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A. ROBINSON has recently developed a theory of "non-standard analysis" 
(see [2] and [3]) which has had many interesting applications to ordinary 
classical analysis. The use of non-standard models of the real numbers 
has produced a variety of interesting results, often significantly extending 
what has been obtained by classical methods. Of equal importance is also 
the often revealing insight into the structure of the classical theories which 
the application of non -standard methods has led to, providing, in particular, 
a precise language for talking about the "infinitesimals" of the founders 
of the differential and integral calculus. 

In a survey paper (ROBINSON [2]) the author sketches an application 
of non-standard methods to topology. The approach is based upon a 
formalization of topology within a type-theoretic language. A relation 
Q(x, y) within this language is called concurrent in a (standard) model 
(i.e. an ordinary topological space) M if for every finite set of entities 
(which may be individuals, i.e. points of the space, or relations) 
a1, a2, ... , an, n;;;. l, which belong to the domain of the first place of Q 
in M, there exists abE M such that Q(a£, b) holds fori= 1, ... , n in M. 
An admissible non-standard extension * M of M is an elementary extension 
of M such that for all concurrent relations Q in M, there exists a bQ E * M 
such that Q(a, bQ) holds in * M for all a E * M of the appropriate type. 
It is an immediate consequence of the Henkin completeness theorem 
for type theory that admissible non-standard extensions exist. (But 
note that the sub-set concept may also be non-standard in the 
extension.) 

Let M be any topological space and * M a non-standard extension. 
The points a E M also belong to * M and will there be called standard 
points. Further the canonical extensions of the open sets in M will be called 
the standard open sets of* M. Note that a standard open set does not in 
general coincide with the open set in M of which it is the canonical extension. 

For any a E * M the monad of a is defined as the intersection of all 
standard open sets which include a. A point in * M which belongs to the 
monad of a standard point is called near-standard. The following theorem 
is basic to the non -standard theory: 
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Theorem. A space M is (quasi-) compact if and only if all points 
of * M are near-standard. 

* M can be any admissible non-standard extension. The proof as 
presented in [2, p. 294] typifies the blend of mathematical and logical 
arguments which is so characteristic for the non-standard theory as 
practiced by A. RoBINSON. 

Compactness is usually defined in terms of open coverings. Another 
approach is through the use of ultrafilters. H. CARTAN observed in 1937 
that compactness is equivalent to the fact that every ultrafilter converges. 
This means that a space M is compact if and only if for every ultrafilter F 
on M there is some point a E M such that F is finer than the neighbourhood 
filter of a (i.e. every open set containing a belongs to the ultrafilter). 
The treatise ofN. BouRBAKI [I] is based upon this approach. In particular 
an extremely simple proof of Tychonoff's theorem is made possible using 
ultrafilters. 

After having seen [2] I became convinced that the two approaches 
to compactness were in the main points equivalent, simply because non
standard points and ultrafilters both describe all possible ways how a 
subfamily of a given family may converge. The purpose of this note is 
to work out this equivalence explicitly and to point out that the Robinson 
characterization of compactness in terms of near-standard points is nothing 
but Cartan's theorem on ultrafilters within a different language. 

With every point *b in * M we can associate an ultrafilter F*b in M 
in the following way: 

X E F*b iff. *bE *X, 

i.e. F*b is the "trace" on M of a principal ultrafilter on * M, viz. the one 
consisting of all sets in * M which contains *b. 

Conversely with every ultrafilter FA on M one may associate a point 
*bA E * M. The truth of this assertion is an immediate consequence of the 
fact that an ultrafilter satisfies the finite intersection property, which 
means that the relation "A E FA and b E A" is concurrent. 

It follows that F;. = F*bA· In fact, if X E F;., then by construction 
*b;. E *X, i.e. X E F*bA· As F;. is maximal equality follows. 

Let *a be a standard point in * M. We show that *b belongs to 
the monad of *a if and only if F*b is finer than the neighbourhood filter 
V(a) of a in M. But this is rather immediate: If V(a) C F*b, then in 
particular 0 E F*b for every open set 0 containing a. 0 E F*b means that 
*bE *0, and this implies that *b belongs to every standard open set 
containing *a. The argument works in reverse, hence the Robinson 
characterization theorem reduces to the well-known characterization of 
compactness in terms of ultrafilters. 

Remark. From [3] it appears that the problem of obtaining a non
standard proof of Tychonoff's theorem presented some difficulties. In [3] 
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a proof due to S. KRIPKE is given. Granted our equivalence-proof it is 
easily seen that the proof in [3] is essentially the same as the ultrafilter 
proof. A slightly different "translation" of the ultrafilter proof is as 
follows: Let MJ., A. E A be an arbitrary family of topological spaces. Let 
non-standard extensions be given as ultraproducts. Then observe that 
there is a mapping "P from the non-standard extension of the product 
(Il MJ.)l/D to the product of the non-standard extensions IT (Mf/D). A 
J.EA J.EA 

non-standard proof of Tychonoff's theorem is easily obtain€d by appropri
ately translating the usual proof (i.e. an ultrafilter converges in a product 
space if and only if all of its projections converges), using the observation 
that with each *bE (IlMJ.)1/D one may associate for each A. E A an 
element *bJ. E MifD, viz. *bJ. =prJ. o 1p (*b). 
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