Available online at www.sciencedirect.com

ADVANCES IN
SCIENCE@DIHECTQ A .
pplied
g Mathematics
ELSEVIER Advances in Applied Mathematics 32 (2004) 709-735 —_—

www.elsevier.com/locate/lyaama

On reconstructing-point configurations
from the distribution of distances or areas

Mireille Boutin® and Gregor Kempér

@ Max Planck Institute for Mathematics in the Sciences, Inselstrale 22, 04103 Leipzig, Germany
b Technische Universitat Miinchen, Zentrum Matagk — M11, BoltzmannstraRe 3, 85748 Garching, Germany

Received 23 February 2003; accepted 14 April 2003

Abstract

One way to characterize configurations of points up to congruence is by considering the
distribution of all mutual distances between points. This paper deals with the question if point
configurations are uniquely determined by this distribution. After giving some counterexamples, we
prove that this is the case for the vast majority of configurations.

In the second part of the paper, the distribution of areas of sub-triangles is used for characterizing
point configurations. Again it turns out that most configurations are reconstructible from the
distribution of areas, though there are counterexamples.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study a type of shape representation which attempts to combine both
the approaches of invariant theory and statistiWe consider the problem of characterizing
the shapeor, more generally, thgeometryof a configuration of points. More precisely,
we are interested in finding a good representation for configurations of points in a vector
space modulo the action of a Lie groGp The solution we investigate consists in using
distributions of invariants of the action 6f.

Our main motivation comes from applications in computer vision. A central problem
in image understanding is that of identifying objects from a picture. In that problem, one
must take into account that variations in thasition of the object or in the parameters of
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the camera induce variations in the image which correspond to group transformations that
need to be moded out in order to establish the correspondence between two pictures of the
same object.

The obvious way to obtain image features which are not affected by the action of the
group is to use invariants of the group action. However, in order to be able to positively
identify any object, we need to find a set of invariants whose valoegpletel\characterize
the image of the object up to the action of the group. In other words, we need to find
a set of invariants such that two images are in the same ibraitd only if the values
of these invariants evaluated on the two iraa@re the same. Such invariants are called
separatingbecause they can be used to separate the orbits. In traditional approaches to
object recognition (see, for example, [1]), this method is commonly used.

In the following, we address the case of shapes defined by a finite set of points. This is
actually an important case for applications. Indeed for many reasons (e.g., the amount of
noise or the nature of the data) it is common to represent an object of interest by a finite
set of points calletndmarks For example, landmarks can be defined by salient features
on the boundary of the image of the object. Specifically, one might think of minutiae in
fingerprints, corners on edges of archaeological sherds, or stellar constellations. In order
to recognize the object, one thus needs to characterize the point configuration given by the
landmarks up to the action of the group.

Given a Lie groupG acting on a vector spacé and two sets of n point®y, ..., P,
and Py,..., P, € V, we want to be able to determine whether there existsG and
a permutationr € S, (since, a priori, we do not know whether the points are labeled in
correspondence) such that

g(P)=Pgry, foralli=1,... n

In applications, we are often interested in pictures,Vsds usuallyR? or R® and the
Lie group G is typically a subgroup of the projective group and depends on how the
picture of the object was taken. Examples of important groups ind(@g the group of
rigid motions in the plane (rotations, reflections, and translations, sometime also denoted
by AO(2)), andA(2), the group of affine transformations in the plane, i.e., all translations
and linear maps with determinadtl.

In principle, this problem can indeed be sedivusing invariants. If we assume that the
points are distinguishable so we know how to correctly label them, then all we need to do
is to find a set of separating invariants of the diagonal actioG ofi V",

g (Q1....,00)=(g(Q1)....,8(Qy)) forall geGandallQ,...,0,€V.

For example, ifG = E(2) the group of Euclidean transformations in the plane then
two sets of landmarkss, ..., P, and Py, ..., P, (labeled in correspondence) belong
to the same orbit under the action Bf2) if and only if all their pairwise distances
d(P;, Pj) = d(P;, P;) are the same for all, j = 1,...,n. So the shape of the set of
labeled landmarksy, ..., P, is completely characterizelly the value of the pairwise
(labeled) distances between the landmarks.
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However, in most applications the point correspondence is unknown so things are more
complicated, especially when the number of points big. Indeed, labeling the points is
a non-trivial task which, although feasible, takes time. (See, for example, [2] for an easy
exposition of some existing methods.) Artetbigger the numberf@oints, the longer
it takes. We would thus prefer to simply skip the labeling step. So, can we, instead, find
separating invariants of the action®f2) x S,,?

The answer to this question is, of course, yes. For example, in theeaSeinstead of
distances one can use the following symmetric functions of the distances:

f1(P1, P2, P3) =d(P1, P2) +d(P1, P3) +d(P2, P3),
f2(P1, P2, P3) =d(P1, P2)d(P2, P3) + d(P1, P2)d(P1, P3) +d(P1, P3)d(P2, P3),
f3(P1, P2, P3) =d(P1, P2)d(P1, P3)d (P2, P3).

These are separating invariants of the actioB(@) x S3 on (R?)3. Continuing in this way,

we can try to find expressions in the distandégs, P2), d(P1, P3), d(P1, Ps), d(P2, P3)

d (P2, Pg), andd(Ps, P4), which are invariant under the action &f by permuting thep;,

and which form a generating (or at least sefingg subset of all such invariants. But notice
that the elementary symmetric functions in the distances will not qualify anymore, since
these are the invariants under the actioSginstead ofS4. Thus this approach requires a
fresh computation of invariants for each value:of

The S, -invariants needed here are often caljgdph invariants and have been studied
in a graph theoretical context by various authors, e.g., [3-5]. Aslaksen et al. [5] calculated
a generating set of graph invariants foe= 4, obtaining a minimal set of 9 invariants.
But for n =5 the computation of graph invariants is already very hard and stood as a
challenge problem for a while (see [3,5]) until the computation was done by the second
author (see [6, p. 221]). The minimal generating setifer 5 contains 56 invariants, and
storing them takes several MBytes of memory. kog 6 the computation is presently
not feasible. This clearly shows that the approach of using graph invariants is far from
practical. Apart from their number and théfitulties of computing them, they cannot be
used in practice for questions of robustness, since high degree polynomials vary immensely
when small variations in the poinfy, ..., P, are introduced. We thus need to find better
invariants than graph invarigs; we need invariants that not only separate the orbits of the
action of G x S, but that are also robust and simple to compute.

We were inspired by looking at what engineers do in practice. In order to identify
images of the same object, they often drop the separation requirement and simply look for
invariant features of the image of which they compare the distribution. The distribution
of the pairwise distances of a set of points is obviously invariant under a relabeling
of the point. It is also much more robust than a set of polynomial functions of the
pairwise distances. In addition, it is not too complicated to compute and very easy to
manipulate.

So we asked ourselves if the distribution of distances of a set of points is actually also
a separating invariant and thus completelnrettterizes point configurations up to rigid
motions. In other words, can anpoint configuration be reconstructed uniquely (up to the
labeling of the points and up to rigid motions) from the distribution of distances? It turns
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out that this idalsein general, as we demonstrate with counterexamples. But fortunately,
counterexamples are rare, in a sense to be explained shortly. This is the contents of our
first main result (Theorem 2.6). This result extends to the case where the points come
in several colors (see Remark 2.8). Moreover, it is true locally, i.e., the shap@aiht
configurations that are close enough can be compared using their distribution of invariants.
We also explore methods to verify reconstibitity for particular configurations. Most of
the results for the case of distances in thal plane naturally extend to any vector space
with a non-degenerate quadratic form over a field of characteristic not equal to 2. We shall
thus simply treat this general case in the first part of this paper.

