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Abstract

One way to characterize configurations of points up to congruence is by considerin
distribution of all mutual distances between points. This paper deals with the question if
configurations are uniquely determined by this distribution. After giving some counterexampl
prove that this is the case for the vast majority of configurations.

In the second part of the paper, the distribution of areas of sub-triangles is used for charac
point configurations. Again it turns out that most configurations are reconstructible from
distribution of areas, though there are counterexamples.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study a type of shape representation which attempts to combin
the approaches of invariant theory and statistics. We consider the problem of characteriz
the shapeor, more generally, thegeometryof a configuration of points. More precise
we are interested in finding a good representation for configurations of points in a
space modulo the action of a Lie groupG. The solution we investigate consists in us
distributions of invariants of the action ofG.

Our main motivation comes from applications in computer vision. A central prob
in image understanding is that of identifying objects from a picture. In that problem
must take into account that variations in theposition of the object or in the parameters

* Corresponding author.
E-mail addresses:boutin@mis.mpg.de (M. Boutin), kemper@ma.tum.de (G. Kemper).
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the camera induce variations in the image which correspond to group transformatio
need to be moded out in order to establish the correspondence between two picture
same object.

The obvious way to obtain image features which are not affected by the action
group is to use invariants of the group action. However, in order to be able to pos
identify any object, we need to find a set of invariants whose valuescompletelycharacterize
the image of the object up to the action of the group. In other words, we need t
a set of invariants such that two images are in the same orbitif and only if the values
of these invariants evaluated on the two images are the same. Such invariants are ca
separatingbecause they can be used to separate the orbits. In traditional approac
object recognition (see, for example, [1]), this method is commonly used.

In the following, we address the case of shapes defined by a finite set of points.
actually an important case for applications. Indeed for many reasons (e.g., the am
noise or the nature of the data) it is common to represent an object of interest by a
set of points calledlandmarks. For example, landmarks can be defined by salient fea
on the boundary of the image of the object. Specifically, one might think of minuti
fingerprints, corners on edges of archaeological sherds, or stellar constellations. In
to recognize the object, one thus needs to characterize the point configuration given
landmarks up to the action of the group.

Given a Lie groupG acting on a vector spaceV and two sets of n pointsP1, . . . ,Pn

and P 1, . . . ,P n ∈ V , we want to be able to determine whether there existsg ∈ G and
a permutationπ ∈ Sn (since, a priori, we do not know whether the points are labele
correspondence) such that

g(Pi) = P π(i), for all i = 1, . . . , n.

In applications, we are often interested in pictures, soV is usuallyR2 or R3 and the
Lie group G is typically a subgroup of the projective group and depends on how
picture of the object was taken. Examples of important groups includeE(2), the group of
rigid motions in the plane (rotations, reflections, and translations, sometime also d
by AO(2)), andA(2), the group of affine transformations in the plane, i.e., all translat
and linear maps with determinant±1.

In principle, this problem can indeed be solved using invariants. If we assume that t
points are distinguishable so we know how to correctly label them, then all we need
is to find a set of separating invariants of the diagonal action ofG onV n,

g · (Q1, . . . ,Qn) = (
g(Q1), . . . , g(Qn)

)
for all g ∈ G and allQ1, . . . ,Qn ∈ V.

For example, ifG = E(2) the group of Euclidean transformations in the plane t
two sets of landmarksP1, . . . ,Pn and P 1, . . . ,P n (labeled in correspondence) belo
to the same orbit under the action ofE(2) if and only if all their pairwise distance
d(Pi,Pj ) = d(P i, P j ) are the same for alli, j = 1, . . . , n. So the shape of the set
labeled landmarksP1, . . . ,Pn is completely characterizedby the value of the pairwis
(labeled) distances between the landmarks.
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However, in most applications the point correspondence is unknown so things are
complicated, especially when the number of pointsn is big. Indeed, labeling the points
a non-trivial task which, although feasible, takes time. (See, for example, [2] for an
exposition of some existing methods.) And the bigger the number of points, the longer
it takes. We would thus prefer to simply skip the labeling step. So, can we, instead
separating invariants of the action ofE(2) × Sn?

The answer to this question is, of course, yes. For example, in the casen = 3, instead of
distances one can use the following symmetric functions of the distances:

f1(P1,P2,P3) = d(P1,P2) + d(P1,P3) + d(P2,P3),

f2(P1,P2,P3) = d(P1,P2)d(P2,P3) + d(P1,P2)d(P1,P3) + d(P1,P3)d(P2,P3),

f3(P1,P2,P3) = d(P1,P2)d(P1,P3)d(P2,P3).

These are separating invariants of the action ofE(2)×S3 on(R2)3. Continuing in this way,
we can try to find expressions in the distancesd(P1,P2), d(P1,P3), d(P1,P4), d(P2,P3)

d(P2,P4), andd(P3,P4), which are invariant under the action ofS4 by permuting thePi ,
and which form a generating (or at least separating) subset of all such invariants. But noti
that the elementary symmetric functions in the distances will not qualify anymore,
these are the invariants under the action ofS6 instead ofS4. Thus this approach requires
fresh computation of invariants for each value ofn.

TheSn-invariants needed here are often calledgraph invariants, and have been studie
in a graph theoretical context by various authors, e.g., [3–5]. Aslaksen et al. [5] calc
a generating set of graph invariants forn = 4, obtaining a minimal set of 9 invariant
But for n = 5 the computation of graph invariants is already very hard and stood
challenge problem for a while (see [3,5]) until the computation was done by the s
author (see [6, p. 221]). The minimal generating set forn = 5 contains 56 invariants, an
storing them takes several MBytes of memory. Forn � 6 the computation is present
not feasible. This clearly shows that the approach of using graph invariants is far
practical. Apart from their number and the difficulties of computing them, they cannot b
used in practice for questions of robustness, since high degree polynomials vary imm
when small variations in the pointsP1, . . . ,Pn are introduced. We thus need to find bet
invariants than graph invariants; we need invariants that not only separate the orbits o
action ofG × Sn but that are also robust and simple to compute.

We were inspired by looking at what engineers do in practice. In order to ide
images of the same object, they often drop the separation requirement and simply l
invariant features of the image of which they compare the distribution. The distrib
of the pairwise distances of a set of points is obviously invariant under a relab
of the point. It is also much more robust than a set of polynomial functions o
pairwise distances. In addition, it is not too complicated to compute and very ea
manipulate.

So we asked ourselves if the distribution of distances of a set of points is actuall
a separating invariant and thus completely characterizes point configurations up to rig
motions. In other words, can ann-point configuration be reconstructed uniquely (up to
labeling of the points and up to rigid motions) from the distribution of distances? It
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out that this isfalsein general, as we demonstrate with counterexamples. But fortun
counterexamples are rare, in a sense to be explained shortly. This is the contents
first main result (Theorem 2.6). This result extends to the case where the points
in several colors (see Remark 2.8). Moreover, it is true locally, i.e., the shape ofn-point
configurations that are close enough can be compared using their distribution of inva
We also explore methods to verify reconstructibility for particular configurations. Most o
the results for the case of distances in the real plane naturally extend to any vector spa
with a non-degenerate quadratic form over a field of characteristic not equal to 2. W
thus simply treat this general case in the first part of this paper.

In the second part, we attempt to characterize point configurations up to the ac
the equi-affine groupA(2) and, again, the symmetric groupSn. This action is relevan
in computer vision since, up to a scale factor, it adequately approximates what ha
to the camera image of a very distant planar object as it is rotated and translated in thre
dimensional space. As above, there are obvious invariants for separating orbits underA(2).
These are the areas of triangles spanned by a selection of three of then points. As
before, we attempt to separateSn-orbits by considering thedistributionof all these areas
We obtain results which are completely analogous to those in the first section: the
examples of configurations which cannot be reconstructed (up to the action ofA(2) × Sn)
from the distribution of areas; but a dense open subset of configurations are reconst
in this sense (see Theorem 3.7). We believe that for most purposes in computer visi
is a satisfactory result. Again our results generalize to configurations in any dimensio
to any ground field.

Let us emphasize here that the use of computer algebra systems played a vital ro
preparation of this paper. In particular, Magma [7] was an indispensable tool. For examp
the first example of ann-point configuration which is not reconstructible from distan
was the upshot of a prolonged Magma session. The examples in Sections 3.1 and 3
constructed with the help of Magma and Maple [8]. But also the proof of Theorem 2.
inspired by sample computations in Magma.

2. Reconstruction from distances

An n-point configuration is a tuple of pointsP1, . . . ,Pn ∈ Rm. To an n-point
configuration we associate the squared (Euclidean) distancesdi,j between each pa
of points Pi and Pj , and then consider thedistribution of distances, i.e., the relativ
frequencies of the value of the distances. In other words, the distribution of distan
ann-point configuration tells us how many timeseach distance occurs relative to the to
number of distances. This means that, forn fixed, the distribution of distances is give
by the set of the numbersdi,j possibly with multiplicities if some distances occur seve
times. So considering the distribution of distances of ann-point configuration is equivalen
to considering the polynomial

FP1,...,Pn(X) :=
∏

(X − di,j ).
1�i<j�n



M. Boutin, G. Kemper / Advances in Applied Mathematics 32 (2004) 709–735 713

, one
fixed

nd
(a) (b)

Fig. 1. (a) A 100-point configuration, (b) histogram of distances with bin size 0.1470.

