FURTHER CHARACTERIZATIONS OF CUBIC LATTICE GRAPHS

Curtis R. COOK
Department of Mathematics, Oregon State University, Corvallis, Oregon 97331, USA

Received 15 July 1971

Abstract

Abutract. A cubic battice graph with characteristic \boldsymbol{n} is a graph whose points can be identified with the ordered triplets on m symbols and two points are adjacent whenever the corresponding Iriplets have two coordinates in common. An \boldsymbol{L}_{2} graph is a graph whose points can be identifred with the ordered pairs on n symbols such that two points are adjacent if and only if the correspondine pairs have a common coordinate. The main result of this paper is two new characterizations of cubic lattice graphs. The main result depends on a new L_{2} graph characteriza tion and shows the relation between cubic lattice and L_{2} graphs. The main result also spagests a conjecture concerning the characterization of interchange graphs of complete m-partite graphs.

I. Introduction

A cubic lattice graph with characteristic \boldsymbol{n} is a graph whuse points can be identified with the ordered triplets on \boldsymbol{n} symbols and two points are adjacent whenever the corresponding triplets have two coordiiates in common. An L_{2} graph is a graph whose points can be identified with the ordered pairs on n symbols such that two points are adjacent if and only if the corresponding pairs have a common coordinate. The main nesult of this paper is two new characterizations of cubic lattice graphs. The main result depends on a new L_{2} graph characterization and shows the relation between cubic lattice and L_{2} graphs. The main result suggests a conjecture concerning the characterization of interchange graphs of complete m-partite graphs.

In this paper, we consider only finite undirected graphs without loops of multipte lines or edges. The degrec of a point is the number of lines incident with that point. A graph is regular if all its points have the same dequee. A graph is comnected if every pair of points are joined by a path. The ditame $d(\omega, v)$ between points u and v is the length of a shortest
path joining them. The number of points w adjac ent to both u and v is denoted $\Delta(u, v)$. If u is adjacent to $v, \Delta(u, v)$ is c lled the edge degree of the edge $u v$.

Shrikhande [8] and Moon [7] showed tha: the following properties characterize an L_{2} graph G except for one exceptional case when $n=4$:
$\left(\mathrm{A}_{1}\right) G$ has n^{2} peints.
$\left(\mathrm{A}_{2}\right) G$ is regular of degree $2(n-1)$.
$\left(A_{3}\right)$ If $d(u, v)=1$, then $\Delta(u, v)=n-2$.
$\left(\mathrm{A}_{4}\right)$ if $d(u, v)=2$, then $\Delta(u, v)=2$.
Laskar i 5] and Aigner [1] showed that the following propertics characterize a cubic lattice graph G except for one exceptional case when $n=4$:
$\left(B_{1}\right) G$ has n^{3} points.
$\left(B_{2}\right) G$ is :onnected and regular of degree $3(n-1)$.
$\left(B_{3}\right)$ If $\dot{u}(i, v)=1$, then $\Delta(u, v)=n-2$.
$\left(B_{4}\right)$ If $d(u, v)=2$, then $\Delta(u, v)=2$.
(B_{5}) If $d(u, v)=2$, then there exist exactly $n-1$ points w such that $d(u, w)=1$ and $t(v, w)=3$.

Note that $\left(A_{3}\right)$ and $\left(B_{3}\right)$, and $\left(A_{4}\right)$ and $\left(B_{4}\right)$ are identical and both characterizations have one exceptional case when $n=4$.

Laskar [6] has also characterized cubie lattice praphs for $n>7$ in terms of the eigenvalues of the adjacency matrix.

2. Characterization of $\boldsymbol{L}_{\mathbf{2}}$ graphs

As mentioned in the introduction, an L_{2} granh is a graph whose points car be identified with the n^{2} ordered pairs on n symbols such that twC ; oints are adjacent whenever the correspondine pairs have a common cordinate. A matrix graph is a graph whose points can be identified with a set of distinct ordered pairs of positive integerss such that two points are adjacent whenever the correspondine paiss have a common chordinate. Thus an L_{2} graph is a special case of a matrix
graph. Hedetniemi [4] has obtained four characterizations of matrix graphs. The L_{2} graph characterization follows easily from one of these characterizations. This L_{2} graph characterization will be used in the proof of one of the cubic lattice graph characterizations.