In the second part, we attempt to characterize point configurations up to the action of
the equi-affine groupA(2) and, again, the symmetric groufy. This action is relevant
in computer vision since, up to a scale factor, it adequately approximates what happens
to the camera image of a very distant planateagbps it is rotated and translated in three-
dimensional space. As above, there are obsinvariants for separating orbits undg®).
These are the areas of triangles spanned by a selection of three of ghats. As
before, we attempt to separatg-orbits by considering thdistributionof all these areas.
We obtain results which are completely analogous to those in the first section: there are
examples of configurations which cannot be reconstructed (up to the actio@2pk S;,)
from the distribution of areas; but a dense open subset of configurations are reconstructible
in this sense (see Theorem 3.7). We believe that for most purposes in computer vision, this
is a satisfactory result. Again our results generalize to configurations in any dimension and
to any ground field.

Let us emphasize here that the use of computer algebra systems played a vital role in the
preparation of this paper. In particular, Mag [7] was an indispensable tool. For example,
the first example of an-point configuration which is not reconstructible from distances
was the upshot of a prolonged Magma session. The examples in Sections 3.1 and 3.4 were
constructed with the help of Magma and Maple [8]. But also the proof of Theorem 2.6 was
inspired by sample computations in Magma.

2. Reconstruction from distances

An n-point configuration is a tuple of point®y,..., P, € R™. To an n-point
configuration we associate the squared (Euclidean) distasicedetween each pair
of points P; and P;, and then consider thdistribution of distances, i.e., the relative
frequencies of the value of the distances. In other words, the distribution of distances of
ann-point configuration tells us how many timeach distance occurs relative to the total
number of distances. This means that, fofixed, the distribution of distances is given
by the set of the numbets ; possibly with multiplicities if some distances occur several
times. So considering the distribution of distances of goint configuration is equivalent
to considering the polynomial

Fp,,. . p,(X):= l_[ (X —di,j).
1<i<j<n
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Fig. 1. (a) A 100-point configation, (b) histogram of distances with bin size 0.1470.
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Fig. 2. (a) A 100-point configation, (b) histogram of distances with bin size 0.1993.

In order to better visualize the information contained in a distribution of distances, one
can plot a histogram of the distances, i.e., one can group the data into bins of a fixed
size and count how many distances lie in each bin. Figures 1-3 show exampiesioit

configurations in the plane together with a histogram of their distances.

Clearly the distribution of distances iisvariant under permutations of the points and
under the (simultaneous) action of the Euclidean group. The question is whethgoant
configuration can be reconstructed from its distribution of distances.

Definition 2.1. An r-point configurationps, . .
distancesif the following holds. If O, .

., P, € R™ is calledreconstructible from
.., @, is anothern-point configuration with

Fp, .. p,(X) = Fg, .. 0,X), then there exists a permutatianc S, and a Euclidean
transformatiory € E,, (R) such thafg (P (;)) = Q; holds for alli.
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Fig. 3. (a) An 80-point configation, (b) histogram of distances with bin size 0.1947.

The notion of reconstructibility from distances generalizes naturally to any vector space
V with a non-degenerate quadratic fofm-) over a field of characteristic not equal to 2.
In this context, one simply usé®; — P;, P; — P;) as the “distance” betweeR andP;,
for any P;, P; € V and replaces the Euclidean group by A&Q = O(V) x V where
O(V) € GL(V) is the orthogonal group given by the form -).

2.1. Non-reconstructible configurations

Itis clear that in two-dimensional Euclideapace all triangles are reconstructible from
distances, and the same is true for all 2-point configurations. So the quest for examples of
non-reconstructible-point configurations becomes interesting #op 4. Figure 4 shows
such an example. We have put the (non-squared) distances along the lines connecting pairs
of points. Note that the upper point in the first configuration is moved diagonally downward
to obtain the second configuration, while the other three points remain inert.

Further examples can be constructed by adding an arbitrary number of additional
points on the dotted line and at the same position in both configurations (such as the
slightly thicker dot in each picture). Thuse get examples of non-reconstructibipoint

Fig. 4. Two 4-point configurations with the same distribution of distances.
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configurations for any: > 4. By embedding these into a space of higher dimension, we
also get examples in any dimensien> 2. The fact that we can add points at arbitrary
positions on the dotted line shows that the symmetry of the configuration is not responsible
for the fact that it is not reconstructible.

2.2. Relation-preserving permutations

Let K be a field of characteristic not equal to X & C and K = R will be the
most important examples). L&t be anm-dimensional vector space ov&r with a non-
degenerate symmetric bilinear fortn, -). With a suitable choice of a basis, this form
is given by {((x1, ..., xmn), V1, ..., Ym)) = ZZ':]_ arxpyr With ap € K\ {0}, If vy, ..., v,
are vectors inv, then the Gram matrix(v;, v;)); j=1,...» has rank at mosk, hence the
(m+1) x (m + 1)-minors are zero. By the following well-known proposition, this gives all
relations between the scalar productaafectors. Part (b) gives the relations between the
distances betweenpoints. In fact, Proposition 2.2(eg the “second fundamental theorem”
of invariant theory of orthogonal groups.

Proposition 2.2. Letx; x be indeterminatesovef (i =1,...,n,k=1,...,m).
(a) Lets; ; be further indeterminated <i < j <n). Then the kernel of the map
m
Kls11,....800] = Klx1,1, ..., Xnm],  Sij > Zakxi,kxj,k
k=1
is generatedas an idea) by the(m + 1) x (m + 1)-minors of the matrixs; ;)i j=1,....,

where we sef; ; :=s;; fori > j.
(b) Let D; ; be indeterminategl <i < j < n). Then the kernel of the map

m
K[D12,...,Dy—14]— K[x11, ..., Xpm], Dijr> Zak(xi,k - Xj,k)2
k=1
is generatedas an idea) by the(m + 1) x (m + 1)-minors of the matrix
D= (D;j — Din—Djn)ij=1..n-1, (2.1)

where we seD; ; :=0andD; ; := D;; fori > j.

Proof. For part (a), see [9] or [10, Theorem 5.7h¢€ latter reference takes care of the
positive characteristic case). Part (b) follows from (a) since for pahts.., P, € V we
have
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1
(P,'—Pn,Pj—Pn>=§((Pi_PnaPi_Pn>+(Pj_Pn’Pj_P”>
—(P; — Pj, P, — P})). O (2.2)

We will now study monomials occurring in elements of the ideal given by Proposi-
tion 2.2(b). From now on it is useful to use s¢ts;} as indices of thel’s rather than
pairsi, j.

Lemma 2.3. Let K be a field of characteristic not equal t@ and let D;; ;; be

indeterminatesi, j = 1,...,n, i # j). For an integerr with 1 <r < n — 1 consider
the ideal I generated by all(r x r)-minors of the matrixD := (Dy, j; — Dy —

Dyjn)i,j=1....n—1, Where we seDy; ;y := 0. Lett = [[,_; Dy, j,; be a monomial of
degreer. Then the following are equivalent

(a) The monomiat occurs in a polynomial frond.
(b) Everyindex froml,...,n} occurs at most twice among theand j,. More formally,
foreveryk € {1,...,n} we have{v | i, =k}|+ |[{v | j, =k}| < 2.

Proof. It follows from Proposition 2.2(b) that the idealis stable under the natural action
by the symmetric grous,,. Thus,s occurs in a polynomial froni if and only if all images
of ¢ occur.

First, assume that there existg a {1, ..., n} which occurs more than twice among the
i, and j,. By the previous remark we may assuie 1. If r occurs in a polynomial of
it must also occur in ar x r)-minor of D (since de¢) = r). But in order to obtain as
a monomial in ar(r x r)-minor, one has to choose the first row or the first colump it
least twice, since entries involving the index 1 only occur in the first row and column. But
that is impossible. This proves that (a) implies (b).