(a) (b)

Fig. 2. (a) A 100-point configuration, (b) histogram of distances with bin size 0.1993.

In order to better visualize the information contained in a distribution of distances
can plot a histogram of the distances, i.e., one can group the data into bins of a
size and count how many distances lie in each bin. Figures 1–3 show examples ofn-point
configurations in the plane together with a histogram of their distances.

Clearly the distribution of distances isinvariant under permutations of the points a
under the (simultaneous) action of the Euclidean group. The question is whether ann-point
configuration can be reconstructed from its distribution of distances.

Definition 2.1. An n-point configurationP1, . . . ,Pn ∈ Rm is calledreconstructible from
distancesif the following holds. If Q1, . . . ,Qn is anothern-point configuration with
FP1,...,Pn(X) = FQ1,...,Qn(X), then there exists a permutationπ ∈ Sn and a Euclidean
transformationg ∈ Em(R) such thatg(Pπ(i)) = Qi holds for alli.
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Fig. 3. (a) An 80-point configuration, (b) histogram of distances with bin size 0.1947.

The notion of reconstructibility from distances generalizes naturally to any vector
V with a non-degenerate quadratic form〈· , ·〉 over a field of characteristic not equal to
In this context, one simply uses〈Pi − Pj ,Pi − Pj 〉 as the “distance” betweenPi andPj ,
for any Pi,Pj ∈ V and replaces the Euclidean group by AO(V ) = O(V ) � V where
O(V ) ⊆ GL(V ) is the orthogonal group given by the form〈· , ·〉.

2.1. Non-reconstructible configurations

It is clear that in two-dimensional Euclideanspace all triangles are reconstructible fro
distances, and the same is true for all 2-point configurations. So the quest for exam
non-reconstructiblen-point configurations becomes interesting forn � 4. Figure 4 shows
such an example. We have put the (non-squared) distances along the lines connecti
of points. Note that the upper point in the first configuration is moved diagonally down
to obtain the second configuration, while the other three points remain inert.

Further examples can be constructed by adding an arbitrary number of add
points on the dotted line and at the same position in both configurations (such
slightly thicker dot in each picture). Thus, we get examples of non-reconstructiblen-point
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Fig. 4. Two 4-point configurations with the same distribution of distances.
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configurations for anyn � 4. By embedding these into a space of higher dimension
also get examples in any dimensionm � 2. The fact that we can add points at arbitra
positions on the dotted line shows that the symmetry of the configuration is not respo
for the fact that it is not reconstructible.

2.2. Relation-preserving permutations

Let K be a field of characteristic not equal to 2 (K = C and K = R will be the
most important examples). LetV be anm-dimensional vector space overK with a non-
degenerate symmetric bilinear form〈· , ·〉. With a suitable choice of a basis, this for
is given by〈(x1, . . . , xm), (y1, . . . , ym)〉 = ∑m

k=1 akxkyk with ak ∈ K \ {0}. If v1, . . . , vn

are vectors inV , then the Gram matrix(〈vi, vj 〉)i,j=1,...,n has rank at mostm, hence the
(m+1)× (m+1)-minors are zero. By the following well-known proposition, this gives
relations between the scalar products ofn vectors. Part (b) gives the relations between
distances betweenn points. In fact, Proposition 2.2(a) is the “second fundamental theorem
of invariant theory of orthogonal groups.

Proposition 2.2. Let xi,k be indeterminates overK (i = 1, . . . , n, k = 1, . . . ,m).

(a) Let si,j be further indeterminates(1 � i � j � n). Then the kernel of the map

K[s1,1, . . . , sn,n] → K[x1,1, . . . , xn,m], si,j �→
m∑

k=1

akxi,kxj,k

is generated(as an ideal) by the(m+1)×(m+1)-minors of the matrix(si,j )i,j=1,...,n,
where we setsi,j := sj,i for i > j .

(b) LetDi,j be indeterminates(1 � i < j � n). Then the kernel of the map

K[D1,2, . . . ,Dn−1,n] → K[x1,1, . . . , xn,m], Di,j �→
m∑

k=1

ak(xi,k − xj,k)
2

is generated(as an ideal) by the(m + 1) × (m + 1)-minors of the matrix

D = (Di,j − Di,n − Dj,n)i,j=1,...,n−1, (2.1)

where we setDi,i := 0 andDi,j := Dj,i for i > j .

Proof. For part (a), see [9] or [10, Theorem 5.7] (the latter reference takes care of t
positive characteristic case). Part (b) follows from (a) since for pointsP1, . . . ,Pn ∈ V we
have
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〈Pi − Pn,Pj − Pn〉 = 1

2

(〈Pi − Pn,Pi − Pn〉 + 〈Pj − Pn,Pj − Pn〉

− 〈Pi − Pj ,Pi − Pj 〉
)
. � (2.2)

We will now study monomials occurring in elements of the ideal given by Prop
tion 2.2(b). From now on it is useful to use sets{i, j } as indices of thed ’s rather than
pairsi, j .

Lemma 2.3. Let K be a field of characteristic not equal to2 and let D{i,j} be
indeterminates(i, j = 1, . . . , n, i 	= j). For an integerr with 1 � r � n − 1 consider
the ideal I generated by all(r × r)-minors of the matrixD := (D{i,j} − D{i,n} −
D{j,n})i,j=1,...,n−1, where we setD{i,i} := 0. Let t = ∏r

ν=1 D{iν ,jν} be a monomial o
degreer. Then the following are equivalent:

(a) The monomialt occurs in a polynomial fromI .
(b) Every index from{1, . . . , n} occurs at most twice among theiν andjν . More formally,

for everyk ∈ {1, . . . , n} we have|{ν | iν = k}| + |{ν | jν = k}| � 2.

Proof. It follows from Proposition 2.2(b) that the idealI is stable under the natural actio
by the symmetric groupSn. Thus,t occurs in a polynomial fromI if and only if all images
of t occur.

First, assume that there exists ak ∈ {1, . . . , n} which occurs more than twice among t
iν andjν . By the previous remark we may assumek = 1. If t occurs in a polynomial ofI
it must also occur in an(r × r)-minor ofD (since deg(t) = r). But in order to obtaint as
a monomial in an(r × r)-minor, one has to choose the first row or the first column ofD at
least twice, since entries involving the index 1 only occur in the first row and column
that is impossible. This proves that (a) implies (b).

Now assume that (b) is satisfied. Consider the graphG with vertices indexed 1, . . . , r,
where the number of edges between vertexν andµ is |{iν, jν} ∩ {iµ, jµ}|, i.e., the numbe
of indices shared by theνth andµth indeterminate int . By the hypothesis (b) ever
vertex is connected to at most two others, hence every connected component oG is
a line (including the case of an unconnected vertex) or a loop (including the ca
a loop of two vertices corresponding to indeterminatesD{iν ,jν } and D{iµ,jµ} which are
equal). By renumbering, we may assume that the first connected component is gi
the firstm vertices. By the remark at the beginning of the proof, we may further ass
that the firstm indeterminates int areD{1,2},D{2,3}, . . . ,D{m,m+1} (forming a line inG)
or D{1,2},D{2,3}, . . . ,D{m−1,m},D{1,m} (a loop). Sincem � r � n − 1, it can only happen
in the first case that the indexn is involved in these indeterminates. Thus, ifn is involved,
thenm = n− 1 andt = ∏n−1

ν=1 D{ν,ν+1}. It is easily seen that in this caset occurs in det(D)

with coefficient 2· (−1)n−1. Having settled this case, we may assume thatm < n − 1. We
proceed by induction on the number of connected components ofG.

First, assume that the first component is a loop. We wish to build an(r × r)-submatrix
of D whose determinant containst as a monomial. To this end, we start by choosing
first m rows and the firstm columns fromD. Temporarily setting allD{i,n} := 0, we obtain
a matrixD′ with
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D{i,n}=0 =




0 D{1,2} · · · D{1,m−1} D{1,m}
D{1,2} 0 · · · D{2,m−1} D{2,m}

...
. . .

...

D{1,m−1} D{2,m−1} · · · 0 D{m−1,m}
D{1,m} D{2,m} · · · D{m−1,m} 0




.

Clearly, the product t ′ := D{1,2}D{2,3} · · ·D{m−1,m}D{1,m} occurs with coefficien
2(−1)m−1 (or −1 if m = 2) in det(D′). Since the firstm indeterminates int form a
connected component inG, the indeterminates int ′′ := t/t ′ involve none of the indice
1, . . . ,m. Thus, by induction we can chooser − m rows, all below themth row, andr − m

columns, all right of themth column, such thatt ′′ occurs as a monomial of the determina
of the corresponding submatrixD′′. Finally, in order to get all oft = t ′ · t ′′ as a monomial in
a minor, choose the rows and columns as inD′′ together with the firstm rows and columns
This yields a submatrix ofD of block structure

(
D′ ∗
∗ D′′

)
,

where indeterminatesD{i,j} with both indices� m only occur inD′. Now clearlyt occurs
with non-zero coefficient in the determinant of this matrix.

