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Abatract. A cubic lattice graph with characteristic  is a graph whose points can be identified
with the ordered triplets on # symbols and two points are adjacent whenever the corresponding
triplets have two coordinates in common. An L, graph is a graph whose points can be identi-
fied with the ordered pairs on 2 symbols such that two points are adjacent if and only if the
corresponding pairs have a common coordinate. The main result of this paper is two new char-
acterizations of cubic lattice graphs. The main result depends on a new Ly graph characteriza-
tion and shows the relation between cubic lattice and L 5 graphs. The main result also shugests
a conjecture concerning the characterization of interchange graphs of complete m-partite
graphs.

1. Introduction

A cubic lattice graph with characteristic 2 is a graph whuse points
can be identified with the ordered triplets on n symbols and two points
are adjacent whenever the corresponding triplets have two coordinates
in common. An L, graph is a graph whose points can be identified with
the ordered pairs on n symbols such that two points are adjacent if and
only if the corresponding pairs have a common coordinate. The main
result of this paper is two new characterizations of cubic lattice graphs.
The main result depends on a new L ; graph characterization and shows
the relation between cubic lattice and L, graphs. The main result sug-
gests a conjecture concerning the characterization of interchange graphs
of complete m-partite graphs.

In this paper, we consider only finite undirected graphs without loops
ot multiple lines or edges. The degree of a point is the number of lines
incident with that point. A graph is regular if all its points have the same
degree. A graph is connected if every pair of points are joined by a path.
The dictance du, v) between points u and v is the length of a shortest
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path joining them. The number of points w adjac=nt to both # and v

is denoted A(u, v). If u is adjacent to v, A(u. v) is ¢ lled the edge degree

of the edge uv. .
Shrikhande {8] and Moon [7] showed tha the following properties

characterize an L, graph G except for one exceptional case when n=4:

(A}) G has n? pcints.

(A,) G is regular of degree 2(n—1).
(A3) Ifd(u.v) =1, then A(u,v) =n--2.
(Ay) if d(ue, v) = 2, then A(u, v) = 2.

Laskar { 5] and Aigner [ 1] showed that the following properties
characterize a cubic lattice graph ¢ except for one exceptional case
whenn = 4:

(B,) G hes 3 points.

(B,) G is :onnectad and regular of degree 3(n- 1).

(By) Ifd(i,v) =1, then AQe, ¥) =n-2.

(By) if dw., v) = 2, then A, v) = 2.

(Bs) If d(u, v) = 2, then there exist exactly #-- 1 points w such that
d(e, w)= 1 and J(v, w) = 3.

Note that (A;) and (B3 ), and (Ay) and (B,) are identical and both
characterizations have one exceptiona! case whenn = 4,

Laskar {6] has also characterized cubic lattice graphs forn > 7 in
terms of the eigenvalues of the adjacency matrix.

2. Characterization of L, graphs

As mentioned in the introduction. an L, griph is a graph whose
points v21 be identified with the n? ordered pairs on # symbols such
that twc [ dints are adjacent whenever the correspondiag pairs have a
common _cordinate. A matrix graph is a graph whose points can be
identified with a set of distinct ordered pairs of positive integers such
that two points are adjacent whencver the cotresponding pairs have a
common coordinate. Thus an L, graph is a special case of 3 mattix
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graph. Hedetniemi [4] has obtained four characterizations of matrix
graphs. The L, graph characterization follows easily from one of these
characterizations. This L, graph characterization will be used in the
proof of one of the cubic lattice graph characterizations.

The point set of a graph G will be denoted V(G). A complete graph
K,, has every pair of its p points adjacent. For any subset S of V(G),
the induced subgraph (S) has point set S and two points of S are adja-
cent if and only if they are adjacent in G. Let & be a partition of V(G).
Then = is a K-partition if the subgraph induced by each block of 7 is
a complete graph. The lines contained in w are the lines of G contained
in the subgraphs induced by the blocks of 7. Two K-partitions
=iV, .V} andx, = (W,, ...W,} are orthogonal if
1 4%a W;l < 1 for every i and j.

Theorem t (Hedetniemi). A graph G is a matrix graph if and only if
there exist two orthogonal K-partitions of V(G) containing all the lines
ofG.

Theovem 2. A graph G is an L, graph if and only if there exist two
orthogonal X-partitions of V(G) containing all the lines of G and each
partition consists of n blocks of order n.