Now assume that (b) is satisfied. Consider the graptith vertices indexed,1..,r,
where the number of edges between vertexdw is [{i,, ju} N {iy, j.}l, i.€., the number
of indices shared by theth and uth indeterminate irr. By the hypothesis (b) every
vertex is connected to at most two others, hence every connected comporgns of
a line (including the case of an unconnected vertex) or a loop (including the case of
a loop of two vertices corresponding to indeterminatgs ;,; and Dy, ;,; which are
equal). By renumbering, we may assume that the first connected component is given by
the firstm vertices. By the remark at the beginning of the proof, we may further assume
that the firstm indeterminates im are Dy1,2), D23, . .., Dyn,m+1; (forming a line inG)
or Di12y, D23y, - - ., Dim—1,m}, D1,m) (@ loop). Sincen <r < n — 1, it can only happen
in the first case that the indexis involved in these indeterminates. Thus; ifs involved,
thenm =n — 1 andr = ]_[’3;% Dy, v41y. Itis easily seen that in this caseccurs in detD)
with coefficient 2 (—1)"~1. Having settled this case, we may assume thatn — 1. We
proceed by induction on the numtxf connected components Gf

First, assume that the first componentis a loop. We wish to builgd anr)-submatrix
of D whose determinant containsas a monomial. To this end, we start by choosing the
firstm rows and the first: columns fromD. Temporarily setting alDy; ) := 0, we obtain
a matrixD’ with
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0 D2y -+ Diam-y  Dam
D12 0 -+« Dpm-y  Dpm
D'l 0=
Dim-1y Dpem-13 - 0 Dyn—1,m)
Di1,m) Dpomy -+ Din—im 0

Clearly, the product:’ := D12 D23y - Dyn—1,myDi1,my 0Occurs with coefficient
2(—=1)"1 (or —1 if m=2) in de(D’). Since the firstn indeterminates inr form a
connected component if, the indeterminates in’ :=¢/¢' involve none of the indices
1,...,m. Thus, by induction we can choose- m rows, all below thenth row, andr — m
columns, all right of thenth column, such that” occurs as a monomial of the determinant
of the corresponding submatriX’. Finally, in order to get all of = ¢ - #” as a monomial in

a minor, choose the rows and columns a®intogether with the firstz rows and columns.
This yields a submatrix oP of block structure

D %
x D)’
where indeterminateBy; ;, with both indices< m only occur inD’. Now clearlyr occurs
with non-zero coefficient in the determinant of this matrix.
Let us treat the second case, so assume that the first componéhtisofa line

D12y, D23, ..., Dim m+1y. Taking rows 1...,m and columns 2..,m + 1 yields a
matrix D’ with

Dup2y Dz - Damy Dmty

0 D3y -+ Dpmy Dpmty

D, _,=| Pe3y 0 - Dgam Damty
{i,n}=

D{Z,m} D{3,m} ce 0 D{m,m+l}

The product’ := D(1,2,D(2,3) - - - Dym,m+1) OCcurs with coefficient 1 in déb’). As above,

the monomials in the remaining paft:= /¢ of ¢ only involve indices strictly bigger
thanm 4 1. Thus, we may choose— m rows and columns which are all below and right

of the (m + 1)st, respectively, to form a submatriX” which hast” in its determinant.
Again, putting together the rows and columns that we chose yields a submatrix with block
structure as above. We see that also in this caseurs as a monomial in gn x r)-minor

of D. O

If two n-point configurations have the same distribution of distances, this means that
the distances of both configurations coincide up to some permutation. But the permuted
distances must again satisfy the redas given by the ideafrom Proposition 2.2.
Therefore, it is crucial to determine how this ideal behaves under permutations of
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the Dy; ;3. We show that all permutations which preserve this ideal are in fact induced
from permutations of the points. This provides the core of our argument.

Lemma 2.4. Let K be a field of characteristic not equal t&8 and let Dy ;; be
indeterminateqi, j = 1,...,n, i # j). For an integerr with 3 < r < n — 1 consider
the ideal I generated by all(r x r)-minors of the matrixD := (Dy, j; — Dy —
Dyjn)i,j=1,...n—1, Where we seDy; ;; := 0. Let¢ be a permutation of th@®y; ;; which
mapsl to itself. Then there exists a permutatiore S, such that

¢(Dyi.jy) = Diniiynjy foralli, j.

Proof. We write¢ (Dy1,2)) = Dy;, jy andeg (Dy1.3)) = D1y Assume thati, j}N{k, [} = 0.
Then by Lemma 2.3 a monomialof degreer occurs in an element of such that is
divisible by D{Zl.’j}D{k,,}. By the hypothesisp~1(r) also occurs in an element @t But

¢~1(r) is divisible byD{Zl_Z}D{l,g}, contradicting Lemma 2.3. This argument shows that if
the index sets of twdy, ;s intersect, then the same is true for their images ugd&is

will be used several times during the proof. Here, after possibly reordering the index sets
(recall that we do not assunie< j or k <) we obtaini = 1. Thus,¢(Dy1,3}) = Dyix}-
Now we write ¢ (D1,4) = Dym,py and conclude, as above, that, p} N {i, j} # ¥ and
{m, pyN{i, k} # 0. Assume, by way of contradiction, thiag {m, p}. Then{m, p} ={j, k},
S0¢(Dy1,4)) = Dyj 1. By Lemma 2.3 a monomial of degreer occurs in an element of

I such that is divisible by Dy; jy Dyi.xy Dyj.x)- Theng~1(z) also occurs in a polynomial
from I, butg1(¢) is divisible by D1 2y D13, Dj1.4y- This contradicts Lemma 2.3. Hence,
our assumption was false and we conclude tha{m, p}, so with suitable renumbering
¢ (Di1,4)) = Diimy.-

Replacing 4 by any other index between 4 ande conclude thag (D1, 1)) = Dyi 7 (1)}
with 7= a permutation frons,, (where we may assign(1) = i). Now takev, u € {2, ..., n}
with v # . Writing ¢(Dy,4)) = Dix,y, we conclude thafx, y} N {i, 7 (n)} # ¥ and
{x,y} N {i,7(v)} # @. But assuming € {x, y} (after renumbering = x, say) leads to
the contradictionp (Dy,, ,)) = Dy y) = ¢ (D1, 7-1(y)))- Hencefx, y} = {m(v), w(w)} and
thereforep (Dyy, ;1)) = Dix (v),x(u)}» Which concludes the proof.o

2.3. Mostr-point configurations are reconstructible from distances

In this sectionK is a field of characteristic not equal to 2 (e.§.=R or K =C) and
V is anm-dimensional vector space ov&r equipped with a hon-degenerate symmetric
bilinear form(-, -). Let G = O(V) € GL(V) be the orthogonal group given by this form.
The following proposition is folklore.
Proposition 2.5. Letvs, ..., v,, w1, ..., w, € V be vectors with

(vi,vj) =(w;,w;) foralli,je{l, ... ,n}.

Setr := min{n, m}. If some(r x r)-minor of the Gram matrix(v;, v;)); j=1,...n € K"
is non-zero, then there existgae G such thatw; = g(v;) for all i.
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Proof. After renumbering we may assume that= ((v;, v;)); j=1,...r iS invertible. In
particular,v1, ..., v, are linearly independent. By the hypothesis, the same holds for
w1, ..., wr, andv; = w; gives an isomorphism betweép._; K v; and@;_,; K w; which
respects the form. By Witt's extension theorem there exisgseaG with g(v;) = w;

for i <r. This concludes the proof for < m. Now assume: > m and take an index

i > m. There existu, ..., a, € K such thaw; =37 ;v;. So for 1< k <m we have

(v, Vi) = Z;”:l(vk, v;) - . It follows that

a1 (v1, vi)
—4A1 :

Om (Um, Vi)

By the hypothesis, it follows thaty; can be expressed as a linear combination of
wi, ..., w, With the same coefficient§herefore,

m m
Wi = Z“iwi = Z“jg(vj) =g). O
j=1

j=1

We come to the main theorem of this section. We assumekth¥®t, andm are as above.
We write V" for the direct sum of copies ofV, so am-point configuration is an element
from V. K[V"] is the ring of polynomials ofv".