Let us treat the second case, so assume that the first component ofG is a line
D{1,2},D{2,3}, . . . ,D{m,m+1}. Taking rows 1, . . . ,m and columns 2, . . . ,m + 1 yields a
matrixD′ with

D′|
D{i,n}=0 =




D{1,2} D{1,3} · · · D{1,m} D{1,m+1}
0 D{2,3} · · · D{2,m} D{2,m+1}

D{2,3} 0 · · · D{3,m} D{3,m+1}
...

. . .
...

D{2,m} D{3,m} · · · 0 D{m,m+1}




.

The productt ′ := D{1,2}D{2,3} · · ·D{m,m+1} occurs with coefficient 1 in det(D′). As above,
the monomials in the remaining partt ′′ := t/t ′ of t only involve indices strictly bigge
thanm + 1. Thus, we may chooser − m rows and columns which are all below and rig
of the (m + 1)st, respectively, to form a submatrixD′′ which hast ′′ in its determinant
Again, putting together the rows and columns that we chose yields a submatrix with
structure as above. We see that also in this caset occurs as a monomial in an(r × r)-minor
of D. �

If two n-point configurations have the same distribution of distances, this mean
the distances of both configurations coincide up to some permutation. But the per
distances must again satisfy the relations given by the idealfrom Proposition 2.2
Therefore, it is crucial to determine how this ideal behaves under permutatio



718 M. Boutin, G. Kemper / Advances in Applied Mathematics 32 (2004) 709–735

uced

t if

x sets

f
l
e,
g

tric
.

the D{i,j}. We show that all permutations which preserve this ideal are in fact ind
from permutations of then points. This provides the core of our argument.

Lemma 2.4. Let K be a field of characteristic not equal to2 and let D{i,j} be
indeterminates(i, j = 1, . . . , n, i 	= j). For an integerr with 3 � r � n − 1 consider
the ideal I generated by all(r × r)-minors of the matrixD := (D{i,j} − D{i,n} −
D{j,n})i,j=1,...,n−1, where we setD{i,i} := 0. Let φ be a permutation of theD{i,j} which
mapsI to itself. Then there exists a permutationπ ∈ Sn such that

φ
(
D{i,j}

) = D{π(i),π(j)} for all i, j.

Proof. We writeφ(D{1,2}) = D{i,j} andφ(D{1,3}) = D{k,l}. Assume that{i, j }∩{k, l} = ∅.
Then by Lemma 2.3 a monomialt of degreer occurs in an element ofI such thatt is
divisible by D2{i,j}D{k,l}. By the hypothesis,φ−1(t) also occurs in an element ofI . But

φ−1(t) is divisible byD2{1,2}D{1,3}, contradicting Lemma 2.3. This argument shows tha
the index sets of twoD{ν,µ} ’s intersect, then the same is true for their images underφ. This
will be used several times during the proof. Here, after possibly reordering the inde
(recall that we do not assumei < j or k < l) we obtaini = l. Thus,φ(D{1,3}) = D{i,k}.
Now we writeφ(D{1,4}) = D{m,p} and conclude, as above, that{m,p} ∩ {i, j } 	= ∅ and
{m,p}∩{i, k} 	= ∅. Assume, by way of contradiction, thati /∈ {m,p}. Then{m,p} = {j, k},
soφ(D{1,4}) = D{j,k}. By Lemma 2.3 a monomialt of degreer occurs in an element o
I such thatt is divisible byD{i,j}D{i,k}D{j,k}. Thenφ−1(t) also occurs in a polynomia
from I , butφ−1(t) is divisible byD{1,2}D{1,3}D{1,4}. This contradicts Lemma 2.3. Henc
our assumption was false and we conclude thati ∈ {m,p}, so with suitable renumberin
φ(D{1,4}) = D{i,m}.

Replacing 4 by any other index between 4 andn, we conclude thatφ(D{1,µ}) = D{i,π(µ)}
with π a permutation fromSn (where we may assignπ(1) = i). Now takeν,µ ∈ {2, . . . , n}
with ν 	= µ. Writing φ(D{ν,µ}) = D{x,y}, we conclude that{x, y} ∩ {i, π(µ)} 	= ∅ and
{x, y} ∩ {i, π(ν)} 	= ∅. But assumingi ∈ {x, y} (after renumberingi = x, say) leads to
the contradictionφ(D{ν,µ}) = D{i,y} = φ(D{1,π−1(y)}). Hence,{x, y} = {π(ν),π(µ)} and
thereforeφ(D{ν,µ}) = D{π(ν),π(µ)}, which concludes the proof.�
2.3. Mostn-point configurations are reconstructible from distances

In this sectionK is a field of characteristic not equal to 2 (e.g.,K = R or K = C) and
V is anm-dimensional vector space overK equipped with a non-degenerate symme
bilinear form〈· , ·〉. Let G = O(V ) ⊆ GL(V ) be the orthogonal group given by this form
The following proposition is folklore.

Proposition 2.5. Let v1, . . . , vn, w1, . . . ,wn ∈ V be vectors with

〈vi, vj 〉 = 〈wi,wj 〉 for all i, j ∈ {1, . . . , n}.
Setr := min{n,m}. If some(r × r)-minor of the Gram matrix(〈vi, vj 〉)i,j=1,...,n ∈ Kn×n

is non-zero, then there exists ag ∈ G such thatwi = g(vi) for all i.
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Proof. After renumbering we may assume thatA := (〈vi, vj 〉)i,j=1,...,r is invertible. In
particular,v1, . . . , vr are linearly independent. By the hypothesis, the same hold
w1, . . . ,wr , andvi �→ wi gives an isomorphism between

⊕r
i=1 Kvi and

⊕r
i=1 Kwi which

respects the form. By Witt’s extension theorem there exists ag ∈ G with g(vi ) = wi

for i � r . This concludes the proof forn � m. Now assumen > m and take an index
i > m. There existα1, . . . , αm ∈ K such thatvi = ∑m

j=1 αjvj . So for 1� k � m we have
〈vk, vi〉 = ∑m

j=1〈vk, vj 〉 · αj . It follows that


 α1

...

αm


 = A−1


 〈v1, vi〉

...

〈vm, vi〉


 .

By the hypothesis, it follows thatwi can be expressed as a linear combination
w1, . . . ,wm with the same coefficients. Therefore,

wi =
m∑

j=1

αjwj =
m∑

j=1

αjg(vj ) = g(vi). �

We come to the main theorem of this section. We assume thatK, V , andm are as above
We writeV n for the direct sum ofn copies ofV , so ann-point configuration is an elemen
from V n. K[V n] is the ring of polynomials onV n.

Theorem 2.6. Let n be a positive integer withn � 3 or n � m + 2. Then there exists
non-zero polynomialf ∈ K[V n] such that everyn-point configuration(P1, . . . ,Pn) with
f (P1, . . . ,Pn) 	= 0 is reconstructible from distances.

Proof. The casesn = 1 or m = 0 are trivial. The casem = 1 will be proved in Section 3
(see Theorem 3.7). Therefore, we may assume that 2� n � 3 or 2� m � n − 2.

Take indeterminatesD{i,j} indexed by sets{i, j } ⊂ {1, . . . , n} with i 	= j and form the
matrix

D := (
D{i,j} − D{i,n} − D{j,n}

)
i,j=1,...,n−1, (2.3)

where we setD{i,i} := 0 as usual. If 2� m � n−2, letI be the ideal of(m+1)× (m+1)-
minors of D. Each permutationπ ∈ Sn induces a permutationφπ of the D{i,j} by
φπ(D{i,j}) = D{π(i),π(j)}. Let H � S(n

2)
be the subgroup containing all theφπ , and let

T be a set of left coset representatives ofH , so we have a disjoint union

S(n
2)

=
.⋃

ψ∈T
ψH.

We may assume that id∈ T . Lemma 2.4 says that for everyψ ∈ T \ {id} there exists an
Fψ ∈ I such thatψ(Fψ) /∈ I . SetF1 := ∏

ψ∈T \{id} ψ(Fψ). If, on the other hand, 2� n � 3,
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setF1 := 1. In either case, setr := min{n − 1,m} and letF2 be a non-zero(r × r)-minor
of D (e.g., choose the firstr rows and columns). Now setF := F1F2.

We choose a basis ofV ∼= Km such that〈· , ·〉 takes diagonal form, so〈(ξ1, . . . , ξm),

(η1, . . . , ηm)〉 = ∑m
k=1 akξkηk with ak ∈ K \ {0}. Let xi,j be further indeterminate

(i = 1, . . . , n, j = 1, . . . ,m), so K[V n] can be identified withK[x1,1, . . . , xn,m]. Let
Φ :K[D{1,2}, . . . ,D{n−1,n}] → K[x1,1, . . . , xn,m] be the homomorphism of algebras giv
by D{i,j} �→ ∑m

k=1 ak(xi,k − xj,k)
2 (see Proposition 2.2(b)). Recall thatI is the kernel

of Φ. Sinceψ(Fψ) /∈ I for all φ ∈ T \ {id} andF2 /∈ I (since each non-zero homogeneo
element inI has degree> m), we obtain thatf := Φ(F) 	= 0.

