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A B S T R A C T

Two-dimensional TiO2 nanosheets were synthesized by atomic layer deposition (ALD) on dissolvable sacrificial
polymer layer. The photocatalytic performance of free-standing TiO2 nanosheets prepared with different
numbers of ALD cycles (100, 300, 500, and 1000) were investigated by evaluating the degradation rates of
methyl orange solutions. It is shown that the photocatalytic activity increases due to Ti3+ defect and the locally
ordered structures in amorphous TiO2 nanosheets. The difference in the surface areas of nanosheets may also
play a crucial role in the photocatalytic activity. The results obtained in this work can have potential applications
in fields like water splitting and dye-sensitized solar cells.

1. Introduction

Atomic layer deposition (ALD) has become advanced fabrication
method for a rich variety of applications including complementary
metal oxide semiconductor transistors, DRAM memory, energy con-
version, photovoltaic, and display devices [1–6], which require a
precise control of thickness, uniformity, and conformality. Recently,
novel application of ALD includes synthesis of two-dimensional (2D)
nanosheets [7]. 2D nanosheets have emerged as important new
materials due to their unique structural, morphological, and physico-
chemical properties with attractive functionalities [8–15]. On the other
hand, since Fujishima and Honda found that TiO2 can split water to
generate hydrogen in 1972 [16], TiO2 has been widely used in energy
and environmental science due to its high chemical stability, non-
toxicity and favorable energy band structure [17–20]. As we know, the
properties of nanomaterials depend on their shapes, sizes, crystal
phases, defects, impurities, and surface areas, and their potential
applications will also be strongly influenced [21–23]. In this study,
2D catalytic TiO2 nanosheets fabricated by ALD on dissolvable
sacrificial polymer layer were investigated. Photocatalytic properties
of TiO2 nanosheets were studied by evaluating the degradation rates of
methyl orange (MO) solutions. The results indicate that photocatalytic
performance increases with the thickness of nanosheet, and superficial
Ti3+ defect while locally ordered structure in the amorphous TiO2 plays
an important role.

2. Experimental

In this work, TiO2 was deposited by ALD on sacrificial polymer
layer. The polymer layer of polyvinyl alcohol (PVA) with average
molecular weight of ~ 89,000–98,000 was prepared by spin coating
on 2×2 cm2 silicon wafers at a rotational speed of 3000 rpm for 30 s
(Fig. 1a). The PVA layer was baked on the hot plate at 100 °C for 60 s.
During ALD, the precursor used for the Ti source was Tetrakis
(dimethylamido) titanium (TDMAT) with added water (H2O) as
reactant. Both TDMAT and H2O were exposed in the ALD chamber
with the pulse and the purge times of 20 ms and 20 s, respectively. The
ALD chamber temperature was set to 150 °C and the temperatures of
TDMAT and H2O were 105 and 50 °C, respectively. The flow rate of the
carrier gas (N2) was 20 sccm and the deposition was conducted at
~20 Pa. In this work, ALD of 100, 300, 500, and 1000 cycles were
prepared to investigate the influence of layer's thickness. To obtain
free-floating 2D TiO2 sheets, the samples were scratched into small
pieces and then immersed into the hot water of 75 °C (Fig. 1b-c). After
4 h, the PVA sacrificial layer was dissolved, while the free-standing
TiO2 nanosheets were released (Fig. 1d).

Morphologies of the TiO2 nanosheets were investigated using
optical microscopy (Olympus BX51) and scanning electron microscopy
(SEM, Phenom world). Atomic force microscopy (AFM; Nanoscope IV
SPM, Veeco Metrology) was used to examine the surface morphology
and measure thicknesses of nanosheets. The crystal structures of the
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TiO2 nanosheets were evaluated by X-ray diffraction (XRD) spectro-
scopy on a D8 spectrometer (Advance Bruker AXS GMBH), using CuKα
radiation with irradiations condition of 40 kV and 40 mA. XPS experi-
ments were carried out on a RBD upgraded PHI-5000C ESCA system
(Perkin Elmer) with Mg Kα radiation (hν=1253.6 eV) and the X-ray
anode was run at 250 W.