Proof. Letx, = (V... Vi and xy = (W, .., W,]} be two orthogonal
K-partitions of ¥(G) containing all the lines of G and V| = |W,;| =n
fori = 1,..n. Define a mapping f from V(G) into V(L,) by flu) =
(k.m) if and only if ¥, N W, = (u}. Since x| and 7, are orthogonal,
S5 1=1. From |V,1 = {W,| = n for any i and /, it follows that [V; 0 W;| =
1 and f s onto.

To complete the proof that ¢ = L, we must show that f preserves
adjacency. Let wv be aline in G and let (1} =V, N W, and (v} =
Vi, W, Then f(u) = (i. /) and f(v) = (k. m). Since the two K-parti-
tions contain all the lines of G. eitheri = k orj = m, but not both. In
either case (i, /) is adpecent to (k, m).

Now assume that (i. ) = fu) is adjacent to (s, 1) = f(v). This implies
that citherw.ve V; =V, oru veE W, = W, Since (V) and (W) are com-
plete subgraphs, v is adjacent to v.

The necewity of these conditions is obvious if we let the blocks of
8, be the points of L, with the same i*" coordinate.
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3. The main theorem

Recall that a cubic lattice graph with characteristic n is a graph whose
points can be identified with the n3 ordered triplets on n symbols such
that two points are adjacent whenever the corresponding triplets have
two coordinates in common. A cube graph is a graph whose points can
be identified with a set of distinct ordered triplets of positive integers
such that two points are adjacent whenever the corresponding triplets
have two common coordinates. Hence a cubic lattice graph is a special
case of a cube graph. In [2], the author obtained two cube graph char-
acterizations. The two cubic lattice graph characterizations are modi-
fications of these characterizations.

A latvice is a partially ordered set L in which each pair of elements
has a greatest lower bound and a least upper bound. If « and § are
two elements in L, we denote their greatest lower bound by a-3 and
their least upper bound by a + 8. Let 0 denote the zero element of L.
The set of partitions of a set S forms a lattice. If L is the set of parti-
tions of S, thena = b (a -B) if and only ifa = b (a) and a = b (§), and
a = b (a +P) if and only if there exists a sequence ay.ay. ..., ap such that
a=ag, b=ap,anda; =a;, (@) org; =a;,, B)for0<i<p-1l.

Let 7 be a partition of the points of a graph G. Then #® is an L, (M)-
partition if the subgraph induced by each block of 7 is an L, (connect-
ed matrix) graph. Three partitions 7, 7, . and n5 are triorthogonal if
myomy w3 =0,

The next theorem characterizes cube graphs.

Theorem 3 (Cook). The following are equivalent:

(1) G is a cube graph.

(2) There exisi three triorthogonal M-partitions, M\, My, and M5,
of V(G) ccntaining each line of G exactly twice and M; - M,. i#jisa
K-partition of V(G).

(3) There exist three mutually orthogonal K-partitions. %, , ®,, and
3. of V(G) containing all the lines of G and (m;+#;)-(x;+ 1) =
mt(mpem)for 1<i,j k<3.
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The proof of the main theorem requires several lemmas.

Lemma 1. Let L be a lattice with a O element and let n\,m,, and 73 be
three elements of L with the following properties:
(Dme-m=0fori#j 1<ij<3.
Q(mrm) - (mrm)=m + (mjem)for 1 <i, j, k<3.
Then
(mm)r(m-m)=m- (mi+m ) for 1<ij, k< 3.

Proof. The proof will be by cases.
Case l.i=jori=k,
(x; - m)t(m o mm)=2w =, (1rl-+1rk).
Case 2.j=k,
e m)t(mm)=m m=m (7 +m).
Case3.i#j# k#i,
0=(m;*m)+(m; - ™)

=((x - m)tw) (7 w)+m) ¢y
=((mrm) - (m+1)) - (my + )~ (m + 1) )
=(m - (mtx)) ((+7 ). (7,4 ™) commutative laws
=g () (xm+7,) absorption laws
=(me(mta): (m+m,) associative laws
=n"(mi+m,) absorption laws

In the following assume that G is a cubic lattice graph with character-
istic n.

Lemma 2. The set of n points of G with two common coordinates form
a clique.

Proof. If n = |, the lemma is true. Suppose that & ,.... u,. # > 1, have
the same two coordinates in common. Clearly iliese # points form a
complete subgraph of G. Any point v adjacent to these 7 points must
also have these same two coordinates. Therefore the 7 points must form
a clique.

Lerama 3. Let v, , %, and =y be three K-partitions of V(G) w hose blocks
consist of the points of G that have the same first and second, first and
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third, and second and third coordinates, respectively. Then the set of
points in each block of ®, +m,, ®) + 3, and W, + 73 have the same
first, second, and third coordinates, respectively.

