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a b s t r a c t

Under several geometric conditions imposed below, the existence of the discrete spectrum
below the essential spectrum is shown for the Dirichlet Laplacian on the quantum layer
built over a spherically symmetric hypersurface with a pole embedded in R4. At the end of
this paper, we also show the advantage and independence of our main result comparing
with those existent results for higher dimensional quantum layers or quantum tubes.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The study of the spectral properties of the Dirichlet Laplacian in infinitely stretched regions has attracted so much
attention, since it has applications in elasticity, acoustics, electromagnetism, etc. It also has application in the quantum
physics. Since Duclos et al. considered the existence of the discrete spectrum of the Dirichlet Laplacian of the quantum
layers built over surfaces in [5], many similar results have been obtained for the quantum layers whose reference manifolds
are surfaces. However, very little was known about the existence of the discrete spectrum of the Dirichlet Laplacian on the
quantum layers of dimension greater than 3.

In [6,7], under some geometric assumptions therein, Lin and Lu have successfully proved the the existence of the discrete
spectrum of the Dirichlet Laplacian on the quantum layers built over submanifolds of the Euclidean space Rm (3 ≤ m < ∞).
However, the parabolicity of the reference submanifold and nonpositivity of the integration of Km−2 defined by (4.1) are
necessary. Is the parabolicity of the reference submanifold necessary for the existence of the discrete spectrum? We try to
give a negative answer here. In general, it is not easy to judge whether a prescribed manifold is parabolic or not. However,
Grigor’yan has shown a sufficient and necessary condition, which is related to the area of the boundary of the geodesic
ball and could be easily computed, of parabolicity for spherically symmetric manifolds in [1]. Hence, we guess maybe we
can expect to get the existence of the the discrete spectrum of the quantum layer built over some spherically symmetric
submanifold, which is non-parabolic, of the Euclidean space Rm (3 ≤ m < ∞).

In order to state our main result, we define two quantities σ0 and σess as follows.

Definition 1.1. LetM be a manifold whose Laplacian∆ can be extended to a self-adjoint operator. Let

σ0 = inf
f∈C∞

0 (M)

−

M f∆fdVM
M f 2dVM

, (1.1)

σess = sup
K

inf
f∈C∞

0 (M\K)

−

M f∆fdVM
M f 2dVM

, (1.2)

where K is running over all compact subsets ofM , and dVM denotes the volume element ofM .
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In fact, σ0 and σess are the lower bound of the spectrum and the lower bound of the essential spectrum of the Laplacian
△ on M , respectively. In general case, σ0 ≤ σess. If σ0 < σess, then the existence of the discrete spectrum is obvious. In
mathematical physics, points in the discrete spectrum are called bound states, and moreover, the lowest bound state is also
called the ground state.

Wewant to show that σ0 < σess holds for the Laplacian△ of the class of quantum layers considered in the sequel. In fact,
by using this strategy we can prove the following.

Theorem 1.2 (Main Theorem). Assume Σ is a spherically symmetric hypersurface with a pole embedded in R4, and Σ is not a
hyperplane, if in addition K2 is integrable onΣ and

Σ

K2dΣ ≤ 0

with K2 defined by (4.1), then under assumptions A1, A2 and A3 given in Section 2, the ground state of the quantum layer Ω built
over Σ exists.

The paper is organized as follows. The fundamental geometric properties of the quantum layers built over spherically
symmetric hypersurfaces will be discussed in the next section. The fact that the Laplacian △ on the quantum layers can be
extended to a self-adjoint operator will be explained in Section 3. The main theorem above will be proved in Section 4.

2. Geometry of rotationally symmetric quantum layers

Let m (3 ≤ m < ∞) be an integer and let Σ be a C2-smooth hypersurface with a pole embedded in Rm. The existence
of a pole on Σ is a nontrivial assumption under which Σ is necessarily diffeomorphic to Rm−1 leading to the simple
connectedness and non-compactness ofΣ . Under this assumption, we can also set up the global geodesic polar coordinates
to parametrize the hypersurfaceΣ by a unique patch p : Σ0 → Rm, whereΣ0 := (0,∞)× Sm−2 with Sm−2 the unit sphere
in Rm−1. Naturally, Σ can be identified with the image of Σ0. The tangent vectors p,µ :=