The point set of a graph G will be denoted $V(G)$. A complete graph K_{p} has every pair of its p points adjacent. For any subset S of $V(G)$, the induced subgraph (S) has point set S and two points of S are adjacent if and only if they are adjacent in G. Let π be a partition of $V(G)$. Then π is a K-partition if the subgraph induced by each block of π is a complete graph. The lines contained in π are the lines of G contained in the subgraphs induced by the blocks of π. Two K-partitions $\pi_{1}=\left\{V_{1}, \ldots, V_{m}\right\}$ and $\pi_{2}=\left\{\boldsymbol{W}_{1}, \ldots, W_{n}\right\}$ are orthogonal if $\left|V_{i} \cap \boldsymbol{W}_{\boldsymbol{i}}\right| \leq 1$ for every \boldsymbol{i} and j.

Theorem I (Hedetniemi). A graph G is a matrix graph if and only if there exist two orthogonal K-partitions of $V(G)$ containing all the lines of G.

Theorem 2. A graph G is an L_{2} graph if and only if there exist two orthogonal \mathbb{K}-partitions of $V(G)$ containing all the lines of G and each partition consists of \boldsymbol{n} blocks of order n.

Proof. Let $\pi_{1}=\left\{V_{1}, \ldots, V_{n}\right\}$ and $\pi_{2}=\left\{W_{1}, \ldots, W_{n}\right\}$ be two orthogonal K-partitions of $V(G)$ containing all the lines of G and $\left|V_{i}\right|=\left|W_{i}\right|=n$ for $t=1$.... n. Define a mapping f from $V(G)$ into $V\left(L_{2}\right)$ by $f(u)=$ (k, m) if and only if $V_{1} \cap W_{m}=(u)$. Since π_{1} and π_{2} are orthogonal, $f: \mid=1$. From $\left|V_{i}\right|=\left|W_{i}\right|=n$ for any i and j, it follows that $\left|V_{i} \cap W_{j}\right|=$ 1 and f is onto.

To complete the proof that $G \cong L_{2}$ we must show that f preserves adjacency. Let wu be a line in G and let $(11)=V_{i} \cap W_{i}$ and $(v)=$ $V_{4} \cap W_{m}$. Then $f(u)=(i, i)$ and $f(u)=(k, m)$. Since the two K-partitions contain all the lines of G. either $i=k$ or $i=m$, but not both. In either c ase ($(\mathrm{i}, \mathrm{j}$) is adjacent to (k, m).

Now asume that $(i, f)=f(u)$ is adjacent to $(s, f)=f(v)$. This implies that cithet $u, \cup \in V_{i} \equiv V_{j}$ of $u, v \in W_{i} \equiv W_{1}$. Since (V_{i}) and (W_{i}) are complete sublatapho, 1 is adjacent to v.

The necesity of these conditions is obvious if we let the blocks of s_{i} the the points of L_{2} with the same $f^{\text {th }}$ coordinate.

3. The main theorem

Recall that a cubic lattice graph with characteristic \boldsymbol{n} is a graph whose points can be identified with the n^{3} ordered triplets on n symbols such that two points are adjacent whenever the corresponding triplets have two coordinates in common. A cube graph is a graph whose points can be identified with a set of distinct ordered triplets of positive integers such that two points are adjacent whenever the corresponding triplets have two common coordinates. Hence a cubic lattice graph is a special case of a cube graph. In [2], the author obtained two cube graph characterizations. The two cubic lattice graph characterizations are modifications of these characterizations.