Theorem 2.6. Letn be a positive integer with < 3 or n > m + 2. Then there exists a
non-zero polynomiaf € K[V"] such that every-point configuration(Ps, ..., P,) with
f(P1,..., Py)#0is reconstructible from distances.

Proof. The cases =1 orm = 0 are trivial. The case: = 1 will be proved in Section 3
(see Theorem 3.7). Therefore, we may assume tkat Z 3 or 2<m <n — 2.

Take indeterminate®y; ;; indexed by set$i, j} C {1,...,n} with i # j and form the
matrix

D= (Dyi.jy — Dyin) — Dijiny) (2.3)

i,j=1,..,n—1’
where we seDy; ;; :=0as usual. If 2 m <n—2, let] be the ideal ofm + 1) x (m +1)-
minors of D. Each permutationt € S, induces a permutatiog, of the Dy ;; by
¢z (Dy,j)) = Dix(iy,n(j))- Let H < S(g) be the subgroup containing all tlgg,, and let
7T be a set of left coset representativegtfso we have a disjoint union

Sw=U va.
veT

We may assume that id 7. Lemma 2.4 says that for evetly € 7 \ {id} there exists an
Fy € I'suchthaty (Fy) ¢ 1. SetF1:=[], 7\ gy ¥ (Fy). If, onthe otherhand, 2 n <3,
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setF1 := 1. In either case, set:= min{n — 1, m} and letF> be a non-zer@r x r)-minor
of D (e.g., choose the firgstrows and columns). Now sét := F1 F».

We choose a basis df = K™ such that(-, -) takes diagonal form, s&&1, ..., &),
M1, m)) = Y peqakékne With ax € K \ {0}. Let x; ; be further indeterminates
(i=1...,n, j=1,....,m), so K[V"] can be identified withK[x11,...,x,m]. Let
@ :K[Dq2), ..., Din—1.ny] = Klx1,1, ..., Xs,m] be the homomorphism of algebras given
by Dy jy = > i ak(xik — Xj)k)z (see Proposition 2.2(b)). Recall thatis the kernel
of @. Sincey (Fy ) ¢ I forall ¢ € T\ {id} andF» ¢ I (since each non-zero homogeneous
elementin/ has degree- m), we obtain thatf := & (F) #0.

Let Py,..., P, € V suchthatf(Py,..., P,) #0, and led; j, = (P; — P;, P, — P;) be
the distances. We have

F(d{l,z}, A d{n—l,n}) = f(Py,..., Py)#0. (2.4)

We wish to show thatPy, ..., P, form a reconstructible:-point configuration. Let
01,..., 0, € V be points W|th d|stanced/12 d{n L1n) such that the distribution
of dlstances coincides with that of th®. Then there exists a permutatignof the set
J={i,j}<{1,...,n} i # j} (the index set of theD’s) such thatd{l = =dp i, j})-
There exists a permutatlone S, such thatp) = ¥ o ¢, with ¢ € 7. Thus,

!

by (i.j) = diz-14y z-1())

for all {i, j} € J. Assume, by way of contradiction, th@t= id. Thenn > m + 2, since
for n < 3 all permutations of7 are induced from permutations frofy. Clearly, ¢, -1
preserves the idedl, henceFy € I, implies¢, -1(Fy) € I. Therefore,

Fy (d{rfl(l) z=tp - d{/nfl(n 1), n*l(n)}) (¢n‘1(F1//))(d{l 2p s dE’l*L"}) =0,

and hence

(v(F)(dn2), - dn-1m) = Fy (dyquap. - dyn-1ap) =0,

contradicting (2.4). It follows thaty = id, sod;; ;, = diz(i),x(j)) for all i, j. We have to
show that there existgs € AO(V) with Q; = g(Pj,(,)) For this purpose we may assume
that is the identity. By applying a shift with a vector from we may further assume

P, = Q, =0. It follows from Eq. (2.2) that the Gram matricég’;, P;))i j=1....,
((Qi, Q))i,j=1....n—1 coincide. Moreover, (2.4) implies that & x r)-minor of the Gram
matrices is non-zero. Now Proposition 2.5 yields the desired resuit.

Remark 2.7. For 4<n < m + 1 (the range not covered by Theorem 2.6), no relations
exist between the distancég ;; of ann-point configuration. IfK is algebraically closed,

it follows from the surjectiveness of the cgtical quotient (see [11, Theorem 3.5(ii)]

or [6, Lemma 2.3.2]) that for any given values for thg ;; there exists am-point
configuration which has these distances. Therefore, in this casgomt configuration is
reconstructible from distances, with the possible exception of configurations where many
of the distances are the same. It is not entirely clear whether the same holksnfolr
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algebraically closed (e.gKk = R), since in this case the categorical quotient is no longer
surjective. As an example, fok = R the distances must satisfy triangle inequalities.
Nevertheless, we expect that also o= R and 4< n < m + 1, alln-point configurations
lying in some dense open subset are not reconstructible from distances.

Remark 2.8. Theorem 2.6 deals with the situation wheresgtloints are indistinguishable.
However, in applications it often happens that the points come in several “colors” (e.g.,
different sorts of atoms in quantum molecular dynamics). Then the natural permutation
group is a direct produd§,, x --- x S, of symmetric groups, where eadh, permutes

the points of colori. Our result extends to this situation as well. For example, if there
are red and blue points, one has to take three “partial” distributions: the distribution of
distances between all red points, the distribution of distances between all blue points,
and the distribution of distances between red and blue points. Together, these partial
distributions will separate orbits o,y x Su,e X En ON a dense open subset. The
analogous construction works for an arbitrary number of colors.

The argument why this works is roughly as follows: If the partial distributions coincide
for two point configurations, then in particular the total distributions coincide. Hence,
Theorem 2.6 applies and tells us that (with the exception of a “thin” closed set) the
configurations are linked by a permutation frafpn. Now one uses the hypothesis that
the partial distributions coincide (and assumes that/fhg are pairwise distinct) to show
that this permutation must actually lief, x --- x S, , i.e., every point of color is again
mapped to a point of colar.

2.4. Symmetrie-point configurations

The reconstructibility test provided by Theorem 2.6 fails for a variety of point
configurations, including all those with repeated distances.

Lemma 29. Let Py,..., P, € V with 2 <m < n — 2 and considerf, the polynomial
function constructed in the proof of Theoréh®. If the pairwise distances between the
P;’s are not all distinct thenf (P4, ..., P,) =0.

Proof. Denote byd; ;, the distance betweeR and P;. Assume that there exists, j1,
i, jo With {i1, j1} # {i2, j2} such thatl;, ;;; = dy,, j,). Consider the permutatione S@
which permutesis, j1} and{is, jo} and leaves all the other paifis j} unchanged. Observe
that there does not exist € S, such thatp{i, j} = {7 (), 7 (j)}, foralli,j =1,...,n.
Therefore, there existg¢ € 7 \ {id} andg, € H induced by a permutatiom € S, such
thaty = ¥ o ¢ .

Let Fy be any polynomial withFy € I such thaty (Fy) ¢ I. We havedy j; =
diz-1y,x-1(j), foralli, j =1,...,n. This means that

0 = F‘// (d{j'[’l(l),n"l(Z)}’ ey d{j'[’l(n—l),ﬂfl(n)}) (Sincer € I)
= Fy(dyqr2)s - dyn-1ap) =V Fy (din2)s - - din-1})-

So one of the factors of (P1, ..., P,) is zero and the conclusion follows.o
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Corollary 2.10. If an n-point configurationPs, ..., P, with 2 <m < n — 2 has a non-
trivial symmetry, i.e., if there exisgse AO(V) andx € S, \ {id} such that

(8 PL....8 P)=(Pr),--- Pr(w))

then the polynomial functiorf constructed in the proof of Theoref6 is such that
f(Pla“-aPn):O.