∂p
∂qµ are linearly independent

and span the tangent space at every point of Σ , correspondingly, the unit normal vector field n⃗ can be determined. Let
Ω0 := Σ0 × (−a, a), then the quantum layer Ω := Φ(Ω0) of width 2a built over Σ can be defined by a natural mapping
Φ : Ω0 → Rm as follows

Φ(q, u) := p(q)+ un⃗(q), (q, u) ∈ Σ0 × (−a, a). (2.1)

We make an agreement on the indices range, 1 ≤ µ, ν, . . . ,≤ m − 1 and 1 ≤ i, j, . . . ,≤ m. Denote the pole onΣ by o,
we know that the exponential map exp0 : Do → Σ is a diffeomorphism, whereDo = {sξ | 0 ≤ s < ∞, ξ ∈ Sm−2

o }with Sm−2
o

the unit sphere in the tangent space To(Σ). For a fixed vector ξ ∈ ToM, |ξ | = 1, let ξ⊥ be the orthogonal complement of
{Rξ} in ToM and let τs : ToM → Texpo(sξ)M be the parallel translation along the geodesic γξ (s) := expo(sξ)with γ ′(0) = ξ .
Define the path of linear transformations A(s, ξ) : ξ⊥

→ ξ⊥ by

A(s, ξ)η = (τs)
−1Y (s),

where Y (s) is the Jacobi field along γξ satisfying Y (0) = 0, (▽sY )(0) = η. Moreover, for η ∈ ξ⊥, set

R(s)η = (τs)
−1R(s)(τsη) = (τs)

−1R(γ ′

ξ (s), τsη)γ
′

ξ (s),

then R(s) is a self-adjoint map of ξ⊥, where we use the following signature for the curvature tensor R(X, Y )Z =

−[∇X ,∇Y ]Z + ∇[X,Y ]Z . Obviously, the map A(s, ξ) satisfies the Jacobi equation A′′
+ RA = 0 with initial conditions

A(0, ξ) = 0,A′(0, ξ) = I , and by applying the Gauss lemma the Riemannian metric ofM can be expressed by

dt2(expo(sξ)) = ds2 + |A(s, ξ)dξ |2

on the set expo(D0). Hence, the induced metric gµν in the geodesic polar coordinates satisfies
det[gµν] = detA(s, ξ).

Define a function J > 0 on D0 by

Jm−2
=

det[gµν],

that is dVΣ = Jm−2dsdξ . We know that the function J(s, ξ) satisfies (cf. [8, p. 244])

J ′′ +
1

(m − 2)
Ricci


d
ds
,
d
ds


J ≤ 0

J(s, ξ) = s + O(s2)
J ′(s, ξ) = 1 + O(s),



J. Mao / J. Math. Anal. Appl. 397 (2013) 791–799 793

where Ricci denotes the Ricci curvature tensor onΣ and d
ds is the radial unit tangent vector along the geodesic γξ (s). So, we

have

J ′′ +
1

(m − 2)
Ricci


d
ds
,
d
ds


J ≤ 0 with J(0, ξ) = 0, J ′(0, ξ) = 1. (2.2)

Consider now layers which are invariant with respect to rotations around a fixed axis in Rm. We could thus suppose that
Σ is a rotational hypersurface parametrized by p : Σ0 → Rm,

p(s, θ1, . . . , θm−2) := (r(s) cos(θ1), r(s) sin(θ1) cos(θ2), r(s) sin(θ1) sin(θ2) cos(θ3), . . . ,

r(s) sin(θ1) . . . sin(θm−3) cos(θm−2), r(s) sin(θ1) . . . sin(θm−3) sin(θm−2), z(s)), (2.3)

where r, z ∈ C2((0,∞)), r > 0 and (θ1, . . . , θm−2) ∈ Sm−2. This parametrization will be the geodesic polar coordinate
chart if we additionally require

r ′(s)
2

+

z ′(s)