A latice is a partially ordered set L in which each pair of elements has a greatest lower bound and a least upper bound. If α and β are two elements in L, we denote their greatest lower bound by $\alpha \cdot \beta$ and their least upper bound by $\alpha+\beta$. Let 0 denote the zero element of L. The set of partitions of a set S forms a lattice. If L is the set of partitions of S, then $a \equiv b(\alpha \cdot \beta)$ if and only if $a \equiv b(\alpha)$ and $a \equiv b(\beta)$, and $a \equiv b(\alpha+\beta)$ if and only if there exists a sequence $a_{0}, a_{1}, \ldots, a_{p}$ such that $a=a_{0}, b=a_{p}$, and $a_{i} \equiv a_{i+1}(\alpha)$ or $a_{i} \equiv a_{i+1}(\beta)$ for $0 \leq i \leq p-1$.

Let π be a partition of the points of a graph G. Then π is an $L_{2}(M)$ partition if the subgraph induced by each block of π is an L_{2} (connected matrix) graph. Three partitions π_{1}, π_{2}, and π_{3} are triorthogonal if $\pi_{1} \cdot \pi_{2} \cdot \pi_{3}=0$.
The next theorem characterizes cube graphs.
Theorem 3 (Cook). The following are equivalent:
(1) G is a cube graph.
(2) There exisi three triorthogonal M-partitions, M_{1}, M_{2}, and M_{3}. of $V(G)$ containing each line of G exactly twice and $M_{i} \cdot M_{j}, i \neq j$ is a K-partition of $V(G)$.
(3) There exist three mutually orthogonal K-partitions. π_{1}, π_{2}, and π_{3}, of $V(G)$ containing all the lines of G and $\left(\pi_{i}+\pi_{j}\right) \cdot\left(\pi_{i}+\pi_{k}\right)=$ $\pi_{i}+\left(\pi_{j} \cdot \pi_{k}\right)$ for $1 \leq i, j, k \leq 3$.

The proof of the main theorem requires several lemmas.
Lemma 1. Let L be a lattice with a 0 element and let π_{1}, π_{2}, and π_{3} be three elements of L with the following properties:
(1) $\pi_{i} \cdot \pi_{i}=0$ for $i \neq j, 1 \leq i, j \leq 3$.
(2) $\left(\pi_{i}+\pi_{j}\right) \cdot\left(\pi_{i}+\pi_{k}\right)=\pi_{i}+\left(\pi_{j} \cdot \pi_{k}\right)$ for $1 \leq i, j, k \leq 3$.

Then

$$
\left(\pi_{i} \cdot \pi_{j}\right)+\left(\pi_{i} \cdot \pi_{k}\right)=\pi_{i} \cdot\left(\pi_{j}+\pi_{k}\right) \text { for } 1 \leq i, j, k \leq 3 .
$$

Proof. The proof will be by cases.
Case 1. $i=j$ or $i=k$,

$$
\left(\pi_{i} \cdot \pi_{j}\right)+\left(\pi_{i} \cdot \pi_{k}\right)=\pi_{i}=\pi_{i} \cdot\left(\pi_{j}+\pi_{k}\right) .
$$

Case 2. $j=k$,

$$
\left(\pi_{i} \cdot \pi_{j}\right)+\left(\pi_{i} \cdot \pi_{k}\right)=\pi_{i} \cdot \pi_{j}=\pi_{i} \cdot\left(\pi_{j}+\pi_{k}\right) .
$$

Case 3. $i \neq j \neq k \neq i$,

$$
\begin{aligned}
0 & =\left(\pi_{i} \cdot \pi_{j}\right)+\left(\pi_{i} \cdot \pi_{k}\right) & \\
& =\left(\left(\pi_{i} \cdot \pi_{j}\right)+\pi_{i}\right) \cdot\left(\left(\pi_{i} \cdot \pi_{j}\right)+\pi_{k}\right) & \\
& =\left(\left(\pi_{i}+\pi_{i}\right) \cdot\left(\pi_{i}+\pi_{j}\right)\right) \cdot\left(\left(\pi_{k}+\pi_{i}\right) \cdot\left(\pi_{k}+\pi_{j}\right)\right) & \text { (2) } \\
& =\left(\pi_{i} \cdot\left(\pi_{i}+\pi_{j}\right)\right) \cdot\left(\left(\pi_{i}+\pi_{k}\right) \cdot\left(\pi_{j}+\pi_{k}\right)\right) & \text { commutative laws } \\
& =\pi_{i} \cdot\left(\left(\pi_{i}+\pi_{k}\right) \cdot\left(\pi_{j}+\pi_{k}\right)\right) & \text { absorption laws } \\
& =\left(\pi_{i} \cdot\left(\pi_{i}+\pi_{k}\right)\right) \cdot\left(\pi_{j}+\pi_{k}\right) & \text { associative laws } \\
& =\pi_{i} \cdot\left(\pi_{j}+\pi_{k}\right) & \text { absorption laws }
\end{aligned}
$$

