• DISCRETE MATHEMATICS 4 (1973) 129–138. North-Holland Publishing Company

## FURTHER CHARACTERIZATIONS OF CUBIC LATTICE GRAPHS

# Curtis R. COOK

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331, USA

Received 15 July 1971

Abstract. A cubic lattice graph with characteristic n is a graph whose points can be identified with the ordered triplets on n symbols and two points are adjacent whenever the corresponding triplets have two coordinates in common. An  $L_2$  graph is a graph whose points can be identified with the ordered pairs on n symbols such that two points are adjacent if and only if the corresponding pairs have a common coordinate. The main result of this paper is two new characterizations of cubic lattice graphs. The main result depends on a new  $L_2$  graph characterization and shows the relation between cubic lattice and  $L_2$  graphs. The main result also suggests a conjecture concerning the characterization of interchange graphs of complete *m*-partite graphs.

#### 1. Introduction

A cubic lattice graph with characteristic n is a graph whose points can be identified with the ordered triplets on n symbols and two points are adjacent whenever the corresponding triplets have two coordinates in common. An  $L_2$  graph is a graph whose points can be identified with the ordered pairs on n symbols such that two points are adjacent if and only if the corresponding pairs have a common coordinate. The main result of this paper is two new characterizations of cubic lattice graphs. The main result depends on a new  $L_2$  graph characterization and shows the relation between cubic lattice and  $L_2$  graphs. The main result suggests a conjecture concerning the characterization of interchange graphs of complete *m*-partite graphs.

In this paper, we consider only finite undirected graphs without loops or multiple lines or edges. The *degree* of a point is the number of lines incident with that point. A graph is *regular* if all its points have the same degree. A graph is *connected* if every pair of points are joined by a path. The distance d(u, v) between points u and v is the length of a shortest path joining them. The number of points w adjacant to both u and v is denoted  $\Delta(u, v)$ . If u is adjacent to v,  $\Delta(u, v)$  is c lied the *edge degree* of the edge uv.

Shrikhande [8] and Moon [7] showed that the following properties characterize an  $L_2$  graph G except for one exceptional case when n = 4:

(A<sub>1</sub>) G has  $n^2$  points. (A<sub>2</sub>) G is regular of degree 2(n-1). (A<sub>3</sub>) If d(u, v) = 1, then  $\Delta(u, v) = n-2$ . (A<sub>4</sub>) If d(u, v) = 2, then  $\Delta(u, v) = 2$ .

Laskar [5] and Aigner [1] showed that the following properties characterize a cubic lattice graph G except for one exceptional case when n = 4:

(B<sub>1</sub>) G has n<sup>3</sup> points.
(B<sub>2</sub>) G is connected and regular of degree 3(n-1).
(B<sub>3</sub>) If d(v, v) = 1, then Δ(u, v) = n-2.
(B<sub>4</sub>) If d(u, v) = 2, then Δ(u, v) = 2.
(B<sub>5</sub>) If d(u, v) = 2, then there exist exactly n-1 points w such that d(u, w) = 1 and d(v, w) = 3.

Note that  $(A_3)$  and  $(B_3)$ , and  $(A_4)$  and  $(B_4)$  are identical and both characterizations have one exceptional case when n = 4.

Laskar [6] has also characterized cubic lattice graphs for n > 7 in terms of the eigenvalues of the adjacency matrix.

### 2. Characterization of L<sub>2</sub> graphs

As mentioned in the introduction, an  $L_2$  graph is a graph whose points can be identified with the  $n^2$  ordered pairs on *n* symbols such that two points are adjacent whenever the corresponding pairs have a common coordinate. A matrix graph is a graph whose points can be identified with a set of distinct ordered pairs of positive integers such that two points are adjacent whenever the corresponding pairs have a common coordinate. Thus an  $L_2$  graph is a special case of a matrix

130

graph. Hedetniemi [4] has obtained four characterizations of matrix graphs. The  $L_2$  graph characterization follows easily from one of these characterizations. This  $L_2$  graph characterization will be used in the proof of one of the cubic lattice graph characterizations.