2
= 1, (2.4)

since by direct calculation the induced metric tensor onΣ can be written as ds2 + r2|dξ |2 with

|dξ |2 := dθ21 + (sin θ1)2dθ22 + (sin θ1)2(sin θ2)2dθ23 + · · · + (sin θ1)2(sin θ2)2 · · · (sin θm−3)
2dθ2m−2,

the round metric on Sm−2, provided the requirement (2.4) is satisfied. So, we have dVΣ = rm−2dsdξ , which implies the
function J defined above satisfies J = r in this case. Moreover, under the parametrization (2.3) with the requirement (2.4),
Σ is a spherically symmetric hypersurfacewith a pole, and itsWeingarten tensor is given by (hµν) = diag(ks, kθ1 . . . , kθm−2)
with the principle curvatures

ks = r ′z ′′
− r ′′z ′ and kθ := kθ1 = · · · = kθm−2 =

z ′

r
. (2.5)

As pointed out in [5], it is sufficient to know the function s → ks(s) only, since r, z can be constructed from the relations

r(s) =

 s

0
cos b(ϑ)dϑ, z(s) =

 s

0
sin b(ϑ)dϑ,

with b(ϑ) :=
 s
0 ks(ϑ)dϑ .

By (2.2), (2.4), (2.5) and the facts J = r and Ricci
 d
ds ,

d
ds


= (m − 2)kskθ , we know that the function r(s) satisfies

r ′′
+ kskθ r = 0 with r(0) = 0, r ′(0) = 1, (2.6)

This equation will make an important role in the proof of Theorem 1.2.
In the sequel, we impose the following assumptions onΣ .

A1. Σ is not self-intersecting, i.e.,Φ is injective.
A2. The half width a of the layer satisfies a < ρm := (max{∥ks∥∞, ∥kθ∥∞})−1, where ∥ · ∥∞ denotes the L∞-norm.
A3. For x ∈ Σ , ∥A∥(x) → 0 as d(x, x0) → ∞, where x0 is a fixed point on the spherically symmetric hypersurfaceΣ . This

means thatΣ is asymptotically flat.

3. Self-adjoint extension of the Laplacian on the quantum layers

As in [5,6], from the definition (2.1), the metric tensor of the layer as a submanifold of Rm satisfies

Gij =


(δσi − uhσi )(δ

ρ
σ − uhρσ )gρj, 1 ≤ i, j ≤ m − 1,

0, i or j = m,
1, i = j = m,

(3.1)

which implies the metric matrix has the block form

(Gij) =


Gµν 0
0 1


with Gµν = (δσµ − uhσµ)(δ

ρ
σ − uhρσ )gρν, 1 ≤ µ, ν ≤ m − 1.

Then by (3.1), we obtain

det(GAB) = [det(1 − uA)]2 det(gµν). (3.2)

Since the eigenvalues of the matrix of the Weingarten map are the principle curvatures ks, kθ , we have

det(1 − uA) = (1 − uks)(1 − ukθ )m−2. (3.3)
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where ks and kθ are given by (2.5). By assumption A2, the entries Gµν of the matrix G can be estimated by

C−gµν ≤ Gµν ≤ C+gµν, (3.4)

where C± := (1 ± aρ−1
m )2 with 0 < C− ≤ 1 ≤ C+ < 4. So, assumption A2 makes sure that the mapping Φ is nonsingular,

which implies themappingΦ induces a RiemannianmetricG onΩ . Hence,we know that themappingΦ is a diffeomorphism
under assumptions A1 and A2.

There is an interesting truth we would like to point out here. From the last section, we know that the Riemannian metric
of the spherically symmetric hypersurfaceΣ can be expressed as ds2 + r2|dξ |2 with |dξ |2 the round metric on Sm−2 under
the parametrization (2.3), then by (3.1) the Riemannian metric of the quantum layer Ω built over Σ can be written as
du2

+ ds2 + r2|dξ |2, which impliesΩ is also cylindrically symmetric.
For convenience, let x1 := s, x2 := θ1, . . . , xm−1 := θm−2, xm := u, then in the coordinate system {x1, . . . , xm} onΩ , the

Laplacian∆ = ∆Ω can be written as

∆ =
1

det(Gij)

m−1
µ,ν=1

∂

∂xµ


Gµν


det(Gij)

∂

∂xν


+

1
det(Gij)

∂

∂u


Gmm


det(Gij)

∂

∂u


.