The photocatalytic performance of TiO2 nanosheets was studied by
photodegradation of MO solution measured by UV–Vis spectrophot-
ometer (Shimadzu UV-2550). The TiO2 nanosheets with the weight of
0.1 mg were placed in 6 mL MO solution (10 mg/L). The mixture was
then kept in the dark for 30 min to achieve the adsorption equilibrium
and then illuminated under the UV light of a 200-W xenon lamp
(Lanpu, China) at a distance of 50 cm. The degradation of the MO
solution was measured every 30 min. The absorption intensity at the
wavelength of 464 nm (the maximum absorption peak of MO) [24] was
extracted to calculate the MO degradation.

3. Results and discussion

Fig. 1 shows fabrication process of TiO2 nanosheets. The release of
nanosheets was achieved by dissolving PVA sacrificial layer in hot
water. Scratching was used to accelerate the dissolution process of the
PVA layer (Fig. 1a-c). To further speed up the release process, water
was heated to 75 °C. The TiO2 layer was separated from the sacrificial

layer and floated on the surface of water, as shown in Fig. 1d. The
dissolution rate of the sacrificial polymer layer depends on chemical
composition, molecular weight, and temperature of the solvent.
Poly(acrylic acid) sacrificial layer with high solubility and low mole-
cular weight led fast dissolution in water and corresponding high
stress, causing the thin layer to break into very small pieces [7]. On the
other hand, PVA showed good solubility in water with slower dissolu-
tion speed that allowed the above ALD layer to peel off gently. It
enabled the formation of relatively large nanosheets with dimensions of
several millimeters for subsequent collection and analysis.

Fig. 2 show the SEM images of TiO2 nanosheets of (a) 100 and (b)
500 ALD cycles. In Fig. 2a, a thin TiO2 nanosheet formed with 100 ALD
cycles shows a typical flexible nanosheet. It can be transformed into a
stiffed nanosheet by increasing the thickness as shown in Fig. 2b.
Further evaluation can be seen in Supporting Information (Fig. SI-1),
which shows free-floating/free-standing TiO2 nanosheets in water. The
TiO2 nanosheets in Fig. SI-1a-1d were prepared by 100, 300, 500, and
1000 ALD cycles, respectively. Thinner TiO2 nanosheets with fewer
ALD cycles showed higher flexibility clearly indicated by wrinkling,
rollable edges, and overlapping with self-folded layers (Figs. SI-1a and
SI-1b). Thicker TiO2 nanosheets with 500 and 1000 ALD cycles led to
stiffer sheets. The robustness of the nanosheet makes it possible to
keep the original rectangular shape, as shown in Figs. SI-1c and SI-1d.

We also experimentally proved that the increase of ALD cycles (i.e.

Fig. 1. Schematic diagram illustrating fabrication process of ALD nanosheets. (a) Spin-coated sacrificial polymer layer on silicon wafer. (b) TiO2 layer was prepared on sacrificial layer
by ALD and then scratched into small pieces by razor edge. (c) Sample was immersed in hot water to dissolve the sacrificial layer. (d) Typical optical image of the nanosheets after release
(in Petri dish).

Fig. 2. SEM images of TiO2 nanosheets fabricated by (a) 100 and (b) 500 ALD cycles.
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thickness of the nanosheet) will enlarge dimensions of resulting
nanosheets (Fig. SI-3, Supporting Information). The nanosheets in
the water were dried and annealed (300 °C for 1 h) for further
characterization. Fig. SI-2 in Supporting Information shows a typical
morphology of the dried TiO2 nanosheets. The contrast/different colors
in various regions originates from optical interference due to the
stacking or overlap of nanosheets since the TiO2 nanosheets fabricated
with fewer ALD cycles are more flexible. On the contrary, the
nanosheets fabricated with more ALD cycles are stiffer (Fig. SI-2 and
SI-3 in Supporting Information). We believe that the stiffer nanosheets
may have more regular repetitive patterns of the atoms although the
nanosheets are amorphous phase [25–27]. This local ordering in the
amorphous TiO2 is considered to be due to the highly directional
covalent bonds [28,29].