In the following assume that G is a cubic lattice graph with characteristic n.

Lemma 2. The set of n points of G with two common coordinates form a clique.

Proof. If $n=1$, the lemma is true. Suppose that $u_{1}, \ldots, u_{n}, n>1$, have the sane two coordinates in common. Clearly liese n points form a complete subgraph of G. Any point v adjacent to these n points must also have these same two coordinates. Therefore the n points must form a clique.

Lemma 3. Let π_{1}, π_{2}. and π_{3} be three K-partitions of $V(G)$ n hose blocks constst of the points of G that have the same first and second, first and
third, and second and third coordinates, respectively. Then the set of points in each block of $\pi_{1}+\pi_{2}, \pi_{1}+\pi_{3}$, and $\pi_{2}+\pi_{3}$ have the same first, second, and third coordinates, respectively.

Proof. Let u and v be two points in a block of $\pi_{1}+\pi_{2}$. From the definitio: of $\pi_{1}+\pi_{2}$, this implies the existence of a sequence $u=u_{0}, \ldots, u_{p}=$ v, where $u_{i-1} \equiv u_{i}\left(\pi_{1}\right)$ or $u_{i-1} \equiv u_{i}\left(\pi_{2}\right)$ for $i=1, \ldots, p$. Then for $i=$ $1, \ldots, p, u_{i-1}$ and u_{i} have either the same first and second or first and third coordinates. Hence u and v have the same first coordinate.

By an analogous argument, the points in each block of $\pi_{1}+\pi_{3}$ and $\pi_{2}+\pi_{3}$ have the same second and third coordinates.

Theorem 4 (Characterization of cubic lattice graphs). The following are equivalent:
(1) G is a cubic lattice graph with characteristic n.
(2) There exist three triorthogonal L_{2}-partitions of $V(G), M_{1}, M_{2}$. and M_{3}, such that each M_{i} contains n blocks of order n^{2}, the three partitions contain every line of G exactly twice, and $M_{i} \cdot M_{j}, i \neq j$, is a K-partition of $V(G)$.
(3) There exist three mutually orthogonal K-partitions of $V(G), \pi_{1}$, π_{2}, and π_{3}, containing all the lines of G, π_{i} contains n^{2} blocks of order n and

$$
\begin{equation*}
\left(\pi_{i}+\pi_{j}\right) \cdot\left(\pi_{i}+\pi_{k}\right)=\pi_{i}+\left(\pi_{j} \cdot \pi_{k}\right) \text { for } 1 \leq i, j, k \leq 3 . \tag{D}
\end{equation*}
$$

Proof. (1) implies (3). Let π_{1}, π_{2}, and π_{3} be three K-partitions of $V(G)$ whose blocks consist of the points of G that agree on the first and second, first and third, and second and third coordinates, respectively. Clearly π_{1}, π_{2}, and π_{3} are mutually orthogonal and contain all the lines of G. Also each K-partition contains n^{2} blocks of order n. In fact the subgraph induced by each block of π_{i} is a clique by Lemma 2.