Using (3.3) we could split △ into a sum of two parts, △ = △1 + △2, given by

∆1 :=
1

det(Gij)

∂

∂u


Gmm


det(Gij)

∂

∂u


=

∂2

∂u2
−


ks

1 − uks
+
(m − 2)kθ
1 − ukθ


∂

∂u

and

∆2 := ∆−∆1 =
1

det(Gij)

m−1
µ,ν=1

∂

∂xµ


Gµν


det(Gij)

∂

∂xν


.

In the rest part of this section, we will show that this Laplacian∆ = ∆Ω can be extended to a self-adjoint operator. For any
E, F ∈ C∞

0 (Ω), the set of all smooth functions with compact support onΩ , we define the L2 inner product (·, ·) as follows

(F ,G) =


Ω

FGdΩ,

where dΩ is the volume element of the quantum layer Ω . Correspondingly, the norm ∥E∥ could be defined by ∥E∥ :=√
(E, E). Moreover, if E, F are differentiable, we define

(∇E,∇F) =


Ω


m−1
µ,ν=1

Gµν
∂E
∂xµ

∂F
∂xν

+
∂E
∂u
∂F
∂u


dΩ.

Also, we define ∥∇E∥ =
√
(∇E,∇E). Then as the proof of Proposition 2.1 in [6], for any E, F ∈ W 1,2

0 (Ω), the space which is
the closure of the space C∞

0 (Ω) under the norm

∥E∥W1,2
0 (Ω)

=


∥E∥2 + ∥∇E∥2,

the sesquilinear form Q1(E, F) := (∇E,∇F) is a quadratic form of a unique self-adjoint operator. Such an operator is an
extension of ∆, which we still denote as ∆. Hence we can use (1.1) and (1.2) to compute σ0 and σess for the quantum layer
Ω , respectively.

However, generally it is complicated to construct trial functions on the quantum layer Ω directly, our strategy to solve
this difficulty is the following: by introducing the unitary transformationψ → ψΦ withΦ defined by (2.1), wemay identify
the Hilbert space L2(Ω)with H := L2(Ω0, dΩ) and the Laplacian∆ = ∆Ω with the self-adjoint operator H associated with
the quadratic form Q2 on H defined by

Q2(ψ,ψ) :=


Ω0

ψ,iGijψ,jdΩ,

ψ ∈ DomQ2 :=

ψ ∈ W 1,2(Ω0, dΩ)|ψ(q, u) = 0 for a.e. (q, u) ∈ Σ0 × {±a}


,

here ψ(x) for x ∈ ∂Ω0 means the corresponding trace of the function ψ on the boundary.

4. Proof of main theorem

Under assumptions A2 and A3, as the proof of Theorem 3.1 in [6], we can prove the following.

Theorem 4.1. Assume Ω is a quantum layer built over an oriented hypersurface immersed in Rm (3 ≤ m < ∞), then under
assumptions A2 and A3, we have σess ≥ ( π2a )

2.
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In order to prove our main theorem later, we need the following lemma.

Lemma 4.2 ([6]). Let a > 0 be a positive number and let k1 =
π
2a . Let χ1(u) = cos(k1u), let

ηk =

 a

−a
uk(χ2

1,u − k21χ
2
1 )du, ∀k ≥ 0,

where χ1,u denotes the derivative of χ1 with respect to u. Then

ηk =


0, if k is odd, or k = 0;
1
2

(k)!
(2k1)k−1

k/2
l=1

(−1)k/2−lπ2l−1

(2l − 1)!
, if k ≠ 0 is even.

Furthermore, ηk > 0 if k ≠ 0 is even.

For the spherically symmetric hypersurfaceΣ ⊆ Rm (3 ≤ m > ∞) with a pole, we define a quantity Km−2 by

Km−2 :=

[(m−1)/2]
k=1

η2kc2k(A), 3 ≤ m < ∞, (4.1)

where ηk for k ≥ 1 is given in Lemma 4.3, [(m − 1)/2] is the integer part of (m − 1)/2, and ck(A) is the kth elementary
symmetric polynomial of the second fundamental form A ofΣ . Whenm = 4, we can obtain the following lemma.