Proof. Let 4 and v be two points in a block of 7, + 7,. From the defi-
nitio's of m; + ,, this implies the existence of a sequence u = uy, ..., u, =
v, where u;_, = u; (m;)oru;_y =u; (my) fori=1,..,p. Then fori=
1,...p, uj_; and u; have either the same first and second or first and
third coordinates. Hence « and v have the same first coordinate.

By an analogous argument, the points in each block of #| + %5 and
7, +m3 have the same second and third coordinates.

Theorem 4 (Characterization of cubic lattice graphs). The following
are equivalent:

(1) G is a cubic lattice graph with characiteristic n.

(2) There exist three triorthogonal L,-partitions of V{G), M. M,
and M, such that each M; contains n blocks of order n*, the three parti-
tions contain every line of G exactly twice, and M;+ M, i # j, is a K-parti-
tion of V(G).

(3) There exist three mutually orthogonal K-partitions of V(G), x,,
7. and ®, containing all the lines of G, 7; contains n? blocks of order
nand

(D) (mrm)-(m+m) = LALC/E m)for1 <ij k<3

Proof. (1) implies (3). Let ®,,x,, and %, be three K-partitions of ¥(G)
whose blocks consist of the points of G that agree on the first and
second, first and third, and second and third coordinates, respectively.
Clearly 7, 7,, and %3 are mutually orthogonal and contain all the lines
of G. Also each K-partition contains n2 blocks of order a. In fact the
subgraph induced by each block of =, is a clique by Lemma 2.

All that remains is to show that x|, ¥, and ®4 satisfy property (D).
Ifi=jori=k, then

",' + (ﬂi"k) = 'f = ('i + "). ('i + 'k ).

If j = k, then
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W,+(1r,° wk) = ﬂ,"’", = (7”“‘1”) . (ﬂ'+17k) .
Ifi#j#k#i then since 7|, 7,, and 73 are mutually orthogonal,
(mtm)-(m+m)2m,=m+(m - m).

Assume without loss of generality that (z, +7,)(7; +73) > 7. By
Lemma 3 the points in each block of #; + 7, have the same first coordi-
nate and the points in each block of 7, + 7, have the same second co-
ordinate. Hence (7) +m,)-(w) +m3)=m,.

(3) implies (2). Let n, m,, and 75 be three K-partitions of V(G)
satisfying the stated conditions. Define three partitions of V(G). M,
M,,and M, , by m, +x,, 7| + 73, and 7, + 73, respectively.

Jirst we will show that each block of M;, i = 1, 2, 3, is of order n2.
Let M; = x; + ;. Since #; and #; are orthogonal and contain n2? blocks
of order n, each block of M; must be of order n? or greater. Suppose a
biock of one of the M;’s, say M, is of order greater than n2. This im-
plics that M, contains m < n blocks and that M, - M, contains mq < n?
blocks where M, contains ¢ < n blocks. But this contradicts property
(D)as

My My =(n +my)(mt3) =7 +(m,om3)=m,

and ¥, contains n? blocks of order n.

To show that the lines contained in M; = m; + m; are the lincs con-
tained in either x; or 7, , suppose that M; contains a line not contained
in cither x; or ;. Then this line must be contained inw,,,j # p # £,
i.e.. ¥, (%, +m,) > 0. But this contradicts Lemma | as

e (mtm)=(x,-w)+ (v, 7,)=0.

Clearly M, . M,, and M, contain each line of G exuctly twice.

We will use Theorem 2 to show that M; = x; +x, is an L,-partition.
From the preceding, each block X of A, is of order n2 and M; contains
the lines contained in cither ; or n,. The n blocks of order n of x;
and ¥, which have a nonempty intersection with X are orthogonal K-
partitions of ¥((). Hence by Theorem 2 the subgraph induced by each
block of M; is an L, graph.
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It follows almost immediately from (D) that M, M,, and M, are
triorthogonal:

M My-M3 = (7 +m)) (w1 73) (Mt 73)
=(m+my))(mp+m3) (T +T3)(my +75)
=({(mtmy)(mpta)) (T3t m ) (M3+ 7))
= (;.‘1+(1rz-1r3 ) (myt(m; 7))
=0.

From (D) and the fact that 7, , 75, and 75 are orthogonal K-parti-
tions, it follows that M;- M;. i #j, is a K-partition of ¥(G).