The point set of a graph G will be denoted V(G). A complete graph  $K_p$  has every pair of its p points adjacent. For any subset S of V(G), the *induced* subgraph (S) has point set S and two points of S are adjacent if and only if they are adjacent in G. Let  $\pi$  be a partition of V(G). Then  $\pi$  is a K-partition if the subgraph induced by each block of  $\pi$  is a complete graph. The lines contained in  $\pi$  are the lines of G contained in the subgraphs induced by the blocks of  $\pi$ . Two K-partitions  $\pi_1 = \{V_1, ..., V_m\}$  and  $\pi_2 = \{W_1, ..., W_n\}$  are orthogonal if  $|V_i \cap W_j| \leq 1$  for every i and j.

**Theorem 1** (Hedetniemi). A graph G is a matrix graph if and only if there exist two orthogonal K-partitions of V(G) containing all the lines of G.

**Theorem 2.** A graph G is an  $L_2$  graph if and only if there exist two orthogonal K-partitions of V(G) containing all the lines of G and each partition consists of n blocks of order n.

**Proof.** Let  $\pi_1 = \{V_1, ..., V_n\}$  and  $\pi_2 = \{W_1, ..., W_n\}$  be two orthogonal *K*-partitions of V(G) containing all the lines of *G* and  $|V_i| = |W_i| = n$ for i = 1, ..., n. Define a mapping *f* from V(G) into  $V(L_2)$  by f(u) = (k, m) if and only if  $V_k \cap W_m = (u)$ . Since  $\pi_1$  and  $\pi_2$  are orthogonal, *f* is 1-1. From  $|V_i| = |W_j| = n$  for any *i* and *j*, it follows that  $|V_i \cap W_j| = 1$ and *f* is onto.

To complete the proof that  $G \cong L_2$  we must show that f preserves adjacency. Let uv be a line in G and let  $\{u\} = V_i \cap W_j$  and  $\{v\} = V_k \cap W_m$ . Then f(u) = (i, j) and f(v) = (k, m). Since the two K-partitions contain all the lines of G, either i = k or j = m, but not both. In either case (i, j) is adjacent to (k, m).

Now assume that (i, j) = f(u) is adjacent to (s, t) = f(v). This implies that either  $u, v \in V_j = V_s$  or  $u, v \in W_j = W_t$ . Since  $\langle V_j \rangle$  and  $\langle W_j \rangle$  are complete subgraphs, u is adjacent to v.

The necessity of these conditions is obvious if we let the blocks of  $\mathbf{r}_i$  be the points of  $L_2$  with the same  $i^{th}$  coordinate.

# 3. The main theorem

Recall that a cubic lattice graph with characteristic n is a graph whose points can be identified with the  $n^3$  ordered triplets on n symbols such that two points are adjacent whenever the corresponding triplets have two coordinates in common. A cube graph is a graph whose points can be identified with a set of distinct ordered triplets of positive integers such that two points are adjacent whenever the corresponding triplets have two common coordinates. Hence a cubic lattice graph is a special case of a cube graph. In [2], the author obtained two cube graph characterizations. The two cubic lattice graph characterizations are modifications of these characterizations.

A *lattice* is a partially ordered set L in which each pair of elements has a greatest lower bound and a least upper bound. If  $\alpha$  and  $\beta$  are two elements in L, we denote their greatest lower bound by  $\alpha \cdot \beta$  and their least upper bound by  $\alpha + \beta$ . Let 0 denote the zero element of L. The set of partitions of a set S forms a lattice. If L is the set of partitions of S, then  $a \equiv b (\alpha \cdot \beta)$  if and only if  $a \equiv b (\alpha)$  and  $a \equiv b (\beta)$ , and  $a \equiv b (\alpha + \beta)$  if and only if there exists a sequence  $a_0, a_1, ..., a_p$  such that  $a = a_0, b = a_p$ , and  $a_i \equiv a_{i+1} (\alpha)$  or  $a_i \equiv a_{i+1} (\beta)$  for  $0 \le i \le p-1$ .

Let  $\pi$  be a partition of the points of a graph G. Then  $\pi$  is an  $L_2$  (M)partition if the subgraph induced by each block of  $\pi$  is an  $L_2$  (connected matrix) graph. Three partitions  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$  are triorthogonal if  $\pi_1 \cdot \pi_2 \cdot \pi_3 = 0$ .

The next theorem characterizes cube graphs.

## **Theorem 3** (Cook). The following are equivalent:

(1) G is a cube graph.