Lemma 4.3. If K2 defined by (4.1) is integrable on a 3-dimensional spherically symmetric hypersurfaceΣ with a pole embedded
in R4, andΣ is not a hyperplane, then we have

(1) Σ is non-parabolic,
(2) lims→∞

r(s)
s = 1,

(3)


∞

0 ks(s)kθ (s)r(s)ds = 0, which implies there exists at least one domain onΣ such that ks and kθ have the same sign on this
domain, here r(s) is given by (2.3) satisfying (2.4), and ks, kθ are given by (2.5).

Proof. Since K2 is integrable on Σ which can be parametrized by (2.3) with the requirement (2.4), then we know that
Σ0

ks(s)kθ (s)dΣ and

Σ0

k2θ (s)dΣ are finite, which implies


∞

0 ks(s)kθ (s)r2(s)ds and


∞

0 k2θ (s)r
2(s)ds are finite. By (2.6), we

could obtain

r ′(s)r(s) =

 s

0


r ′(v)

2 dv −

 s

0
ks(v)kθ (v)r2(v)dv,

together with (2.4) and (2.5), it follows that

r ′(s)r(s) = s −

 s

0
k2θ (v)r

2(v)dv −

 s

0
ks(v)kθ (v)r2(v)dv. (4.2)

Let D be

D :=


∞

0
ks(s)kθ (s)r2(s)ds +


∞

0
k2θ (s)r

2(s)ds,

then there exists a constant s0 > 1 such that for any s ≥ s0, we have s

0
ks(v)kθ (v)r2(v)dv +

 s

0
k2θ (v)r

2(v)dv − D
 ≤

1
100

.

Integrating (4.2) from s0 to s results in

s2 − s20 −


2D +

1
50


(s − s0)+ r2(s0) ≤ r2(s) ≤ s2 − s20 +


2|D| +

1
50


(s − s0)+ r2(s0), (4.3)

for any s ≥ s0.
On the other hand, from (4.2), we also have

lim
s→∞

r ′(s)r(s)
s

= 1 − lim
s→∞

s−1
 s

0
k2θ (v)r

2(v)dv +

 s

0
ks(v)kθ (v)r2(v)dv


= 1,

together with (4.3), it follows that

r ′(∞) := lim
r→∞

r ′(s) = 1. (4.4)
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By (2.4), (2.6) and (4.4), we have
∞

0
ks(s)kθ (s)r(s)ds = 0 and lim

s→∞
z ′(s) = 0. (4.5)

Now, we would like to prove the first assertion by using the estimate (4.3), however, before that some useful facts about
parabolicity should be given first.

Definition 4.4. A completemanifold is said to be non-parabolic if it admits a non-constant positive superharmonic function.
Otherwise it is said to be parabolic.

Lemma 4.5 ([2–4]). Let Riemannian manifold M be geodesically complete, and for some x ∈ M,
∞

1

1
S(x, ρ)

dρ = ∞ (4.6)

with S(x, ρ) the boundary area of the geodesic sphere ∂B(x, ρ). Then M is parabolic.

In general, (4.6) is not necessary for parabolicity, however, in [1], Grigor’yan has shown that for a spherically symmetric
manifold M with a pole, (4.6) is also a necessary condition for M being parabolic. Hence, if we want to show Σ is non-
parabolic here, it suffices to prove there exists some x ∈ Σ such that

∞

1

1
S(x, t)

dt < ∞

with S(x, t) the area of the boundary of the geodesic ball B(x, t) centered at x with radius t . Now, for the 3-dimensional
spherically symmetric hypersurface Σ with a pole o, choose x to be the pole o, then the area S(o, t) can be expressed by
S(o, t) = w2r2(t)withw2 the 2-volume of the unit sphere in R3. So, by applying (4.3), we have

∞

1

1
S(o, t)

dt ≤

 1+s1

1

1
w2r2(t)

dt +
1
w2


∞

1+s1

1
s2 − s20 −


2D +

1
50


(s − s0)+ r2(s0)

ds < ∞,

where s1 is chosen to be

s1 :=


s0, if ℵ ≤ 0,

max

s0,
1

100
+ D +


D +

1
100

2

−


2D +

1
50


s0 + s20 − r2(s0)

 , if ℵ > 0,

with ℵ := −r2(s0)− (2D +
1
50 )s0 + s20 + (D +

1
100 )

2. Our proof is finished. �

By using Lemma 4.3, we could obtain a result on the growth speed of the volume of a geodesic ball of a 3-dimensional
spherically symmetric hypersurface related to the integrability of K2 as follows.