Proof. By the previous lemma, it is sufficient to show that there exigtsj1} # {i2, j2}
such thatdy;, ;) = dyi,, j»). Sincer # id, there existgg such thatr (i) # io. We have
g - Pi = Py, for all i’s, so by invariance of the distance under @AQ, this means
thatdy;y, jy = dizg).=(j)) for all j's. Thereforejy = ig, iz = m (i), j2 = w(j1), and any
J1 # io, w(ip) will do the trick. O

This does not mean that no symmetsigpoint configuration is reconstructible from
distances. Indeed a square is a counterexample forl (see Example 2.12 below). We
now give a reconstructibility test which does not exclude all point configurations with
repeated distances.

Proposition 2.11. Let P4, ..., P, € V be points in ann-dimensional vector spac@ <

m < n — 2) over a field K of characteristic not2 equipped with a non-degenerate
symmetric bilinear forng- , ). Setdy; ;, :== (P; — Pj, P; — P;), and assume that the matrix
(dyi,jy — diiny — dijn)i, j=1,...n—1 has rankm (the “generic” rank). Let G < S(g) be the
subgroup of all permutationg with dy;, jy) = dyi.jy for all i, j. (In fact, G may be
replaced by any smaller subgroygMoreover, letH < S(g) be the subgroup of alp,
with 7 € S,,, given by, ({i, j}) = {m (i), 7 (j)}. Consider a se¥ C S(g) of double coset
representatives with respect@®andH, i.e.,

Sy = J Gva.
veT

Assume thaid € 7, and for eachy € 7 \ {id} chooseFy € I \ v~1(I) (wherel is the
ideal occurring in Lemmag.3 and2.4), which is possible by Lemn#4. If

(V(F)(da2y, - - din—1.m) #0
forall ¢+ € 7\ {id}, then(P, ..., P,) is reconstructible from distances.

Proof. Since the proof is almost identical to the one of Theorem 2.6, we will be very brief
here to avoid repetitions. L&, ..., O, € V be points with (squared) distanoi{gl.} such
thatd{’i)j} =dyi,jy With ¢ € S(g) Writegp = p oy o, With pe G, ¥ € 7, andr € §,,.
Then

dy(ii.j) = dipoy)((i.j) = digop, 1) (1ij) = dg(a-20). -2 = Lpn-101y 710}



M. Boutin, G. Kemper / Advances in Applied Mathematics 32 (2004) 709-735 723

Py P3
Py
Fig. 5. Arhombus.

where the first equality follows from the definition 6f. As in the proof of Theorem 2.6,
we conclude from this that = id, s0dj; ;; = d(pog,)((i.j) = dix(i.x(jpy for all i, j. The
rest of the proof proceeds as for Theorem 2.61

Example 2.12. In this example we show that all rhombi are reconstructible from distances.
Consider a rhombus ik 2 with sides of length: and diagonals of length and ¢ (see
Fig. 5), so

diioy=dp3 =dpa=dyg =a, dizy=>, and dpa=c.

We assume that, b, andc are all non-zero. If we order the 2-sets{ih ..., 4} as{1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, then the “symmetry groupG from Proposition 2.11 is
generated by the permutatiofis 3) and(1, 3, 4, 6), andG is isomorphic taS4. The image
H of the embedding of4 into Sg is generated by2, 4)(3,5) and(1, 4, 6, 3)(2,5). It turns
out that there are two double cosets in this case:

Se=GHUGVYH,

whereyr can be chosen ag = (1, 2). Sincem = 2 andn = 4, we have only one generating
relation, which is the determinant of the matfixdefined in (2.3). Choose this determinant
as the polynomiaky, . Assume that the rhombus is not reconstructible. By Proposition 2.11
this implies(y (Fy))(d(1.2}, . - ., di3.4)) = 0. We obtain

a((a—b)?+c(c—b—2a)) =0.

We haveb + ¢ = 4a. (This is Pythagoras’ theorem, and it also follows fréipn(d1,2;, - . .,
di3.4y) = be(b+ ¢ — 4a).) Substituting this into the above relation yields

3a(a —b)(c—a)=0.

Sincea # 0, this impliesa = b or a = ¢ (here we need to assume that gt#ar +# 3), and
by interchanging the roles df andc we may assume = b. But this means that our
rhombus has in fact a bigger symmetry grodpgenerated by the permutations, 2)
and (1, 2, 3,4, 6). But now we see thafg = GH, so there is only the trivial double
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coset. It follows from Proposition 2.11 thdte rhombus is in fact reconstructible from
distances.

The computations for this example were done using the computer algebra system
Magma [7].

2.5. Locally reconstructible-point configurations

In this section,V is an m-dimensional vector space ovéf equipped with a non-
degenerate symmetric bilinear form -). We now concentrate on thacal characterization
of n-point configurations. So we assume that the fi€lds eitherR or C and consider the
problem of reconstructibility on small balls ivi". Of course, for the concept of ball to
make sensey” needs to be equipped with a norm. However, in general, the farmis
nota hermitian dot product and so cannot be used to define the norm. We thus assume that
in addition of V being equipped with the form, -), V" is equipped with a nornf - ||.
This first proposition addresses the problemaafal reconstructibility for configurations
of points whose mutual distances are all distinct.

Proposition 2.13. Let r = min(n — 1, m). Suppose that an-point configurationp, .. .,
P, € V is such that its distances are all distinct and its Gram matdgfined as in2.3))
has rankr. Then there exists a neighborhoddof (P, ..., P,) € V" such that any two
n-point configurations inV are in the same orbit under the actionA® (V) if and only if
their distribution of distances is the same.

Proof. The distribution of distances is invariant under @Q so one direction of the
statement is trivial. To prove the other @ition, observe that a minor is a determinant,
which is a polynomial function, and therefore continuous. So there exists a neighborhood
U of (P1,..., P,) € V" such that the Gram matrix of any1, ..., Q,) € U has a non-
zeror-by-r minor.

Let us assume the contrary, so there exist two sequencespoint configurations
{Q%,..., 0k, and {RY,... RK}>, in U, both converging toPi,..., P,, and a
sequence of permutatiorig}2°;, such that for every, 0%, ..., 0¥ andR%, ..., R¥ are

k
not in the same orbit under the action of &0 but the distancesI{IQ.j} = (0 — Q’;,

k
0 — 0*) are mapped to the distan k{} = (RF - R’]‘., RF— R?) by ¢x sod{’f’l}} = d(ka{l.’j}
for all djistincti,j =1...,n. SinceS(g) is finite, we may assume that = ¢ is the same

for everyk. Taking the limit, we have

k

RK
J ij}

lim d{,,”

k— 00

= lim 42 for all distincti, j =1, ..., n.
k— 00 @l

By continuity of the distance, this implies that for any distinct =1, ..., n the distance
dijy = (Pi — Pj, Pi — Pj) is equal to the distancé; ;, = (P; — P;, P; — P;) where

{i, j} = i, j}. Since all thed|; j, are distinct, therp = id and thusd{f,kl.} = d{%i} for
every distinct, j = 1, ..., n and every. By Proposition 2.5, this implies tha?, ..., 0k
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andR’l‘, el R,’; are in the same orbit relative to A®), for everyk which contradicts our
hypothesis, and the conclusion followsa

The following proposition addresses theblem of local reconstructibility fat-point
configurations in general.

Proposition 2.14. Letr = min(n — 1, m). Suppose that an-point configurationpy, .. .,

P, € V is such that its Gram matriXdefined as in(2.3)) has rankr. Then there
exists ane > 0 such that if the norm||(Q1,..., Q,) — (P, ..., Py)|| < € for some
n-point configurationQs, ..., 0, € V with the same distribution of distances as that of
Pi,...,P,,thenQ1,..., 0, and Py, ..., P, are in the same orbit relative tAO (V).