(2) There exist three triorthogonal M-partitions,  $M_1$ ,  $M_2$ , and  $M_3$ , of V(G) containing each line of G exactly twice and  $M_i \cdot M_j$ ,  $i \neq j$ , is a K-partition of V(G).

(3) There exist three mutually orthogonal K-partitions,  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$ , of V(G) containing all the lines of G and  $(\pi_i + \pi_j) \cdot (\pi_i + \pi_k) = \pi_i + (\pi_j \cdot \pi_k)$  for  $1 \le i, j, k \le 3$ .

§3. The main theorem

The proof of the main theorem requires several lemmas.

**Lemma 1.** Let L be a lattice with a 0 element and let  $\pi_1, \pi_2$ , and  $\pi_3$  be three elements of L with the following properties:

(1)  $\pi_i \cdot \pi_j = 0$  for  $i \neq j, 1 \le i, j \le 3$ . (2)  $(\pi_i + \pi_j) \cdot (\pi_i + \pi_k) = \pi_i + (\pi_j \cdot \pi_k)$  for  $1 \le i, j, k \le 3$ . Then

$$(\pi_i \cdot \pi_j) + (\pi_i \cdot \pi_k) = \pi_i \cdot (\pi_j + \pi_k) \text{ for } 1 \leq i, j, k \leq 3.$$

**Proof.** The proof will be by cases.

Case 1. i = i or i = k.  $(\pi_i \cdot \pi_j) + (\pi_i \cdot \pi_k) - \pi_i = \pi_i \cdot (\pi_i + \pi_k).$ Case 2. j = k.  $(\pi_i \cdot \pi_i) + (\pi_i \cdot \pi_k) = \pi_i \cdot \pi_i = \pi_i \cdot (\pi_i + \pi_k).$ Case 3.  $i \neq j \neq k \neq i$ .  $0 = (\pi_i \cdot \pi_i) + (\pi_i \cdot \pi_k)$  $= ((\pi_i \cdot \pi_j) + \pi_i) \cdot ((\pi_i \cdot \pi_j) + \pi_k)$ (1) $= ((\pi_i + \pi_i) \cdot (\pi_i + \pi_j)) \cdot ((\pi_k + \pi_i) \cdot (\pi_k + \pi_j))$ (2) $= (\pi_i \cdot (\pi_i + \pi_i)) \cdot ((\pi_i + \pi_k) \cdot (\pi_i + \pi_k))$ commutative laws  $=\pi_i\cdot((\pi_i+\pi_k)\cdot(\pi_i+\pi_k))$ absorption laws  $= (\pi_i \cdot (\pi_i + \pi_k)) \cdot (\pi_i + \pi_k)$ associative laws  $=\pi_i^{\bullet}(\pi_i+\pi_k)$ absorption laws

In the following assume that G is a cubic lattice graph with characteristic n.

**Lemma 2.** The set of n points of G with two common coordinates form a clique.

**Proof.** If n = 1, the lemma is true. Suppose that  $u_1, ..., u_n, n > 1$ , have the same two coordinates in common. Clearly these *n* points form a complete subgraph of *G*. Any point *v* adjacent to these *n* points must also have these same two coordinates. Therefore the *n* points must form a clique.

**Lemma 3.** Let  $\pi_1, \pi_2$ , and  $\pi_3$  be three K-partitions of V(G) whose blocks consist of the points of G that have the same first and second, first and

third, and second and third coordinates, respectively. Then the set of points in each block of  $\pi_1 + \pi_2$ ,  $\pi_1 + \pi_3$ , and  $\pi_2 + \pi_3$  have the same first, second, and third coordinates, respectively.

**Proof.** Let u and v be two points in a block of  $\pi_1 + \pi_2$ . From the definition of  $\pi_1 + \pi_2$ , this implies the existence of a sequence  $u = u_0, ..., u_p = v$ , where  $u_{i-1} \equiv u_i (\pi_1)$  or  $u_{i-1} \equiv u_i (\pi_2)$  for i = 1, ..., p. Then for i = 1, ..., p,  $u_{i-1}$  and  $u_i$  have either the same first and second or first and third coordinates. Hence u and v have the same first coordinate.