Let P1, . . . ,Pn ∈ V such thatf (P1, . . . ,Pn) 	= 0, and letd{i,j} = 〈Pi − Pj ,Pi − Pj 〉 be
the distances. We have

F
(
d{1,2}, . . . , d{n−1,n}

) = f (P1, . . . ,Pn) 	= 0. (2.4)

We wish to show thatP1, . . . ,Pn form a reconstructiblen-point configuration. Le
Q1, . . . ,Qn ∈ V be points with distancesd ′{1,2}, . . . , d ′{n−1,n} such that the distribution
of distances coincides with that of thePi . Then there exists a permutationφ of the set
J := {{i, j } ⊆ {1, . . . , n} | i 	= j } (the index set of theD’s) such thatd ′{i,j} = dφ({i,j}).
There exists a permutationπ ∈ Sn such thatφ = ψ ◦ φπ with ψ ∈ T . Thus,

dψ({i,j}) = d ′
{π−1(i),π−1(j)}

for all {i, j } ∈ J . Assume, by way of contradiction, thatψ 	= id. Thenn � m + 2, since
for n � 3 all permutations ofJ are induced from permutations fromSn. Clearly,φπ−1

preserves the idealI , henceFψ ∈ I , impliesφπ−1(Fψ) ∈ I . Therefore,

Fψ

(
d ′
{π−1(1),π−1(2)}, . . . , d

′
{π−1(n−1),π−1(n)}

) = (
φπ−1(Fψ)

)(
d ′{1,2}, . . . , d ′{n−1,n}

) = 0,

and hence(
ψ(Fψ)

)(
d{1,2}, . . . , d{n−1,n}

) = Fψ

(
dψ({1,2}), . . . , dψ({n−1,n})

) = 0,

contradicting (2.4). It follows thatψ = id, sod ′{i,j} = d{π(i),π(j)} for all i, j . We have to
show that there existsg ∈ AO(V ) with Qi = g(Pπ(i)). For this purpose we may assum
that π is the identity. By applying a shift with a vector fromV we may further assum
Pn = Qn = 0. It follows from Eq. (2.2) that the Gram matrices(〈Pi,Pj 〉)i,j=1,...,n−1 and
(〈Qi,Qj 〉)i,j=1,...,n−1 coincide. Moreover, (2.4) implies that an(r × r)-minor of the Gram
matrices is non-zero. Now Proposition 2.5 yields the desired result.�
Remark 2.7. For 4� n � m + 1 (the range not covered by Theorem 2.6), no relat
exist between the distancesd{i,j} of ann-point configuration. IfK is algebraically closed
it follows from the surjectiveness of the categorical quotient (see [11, Theorem 3.5(i
or [6, Lemma 2.3.2]) that for any given values for thed{i,j} there exists ann-point
configuration which has these distances. Therefore, in this case non-point configuration is
reconstructible from distances, with the possible exception of configurations where
of the distances are the same. It is not entirely clear whether the same holds forK not
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algebraically closed (e.g.,K = R), since in this case the categorical quotient is no lon
surjective. As an example, forK = R the distances must satisfy triangle inequaliti
Nevertheless, we expect that also forK = R and 4� n � m + 1, all n-point configurations
lying in some dense open subset are not reconstructible from distances.

Remark 2.8. Theorem 2.6 deals with the situation where alln points are indistinguishable
However, in applications it often happens that the points come in several “colors”
different sorts of atoms in quantum molecular dynamics). Then the natural permu
group is a direct productSn1 × · · · × Snr of symmetric groups, where eachSni permutes
the points of colori. Our result extends to this situation as well. For example, if th
are red and blue points, one has to take three “partial” distributions: the distributi
distances between all red points, the distribution of distances between all blue p
and the distribution of distances between red and blue points. Together, these
distributions will separate orbits ofSnred × Snblue × Em on a dense open subset. T
analogous construction works for an arbitrary number of colors.

The argument why this works is roughly as follows: If the partial distributions coin
for two point configurations, then in particular the total distributions coincide. He
Theorem 2.6 applies and tells us that (with the exception of a “thin” closed se
configurations are linked by a permutation fromSn. Now one uses the hypothesis th
the partial distributions coincide (and assumes that thed{i,j} are pairwise distinct) to show
that this permutation must actually lie inSn1 ×· · ·×Snr , i.e., every point of colori is again
mapped to a point of colori.

2.4. Symmetricn-point configurations

The reconstructibility test provided by Theorem 2.6 fails for a variety of p
configurations, including all those with repeated distances.

Lemma 2.9. Let P1, . . . ,Pn ∈ V with 2 � m � n − 2 and considerf , the polynomial
function constructed in the proof of Theorem2.6. If the pairwise distances between t
Pi ’s are not all distinct thenf (P1, . . . ,Pn) = 0.

Proof. Denote byd{i,j} the distance betweenPi andPj . Assume that there existsi1, j1,
i2, j2 with {i1, j1} 	= {i2, j2} such thatd{i1,j1} = d{i2,j2}. Consider the permutationϕ ∈ S(n

2)
which permutes{i1, j1} and{i2, j2} and leaves all the other pairs{i, j } unchanged. Observ
that there does not existπ ∈ Sn such thatϕ{i, j } = {π(i),π(j)}, for all i, j = 1, . . . , n.
Therefore, there existsψ ∈ T \ {id} andϕπ ∈ H induced by a permutationπ ∈ Sn such
thatϕ = ψ ◦ ϕπ .

Let Fψ be any polynomial withFψ ∈ I such thatψ(Fψ) /∈ I . We havedψ{i,j} =
d{π−1(i),π−1(j)}, for all i, j = 1, . . . , n. This means that

0 = Fψ

(
d{π−1(1),π−1(2)}, . . . , d{π−1(n−1),π−1(n)}

)
(sinceFψ ∈ I)

= Fψ

(
dψ({1,2}), . . . , dψ({n−1,n})

) = ψFψ

(
d{1,2}, . . . , d{n−1,n}

)
.

So one of the factors off (P1, . . . ,Pn) is zero and the conclusion follows.�
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Corollary 2.10. If an n-point configurationP1, . . . ,Pn with 2 � m � n − 2 has a non-
trivial symmetry, i.e., if there existsg ∈ AO(V ) andπ ∈ Sn \ {id} such that

(g · P1, . . . , g · Pn) = (
Pπ(1), . . . ,Pπ(n)

)
,

then the polynomial functionf constructed in the proof of Theorem2.6 is such that
f (P1, . . . ,Pn) = 0.

Proof. By the previous lemma, it is sufficient to show that there exists{i1, j1} 	= {i2, j2}
such thatd{i1,j1} = d{i2,j2}. Sinceπ 	= id, there existsi0 such thatπ(i0) 	= i0. We have
g · Pi = Pπ(i), for all i ’s, so by invariance of the distance under AO(V ), this means
that d{i0,j} = d{π(i0),π(j)} for all j ’s. Therefore,i1 = i0, i2 = π(i0), j2 = π(j1), and any
j1 	= i0,π(i0) will do the trick. �

This does not mean that no symmetricn-point configuration is reconstructible fro
distances. Indeed a square is a counterexample forn = 4 (see Example 2.12 below). W
now give a reconstructibility test which does not exclude all point configurations
repeated distances.

Proposition 2.11. Let P1, . . . ,Pn ∈ V be points in anm-dimensional vector space(2 �
m � n − 2) over a fieldK of characteristic not2 equipped with a non-degenera
symmetric bilinear form〈· , ·〉. Setd{i,j} := 〈Pi − Pj ,Pi − Pj 〉, and assume that the matr
(d{i,j} − d{i,n} − d{j,n})i,j=1,...,n−1 has rankm (the “generic” rank). LetG � S(n

2)
be the

subgroup of all permutationsφ with dφ({i,j}) = d{i,j} for all i, j . (In fact, G may be
replaced by any smaller subgroup.) Moreover, letH � S(n

2)
be the subgroup of allφπ

with π ∈ Sn, given byφπ ({i, j }) = {π(i),π(j)}. Consider a setT ⊂ S(n
2)

of double cose
representatives with respect toG andH , i.e.,

S(n
2)

=
.⋃

ψ∈T
GψH.

Assume thatid ∈ T , and for eachψ ∈ T \ {id} chooseFψ ∈ I \ ψ−1(I) (whereI is the
ideal occurring in Lemmas2.3 and2.4), which is possible by Lemma2.4. If

(
ψ(Fψ)

)(
d{1,2}, . . . , d{n−1,m}

) 	= 0

for all ψ ∈ T \ {id}, then(P1, . . . ,Pn) is reconstructible from distances.

Proof. Since the proof is almost identical to the one of Theorem 2.6, we will be very
here to avoid repetitions. LetQ1, . . . ,Qn ∈ V be points with (squared) distancesd ′{i,j} such
thatd ′{i,j} = dφ({i,j}) with φ ∈ S(n

2)
. Write φ = ρ ◦ ψ ◦ φπ with ρ ∈ G, ψ ∈ T , andπ ∈ Sn.