Proof. Again, by continuity, there exists a neighborhdodf (Py, ..., P,) € V" such that
the Gram matrix of anyQ1, ..., Q,) € U has a non-zere-by-r minor. Let us assume
the contrary so there exists a sequence-point configurationg ok, ..., Qﬁ},fil cU
converging toPy, ..., P,, and a sequence of permutatidgs} 2 ;, such that none of the
ok, ..., Qf; are inthe same orbitay, ..., P, under the action of AQV) but the distances

dyi.jy = (P; — P;, P; — P;) are mapped to the distancé{%} = (0 — 05,0 — 0%) by
@k SOd g i, j} = d{%i} foralli, j=1,...,n,i# j. Again we may assume that = ¢ is the
same for every. Taking the limit, we obtain thaf,; ;; = limi_ d{gi}, for all distinct
i,j=1,...,n. By continuity of the distance, this implies thé}; ;; = dy; ;;. Therefore,
di jy = d{%;} for everyk and every distinct, j =1, ..., n. By Proposition 2.5, this implies

thatQk, ..., Q’,‘, andPy, ..., P, are in the same orbit relative to A®) for everyk, which
contradicts our hypothesis, and the conclusion follows.

WhenV = R"™ (the case that interests us the most for applications), we can actually drop
the requirement on the Gram matrix basedtmnfollowing refinenent of Proposition 2.5.

Lemma 2.15. Let G = O(V) € GL(V) be the orthogonal group given by the form -).
Letvy, ..., v, w1, ..., w, € R™ be vectors with

(vi,vj) =(w;,w;) foralli,je{l, ... ,n}.
Then there exists @€ G such thatw; = g(v;) for all ;.

Proof. Observe that sinc¥ =R, the rank of the Gram matrikv;, v;)); j=1.. .. iS equal
to the dimension of the vector space spannedvhy.., v,. (This is not true over the
complex field.) So we may assume, after relabeling, that. ., v, with p > 1, are linearly
independent. By hypothesis, the same is truewgr. .., w,. By Proposition 2.5, there
existsg € G such thatg(v;) =w;, foralli =1,..., p.
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For anyk such that: > k > p, there existsyy, ..., «, such that, = Zj’
for 1 <k < p we have(vg, v;) = Zle(vi, v;) - a. It follows that

105V So

ay (v1, vi)

a,O (U,Os U1>

By the hypothesisw; can be expressed as a linear combinatiomwef. .., w,, with the
same coefficient§ herefore

m m
wi=Y ajwi= ajg)=gw). O
Jj=1 j=1

Corollary 2.16. For any n-point configurationpPy, ..., P, € R™ whose distances are all
distinct, there exists a neighborhoddof (P, ..., P,) € (R™)" such that any twa-point
configurations inN are in the same orbit under the action AD(V) if and only if their
distribution of distances is the same.

Corollary 2.17. For any n-point configurationPs, ..., P, € R™ there exists are > 0
such that if the normi(Q1, ..., @n) — (P, ..., Py)|| < € for somen-point configuration
01,...,0, € V with the same distribution of distances as that®f ..., P,, then
Q1,...,0,and Py, ..., P, are in the same orbit relative tAO (V).

3. Reconstruction from volumes

Givenn pointsPy, ..., P, € RZin a plane, we may consider all areds;  of triangles
spanned by three of these poimts P;, and P;. Clearly, these areas are preserved by
the action of all translations and all linear maps with determigahtAs in the preceding
section, we can consider thestributionof areas, and ask whether apoint configuration
is reconstructible from this distribution up to the above action and permutations of the
points. Again we will generalize this to configurations of poiifdying in K™, with K
a field andn any dimension. Since we are interested in invariants which are preserved by
all linear maps with determinantl, it makes sense to consider volumesmeEimplices
spanned byz + 1 points P, ..., P;,. These volumes are conveniently expressed by the
determinants

Qig, ... i = det(P,»l — Py, ..., P, — P ) (3.1

(where theP; are takes to be column vectors). Tdeterminants are really the “signed
volumes,” so we need to consider them up to signs, which is equivalent to taking squares.
This discussion leads to the following definition.
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Definition 3.1. Let K be a field andi > m positive integers. For am-point configuration
Pi,..., P, € K™ form the “volumes’a;, . ;, as in (3.1) and the polynomial

<o lm

Vpy,...p,(X) = 1_[ (X_aizo,...,im)'

1<ip< - <ipm<n

...P,(X) encodes the distribution of volumes.) Arpoint configurationPsy, ..., P, €
K™ is calledreconstructible from volumasthe following holds: if 01, ..., O, is another
n-point configuration withVp, o, (X) = Vp, . p,(X), then there exist a permutation
7w € S,,alinear map € GL,,(K) with def(¢) = 1, and a vectov € K™ such that

Qi =¢(Priy+v) foralli=1,...,n.
Remark 3.2.

(a) Ifwe are working in the plane, i.en, = 2, we will of course speak of reconstructibility
from areasinstead of volumes.

(b) For m = 1, the above concept of reconstructibility from volumes coincides with
reconstructibility from distaces introduced ifefinition 2.1.

3.1. Non-reconstructible configurations

Again the first issue is to find configurations which are not reconstructible from vol-
umes. Our main interest will be two-diméosal real space. A computation in Magma [7]
yields that inR? all 4-point configurations are reconstructible from volumes./Fer5 we
obtain counterexamples (whose construction also involved Magma computations). One of
the simplest of these is given in Fig. 6.

We put the points on a grid of length 1. The two configurations in Fig. 6 lie in different
orbits of S5 x AGL2(R), since in the first configuration all points lie on two parallel lines,
which is not the case in the second configuration. But the signed@rgasire as follows:

ail23 di24 4air2s5 4134 04135 4145 d4dA234 4235 4245 dA345
P 1 1 1 -2 -4 -2 -2 -4 -2 0
o 1 2 2 1 -1 -4 0o -2 -4 -2

So the distributions of areas coincide.

Forn = 6 we get an even simpler example which is given in Fig. 7.

The configurations in Fig. 7 lie in different orbits 6§ x AGL2(R) since the first
configuration has three connecting vectors between points which are equal and the second
one has not. But it is easy to see that the configurations have the same distribution of
areas. Moreover, we can add an arbitrary number of points on the upper dotted line in both
configurations to obtain pairs afpoint configurations with equal distributions of areas for
n>6.
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Fig. 6. Two 5-point configurationsith the same distribution of areas.

Fig. 7. Two 6-point configurationsith the same distribution of areas.

To get examples in dimensiom > 3, one can embed the two-dimensional ex-
amples given here intan-space and then add the — 2 points with coordinates
(0,0,1,0,...,0),...,(0,...,0,1).

3.2. Relation-preserving permutations

In this sectionk is a field,n andm are positive integers with > m, andx; ; are
indeterminates (Ki <n, 1< j <m). For 1<ip < --- < i, < n we take further
indeterminates4;,, ;. Write K[A] for the polynomial ring in theA,; and let
I C K[A] be the kernel of the map

<o lm

P K[Al > K[x],  Aig...oiy = d€xi; s = Xigk) j g

Forig,...,im €{1,...,n} pairwise distinct, select the permutatiorof the set{0, ..., m}
such that, ) < iz < < iz and set

A[o,...,im = Sgr(]'[) . Ai”(o),...,i,{(my (32)
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Lemma 3.3.

(@) Ifig, ..., im+1 € {1, ..., n} are pairwise distinct, then

m+1
Z(_DkAio,----,ik—l,ik+1-,---,im+1 el
k=0
(b) I is generated by the polynomiaEZjol(—1)"A,'o,,,,,ik71,,-k+l ,,,,, ima With 1 < ig <

- < im+1 < n and by homogeneous polynomial of degsed which only involve
the Ayiy i, With1<ip <+ <ip <n.t
(c) For je{l,....,n} the A ;. with 1 <i1 < -+ < iy <n, iy #j, are linearly
independent modulp.