Corollary 4.6. Let Σ be a 3-dimensional spherically symmetric manifold with a pole o embedded in R4, if in addition K2 defined
by (4.1) is integrable on Σ , then the volume V (o, s) of the geodesic ball B(o, s) with center o and radius s has cubic growth as s
large enough.

Proof. We can set up the global geodesic polar coordinate chart centered at o forΣ as before, consequently, the volume of
the geodesic ball B(o, s) is given by

V (o, s) =

 s

0


S2

r2(v)dS2dv,

where r satisfies (2.6). By applying (4.3), we have

w2(s3 − s30)
3

− w2 ·


D +

1
50


(s2 − s20)+ c1(s − s0)+ V (o, s0) ≤ V (o, s) ≤

w2(s3 − s30)
3

+w2 ·


|D| +

1
50


(s − s20)+ c2(s − s0)+ V (o, s0),

for any s ≥ s0, where c1 :=

r20 − s20 + (2D + 1/50) s0


w2 and c2 :=


r20 − s20 − (2 | D | +1/50) s0


w2. This implies V (o, s)

has the cubic growth as s large enough. �
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Let (M, g) be an n-dimensional complete Riemannian manifold, denote by B(q, r) the open geodesic ball centered at a
point q ∈ M with radius r and by vol(B(q, r)) its volume. Define

αM := lim
r→∞

vol(B(q, r))
vn(1)rn

,

with vn(1) the volume of the unit ball in Rn. It is not difficult to prove αM is independent of the choice of q, which implies αM
is a global geometric invariant.We say that (M, g) has large volume growth provided αM > 0. For the spherically symmetric
hypersurfaceΣ with a pole o embedded in R4 with K2 integrable, by Corollary 4.6 we have

αΣ = lim
r→∞

V (o, r)
v3(1)r3

= 1 > 0,

which impliesΣ has large volume growth provided K2 is integrable.
Large volume growth assumption is common in deriving a prescribedmanifold with nonnegative Ricci curvature to be of

finite topological type. However, recently the author proved that a complete openmanifoldwith nonnegative Ricci curvature
is of finite topological type without the large volume growth assumption in [10].

By using Lemmas 4.2 and 4.3, we can prove the following conclusion.

Theorem 4.7. Assume Ω is the quantum layer built over a spherically symmetric hypersurface Σ with a pole embedded in R4,
andΣ is not a hyperplane, if in addition K2 is integrable onΣ and

Σ

K2dΣ ≤ 0

with K2 defined by (4.1), then under assumptions A1 and A2, we have σ0 < ( π2a )
2.

Proof. Here we use a similar method as that of Theorem 5.1 in [5]. Set χ(u) :=


1
a cos(πu2a ) =


1
aχ1(u). We divide the

proof into two steps:
(1) If


Σ

K2dΣ < 0, construct a trial function Ψ (s, u) := ϕσ (s)χ(u), where σ ∈ (0, 1] and

ϕσ (s) :=


1, if 0 < s ≤ s0,

min

1,

K0(σ s)
K0(σ s0)


, if s > s0,

(4.7)

with K0(s) theMacdonald function (see [9], Section 9.6). Obviously,Ψ (s, u) is continuous onΩ0, which impliesΨ ∈ DomQ2.
By (1.1) and the strategy explained at the end of the last section, if we want prove σ0 < ( π2a )

2, it suffices to show that

−


Ω0

Ψ (s, u)∆Ψ (s, u)dΩ −

 π
2a

2 
Ω0

Ψ 2(s, u)dΩ

is strictly negative.
By applying (3.2), (3.3) and Lemma 4.2, we know that

−


Ω0

Ψ (s, u)∆2Ψ (s, u)dΩ −

 π
2a

2 
Ω0

Ψ 2(s, u)dΩ =


Σ0

(2kskθ + k2θ )(ϕσ (s))
2dΣ .