Then

dψ({i,j}) = d(ρ◦ψ)({i,j}) = d(φ◦φ −1)({i,j}) = dφ({π−1(i),π−1(j)}) = d ′
−1 −1 ,
π {π (i),π (j)}
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Fig. 5. A rhombus.

where the first equality follows from the definition ofG. As in the proof of Theorem 2.6
we conclude from this thatψ = id, sod ′{i,j} = d(ρ◦φπ )({i,j}) = d{π(i),π(j)} for all i, j . The
rest of the proof proceeds as for Theorem 2.6.�
Example 2.12. In this example we show that all rhombi are reconstructible from distan
Consider a rhombus inK2 with sides of lengtha and diagonals of lengthb andc (see
Fig. 5), so

d{1,2} = d{2,3} = d{3,4} = d{1,4} = a, d{1,3} = b, and d{2,4} = c.

We assume thata, b, andc are all non-zero. If we order the 2-sets in{1, . . . ,4} as{1,2},
{1,3}, {1,4}, {2,3}, {2,4}, {3,4}, then the “symmetry group”G from Proposition 2.11 is
generated by the permutations(1,3) and(1,3,4,6), andG is isomorphic toS4. The image
H of the embedding ofS4 into S6 is generated by(2,4)(3,5) and(1,4,6,3)(2,5). It turns
out that there are two double cosets in this case:

S6 = GH
.∪ GψH,

whereψ can be chosen asψ = (1,2). Sincem = 2 andn = 4, we have only one generatin
relation, which is the determinant of the matrixD defined in (2.3). Choose this determina
as the polynomialFψ . Assume that the rhombus is not reconstructible. By Proposition
this implies(ψ(Fψ))(d{1,2}, . . . , d{3,4}) = 0. We obtain

a
(
(a − b)2 + c(c − b − 2a)

) = 0.

We haveb + c = 4a. (This is Pythagoras’ theorem, and it also follows fromFψ(d{1,2}, . . . ,
d{3,4}) = bc(b + c − 4a).) Substituting this into the above relation yields

3a(a − b)(c − a) = 0.

Sincea 	= 0, this impliesa = b or a = c (here we need to assume that char(K) 	= 3), and
by interchanging the roles ofb and c we may assumea = b. But this means that ou
rhombus has in fact a bigger symmetry group̃G generated by the permutations(1,2)

and (1,2,3,4,6). But now we see thatS6 = G̃H , so there is only the trivial doubl
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coset. It follows from Proposition 2.11 that the rhombus is in fact reconstructible fro
distances.

The computations for this example were done using the computer algebra s
Magma [7].

2.5. Locally reconstructiblen-point configurations

In this section,V is an m-dimensional vector space overK equipped with a non
degenerate symmetric bilinear form〈· , ·〉. We now concentrate on thelocal characterization
of n-point configurations. So we assume that the fieldK is eitherR or C and consider the
problem of reconstructibility on small balls inV n. Of course, for the concept of ball t
make sense,V n needs to be equipped with a norm. However, in general, the form〈· , ·〉 is
not a hermitian dot product and so cannot be used to define the norm. We thus assu
in addition ofV being equipped with the form〈· , ·〉, V n is equipped with a norm‖ · ‖.
This first proposition addresses the problem oflocal reconstructibility for configuration
of points whose mutual distances are all distinct.

Proposition 2.13. Let r = min(n − 1,m). Suppose that ann-point configurationP1, . . . ,

Pn ∈ V is such that its distances are all distinct and its Gram matrix(defined as in(2.3))

has rankr. Then there exists a neighborhoodN of (P1, . . . ,Pn) ∈ V n such that any two
n-point configurations inN are in the same orbit under the action ofAO(V ) if and only if
their distribution of distances is the same.

Proof. The distribution of distances is invariant under AO(V ) so one direction of the
statement is trivial. To prove the other direction, observe that a minor is a determina
which is a polynomial function, and therefore continuous. So there exists a neighbo
U of (P1, . . . ,Pn) ∈ V n such that the Gram matrix of any(Q1, . . . ,Qn) ∈ U has a non-
zeror-by-r minor.

Let us assume the contrary, so there exist two sequences ofn-point configurations
{Qk

1, . . . ,Q
k
n}∞k=1 and {Rk

1, . . . ,Rk
n}∞k=1 in U , both converging toP1, . . . ,Pn, and a

sequence of permutations{ϕk}∞k=1, such that for everyk, Qk
1, . . . ,Q

k
n andRk

1, . . . ,Rk
n are

not in the same orbit under the action of AO(V ) but the distancesdQk

{i,j} = 〈Qk
i − Qk

j ,

Qk
i −Qk

j 〉 are mapped to the distancesdRk

{i,j} = 〈Rk
i −Rk

j ,Rk
i −Rk

j 〉 byϕk sodRk

{i,j} = d
Qk

ϕk{i,j}
for all distincti, j = 1, . . . , n. SinceS(n

2)
is finite, we may assume thatϕk = ϕ is the same

for everyk. Taking the limit, we have

lim
k→∞dRk

{i,j} = lim
k→∞ d

Qk

ϕ{i,j}, for all distincti, j = 1, . . . , n.

By continuity of the distance, this implies that for any distincti, j = 1, . . . , n the distance
d{i,j} = 〈Pi − Pj ,Pi − Pj 〉 is equal to the distanced{i,j} = 〈Pi − Pj ,Pi − Pj 〉 where

{i, j } = ϕ{i, j }. Since all thed{i,j} are distinct, thenϕ = id and thusdRk

{i,j} = d
Qk

{i,j} for

every distincti, j = 1, . . . , n and everyk. By Proposition 2.5, this implies thatQk, . . . ,Qk
n
1
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1, . . . ,Rk

n are in the same orbit relative to AO(V ), for everyk which contradicts ou
hypothesis, and the conclusion follows.�

The following proposition addresses theproblem of local reconstructibility forn-point
configurations in general.

Proposition 2.14. Let r = min(n − 1,m). Suppose that ann-point configurationP1, . . . ,

Pn ∈ V is such that its Gram matrix(defined as in(2.3)) has rank r. Then there
exists anε > 0 such that if the norm‖(Q1, . . . ,Qn) − (P1, . . . ,Pn)‖ < ε for some
n-point configurationQ1, . . . ,Qn ∈ V with the same distribution of distances as that
P1, . . . ,Pn, thenQ1, . . . ,Qn andP1, . . . ,Pn are in the same orbit relative toAO(V ).

Proof. Again, by continuity, there exists a neighborhoodU of (P1, . . . ,Pn) ∈ V n such that
the Gram matrix of any(Q1, . . . ,Qn) ∈ U has a non-zeror-by-r minor. Let us assum
the contrary so there exists a sequence ofn-point configurations{Qk

1, . . . ,Q
k
n}∞k=1 ⊂ U

converging toP1, . . . ,Pn, and a sequence of permutations{ϕk}∞k=1, such that none of th
Qk

1, . . . ,Q
k
n are in the same orbit asP1, . . . ,Pn under the action of AO(V ) but the distance

d{i,j} = 〈Pi − Pj ,Pi − Pj 〉 are mapped to the distancesd
Qk

{i,j} = 〈Qk
i − Qk

j ,Q
k
i − Qk

j 〉 by

ϕk sodϕk{i,j} = d
Qk

{i,j} for all i, j = 1, . . . , n, i 	= j . Again we may assume thatϕk = ϕ is the

same for everyk. Taking the limit, we obtain thatdϕ{i,j} = limk→∞ d
Qk

{i,j}, for all distinct
i, j = 1, . . . , n. By continuity of the distance, this implies thatdϕ{i,j} = d{i,j}. Therefore,

d{i,j} = d
Qk

{i,j} for everyk and every distincti, j = 1, . . . , n. By Proposition 2.5, this implie

thatQk
1, . . . ,Q

k
n andP1, . . . ,Pn are in the same orbit relative to AO(V ) for everyk, which

contradicts our hypothesis, and the conclusion follows.�
WhenV = Rm (the case that interests us the most for applications), we can actually

the requirement on the Gram matrix based onthe following refinement of Proposition 2.5

Lemma 2.15. Let G = O(V ) ⊆ GL(V ) be the orthogonal group given by the form〈· , ·〉.
Let v1, . . . , vn, w1, . . . ,wn ∈ Rm be vectors with

〈vi, vj 〉 = 〈wi,wj 〉 for all i, j ∈ {1, . . . , n}.

Then there exists ag ∈ G such thatwi = g(vi) for all i.

Proof. Observe that sinceV = R, the rank of the Gram matrix(〈vi, vj 〉)i,j=1,...,n is equal
to the dimension of the vector space spanned byv1, . . . , vn. (This is not true over the
complex field.) So we may assume, after relabeling, thatv1, . . . , vρ with ρ � 1, are linearly
independent. By hypothesis, the same is true forw1, . . . ,wρ . By Proposition 2.5, ther
existsg ∈ G such thatg(vi) = wi , for all i = 1, . . . , ρ.
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For anyk such thatn � k > ρ, there existsα1, . . . , αρ such thatvk = ∑ρ
j=1 αj vj . So

for 1 � k � ρ we have〈vk, vi〉 = ∑ρ
j=1〈vi, vj 〉 · αj . It follows that


 α1

...

