 2012; Losman

et al., 2013). Therefore, inactivation of TET2 probably contributes

to leukemic transformation at the hands of mutant IDH and the

R-2HG ‘‘oncometabolite’’ it produces. Interestingly, R-2HG is

sufficient to promote cytokine independence and block differen-

tiation of hematopoietic cells in vitro and these effects are fairly

rapidly reversed upon R-2HG withdrawal (Losman et al., 2013;

K. Yen, personal communication). This suggests either that

these phenotypes are not due to epigenetic targets of R-2HG

or that R-2HG-induced epigenetic changes are surprisingly

dynamic.

In summary, SDH, FH, and IDHmutations cause the accumu-

lation of succinate, fumarate, and R-2HG, respectively. These

metabolites appear to cause cancer by affecting the behavior

of various 2-oxoglutarate-dependent dioxygenases, including

dioxygenases linked to DNA and histone methylation, and there-

fore have the potential to alter the epigenome.

Nutrition, Epigenetics, and Disease
Altered epigenetics is believed to play a part in a variety

of diseases in addition to cancer, including diabetes, obesity,

dyslipidemia, hypertension, and neurodegeneration. The

biochemical considerations outlined herein provide a conceptual

framework for understanding how environmental changes,

including changes in nutrition, could affect epigenetics and

therefore diseases where epigenetic alterations play a role.

In this regard, particular attention has been paid to the influ-

ence of diet on one-carbon metabolism, which plays an impor-

tant role in DNA and histone methylation and in risk of disease.

Studies in rodents and sheep have confirmed that the availability

of nutrients required for one-carbon metabolism (for example,

folate, choline, methionine, and betaine, as well as selected

B vitamins) at the time of conception and during pregnancy

can induce epigenetically driven phenotypes in their offspring

(Dolinoy et al., 2007; Sinclair et al., 2007; Waterland et al.,

2006; Wolff et al., 1998). There is also evidence that changes in

glucose and glucose metabolism can leave lasting epigenetic

marks (Park et al., 2012; Pirola et al., 2010).

Observational studies in humans are also consistent with

a possible role of nutrition in epigenetics and disease. For ex-

ample, studies of individuals conceived during famine conditions

have revealed decreased DNA methylation of specific loci, such

as the IGF2 gene, associated with an increased risk of obesity,

dyslipidemia, and insulin resistance later in life (Dominguez-Salas

et al., 2012). Genetic variation in a number of genes linked to

one-carbon metabolism, including methylenetetrahydrofolate

dehydrogenase 1, FTHF dehydrogenase, 5–10 methylene-

THF reductase, methionine synthase, and glycine-N-methyl-

transferase, has been linked to a variety of disease phenotypes

including cancer and developmental defects (Stover, 2011).

Biomarkers or dietary histories indicative of nutritional defi-

ciencies associated with defects in one-carbon metabolism

(for example, folate deficiency) have frequently been associated
with an increased risk of cancer in epidemiological studies.

Disappointingly, however, intervention trials have failed to

demonstrate a reduction of cancer risk in individuals random-

ized to receive folic acid supplements compared to controls

(Andreeva et al., 2012; Cole et al., 2007; Song et al., 2012;

Zhang et al., 2008). This might suggest that folate deficiency

correlates with, but does not cause, cancer or that folate is

important during an early time window, perhaps occurring at

an early age and prior to or during tumor initiation, but not there-

after. In this regard, animal studies suggest that folate might

actually increase cancer progression if given to nascent tumors

in the colon (Kim, 2004).

There are many bioactive molecules present in food and

herbs, in addition to folate, that are capable of influencing epige-

netics and that have been touted as potential chemopreventative

agents. Examples include various B vitamins, retinoic acid,

vitamin D3, reservatrol, genistein and daidzein, epigallocate-

chin-3-gallate (EGCG), and curcumin (Gerhauser, 2013; Stefan-

ska et al., 2012).Moving forward, it will be important to determine

whether these agents influence epigenetic enzymes at concen-

trations that can be achieved in vivo (as opposed to cell culture

studies), to understand their dose-response relationships, and to

determine when, during the lifetime of an individual, they can

exert their salutary effects.
Conclusions and Future Questions
Many epigenetic enzymes are potentially susceptible to changes

in the levels of cosubstrates and cofactors such as oxygen, ATP,

acetyl-CoA, MTHF, S-adenosylmethionine, NAD, FAD, and

2-oxoglutarate and are hence poised to respond to changes in

nutrient intake and metabolism. We need to learn more,

however, about how much the levels of some of these cosub-

strates and cofactors can vary in space (for example, in different

cellular subcompartments and in different tissues) and how

much they can fluctuate over time (for example, in response to

changes in nutrition or as a function of age). If they do not vary

significantly, how are they sensed and how are they buffered?

If they do vary significantly, do they actually become limiting

for specific epigenetic enzymes in vivo? If so, does this

contribute to disease?

There is increasing evidence that early exposures, including

intrauterine exposures, can lead to lasting epigenetic changes

and that epigenetic differences can influence many phenotypes,

including the risk of disease. Among the relevant exposures are

exposures related to nutrition. This has led to the hypothesis that

‘‘we are what we eat but also what our parents ate’’ (Dominguez-

Salas et al., 2012). We need better biomarkers for assessing vari-

ability in nutrition and metabolism in the population and its

effects on epigenetics. From a public health perspective we

need to better understand which alterations in metabolism and

epigenetics cause, rather than correlate with, disease and

when—and how—it might be possible to intervene.
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