<lm

Proof. It is convenient to writeP; for the (column) vector(x;1,...,x;m)', so for
io,...,im €{1,...,n} inincreasing order we have

(P(A,'O,_._,,'m) = det(P,-l - Py, ..., P, — P ), (3.3)

m

which is equal toy }_o(—D* det P, ..., P;,_,, P;
also valid if thei; are not increasing.

P;,). This shows that (3.3) is

[SELRERE

(a) By (3.3) we have

= de((Pll - PinH»l) - (Pl - Pim+l)’ M (Pim - PinH»l) - (Pl - Pim+l))
= (D(Aim+1,i1,---si;)1) - ¢(Ai,,1+1,io,i2,...,im) +t—t (_1)m(p(Aim+1*i0""*i"1—1)
=D (Aig,..irsimp1) — F -+ (D" P(Aiy, i)

This yields (a).

(b) The relations between th&(A, ;,,..i,) are known from classical invariant theory

<lm

(see [9] or [10]) to be the Plicker relations, which are homogeneous and non-

linear. LetJ C K[A] be the ideal generated by the linear relations given in (b)
and the Plucker relations. By (a) we haveC I. Conversely, takef € I. Using
the linear relations from (b), we can substitute evdry ;, appearing inf by
S o(=DF A i, i 1ikia,.in- IN this way we obtairy € K[A] with f =g mod J,
andg only involves indeterminates;, . ;, withio=n.But f € I impliesg € I, sog
lies in the ideal generated by the Plicker relations. Thus,/.

(c) It follows from (b) that the® (A, ;,,..i,,) With 1 <i1 <--- < i, < n are linearly
independent. But the same argument can be made with any otherjimasead of:.
This implies (¢). O

1 The non-linear polynomials are the well-known Pliickelations, which we do not need to present here
explicitly.
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The next lemma shows that the linear relations given in Lemma 3.3 are the only ones of
their kind.

Lemma 3.4. Let/ € K[A] be a non-zero linear combination of at most+ 2 of the
indeterminates\;, . ;,. Assume that all the coefficientsliare 1 or —1, andl € I. Then

.....

m—+1
= Z(_1)kAio,...,ik_l,ik+1,...,im+1 (34)
k=0
with iy, ..., in42 € {1, ..., n} pairwise distinct.

Proof. Take anyA,, . ;,, which occurs in. Define a homomorphis: K[A] — K[A]
by sending eact j, ., with ig € {jo, ..., jm} to itself and by sending eachj, . ;.
with io & {jo, .., jm} 10 X ho(=D*Aig jo.. it 1.jcs1,nim- LEMMa 3.3(@) implies that
¢(f)= f modI holdsforallf € K[A]. Thus(l) € I. Butby Lemma 3.3(c) this implies
¢()=0.But4,, ;, occurs as a summand (/) and must therefore be cancelled out
by something. Hence, a summand of the fotd j, ;,.... i, With jo ¢ {io, ..., i,} must
occur inl. The same argument can be applied to the other indicds,of ;, , and we find
summandstA;g, i1, jeivstsim WIth jik € {io, ..., in} in . We have already found + 2
summands i, hence these are all summands.

Now we apply the same argument #;,,, ;.. Doing so we find that for each
k € {1,...,m} there must occur an indeterminate inwhose indices include all
of jo,i1,...,ik-1,ik+1,---,im- Ruling out all other possibilities, we see that this
indeterminate must b&;; i 1 jc.ixitsim» SO jk = jo. Settingiy, 11 := jo, we find that
up to the signs the summands/cdre as claimed in the lemma.

If K has characteristic 2 then nothing has to be shown about signs and we are done.
So assume chek) # 2 and writel’ := 37N (— 1)  Aig . ix_1.ixs1..imsq- ASSUMeE that
is neither!’ nor —/’. Sincel’ lies in I by Lemma 3.3(a), the same is true f@r+1")/2.
But (I +1")/2 is non-zero, has coefficientsl, and has fewer tham + 2 summands. By
the above discussion, this is impossible. Hence, we concludé that!’. Performing a
permutation with sign-1 on the indices transfornisinto —/’, so the casé= —!’ is also
dealtwith. O

The following proposition is analogous to Lemma 2.4.

Proposition 3.5. Let ¢:K[A] — K[A] be an algebra-automorphism sending each
Ag,...in 10 £Ajy ., fOr somejo, ..., jm € {1,...,n} (where the signs may be chosen
independently. If ¢(I) C I, then there exists € S, ande € {1} such that forl <ip <

- < i, <nwe have

Proof. If n =m + 1, there is only one indeterminatg, . ;,, So there is nothing to show.
Hence, we may assume that> m + 2. SetM :={S c{l,...,n}||S|=m + 1}. We
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have a bijection) : M — M induced fromy by definingy ({io, ..., im}) = {jo, ..., jm}

it ¢(Aig,....in) = £Ajo,.. jm- FOr S = {io,...,im} € M with ig < --- < i, we write
As = Ajy,.in» SOP(As) = Ay (s). The bulk of the proof consists of constructing a
permutationr € S, such that

¥ (S) =m(S) (3.5)

for all § € M, where the right-hand side means element-wise applicatian of
Take a subserl’ C {1, ..., n} with m + 2 elements and writ& = {io, ..., in+1} With

ip < -+ <ipmt+1. By Lemma 3.3(a) the polynomidl= f:ol(—l)kAT\{,»k} lies in I,
hence alsap(l) € 1. But () = {5 A, (r\(i,)). From Lemma 3.4 we see that:=
m+1

=0 ¥(T \ {ix}) must have precisely. + 2 elements. Since eagh(T \ {ix}) hasm + 1
elements, there existsamap : 7 — T C {1,...,n} with Y(T \ {ix}) =T \ {77 (i)}
Sincey is injective this also holds fotr, soxy(T) = T. Thus, forallS € M with S C T
we have

¥ (S) = w7 (S) (3.6)

(where the right-hand side means element-wise applicatian pf

In the sequel we will make frequent use of the following rule: if two s&t§’ € M
have m elements in common, then alg®(S) and ¥ (S’) sharem elements. Indeed,
there is a linear polynomial of the type (3.4) in which botMg and Ag occur. By
Lemma 3.3(a)] lies in 1, hence als@ (/) € I. But Ay sy andAy sy occur ing (1), hence
[ (S) Ny (S)| =m by Lemma 3.4.

Now take two subsets, T’ C {1,...,n} with |T| = |T'| =m+2suchthaS :=TNT’
hasm + 1 elements. We will show that; andw7/ coincide onS. Write

T=SuU{j} and T ' =SU {k}

with j,ke{l,...,n}. Forl € S setS;:=T'\ {l},s0S; € M. Then|S; N (T \ {IH)|=m

and|S; N S| = m, soy(S;) sharesn elements withy (T \ {I}) = 77 (T) \ {77 ()} and
with ¥ (S) =77 (S) =7 (T) \ {77 (j)}. Buty(S;) cannot be a subset afy (T") since this
would imply

v () =mr (7 (W (D)) = v (2 (W (SD)),

contradicting the injectiveness ¢f, sinceS; € T'. It follows thaty (S;) = z7 (T \ {j,[}) U
{ri} with r; € {1, ...,n} \ 77 (T). We can write this slightly simpler ag (S;) = w7 (S \
{IH) U {r;}. On the other hand, we hasg C 77, so

Y (S) = (S) = (S\ 1Y) U {mrr () .
Intersecting the resulting equalityy (S \ {I}) U {r;} = 77 (S \ {I}) U {77 (k)} over all

I € Syields(;c¢{r1} = {y (k)}. Thus,r; = w7/ (k) independently of, andzr (S \ {I}) =
ar(S\ {I}) foralll € S. This shows thaty (I) =77/ (1) forall [ € S, as claimed.
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We proceed by taking any two subs&tsT’ C {1, ...,n} with |T|=|T'| =m + 2. We
can move fron to T’ by successively exchanging elements. Using the above result, we
see thatry andny coincide onT N 7T'. Thus, we can defing : {1,...,n} — {1,...,n}
such that for every subs@t C {1, ..., n} with |T| = m + 2 the restrictionz|, coincides
with 7. Now (3.5) follows from (3.6), and it also follows thate S,,.