All that remains is to show that π_{1}, π_{2}, and π_{3} satisfy property (D). If $i=j$ or $i=k$. then

$$
\pi_{i}+\left(\pi_{j} \cdot \pi_{k}\right)=\pi_{i}=\left(\pi_{i}+\pi_{j}\right) \cdot\left(\pi_{i}+\pi_{k}\right)
$$

If $j=k$, then

$$
\pi_{i}+\left(\pi_{j} \cdot \pi_{k}\right)=\pi_{i}+\pi_{j}=\left(\pi_{i}+\pi_{j}\right) \cdot\left(\pi_{i}+\pi_{k}\right) .
$$

If $i \neq j \neq k \neq i$, then since π_{1}, π_{2}, and π_{3} are mutually orthogonal,

$$
\left(\pi_{i}+\pi_{j}\right) \cdot\left(\pi_{i}+\pi_{k}\right) \geq \pi_{i}=\pi_{i}+\left(\pi_{j} \cdot \pi_{k}\right) .
$$

Assume without loss of generality that $\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{3}\right) \geq \pi_{1}$. By Lemma 3 the points in each block of $\pi_{1}+\pi_{2}$ have the same first coordinate and the points in each block of $\pi_{1}+\pi_{3}$ have the same second coordinate. Hence $\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{3}\right)=\pi_{1}$.
(3) implies (2). Let π_{1}, π_{2}, and π_{3} be three K-partitions of $V(G)$ satisfying the stated conditions. Define three partitions of $V(G), M_{1}$, M_{2}, and M_{3}, by $\pi_{1}+\pi_{2}, \pi_{1}+\pi_{3}$, and $\pi_{2}+\pi_{3}$, respectively.

First we will show that each block of $M_{i}, i=1,2,3$, is of order n^{2}. Let $M_{i}=\pi_{j}+\pi_{k}$. Since π_{j} and π_{k} are orthogonal and contain n^{2} blocks of order n, each block of M_{i} must be of order n^{2} or greater. Suppose a biock of one of the M_{i} 's, say M_{1} is of order greater than \boldsymbol{n}^{2}. This implics that M_{1} contains $m<n$ blocks and that $M_{1} \cdot M_{2}$ contains $m q<n^{2}$ blocks where M_{2} contains $q \leq n$ blocks. But this contradicts property (D) as

$$
M_{1} \cdot M_{2}=\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{3}\right)=\pi_{1}+\left(\pi_{2} \cdot \pi_{3}\right)=\pi_{1}
$$

and π_{1} contains n^{2} blocks of order n.
To show that the lines contained in $M_{i}=\pi_{j}+\pi_{k}$ are the lines contained in either π_{j} or π_{k}, suppose that M_{i} contains a line not contained in either π_{j} or π_{k}. Then this line must be contained in $\pi_{p}, i \neq p \neq k$. i.e., $\pi_{p} \cdot\left(\pi_{j}+\pi_{k}\right)>0$. But this contradicts Lemma 1 as

$$
\pi_{p} \cdot\left(\pi_{j}+\pi_{k}\right)=\left(\pi_{p} \cdot \pi_{j}\right)+\left(\pi_{p} \cdot \pi_{k}\right)=0 .
$$

Clearly M_{1}, M_{2}, and M_{3} contain each line of G exactly twice.
We will use Theorem 2 to show that $M_{i}=\pi_{j}+\pi_{k}$ is an L_{2}-partition. From the preceding, each block X of M_{i} is of order n^{2} and M_{i} contains the lines contained in either π_{j} or π_{k}. The n blocks of order n of π_{j} and ${ }^{4}$, which have a nomempty intersection with X are orthogonal K partitions of $V(C)$. Hence by Theorem 2 the subgraph induced by each block of M_{i} is an L_{2} graph.

It follows almost immediately from (D) that M_{1}, M_{2}, and M_{3} are triorthogonal:

$$
\begin{aligned}
M_{1} \cdot M_{2} \cdot M_{3} & =\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{3}\right) \cdot\left(\pi_{2}+\pi_{3}\right) \\
& =\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{3}\right) \cdot\left(\pi_{1}+\pi_{3}\right) \cdot\left(\pi_{2}+\pi_{3}\right) \\
& =\left(\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{5}\right)\right) \cdot\left(\left(\pi_{3}+\pi_{1}\right) \cdot\left(\pi_{3}+\pi_{2}\right)\right) \\
& =\left(i_{1}+\left(\pi_{2} \cdot \pi_{3}\right)\right) \cdot\left(\pi_{3}+\left(\pi_{1} \cdot \pi_{2}\right)\right) \\
& =\pi_{1} \cdot \pi_{3} \\
& =0 .
\end{aligned}
$$