αρ


 = ((〈vi, vj 〉

)
i,j=1,...,ρ

)−1


 〈v1, vi〉

...

〈vρ, vi〉


 .

By the hypothesis,wi can be expressed as a linear combination ofw1, . . . ,wm with the
same coefficients. Therefore

wi =
m∑

j=1

αjwj =
m∑

j=1

αjg(vj ) = g(vi). �

Corollary 2.16. For any n-point configurationP1, . . . ,Pn ∈ Rm whose distances are a
distinct, there exists a neighborhoodN of (P1, . . . ,Pn) ∈ (Rm)n such that any twon-point
configurations inN are in the same orbit under the action ofAO(V ) if and only if their
distribution of distances is the same.

Corollary 2.17. For any n-point configurationP1, . . . ,Pn ∈ Rm there exists anε > 0
such that if the norm‖(Q1, . . . ,Qn) − (P1, . . . ,Pn)‖ < ε for somen-point configuration
Q1, . . . ,Qn ∈ V with the same distribution of distances as that ofP1, . . . ,Pn, then
Q1, . . . ,Qn andP1, . . . ,Pn are in the same orbit relative toAO(V ).

3. Reconstruction from volumes

Givenn pointsP1, . . . ,Pn ∈ R2 in a plane, we may consider all areasAi,j,k of triangles
spanned by three of these pointsPi , Pj , andPk . Clearly, these areas are preserved
the action of all translations and all linear maps with determinant±1. As in the preceding
section, we can consider thedistributionof areas, and ask whether ann-point configuration
is reconstructible from this distribution up to the above action and permutations o
points. Again we will generalize this to configurations of pointsPi lying in Km, with K

a field andm any dimension. Since we are interested in invariants which are preserv
all linear maps with determinant±1, it makes sense to consider volumes ofm-simplices
spanned bym + 1 pointsPi0, . . . ,Pim . These volumes are conveniently expressed by
determinants

ai0,...,im := det
(
Pi1 − Pi0, . . . ,Pim − Pi0

)
(3.1)

(where thePi are takes to be column vectors). Thedeterminants are really the “signe
volumes,” so we need to consider them up to signs, which is equivalent to taking sq
This discussion leads to the following definition.
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Definition 3.1. Let K be a field andn > m positive integers. For ann-point configuration
P1, . . . ,Pn ∈ Km form the “volumes”ai0,...,im as in (3.1) and the polynomial

VP1,...,Pn(X) =
∏

1�i0<···<im�n

(
X − a2

i0,...,im

)
.

(VP1,...,Pn(X) encodes the distribution of volumes.) Ann-point configurationP1, . . . ,Pn ∈
Km is calledreconstructible from volumesif the following holds: ifQ1, . . . ,Qn is another
n-point configuration withVQ1,...,Qn(X) = VP1,...,Pn(X), then there exist a permutatio
π ∈ Sn, a linear mapφ ∈ GLm(K) with det(φ) = ±1, and a vectorv ∈ Km such that

Qi = φ
(
Pπ(i) + v

)
for all i = 1, . . . , n.

Remark 3.2.

(a) If we are working in the plane, i.e.,m = 2, we will of course speak of reconstructibili
from areasinstead of volumes.

(b) For m = 1, the above concept of reconstructibility from volumes coincides
reconstructibility from distances introduced inDefinition 2.1.

3.1. Non-reconstructible configurations

Again the first issue is to find configurations which are not reconstructible from
umes. Our main interest will be two-dimensional real space. A computation in Magma [
yields that inR2 all 4-point configurations are reconstructible from volumes. Forn = 5 we
obtain counterexamples (whose construction also involved Magma computations).
the simplest of these is given in Fig. 6.

We put the points on a grid of length 1. The two configurations in Fig. 6 lie in diffe
orbits ofS5 × AGL2(R), since in the first configuration all points lie on two parallel lin
which is not the case in the second configuration. But the signed areasai,j,k are as follows:

a1,2,3 a1,2,4 a1,2,5 a1,3,4 a1,3,5 a1,4,5 a2,3,4 a2,3,5 a2,4,5 a3,4,5

P 1 1 1 −2 −4 −2 −2 −4 −2 0
Q 1 2 2 1 −1 −4 0 −2 −4 −2

So the distributions of areas coincide.
Forn = 6 we get an even simpler example which is given in Fig. 7.
The configurations in Fig. 7 lie in different orbits ofS6 × AGL2(R) since the first

configuration has three connecting vectors between points which are equal and the
one has not. But it is easy to see that the configurations have the same distribu
areas. Moreover, we can add an arbitrary number of points on the upper dotted line
configurations to obtain pairs ofn-point configurations with equal distributions of areas
n � 6.
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Fig. 6. Two 5-point configurations with the same distribution of areas.
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Fig. 7. Two 6-point configurations with the same distribution of areas.

To get examples in dimensionm � 3, one can embed the two-dimensional
amples given here intom-space and then add them − 2 points with coordinate
(0,0,1,0, . . . ,0), . . . , (0, . . . ,0,1).

3.2. Relation-preserving permutations

In this sectionK is a field,n and m are positive integers withn > m, andxi,j are
indeterminates (1� i � n, 1 � j � m). For 1� i0 < · · · < im � n we take further
indeterminatesAi0,...,im . Write K[A] for the polynomial ring in theAi0,...,im and let
I ⊆ K[A] be the kernel of the map

Φ :K[A] → K[x], Ai0,...,im �→ det
(
xij ,k − xi0,k

)
j,k=1,...,m

.

For i0, . . . , im ∈ {1, . . . , n} pairwise distinct, select the permutationπ of the set{0, . . . ,m}
such thatiπ(0) < iπ(1) < · · · < iπ(m) and set

Ai0,...,im := sgn(π) · Aiπ(0),...,iπ(m)
. (3.2)
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(a) If i0, . . . , im+1 ∈ {1, . . . , n} are pairwise distinct, then

m+1∑
k=0

(−1)kAi0,...,ik−1,ik+1,...,im+1 ∈ I.

(b) I is generated by the polynomials
∑m+1

k=0 (−1)kAi0,...,ik−1,ik+1,...,im+1 with 1 � i0 <

· · · < im+1 � n and by homogeneous polynomial of degree> 1 which only involve
theAn,i1,...,im with 1 � i1 < · · · < im < n.1

(c) For j ∈ {1, . . . , n} the Aj,i1,...,im with 1 � i1 < · · · < im � n, ik 	= j , are linearly
independent moduloI .

Proof. It is convenient to writePi for the (column) vector(xi,1, . . . , xi,m)T, so for
i0, . . . , im ∈ {1, . . . , n} in increasing order we have

Φ
(
Ai0,...,im

) = det
(
Pi1 − Pi0, . . . ,Pim − Pi0

)
, (3.3)

which is equal to
∑m

k=0(−1)k det(Pi0, . . . ,Pik−1,Pik+1, . . . ,Pim). This shows that (3.3) i
also valid if theij are not increasing.

(a) By (3.3) we have

Φ
(
Ai0,...,im

)
= det

((
Pi1 − Pim+1

) − (
Pi0 − Pim+1

)
, . . . ,

(
Pim − Pim+1

) − (
Pi0 − Pim+1

))
= Φ

(
Aim+1,i1,...,im

) − Φ
(
Aim+1,i0,i2,...,im

) + −· · · + (−1)mΦ
(
Aim+1,i0,...,im−1

)
= Φ

(
Ai0,...,im−1,im+1

) − +· · · + (−1)mΦ
(
Ai1,...,im,im+1

)
.

This yields (a).
(b) The relations between theΦ(An,i1,...,im ) are known from classical invariant theo

(see [9] or [10]) to be the Plücker relations, which are homogeneous and
linear. Let J ⊆ K[A] be the ideal generated by the linear relations given in
and the Plücker relations. By (a) we haveJ ⊆ I . Conversely, takef ∈ I . Using
the linear relations from (b), we can substitute everyAi0,...,im appearing inf by∑m

k=0(−1)kAn,i0,...,ik−1,ik+1,...,im . In this way we obtaing ∈ K[A] with f ≡ g modJ ,
andg only involves indeterminatesAi0,...,im with i0 = n. Butf ∈ I impliesg ∈ I , sog

lies in the ideal generated by the Plücker relations. Thus,f ∈ J .
(c) It follows from (b) that theΦ(An,i1,...,im ) with 1 � i1 < · · · < im < n are linearly

independent. But the same argument can be made with any other indexj instead ofn.
This implies (c). �

1 The non-linear polynomials are the well-known Plücker relations, which we do not need to present h
explicitly.
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The next lemma shows that the linear relations given in Lemma 3.3 are the only o
their kind.

Lemma 3.4. Let l ∈ K[A] be a non-zero linear combination of at mostm + 2 of the
indeterminatesAi0,...,im . Assume that all the coefficients inl are 1 or −1, andl ∈ I . Then

l =
m+1∑
k=0

(−1)kAi0,...,ik−1,ik+1,...,im+1 (3.4)

with i1, . . . , im+2 ∈ {1, . . . , n} pairwise distinct.