In our experiment, we noticed that ALD of TiO2 causes morphology
evolution. Fig. SI-4 of Supporting Information shows surface morphol-
ogies of the uncoated PVA layer and the ALD TiO2 nanosheets with
various thicknesses on PVA sacrificial layer. It reveals that the TiO2

layers are much smoother than bald PVA layers. It correlates to the
typical ALD growth mechanism onto the PVA surface. When the TiO2

ALD layer was deposited onto the PVA surface, TDMAT exposure
consumes OH groups and produces Ti-(N(CH3)2)3 [30,31]. The reac-
tive sites of Ti-(N(CH3)2)3 are emerged after the TDMAT exposure
[31]. These reactive groups are mainly exist in the polymer subsurface
and will react during the next reactant step leading to multilayer
growth [30]. This film can then prevent the precursor from penetrating
deep into the polymer bulk during the next TDMAT/H2O cycles, and
ALD layer coalescence after some cycles leads to normal ALD growth
[30]. These typical ALD growth mechanism can be indicated by surface
morphologies evaluation of the PVA surface before and after TiO2 ALD
coating. The root mean square (RMS) surface roughness was calculated
to be 659.83 pm for the uncoated PVA. The value decreased to
314.42 pm for TiO2 nanosheet of 100 ALD cycles, and further reduced
to 296.04 pm for TiO2 layers prepared by 1000 cycles. The decrease of
the surface roughness indicates that the ALD in the initial layer has
been completed and the normal growth has started on the surface of
the PVA [32,33], which is a basic requirement for the formation of free-
standing nanosheets.

It is well known that the surface area is one of the most important
factors affecting photocatalytic applications of nanomaterials [21,34].
In this regard, we estimated the surface areas of TiO2 nanosheets (100,
300, 500, and 1000 cycles) with the help of AFM and the mass of TiO2

nanosheets was normalized to 0.1 mg (by assuming the TiO2 ALD
density was ~3.9 g/cm3 [35–37]). The surface area of thin film (Fig. 3a)
decreased by increasing the number of ALD cycles and corresponding
thickness. To check the exact thicknesses of the nanosheets with
different ALD cycles, we used AFM to probe the thickness at the edges
of the nanosheets, as shown in Fig. 3b. A typical AFM image of the edge
of TiO2 nanosheet prepared with 100 ALD cycles is shown in Fig. 3c. In
this work, the average thicknesses of the TiO2 nanosheets produced by
100, 300, 500, and 1000 cycles were 11, 23, 34, and 80 nm,
respectively. We also carried out XRD measurements to analyze the
crystal structures of the nanosheets with different ALD cycles. The XRD
results in Fig. SI-5 shows that the nanosheets do not have any
detectable crystalline structure, which suggests that the TiO2 na-
nosheets with various thicknesses from ~ 11 to ~ 80 nm are in
amorphous phase. However, as it was mentioned before, increasing
the stiffness of nanosheets can reflect more regular repetitive pattern of
the atoms (i.e., locally ordered structure) in thicker nanosheets [25–
29]. Unfortunately, XRD has detection limit of crystalline domains
below 3–5 nm [28], and therefore no diffraction peak can be observed
in XRD pattern.

Fig. SI-6 of supporting information shows the chemical composi-
tion of the TiO2 nanosheet with 500 ALD cycles that represented by
deconvolution analyses of XPS spectra of (a) O 1s and (b) Ti 2p. The
peak of O 1s was fitted and divided into two subbands. The subbands at

the binding energies of 529.76 and 531.47 eV corresponds to oxygen
atoms connecting to Ti4+ and Ti3+, respectively [38–40]. Fig. SI-6b
shows the XPS spectra of Ti 2p, with the peaks at the binding energies
of 458.2 and 463.8 eV corresponding to Ti4+(2p3/2) and Ti4+(2p1/2),
respectively. While both peaks shift to lower binding energies com-
pared to the previous studies of 458.6 eV (Ti4+(2p3/2)) and 464.3 eV
(Ti4+(2p1/2)) [38,40–42], suggesting the existence of Ti3+ in the sample
[40,42]. Both spectra of O 1s and Ti 2p indicate the existence of oxygen
vacancy-Ti3+ type surface state. The presence of Ti3+ at the surface of
the TiO2 are beneficial to photocatalysis, as it can react with the
available dissolved O2 and lead to formation of active oxygen species,
such as superoxide radical anion •O2