From (D) and the fact that π_{1}, π_{2}, and π_{3} are orthogonal K-partitions, it follows that $M_{i} \cdot M_{j}, i \neq j$, is a K-partition of $\bar{V}(G)$.
(2) implies (1). Let M_{1}, M_{2}, and M_{3} be three L_{2}-partitions satisfying the stated conditions, where $M_{1}=\left\{U_{1}, \ldots . U_{n}\right\}, M_{2}=\left\{V_{1}, \ldots, V_{n}\right\}$, and $M_{3}=\left\{W_{1}, \ldots, W_{n}\right\}$ and $\left|U_{i}\right|=\left|V_{j}\right|=\left|W_{k}\right|=n^{2}$. Define a mapping f from $V(G)$ into a cubic lattice graph H with characteristic n by $f(v)=(i, j, k)$ if and only if $v \in U_{i} \cap V_{j} \cap W_{k}$. Clearly f is $1-1$ and onto.

We must show that f preserves adjacency. Let $u v$ be a line. Since M_{1}, M_{2}, and M_{3} contain each line of G exactly twice, $u \equiv v\left(M_{i}\right)$ and $u \equiv v\left(M_{j}\right), f(u)$ and $f(v)$ must agree on two coordinates and hence are adjacent. Conversely, if $f(u)$ is adjacent to $f(v)$. then $f(u)$ and $f(v)$ must agree on two coordinates. This implies that u and v are in the same block of $M_{i} \cdot M_{j}, i \neq j$. But every biock of $M_{i} \cdot M_{j}, i \neq j$, induces a complete subgraph in G and hence u is adjacent to u.

Therefore $\boldsymbol{G} \cong \boldsymbol{H}$.
One might conjecture that property (D) is superfluous. But Fig. 1 shows that this is not the case.

The three partitions, π_{1}, π_{2}, and π_{3}, are mutually orthogonal, contain each line of G, and each partition contains $\mathbf{2}^{2}$ blocks of order 2. But these partitions do not satisfy (D) as

$$
\left(\pi_{1}+\pi_{2}\right) \cdot\left(\pi_{1}+\pi_{3}\right)=\pi_{1}+\pi_{3}>\pi_{1}=\pi_{1}+\left(\pi_{2} \cdot \pi_{3}\right) .
$$

The graph G is not a cubic lattice graph as points I : and v_{3}, and v_{6} and v_{7} do not satisfy property (B_{3}) (see Introduction).

$\pi_{1}=\left\{\overline{v_{1} v_{2}}, \overline{v_{3} v_{4}}, \overline{v_{50} v_{6}}, \overline{v v_{7}}\right\}$
$\pi_{2}=\left\{\overline{v_{1} v_{3}}, \overline{v_{2} v_{5}}, \overline{v_{4} v_{8}}, \overline{v_{6} v_{7}}\right\}$
$\pi_{3}=\left\{\overline{v_{1} v_{4}}, \overline{v_{2} v_{3}}, \overline{v_{5} v_{7}}, \overline{v / 6 v_{8}}\right\}$

Fig. 1.

4. Conjecture

The $n^{\text {th }}$ interchange graph $I_{n}(G)$ of G is a graph whose points are the complete subgraphs of order $n+1$ of G and two points of $I_{n}(G)$ are adjacent if and only if the corresponding K_{n+1} 's have a K_{n} in common. The line graph $L(G)$ of G is $I_{1}(G)$. An m-partite graph G is a graph whose points can be partitioned into m subsets V_{1}, \ldots, V_{m} such that every line joins V_{i} with $V_{i}, i \neq j$. A bigraph is a 2-partite graph. A complete m-partite graph contains every line joining V_{i} with V_{j}. We write $G=K_{p_{1}, \ldots, p_{m}}$ if V_{i} has p_{i} points for $i=1, \ldots, m$.

It follows immediately that an L_{2} graph is the line graph of $K_{n, n}$. We have a similar result for cubic lattice graphs.