Proof. Take anyAi0,...,im which occurs inl. Define a homomorphismφ :K[A] → K[A]
by sending eachAj0,...,jm with i0 ∈ {j0, . . . , jm} to itself and by sending eachAj0,...,jm

with i0 /∈ {j0, . . . , jm} to
∑m

k=0(−1)kAi0,j0,...,jk−1,jk+1,...,jm . Lemma 3.3(a) implies tha
φ(f ) ≡ f modI holds for allf ∈ K[A]. Thus,φ(l) ∈ I . But by Lemma 3.3(c) this implie
φ(l) = 0. But Ai0,...,im occurs as a summand inφ(l) and must therefore be cancelled o
by something. Hence, a summand of the form±Aj0,i1,...,im with j0 /∈ {i0, . . . , im} must
occur inl. The same argument can be applied to the other indices ofAi0,...,im , and we find
summands±Ai0,...,ik−1,jk,ik+1,...,im with jk /∈ {i0, . . . , im} in l. We have already foundm + 2
summands inl, hence these are all summands.

Now we apply the same argument toAj0,i1,...,im . Doing so we find that for eac
k ∈ {1, . . . ,m} there must occur an indeterminate inl whose indices include a
of j0, i1, . . . , ik−1, ik+1, . . . , im. Ruling out all other possibilities, we see that th
indeterminate must beAi0,...,ik−1,jk ,ik+1,...,im , so jk = j0. Settingim+1 := j0, we find that
up to the signs the summands ofl are as claimed in the lemma.

If K has characteristic 2 then nothing has to be shown about signs and we are
So assume char(K) 	= 2 and writel′ := ∑m+1

k=0 (−1)kAi0,...,ik−1,ik+1,...,im+1. Assume thatl
is neitherl′ nor −l′. Sincel′ lies in I by Lemma 3.3(a), the same is true for(l + l′)/2.
But (l + l′)/2 is non-zero, has coefficients±1, and has fewer thanm + 2 summands. By
the above discussion, this is impossible. Hence, we conclude thatl = ±l′. Performing a
permutation with sign−1 on the indices transformsl′ into −l′, so the casel = −l′ is also
dealt with. �

The following proposition is analogous to Lemma 2.4.

Proposition 3.5. Let φ :K[A] → K[A] be an algebra-automorphism sending ea
Ai0,...,im to ±Aj0,...,jm for somej0, . . . , jm ∈ {1, . . . , n} (where the signs may be chos
independently). If φ(I) ⊆ I , then there existsπ ∈ Sn andε ∈ {±1} such that for1 � i0 <

· · · < im � n we have

φ
(
Ai0,...,im

) = ε · Aπ(i0),...,π(im).

Proof. If n = m + 1, there is only one indeterminateAi0,...,im , so there is nothing to show
Hence, we may assume thatn � m + 2. SetM := {S ⊂ {1, . . . , n} | |S| = m + 1}. We
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have a bijectionψ :M → M induced fromφ by definingψ({i0, . . . , im}) = {j0, . . . , jm}
if φ(Ai0,...,im) = ±Aj0,...,jm . For S = {i0, . . . , im} ∈ M with i0 < · · · < im we write
AS := Ai0,...,im , so φ(AS) = ±Aψ(S). The bulk of the proof consists of constructing
permutationπ ∈ Sn such that

ψ(S) = π(S) (3.5)

for all S ∈M, where the right-hand side means element-wise application ofπ .
Take a subsetT ⊆ {1, . . . , n} with m + 2 elements and writeT = {i0, . . . , im+1} with

i0 < · · · < im+1. By Lemma 3.3(a) the polynomiall = ∑m+1
k=0 (−1)kAT \{ik} lies in I ,

hence alsoφ(l) ∈ I . But φ(l) = ∑m+1
k=0 ±Aψ(T \{ik}). From Lemma 3.4 we see that̃T :=⋃m+1

k=0 ψ(T \ {ik}) must have preciselym + 2 elements. Since eachψ(T \ {ik}) hasm + 1
elements, there exists a mapπT :T → T̃ ⊆ {1, . . . , n} with ψ(T \ {ik}) = T̃ \ {πT (ik)}.
Sinceψ is injective this also holds forπT , soπT (T ) = T̃ . Thus, for allS ∈M with S ⊂ T

we have

ψ(S) = πT (S) (3.6)

(where the right-hand side means element-wise application ofπT ).
In the sequel we will make frequent use of the following rule: if two setsS,S′ ∈ M

have m elements in common, then alsoψ(S) and ψ(S′) sharem elements. Indeed
there is a linear polynomiall of the type (3.4) in which bothAS and AS ′ occur. By
Lemma 3.3(a),l lies in I , hence alsoφ(l) ∈ I . But Aψ(S) andAψ(S ′) occur inφ(l), hence
|ψ(S) ∩ ψ(S′)| = m by Lemma 3.4.

Now take two subsetsT , T ′ ⊆ {1, . . . , n} with |T | = |T ′| = m+2 such thatS := T ∩T ′
hasm + 1 elements. We will show thatπT andπT ′ coincide onS. Write

T = S ∪ {j } and T ′ = S ∪ {k}

with j, k ∈ {1, . . . , n}. For l ∈ S setSl := T ′ \ {l}, soSl ∈ M. Then|Sl ∩ (T \ {l})| = m

and |Sl ∩ S| = m, so ψ(Sl) sharesm elements withψ(T \ {l}) = πT (T ) \ {πT (l)} and
with ψ(S) = πT (S) = πT (T ) \ {πT (j)}. But ψ(Sl) cannot be a subset ofπT (T ) since this
would imply

ψ(Sl) = πT

(
π−1

T

(
ψ(Sl)

)) = ψ
(
π−1

T

(
ψ(Sl )

))
,

contradicting the injectiveness ofψ , sinceSl 	⊆ T . It follows thatψ(Sl) = πT (T \ {j, l})∪
{rl} with rl ∈ {1, . . . , n} \ πT (T ). We can write this slightly simpler asψ(Sl ) = πT (S \
{l}) ∪ {rl}. On the other hand, we haveSl ⊂ T ′, so

ψ(Sl) = πT ′(Sl) = πT ′
(
S \ {l}) ∪ {

πT ′(k)
}
.

Intersecting the resulting equalityπT (S \ {l}) ∪ {rl} = πT ′(S \ {l}) ∪ {πT ′(k)} over all
l ∈ S yields

⋂
l∈S{rl} = {πT ′(k)}. Thus,rl = πT ′(k) independently ofl, andπT (S \ {l}) =

πT ′(S \ {l}) for all l ∈ S. This shows thatπT (l) = πT ′(l) for all l ∈ S, as claimed.
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We proceed by taking any two subsetsT , T ′ ⊆ {1, . . . , n} with |T | = |T ′| = m + 2. We
can move fromT to T ′ by successively exchanging elements. Using the above resu
see thatπT andπT ′ coincide onT ∩ T ′. Thus, we can defineπ : {1, . . . , n} → {1, . . . , n}
such that for every subsetT ⊆ {1, . . . , n} with |T | = m + 2 the restrictionπ |

T
coincides

with πT . Now (3.5) follows from (3.6), and it also follows thatπ ∈ Sn.
TakeS ∈M and writeS = {i0, . . . , im} with i0 < · · · < im. The definition ofψ and (3.5)

imply that

φ
(
Ai0,...,im

) = εS · Aπ(i0),...,π(im)

with εS ∈ {±1}. We wish to show thatεS does not depend onS. To this end, take
T ⊆ {1, . . . , n} with |T | = m + 2 and writeT = {i0, . . . , im+1} with i0 < · · · < im+1. By
Lemma 3.3(a),l := ∑m+1

k=0 (−1)kAi0,...,ik−1,ik+1,...,im+1 lies in I , henceφ(l) ∈ I . But

φ(l) =
m+1∑
k=0

(−1)kεT \{ik} · Aπ(i0),...,π(ik−1),π(ik+1),...,π(im+1).

Lemma 3.4 implies that allεT \{ik} coincide. This shows that if two setsS, S′ ∈M sharem
elements, thenεS = εS ′ . But since we can move from anyS ∈ M to any otherS′ ∈ M by
successively exchanging elements, it follows that indeed allεS coincide. This complete
the proof. �
3.3. Mostn-point configurations are reconstructible from volumes

In this sectionK is a field andV is an m-dimensional vector space overK. The
following proposition is well known.

Proposition 3.6. Let v1, . . . , vn, w1, . . . ,wn ∈ V be vectors withn � m, such that for all
1 � i1 < · · · < im � n

di1,...,im := det
(
vi1 . . . vim

) = det
(
wi1 . . .wim

)
.

If at least one of thedi1,...,im is non-zero, then there exists aφ ∈ SL(V ) such thatwi = φ(vi)

for all i.