By an analogous argument, the points in each block of  $\pi_1 + \pi_3$  and  $\pi_2 + \pi_3$  have the same second and third coordinates.

**Theorem 4** (Characterization of cubic lattice graphs). *The following* are equivalent:

(1) G is a cubic lattice graph with characteristic n.

(2) There exist three triorthogonal  $L_2$ -partitions of V(G),  $M_1$ ,  $M_2$ , and  $M_3$ , such that each  $M_i$  contains n blocks of order  $n^2$ , the three partitions contain every line of G exactly twice, and  $M_i \cdot M_j$ ,  $i \neq j$ , is a K-partition of V(G).

(3) There exist three mutually orthogonal K-partitions of V(G),  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$ , containing all the lines of G,  $\pi_i$  contains  $n^2$  blocks of order n and

(D) 
$$(\pi_i + \pi_j) \cdot (\pi_i + \pi_k) = \pi_i + (\pi_j \cdot \pi_k) \text{ for } 1 \leq i, j, k \leq 3.$$

**Proof.** (1) *implies* (3). Let  $\pi_1, \pi_2$ , and  $\pi_3$  be three K-partitions of V(G) whose blocks consist of the points of G that agree on the first and second, first and third, and second and third coordinates, respectively. Clearly  $\pi_1, \pi_2$ , and  $\pi_3$  are mutually orthogonal and contain all the lines of G. Also each K-partition contains  $n^2$  blocks of order n. In fact the subgraph induced by each block of  $\pi_i$  is a clique by Lemma 2.

All that remains is to show that  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$  satisfy property (D). If i = j or i = k, then

$$\pi_i + (\pi_i \cdot \pi_k) = \pi_i = (\pi_i + \pi_i) \cdot (\pi_i + \pi_k).$$

If j = k, then

§3. The main theorem

$$\pi_i + (\pi_i \cdot \pi_k) = \pi_i + \pi_j = (\pi_i + \pi_j) \cdot (\pi_i + \pi_k)$$

If  $i \neq j \neq k \neq i$ , then since  $\pi_1, \pi_2$ , and  $\pi_3$  are mutually orthogonal,

$$(\pi_i + \pi_j) \cdot (\pi_i + \pi_k) \geq \pi_i = \pi_i + (\pi_i \cdot \pi_k).$$

Assume without loss of generality that  $(\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3) \ge \pi_1$ . By Lemma 3 the points in each block of  $\pi_1 + \pi_2$  have the same first coordinate and the points in each block of  $\pi_1 + \pi_3$  have the same second coordinate. Hence  $(\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3) = \pi_1$ .

(3) implies (2). Let  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$  be three K-partitions of V(G) satisfying the stated conditions. Define three partitions of V(G),  $M_1$ ,  $M_2$ , and  $M_3$ , by  $\pi_1 + \pi_2$ ,  $\pi_1 + \pi_3$ , and  $\pi_2 + \pi_3$ , respectively.

First we will show that each block of  $M_i$ , i = 1, 2, 3, is of order  $n^2$ . Let  $M_i = \pi_j + \pi_k$ . Since  $\pi_j$  and  $\pi_k$  are orthogonal and contain  $n^2$  blocks of order n, each block of  $M_i$  must be of order  $n^2$  or greater. Suppose a block of one of the  $M_i$ 's, say  $M_1$  is of order greater than  $n^2$ . This implies that  $M_1$  contains m < n blocks and that  $M_1 \cdot M_2$  contains  $mq < n^2$  blocks where  $M_2$  contains  $q \le n$  blocks. But this contradicts property (D) as

$$M_1 \cdot M_2 = (\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3) = \pi_1 + (\pi_2 \cdot \pi_3) = \pi_1$$

and  $\pi_1$  contains  $n^2$  blocks of order *n*.

To show that the lines contained in  $M_i = \pi_j + \pi_k$  are the lines contained in either  $\pi_j$  or  $\pi_k$ , suppose that  $M_i$  contains a line not contained in either  $\pi_j$  or  $\pi_k$ . Then this line must be contained in  $\pi_p$ ,  $j \neq p \neq k$ . i.e.,  $\pi_p \cdot (\pi_j + \pi_k) > 0$ . But this contradicts Lemma 1 as

$$\boldsymbol{\pi}_p \cdot (\boldsymbol{\pi}_j + \boldsymbol{\pi}_k) = (\boldsymbol{\pi}_p \cdot \boldsymbol{\pi}_j) + (\boldsymbol{\pi}_p \cdot \boldsymbol{\pi}_k) = 0.$$

Clearly  $M_1$ ,  $M_2$ , and  $M_3$  contain each line of G exactly twice.