Theorem 5. The cubic lattice graph with characteristic n is isomorphic $10 I_{2}\left(K_{n, n, n}\right)$.

Proof. Let the points of $K_{n, n, n}$ be $U \cup V \cup W$, where $U=\left\{u_{1}, \ldots u_{n}\right\}$, $V=\left\{v_{1}, \ldots, v_{n}\right\}$, and $W=\left\{w_{1}, \ldots, w_{n}\right\}$. Then u_{i}, v_{j}, w_{k} form a K_{3} for $1 \leq i, j, k \leq n$. Let the point $z_{i j, k}$ denote this K_{3} in $I_{2}\left(K_{n, n, n}\right)$. Let G be the cubic lattice graph with characteristic n. Then the mapping f from $V\left(I_{2}\left(K_{n, n, n}\right)\right)$ into $V(G)$ defined by $f\left(z_{i, j, k}\right)=(i, j, k)$ is clearly 1-1, onto, and preserves adjacency. Hence $I_{2}\left(K_{n, n, n}\right) \cong G$.

In $|3|$. Grünbauin mentions thit for $m>3$ interchange graphs of complete m-partite graphs do not seem to have been investigated. Theorem 4 seems capable of being extended to these graphs. Let $L_{m}(n)$ denote the $(\boldsymbol{m}-1)^{\text {st }}$ interchange graph of the complete m-partite graph
$K_{n, \ldots, n}$. Theı, an L_{2} graph is denoted $L_{2}(n)$ and a cubic lattice graph with characteristic n is denoted $L_{3}(n)$. That is, the points of $L_{m}(n)$ can be identified with the n^{m} ordered m-tuples on n symbols such that two points are adjacent if and only if the corresponding m-tuples have $m-1$ coordinates in common. A partition π of $V(G)$ is an $L_{m}(n)$-parti$t i o n$ if the subgraph induced by each block of π is an $L_{m}(n)$ graph.

Conjecture. The following are equivalent.
(1) G is the interchange graph of the complete m-partite graph $K_{n, \ldots, \ldots}$ for $m>3$.
(2) There exist $m m$-orthogonal $L_{m-1}(n)$-partitiors M_{1}, \ldots, M_{m} of $V(G)$ such that each M_{i} contains n blocks of order $n^{m-1}, M_{1}, \ldots, M_{m-1}$, and M_{m} contain every line of G exactly $m-1$ times, and the subgraph induced by each block of the partition formed by the product of $\boldsymbol{m}-1$ distinct M_{i} 's is K_{n}.
(3) There exist m mutually orthogonal K-partitions $\pi_{1} \ldots . . \pi_{m}$ of $V(G)$ containing all the lines of G, each partition contains $n^{\boldsymbol{m}-1}$ blocks of order n and the lattice gericsated by these partitions is distributive.

References

[1] M. Aigner, The uniqueness of the cubic latiice griph, J. Combinatorial Theory 6 (1969) 282-297.
[2] C. Cook, Graphs associated with (0,1) arrays, Doctoral Thesis, Univ. of lowe (1970).
[3] B. Grünbaum, Incidence patterns of graphs and complexes, in: G. Chartrand and S.F. Kapoor, eds., The many facets of graph theory (Springer, New York, 1969) 115-128.
[4] S. Hedetniemi, Graphs of (0,1)-matrices, in: M. Capobianco, J.B. Frenchen and M. Krolik, eds.. Recent trends in graph theory (Springer, New York, 1970) 157-172.
[5] R. Laskar, A characterization of cubic lattice graphs, J. Combinatorial Theory 3 (1967) 3Ej-401.
16] R. Laskar, Eigenvalues of the adjacency matrix of cubic lattice graphs, Pacific. J. Math. 29 (1969) 623-629.
[7] J.W. Meon, On the line graph of the complete bigraph. Ann. Math. Siatisi. $34(1963) 664=$ 667.
[8] S.S. Shrikhande, The uniqueness of the L_{2} association schente, Ann. Math. St tist. 30 (1959) 781-798.