Proof. After renumbering we may assume thatd1,2,...,m is non-zero. Hence,v1, . . . , vm

and w1, . . . ,wm are linearly independent, and there exists a (unique)φ ∈ SL(V ) such
that wi = φ(vi) for all i � m. Assumen > m and take an indexi > m. There exist
α1, . . . , αm ∈ K such thatvi = ∑m

j=1 αj vj . Indeed, by Cramer’s rule we haveαj =
(−1)n−j d1,...,j−1,j+1,...,m,i/d1,...,m. By the hypothesis, it follows thatwi can be expresse
as a linear combination ofw1, . . . ,wm with the same coefficients. Therefore,

wi =
m∑

αjwj =
m∑

αjφ(vj ) = φ(vi). �

j=1 j=1
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We come to the main theorem of this section. We assume thatK is a field,V is an
m-dimensional vector space overK, andn > m is an integer. We writeV n for the direct
sum ofn copies ofV , so ann-point configuration is an element fromV n. K[V n] is the
ring of polynomials onV n.

Theorem 3.7. There exists a non-zero polynomialf ∈ K[V n] such that everyn-point
configuration(P1, . . . ,Pn) with f (P1, . . . ,Pn) 	= 0 is reconstructible from volumes.

Proof. Clearly, we may assumem > 0. For indices 1� i0 < · · · < im � n, let Ai0,...,im

be an indeterminate, and fori0, . . . , im ∈ {1, . . . , n} pairwise distinct defineAi0,...,im as
in (3.2). LetI ⊆ K[A] be the kernel of the mapΦ :K[A] → K[V n] sendingAi0,...,im to
the polynomialΦ(Ai0,...,im) with Φ(Ai0,...,im)(P1, . . . ,Pn) = det(Pi1 −Pi0, . . . ,Pim −Pi0)

for P1, . . . ,Pn ∈ V . Note thatI is precisely the ideal introduced at the beginning
Section 3.2.

Let G ⊆ AutK(K[A]) be the group of all automorphismsφ of K[A] sending each
Ai0,...,im to ±Aj0,...,jm with 1 � j0 < · · · < jm � n. For each permutationπ ∈ Sn and each
ε ∈ {±1} there is an automorphismφπ,ε ∈ G with φπ,ε(Ai0,...,im) = ε · Aπ(i0),...,π(im). Let
H � G be the subgroup of all theseφπ,ε, and choose a setT of left coset representatives
H in G with id ∈ T . Proposition 3.5 says that for everyψ ∈ T \ {id} there exists anFψ ∈ I

such thatψ(Fψ) /∈ I . SetF := An,1,2,...,m · ∏
ψ∈T \{id} ψ(Fψ) andf := Φ(F) ∈ K[V n].

F /∈ I implies thatf 	= 0.
Let P1, . . . ,Pn ∈ V such thatf (P1, . . . ,Pn) 	= 0, and for 1� i0 < · · · < im � n let

ai0,...,im = det(Pi1 − Pi0, . . . ,Pim − Pi0) be the “signed volume.” We have

F(a ) = f (P1, . . . ,Pn) 	= 0. (3.7)

We wish to show thatP1, . . . ,Pn form a reconstructiblen-point configuration. Le
Q1, . . . ,Qn ∈ V be points and seta′

i0,...,im
:= det(Qi1 − Qi0, . . . ,Qim − Qi0). Assume

that the distribution of volumes ofQ1, . . . ,Qn coincides with that ofP1, . . . ,Pn, i.e.,
VQ1,...,Qn(X) = VP1,...,Pn(X). This means that up to signs thea′

i0,...,im
are a permutation

of theai0,...,im , so there exists aφ ∈ G such that for allH ∈ K[A] we have

(
φ(H)

)
( a ) = H(a′). (3.8)

There existπ ∈ Sn and ε ∈ {±1} such thatφ = ψ ◦ φπ,ε with ψ ∈ T . By way of
contradiction, assume thatψ 	= id. Clearly,φπ−1,ε preserves the idealI , henceFψ ∈ I

implies H := φπ−1,ε(Fψ) ∈ I . Therefore,H(a′) = (Φ(H))(Q1, . . . ,Qn) = 0, so (3.8)
yields

(
ψ(Fψ)

)
( a ) = (

φ(H)
)
( a ) = H(a′) = 0,

contradicting (3.7). It follows thatψ = id, soφ = φπ,ε. We have to show that there ex
v ∈ V andψ ∈ GL(V ) with det(ψ) ∈ {±1} such thatQi = ψ(Pπ(i) + v) for all i. For this
purpose we may assume thatπ is the identity. Ifε = −1, we apply an (arbitrary) linea
map with determinant−1 to Q1, . . . ,Qn. This will change all the signs of thea′ .
i0,...,im
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Fig. 8. Two 4-point configurations with the same distribution of distances and the same distribution of area

Hence, we may assume thatε = 1, soφ = id, and (3.8) impliesa′
i0,...,im

= ai0,...,im for
all index vectorsi0, . . . , im. Sincean,1,2,...,m 	= 0 (this was the purpose of introducin
An,1,2,...,m as a factor intoF ), Proposition 3.6 yields that there existsσ ∈ SL(V ) such
thatσ(Pi − Pn) = Qi − Qn for all i ∈ {1, . . . , n − 1}. Settingv := σ−1(Qn) − Pn gives
the desired resultQi = σ(Pi + v) for i ∈ {1, . . . , n}. �
Remark 3.8. Everything that was said in Section 2.4 about reconstructibility of configu-
rations with symmetries carries over to reconstructibility from volumes. In particula
analogue of Proposition 2.11 holds. Similarly,the analogues of Propositions 2.13 and 2
concerning local reconstructibility are also true.

3.4. Combining distances and volumes

Taking another look at Fig. 4, one notices that although the two configurations
the same distribution of distances, their distributions of areas are different. This brin
the idea to try to distinguishn-point configurations (up to the action ofSn × AOm(K)) by
considering the distribution of distancesand the distribution of volumes. Could it be th
by combining these data we might be able to separate all orbits? The following ex
shows that once again this is not the case. We take the following 4-point configur
in R2 (see Fig. 8):

P1 = (0,0), P2 = (0,6), P3 = (
6
√

2,0
)
, P4 = (

2
√

2,−1
)
,

Q1 = (0,0), Q2 = (0,6), Q3 = (
6
√

2,0
)
, Q4 = (

2
√

2,5
)
.

It is easy to see that the two configurations lie in different orbits ofS4 × AO2(R)

(although they lie in the same orbit ofS4 × AGL2(R)). We obtain the following distance√
di,j and signed areasai,j,k :

√
d1,2

√
d1,3

√
d1,4

√
d2,3

√
d2,4

√
d3,4

P 6 6
√

2 3 6
√

3
√

57
√

33
Q 6 6

√
2

√
33 6

√
3 3

√
57
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a1,2,3 a1,2,4 a1,3,4 a2,3,4

P −36
√

2 −12
√

2 −6
√

2 −30
√

2
Q −36

√
2 −12

√
2 30

√
2 6

√
2

Acknowledgments

We thank Serkan Hosten and Greg Reid for inviting us to the Symbolic Computa
Algebra Conference held in London, Ontario in 2002. This is where we first met and s
this project. The idea of using distributions of invariants in order to separate the
was inspired by discussions of Mireille Boutin with David Cooper and Senem Velipa
regarding their work on indexation [12]. This author is grateful to the SHAPE lab of Br
University for providing the environment for these discussions and thus the motivatio
this paper.

References

[1] J.L. Mundy, A. Zisserman (Eds.), Geometric Invariance in Computer Vision, Artif. Intell., MIT Pr
Cambridge, MA, 1992.

[2] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Univ. Press, Camb
2001.

[3] N.M. Thiéry, Algebraic invariants of graphs: astudy based on computer exploration, SIGSAM Bull.
(2000) 9–20.

[4] M. Pouzet, Quelques remarques sur les résultats deTutte concernant le problème de Ulam, Publ. Dép. Ma
(Lyon) 14 (1977) 1–8.

[5] H. Aslaksen, S.-P. Chan, T. Gulliksen, Invariants ofS4 and the shape of sets of vectors, Appl. Algebra Eng
Comm. Comput. 7 (1996) 53–57.

[6] H. Derksen, G. Kemper, Computational InvariantTheory, Encyclopaedia Math. Sci., vol. 130, Spring
Verlag, Berlin, Heidelberg, New York, 2002.

[7] W. Bosma, J.J. Cannon, C. Playoust, The Magmaalgebra system I: The user language, J. Symb
Comput. 24 (1997) 235–265.

[8] B. Char, K. Geddes, G. Gonnet, M.Monagan, S. Watt, Maple ReferenceManual, Waterloo Maple, Waterloo
Ontario, 1990.

[9] H. Weyl, The Classical Groups, Princeton Univ. Press, Princeton, 1946.
[10] C. de Concini, C. Procesi, A characteristic free approach to invariant theory, Adv. in Math. 21 (1976) 33

354.
[11] P.E. Newstead, Intoduction to Moduli Problems and Orbit Spaces, Springer-Verlag, Berlin, Heidelberg, N

York, 1978.
[12] T. Tasdizen, S. Velipasalar, D.B. Cooper, Shape based similarity measure for image retrieval, Technic

Report SHAPE-TR-2001-03, SHAPE lab, Brown University, Providence, 2001.