Since K2 is integrable onΣ , |ϕσ (s)| ≤ 1, and ϕσ → 1 pointwise as σ → 0+, then by the dominated convergence theorem,
we know that

−


Ω0

Ψ (s, u)∆2Ψ (s, u)dΩ −

 π
2a

2 
Ω0

Ψ 2(s, u)dΩ →


Σ0

(2kskθ + k2θ )dΣ =


Σ

K2dΣ (4.8)

as σ → 0+.
On the other hand, an integration of (4.2) together with the fact that K2 is integrable onΣ yields that for any s > 0, there

exists a constant c3 depending on the value of

Σ

K2dΣ such that

r2(s) ≤ s2 + c3s. (4.9)

So, by (3.2), (3.3), (3.4) and (4.9), we have

−


Ω0

Ψ (s, u)∆1Ψ (s, u)dΩ = −

 a

−a


Σ0


ϕ′

σ (s)χ(u)
2 (1 − ukθ (s))2

1 − uks(s)
dΣdu

≤
w2C+
√
C−


∞

0


ϕ′

σ (s)
2
(s2 + c3s)ds. (4.10)
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However, by using Mathematica and properties of the Macdonald function given by

−2K ′

v(z) = Kv−1(z)+ Kv+1(z),

−
2v
z
Kv(z) = Kv−1(z)− Kv+1(z),

K0(z) = − log z + O(1), as z → 0,

K1(z) =
1
z

+ O(log z), as z → 0,

it follows that as σ → 0+, there exists a constant c4 such that
∞

0


ϕ′

σ (s)
2 s2ds =

1
(K0(σ s0))2


∞

σ s0


K ′

0(t)
2 t2dt →

3π2

32(K0(σ s0))2
→ 0

and 
∞

0


ϕ′

σ (s)
2 sds ≤

c4
| log σ s0|

→ 0.

Substituting the above estimates in (4.10) results in

−


Ω0

Ψ (s, u)△1 Ψ (s, u)dΩ → 0 (4.11)

as σ → 0+. So, from (4.8) and (4.11), we have

−


Ω0

Ψ (s, u)∆Ψ (s, u)dΩ −

 π
2a

2 
Ω0

Ψ 2(s, u)dΩ →


Σ

K2dΣ < 0

as σ → 0+, which implies σ0 < ( π2a )
2.

(2) If

Σ

K2dΣ = 0, construct a trial function Ψσ ,ε := (ϕσ (s) + εj(q)u)χ(u) with ϕσ (s) defined by (4.7) and j ∈

C∞

0


(0, s0)× S2


. Obviously, Ψσ ,ε ∈ DomQ2. For convenience, for any function f ∈ DomQ2, let

Q3[f ] := −


Ω0

f∆fdΩ −

 π
2a

2 
Ω0

f 2dΩ.

By applying Lemma 4.2, we have

Q3[Ψσ ,ε] = Q3[ϕσ (s)χ(u)] − 2ε

Ω0

j(ks + 2kθ )dΩ + ε2Q3[j(q)uχ(u)]. (4.12)

The second term on the right hand side of (4.12) can be made nonzero by choosing j supported on a compact subset of Σ0
where (ks + 2kθ ) does not change sign. The existence of this compact subset could be assured by Lemma 4.3(3) and the fact
that we could choose s0 arbitrarily large. So, if we choose the sign of ε in such a way that the second term on the right hand
side of (4.12) is negative, then, for sufficiently small ε, the sum of the last two terms of the right hand side of (4.12) will be
negative. On the other hand, by the argument in (1), we know that

Q3[ϕσ (s)χ(u)] →


Σ

K2dΣ

as σ → 0+. Hence, we have Q3[Ψσ ,ε] < 0 as σ → 0+ and ε sufficiently small, which implies σ0 < ( π2a )
2.

Our proof is finished. �

So, by Theorems 4.1 and 4.7, we have

Corollary 4.8. Theorem 1.2 is true.

Remark 4.9. The existence of the ground state of quantum layers built over submanifolds of high dimensional Euclidean
space has been obtained in [6,7] under some assumptions therein, but the parabolicity of the reference submanifold is
necessary in those assumptions, however, here our 3-dimensional reference hypersurface Σ of R4 is non-parabolic by
Lemma 4.3. So, the existence of the ground state of the cylindrically symmetric quantum layers considered here can not
be obtained by the results in [6,7], which indicates that Theorem 1.2 can be seen as a complement to those existent results
for higher dimensional quantum layers or quantum tubes.
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