(2) implies (1). Let M, M, , and M be three L,-partitions satisfying
the stated conditions, where M, = U,,....U,}, My = {V,,..., ¥, }, and
Ms = (W,,..., W,} and |U;l = |1V;] = |Wi| = n?. Define a mapping f from
V(G) into a cubic lattice graph H with characteristic n by f(v) = (¢, /, k)
if and only if ve U; 0 ¥; N W, Clearly fis 11 and onto.

We must show that f preserves adjacency. Let uv be a line. Since M,
M,, and M, contain each line of G exactly twice, ¥ = v (M;) and
u = v (M;), f(u) and f(v) must agree on two coordina.es and hence are
adjacent. Conversely, if f(u) is adjacent to f(v). then f(«) and f(v) must
agree on two coordinates. This implies that «# and v are in the same block
of M;* M;, i # j. But every biock of M; M;, i # j, induces a complete sub-
graph in G and hence u is adjacent to v.

Therefore G = H.

One might conjecture that property (D) is superfluous. But Fig. 1 shows
that this is not the case.

The three partitions, 7, , 7,, and 7,, are mutually orthogonal, contain
each line of G, and each partition contains 22 blocks of order 2. But
these partitions do not satisfy (D) as

(1(1 +1l2)'(l’l +'3)= LI +K‘3 > LA Wl £ + (') . '3) .

The graph G is not a cubic lattice graph as points v. and v,, and vg and
v, do not satisfy property (B3 ) (see Introduction).
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/1\\
V4 V2
| V3 1 = {b1v3, 0304, Usvg, b7vs )
G - ny = {0193, 0205, Davs, UgU7}
v m3 = {103, 0203, 0507, Vevg }
e
A\’ ! ' v
’ \l/ >
Va
Fig. 1.

4. Conjecture

The nth interchange graph I,,(G) of G is a graph whose points are the
complete subgraphs of order n + 1 of G and two points of I,(G) are
adjacent if and only if the CGTTESpGﬁuulg I\,H,‘ ’s have a l'in in common.
The line graph L(G) of G is I,(G). An m-partite graph G is a graph whose
points can be partitioned into m subsets ¥, ..., ¥V, such that every line
joins ¥; with V;, i #j. A bigraph is a 2-partite graph. A compiete m-par-
tite graph contains every line joining V; with V;. We write G =K, p,.
if V; has p; points fori=1,...,m

It follows immediately that an L, graph is the line graph of X, ,. We
have a similar result for cubic lattice graphs.

Theorem 5. The cubic lattice graph with characteristic n is isomorphic
to 12 (Kn.n.n ).

Proot'. Let the points of K, , , be UL VU W, where U = {u,, ..u,},

= {vl. W}, and W= {w,..,w,}. Then u,, v wk formaK3 for
l < i, [ 3 \ ii. Let the pi‘ni‘u Sijk denote this n3 in 12\1\,”,") Let G be
the cubic lattice graph with characteristic n. Then the mapping f from
Vy(K, n.0)) into V(G) defined by f(z;;4) = (i, /. k) is clearly 1-1, onto,

and preserves adjacency. Hence /(K , ,) = G.

In [3). Griinbauin mentions that for m > 3 interchange graphs of
complete m-partite graphs do not seem to have been investigated. The-
orem 4 seems capable of being extended to these graphs. Let L,, (n)
denote the (m—1)* interchange graph of the complete m-partite graph



138 C.R. Cook, Further characterizations of cubic iattice graphs

K, - Theian L, graph is denoted L,(n) and a cubic lattice graph
with charactenistic n is denoted L4(n). That is, the points of L, (n)
can be identified with the " ordered m-tuples on n symbols such that

two points are adjacent if and only if the corresponding m-tuples have
m—1 coordinates in common. A partition w of V(G) is an L, (n)-parti-

2 COOTLINaRES AL LOoinftnt f 119/ § o

ticn if the subgraph induced by each block of = is an L,, (n) graph.

....... a £alla . na awra
WIIJ“CUIC IIIC T1OHOWIl sﬂlU

(1} G is the interchange graph of the complete m-partite graph
K, nform>3.

(2) There exist m m-orthogonal L,, _, (n)-partitiors M, .., M, of
V(G) such that each M; contains n blocks of ordern™ -} M,,... M, _,,
and M,, contain every line of G exactly m—1 times, and the subgraph
induced by each block of the partition formed by the product of m—1
distinct M;’s is K,,. K

(3) There exist m mutually orthogonal K~partmons Ty W Of
V(G) containing all the lines of G, each partltlon contains n™ -1 blocks
of order n and the lattice genicrated by these partitions is distributive.

An-nnllnln
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