We will use Theorem 2 to show that  $M_i = \pi_j + \pi_k$  is an  $L_2$ -partition. From the preceding, each block X of  $M_i$  is of order  $n^2$  and  $M_i$  contains the lines contained in either  $\pi_j$  or  $\pi_k$ . The *n* blocks of order *n* of  $\pi_j$ and  $\pi_k$  which have a nonempty intersection with X are orthogonal Kpartitions of V(C). Hence by Theorem 2 the subgraph induced by each block of  $M_i$  is an  $L_2$  graph. It follows almost immediately from (D) that  $M_1$ ,  $M_2$ , and  $M_3$  are triorthogonal:

$$M_1 \cdot M_2 \cdot M_3 = (\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3) \cdot (\pi_2 + \pi_3)$$
  
=  $(\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3) \cdot (\pi_1 + \pi_3) \cdot (\pi_2 + \pi_3)$   
=  $((\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3)) \cdot ((\pi_3 + \pi_1) \cdot (\pi_3 + \pi_2))$   
=  $(\pi_1 + (\pi_2 \cdot \pi_3)) \cdot (\pi_3 + (\pi_1 \cdot \pi_2))$   
=  $\pi_1 \cdot \pi_3$   
= 0.

From (D) and the fact that  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$  are orthogonal K-partitions, it follows that  $M_i \cdot M_j$ ,  $i \neq j$ , is a K-partition of V(G).

(2) implies (1). Let  $M_1$ ,  $M_2$ , and  $M_3$  be three  $L_2$ -partitions satisfying the stated conditions, where  $M_1 = \{U_1, ..., U_n\}$ ,  $M_2 = \{V_1, ..., V_n\}$ , and  $M_3 = \{W_1, ..., W_n\}$  and  $|U_i| = |V_j| = |W_k| = n^2$ . Define a mapping f from V(G) into a cubic lattice graph H with characteristic n by f(v) = (i, j, k)if and only if  $v \in U_i \cap V_i \cap W_k$ . Clearly f is 1-1 and onto.

We must show that f preserves adjacency. Let uv be a line. Since  $M_1$ ,  $M_2$ , and  $M_3$  contain each line of G exactly twice,  $u \equiv v(M_i)$  and  $u \equiv v(M_i)$ , f(u) and f(v) must agree on two coordinates and hence are adjacent. Conversely, if f(u) is adjacent to f(v), then f(u) and f(v) must agree on two coordinates. This implies that u and v are in the same block of  $M_i \cdot M_j$ ,  $i \neq j$ . But every block of  $M_i \cdot M_j$ ,  $i \neq j$ , induces a complete subgraph in G and hence u is adjacent to v.

Therefore  $G \cong H$ .

One might conjecture that property (D) is superfluous. But Fig. 1 shows that this is not the case.

The three partitions,  $\pi_1$ ,  $\pi_2$ , and  $\pi_3$ , are mutually orthogonal, contain each line of G, and each partition contains  $2^2$  blocks of order 2. But these partitions do not satisfy (D) as

$$(\pi_1 + \pi_2) \cdot (\pi_1 + \pi_3) = \pi_1 + \pi_3 > \pi_1 = \pi_1 + (\pi_2 \cdot \pi_3).$$

The graph G is not a cubic lattice graph as points  $v_1$  and  $v_3$ , and  $v_6$  and  $v_7$  do not satisfy property (B<sub>3</sub>) (see Introduction).



## 4. Conjecture

The n<sup>th</sup> interchange graph  $I_n(G)$  of G is a graph whose points are the complete subgraphs of order n + 1 of G and two points of  $I_n(G)$  are adjacent if and only if the corresponding  $K_{n+1}$ 's have a  $K_n$  in common. The line graph L(G) of G is  $I_1(G)$ . An *m*-partite graph G is a graph whose points can be partitioned into m subsets  $V_1, \ldots, V_m$  such that every line joins  $V_i$  with  $V_j$ ,  $i \neq j$ . A bigraph is a 2-partite graph. A complete m-partite graph contains every line joining  $V_i$  with  $V_j$ . We write  $G = K_{p_1,\ldots,p_m}$ if  $V_i$  has  $p_i$  points for i = 1, ..., m.