TakeS € M and writeS = {io, ..., i} With ip < - - - < i;,,. The definition ofyr and (3.5)
imply that

B (Aig,....im) = €S * A (ig), ... (i)

with eg € {£1}. We wish to show thatg does not depend of. To this end, take
T C{1,...,n} with |T| =m + 2 and writeT = {ig, ..., im+1} With ig < -+ < i}41. By
Lemma 3.3(a)l := Y (= DF Aig. it 1ike...imss li€SIN I, hencep(l) e 1. But

m+1

k=0

Lemma 3.4 implies that alir\ ;,; coincide. This shows that if two sefs " € M sharen
elements, theng = ¢g. But since we can move from arfye M to any otherS’ € M by
successively exchanging elengnit follows that indeed altg coincide. This completes
the proof. O

3.3. Mostr-point configurations are reconstructible from volumes

In this sectionK is a field andV is anm-dimensional vector space ovéf. The
following proposition is well known.

Proposition 3.6. Let vy, ..., v,, w1, ..., w, € V be vectors witm > m, such that for all
1<iit<---<ip<n

dil = det(vil e U,'m) = det(w,-l e w,-m).

s~~~)il?1
If atleast one of thd;, . ;, is non-zero, then there existgae SL(V) such thatw; = ¢ (v;)
forall ;.

Proof. After renumbering we may assume thaty _,, is non-zero. Hencey, . .., vy
and wi, ..., w, are linearly independent, and there exists a (unigue)SL(V) such
that w; = ¢(v;) for all i < m. Assumen > m and take an index > m. There exist
@1,...,a, € K such thaty; = 37 a;jv;. Indeed, by Cramer’s rule we have =
(=" idy,. j—1,j+1..m,i/d1. . .m. By the hypothesis, it follows that; can be expressed
as a linear combination abq, . . ., w,, with the same coefficientSherefore,

wi =Y ajwj=Y ajp@)=¢®). O
j=1

j=1
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We come to the main theorem of this section. We assumekhit a field, V is an
m-dimensional vector space ovir, andn > m is an integer. We writ¢/” for the direct
sum ofn copies ofV, so ann-point configuration is an element fromy’. K[V"] is the
ring of polynomials onv".

Theorem 3.7. There exists a non-zero polynomiéle K[V"] such that every:-point
configuration(Ps, ..., P,) with f(P1, ..., P,) # Ois reconstructible from volumes.

Proof. Clearly, we may assume > 0. For indices I< ig < --- < i,y < 1, let A,

..... im

be an indeterminate, and fag, ..., i, € {1,...,n} pairwise distinct define4;, . ;, as
in (3.2). Let! € K[A] be the kernel of the mag : K[A] — K[V"] sending4,,,.. ;, to
the polynomiakp (A;,, ... ;,,) With @ (A, .. i, )(P1, ..., P,) =det(P;, — Py, ..., Pi,, — Piy)

for Py,..., P, € V. Note that! is precisely the ideal introduced at the beginning of
Section 3.2.

Let G C Autg (K[A]) be the group of all automorphisngs of K[A] sending each
¢ € {1} there is an automorphisgy, . € G with ¢ . (Ajy,...i.) =€ - Ax(ig)....7(im)- LEL
H < G be the subgroup of all thegg ., and choose a s&t of left coset representatives of
H in G withid € 7. Proposition 3.5 says that for evepye 7 \ {id} there exists atFy, € I
such thaty (Fy) ¢ 1. SetF := Ay 12 m - [Iyer\ia) ¥ (Fy) and f := &(F) € K[V"].
F ¢ I implies thatf # 0.

Let P1,..., P, € V such thatf(Py,..., P,) #0, and for 1< ig < --- < i, < n let

ai, ...i,, = 0det(Py; — Py, ..., P, — Piy) be the “signed volume.” We have
F(a)=f(P1,.... Py) #0. (3.7)
We wish to show thatPy,..., P, form a reconstructible:-point configuration. Let
01,...,0, € V be points and Seﬁfo,._.,i,,, :=det(Qi; — Qig»---» Qi,, — Qi) Assume
that the distribution of volumes o1, ..., O, coincides with that ofPy, ..., P,, i.e.,
Voi....0,(X) = Vp, . p,(X). This means that up to signs th%m ;, are a permutation

of thea,, . so there exists @ € G such that for allH € K[A] we have

oilm

(¢(H)(a)=H(a). (3.8)

There existr € S, and ¢ € {£1} such that¢ = ¢ o ¢, . with v € 7. By way of
contradiction, assume that # id. Clearly,¢,-1 . preserves the idedl, henceF, € I
implies H := ¢,-1 . (Fy) € I. Therefore,H(a') = (®(H))(Q1,..., Qn) =0, so (3.8)
yields

(v(Fy))(a) = (¢p(H))(a) = H(a) =0,

contradicting (3.7). It follows thaiy = id, so¢ = ¢~ .. We have to show that there exist
v eV andy € GL(V) with det(y) € {£1} such thatQ; = ¥ (Pr ;) + v) for all i. For this

purpose we may assume thatis the identity. Ife = —1, we apply an (arbitrary) linear
map with determinant-1 to Q1, ..., Q,. This will change all the signs of th@{.o

seenslm
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Fig. 8. Two 4-point configurations with the same diattibn of distances and the same distribution of areas.

Hence, we may assume that= 1, so¢ = id, and (3.8) implieSalfO,._.’l.’)l = ajq,...i,, fOr
all index vectorsip, ..., i,. Sincea, 12,..m # 0 (this was the purpose of introducing
An1.2...m as a factor intoF), Proposition 3.6 yields that there existse SL(V) such
thato (P; — P,) = Qi — Q, foralli € {1,...,n — 1}. Settingv := o ~1(Q,) — P, gives
the desiredresul); = o (P; +v) fori e {1,...,n}. O

Remark 3.8. Everything that was said in Sectiom2about reconstictibility of configu-
rations with symmetries carries over to reconstructibility from volumes. In particular, the
analogue of Proposition 2.11 holds. Similatlye analogues of Propositions 2.13 and 2.14
concerning local reconstructibility are also true.

3.4. Combining distances and volumes

Taking another look at Fig. 4, one notices that although the two configurations have
the same distribution of distances, their distributions of areas are different. This brings up
the idea to try to distinguish-point configurations (up to the action §f x AO,,(K)) by
considering the distribution of distancasd the distribution of volumes. Could it be that
by combining these data we might be able to separate all orbits? The following example
shows that once again this is not the case. We take the following 4-point configurations
in R? (see Fig. 8):

P1=(0,0), P,=(0,6), P3=(6v20), Py=(2v2 1),
01=(0,0), 02=(0,6), Q3=(6v2,0), Q1=(2v25).

It is easy to see that the two configurations lie in different orbitsSpfx AO2(R)
(although they lie in the same orbit 8§ x AGL>(RR)). We obtain the following distances

J/d;.j and signed areas,; x:

Vdiz Jdiz Jdia Jd23  Jdoa \/d3a
P 6 642 3 6J3 57 /33
0] 6 62 /33 6.3 3 V57
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ai2,3 ai2,4 a134 az3.4

P —36J2 —-122 -642 -—-30V2
Q0 -36V2 -12/2 30/2 @ 6V2
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