−, hydroperoxyl radical •HO2 , and
hydroxyl radical •OH , which are directly responsible for the degrada-
tion of the typical organic pollutants [43,44]. In addition, it has been
reported that the photoelectrons can be trapped by existence of the
surface defect (Ti3+) leading to inhibition of e− - h+ recombination,
which consequently has a contribution to increase the photocatalytic
reactions [35,45].

MO degradation experiments were carried out to measure the
photocatalytic activity of the TiO2 nanosheets. Fig. 4a shows the
enhancement of MO degradation by existence of TiO2 nanosheets with
different thicknesses. For all tests, the photocatalyst concentrations are
kept constant at 0.017 mg/mL. The degradation follows a pseudo-first-
order reaction with kinetics expressed by ln (C0/C)=k·t, where t is the
irradiation time, C0 and C represent MO concentrations of the initial

Fig. 3. The surface area (a) and the thickness (b) of TiO2 nanosheets as functions of ALD
cycle. The mass of the TiO2 nanosheets was normalized to 0.1 mg. (c) AFM image of the
edge of a TiO2 nanosheet prepared by 100 ALD cycles.
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solution and after illumination, respectively [46]. Thus the pseudo first-
order constant k can be calculated to evaluate the photocatalytic
efficiency (Fig. 4b). In TiO2 structure, the degree of crystallinity
represented by the ratio between crystalline and amorphous phase is
an important factor affecting photocatalytic activity [28]. Normally, it is
believed that higher degrees of crystallinity are beneficial for the TiO2

photocatalytic performance [28], but in present case the amorphous
TiO2 nanosheets still demonstrates photocatalytic activity possibly due
to the surface defect, as discussed above. One may also notice that the
photocatalytic performance increases with increasing thickness/ALD
cycles for thinner nanosheets (Fig. 4b). This phenomenon can be
explained as follows. Firstly, the thinner amorphous TiO2 nanosheets
have the higher state of disorder at atomic level, which suggests a major
random structure, and the photocatalytic performance is relatively
lower. With increasing ALD cycles, the nanosheets become stiffer,
corresponding to higher level of local ordering, i.e. repetitive three
dimensional patterns [28,29], and the photocatalytic activity is en-
hanced correspondingly. Secondly, the nanosheets made by 100 and
300 ALD cycles are flexible and can self-wrinkle, fold and roll. This
leads to reduced contact area with solution and worsens the photo-
catalytic performance. In addition, it is worth noting that the TiO2

nanosheet formed by 500 ALD cycles demonstrates the highest
degradation rate of 0.00069 min−1, as shown in Fig. 4a and b. The
inconsistency is considered to be due to the difference in the contact
areas: the 500-cycles sample should have a larger surface area
compared to the 1000-cycles sample, if the weights are the same, as
shown in Fig. 3a.

4. Conclusions

Free-standing TiO2 2D nanosheets with various thicknesses from
~11 to ~80 nm have been succesfully fabricated by using ALD on PVA
sacrificial layers. Morphological characterization confirms that the TiO2

nanosheets synthesized with fewer ALD cycles are more flexible. With
increasing thickness, the nanosheet becomes stiffer with increasing
locally ordered structure in the nanosheets. These locally ordered
structures in TiO2 nanosheets lead to enhanced photocatalytic perfor-
mance. The photocatalytic ability of TiO2 nanosheets may also be
promoted by the existence of Ti3+ defect. The results obtained in this
work can have potential applications in various areas, including
photocatalysis, water splitting, and dye-sensitized solar cells.
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