It follows immediately that an  $L_2$  graph is the line graph of  $K_{n,n}$ . We have a similar result for cubic lattice graphs.

**Theorem 5.** The cubic lattice graph with characteristic n is isomorphic to  $l_2(K_{n,n,n})$ .

**Proof.** Let the points of  $K_{n,n,n}$  be  $U \cup V \cup W$ , where  $U = \{u_1, ..., u_n\}$ ,  $V = \{v_1, ..., v_n\}$ , and  $W = \{w_1, ..., w_n\}$ . Then  $u_i, v_j, w_k$  form a  $K_3$  for  $1 \le i, j, k \le n$ . Let the point  $z_{i,j,k}$  denote this  $K_3$  in  $I_2(K_{n,n,n})$ . Let G be the cubic lattice graph with characteristic n. Then the mapping f from  $V(I_2(K_{n,n,n}))$  into V(G) defined by  $f(z_{i,j,k}) = (i, j, k)$  is clearly 1-1, onto, and preserves adjacency. Hence  $I_2(K_{n,n,n}) \cong G$ .

In [3], Grünbaum mentions that for m > 3 interchange graphs of complete *m*-partite graphs do not seem to have been investigated. Theorem 4 seems capable of being extended to these graphs. Let  $L_m(n)$ denote the  $(m-1)^{31}$  interchange graph of the complete *m*-partite graph  $K_{n,\dots,n}$ . Then an  $L_2$  graph is denoted  $L_2(n)$  and a cubic lattice graph with characteristic n is denoted  $L_3(n)$ . That is, the points of  $L_m(n)$ can be identified with the  $n^m$  ordered m-tuples on n symbols such that two points are adjacent if and only if the corresponding m-tuples have m-1 coordinates in common. A partition  $\pi$  of V(G) is an  $L_m(n)$ -partition if the subgraph induced by each block of  $\pi$  is an  $L_m(n)$  graph.

### Conjecture. The following are equivalent.

(1) G is the interchange graph of the complete *m*-partite graph  $K_{n-n}$  for m > 3.

(2) There exist m m-orthogonal  $L_{m-1}(n)$ -partitions  $M_1, ..., M_m$  of V(G) such that each  $M_i$  contains n blocks of order  $n^{m-1}, M_1, ..., M_{m-1}$ , and  $M_m$  contain every line of G exactly m-1 times, and the subgraph induced by each block of the partition formed by the product of m-1 distinct  $M_i$ 's is  $K_n$ .

(3) There exist *m* mutually orthogonal *K*-partitions  $\pi_1, ..., \pi_m$  of V(G) containing all the lines of *G*, each partition contains  $n^{m-1}$  blocks of order *n* and the lattice generated by these partitions is distributive.

#### References

- M. Aigner, The uniqueness of the cubic lattice graph, J. Combinatorial Theory 6 (1969) 282-297.
- [2] C. Cook, Graphs associated with (0, 1) arrays, Doctoral Thesis, Univ. of Iowa (1970).
- [3] B. Grünbaum, Incidence patterns of graphs and complexes, in: G. Chartrand and S.F. Kapoor, eds., The many facets of graph theory (Springer, New York, 1969) 115-128.
- [4] S. Hedetniemi, Graphs of (0, 1)-matrices, in: M. Capobianco, J.B. Frenchen and M. Krolik, eds., Recent trends in graph theory (Springer, New York, 1970) 157-172.
- [5] R. Laskar, A characterization of cubic lattice graphs, J. Combinatorial Theory 3 (1967) 355-401.
- [6] R. Laskar, Eigenvalues of the adjacency matrix of cubic lattice graphs, Pacific. J. Math. 29 (1969) 623-629.
- [7] J.W. Moon, On the line graph of the complete bigraph, Ann. Math. Statist. 34 (1963) 664-667.
- [8] S.S. Shrikhande, The uniqueness of the L<sub>2</sub> association scheme, Ann. Math. St. tist. 30 (1959) 781-798.