
Article No. jsco.1999.0279
Available online at http://www.idealibrary.com on

J. Symbolic Computation (1999) 27, 521–534

The Pohlig–Hellman Method Generalized for Group
Structure Computation

EDLYN TESKE

Department of Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

We present a new algorithm that extends the techniques of the Pohlig–Hellman al-
gorithm for discrete logarithm computation to the following situation: given a finite
Abelian group and group elements h, g1, . . . , gl, compute the least positive integer y and
numbers x1, . . . , xl such that hy =

∏
gi
xi . This computational problem is important for

computing the structure of a finite Abelian group.
c© 1999 Academic Press

1. Introduction

Let G be a finite Abelian group, written multiplicatively. Let |G| denote the group order,
and assume the prime factorization of |G| is known as

|G| =
∏
p||G|
p prime

pη(p),

with pairwise distinct primes p, and with η(p) ∈ N. Assume that the following group
operations are possible: for a, b ∈ G we can compute c = a ∗ b, for a ∈ G we can compute
a−1, and for a, b ∈ G we can test whether a = b. As an example, we have in mind the
group of points of elliptic curves over a finite field. Other examples are the multiplicative
groups of finite fields and class groups of imaginary quadratic orders.

For any subset R of G, denote by 〈R〉 the subgroup of G generated by R. If R = {g},
we write 〈g〉 instead of 〈{g}〉.

Consider the discrete logarithm problem (DLP): given two group elements g and h in
G, decide whether h ∈ 〈g〉. If this is the case, find logg h, the discrete logarithm of h to
the base g, i.e. the least non-negative integer x such that gx = h.

If |G| has only small prime factors, there is an efficient algorithm solve the DLP, which
was published by Pohlig and Hellman (1978). But if h /∈ 〈g〉, this algorithm only outputs
that the equation h = gx is not solvable. However, there are applications such as group
structure computation where one also wants to know the least positive integer y such
that hy ∈ 〈g〉 and the least non-negative integer x such that hy = gx. In this paper, we
give an algorithm which uses the Pohlig–Hellman method to find such a solution (y, x).
Our algorithm has the advantage that apart from an O(log |G|) term, its run time is the
same as the run time of the Pohlig–Hellman algorithm, regardless of whether y is known
in advance or not.

An interesting variant of the DLP is the situation that a set of several group elements
serves as a base of the discrete logarithm rather than a single element. By this we mean

0747–7171/99/060521 + 14 $30.00/0 c© 1999 Academic Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81182771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

522 E. Teske

the following: given group elements h and g1, . . . , gl, decide whether h belongs to the
group generated by {g1, . . . , gl}. If this is the case, compute numbers x1, . . . , xl such that
h = g1

x1 ∗ · · · ∗ glxl . We show how the Pohlig–Hellman algorithm can be generalized to
this situation.

Both computational problems above are special cases of a problem which we call the
extended discrete logarithm problem (EDLP). This problem, which we explicitly define
further below, arises in the context of group structure computation. By this we mean the
following: assume we are given a set R = {g1, . . . , gl} that generates the finite Abelian
group G, then compute positive integers m1, . . . ,mk with m1 > 1, mi|mi+1, 1 ≤ i ≤ k
and an isomorphism φ : G → Z/m1Z × · · · × Z/mkZ, which is given in terms of the
images of the generators. Note that this is a much harder computational problem than
just to determine the invariants m1, . . . ,mk. A method to compute the group structure is
to compute a set of vectors ~b1, . . . ,~bl in Zl such that ~bj = (b1j , . . . , bjj , 0, . . . , 0), bjj > 0,
and

∏l
i=1 gi

bij = 1, and such that each ~bj is minimal in the following sense: for each
vector ~c = (c1, . . . , cj , 0, . . . , 0) with cj 6= 0 and

∏l
i=1 gi

ci = 1 we have |cj | ≥ bjj . As soon
as such a set of vectors is computed, the group structure can be obtained from the Smith
normal form of the matrix (~b1, . . . ,~bl) and the corresponding left transformation matrix.
See Buchmann et al. (1997) for details.

The Pohlig–Hellman method and our new algorithm require the knowledge of the
factorization of the group order. For this we need to know the group order; once the
group order is known, its factorization can be computed in expected subexponential
time by algorithms such as the elliptic curve method or the quadratic sieve.

An example is the multiplicative group of the finite field Fq, whose group order is q−1.
Another example is the group of points of an elliptic curve over a finite field, for which
we have an algorithm (Schoof, 1985) to compute the group order in polynomial time.
Note that the knowledge that any elliptic curve group has only at most two components
does not help to compute the isomorphism φ. A third example is the class group of
an imaginary quadratic order, where we have subexponential algorithms (for example,
Hafner and McCurley, 1989) to determine the class number. Of course, the Hafner–
McCurley-type algorithms also give the invariants m1, . . . ,mk of the class group, but not
the isomorphism φ.

To define the EDLP, we need some notation. Let R be a subset of the finite Abelian
group G. By ZR we denote the set of all maps x : R → Z. For x, y ∈ ZR we define the
sum x+ y and the product xy componentwise; that is, we set

(x+ y)(g) = x(g) + y(g) and xy(g) = x(g)y(g), g ∈ R.

Further, for x ∈ ZR we define the power Rx ∈ G by

Rx =
∏
g∈R

gx(g).

Now assume that R is such that its elements generate a direct product:

〈R〉 =
⊗
g∈R
〈g〉.

Then for each h in 〈R〉 there is a uniquely determined map x ∈ ZR such that

Rx = h and 0 ≤ x(g) < ord g, g ∈ R. (1.1)

The Pohlig–Hellman Method Generalized for Group Structure Computation 523

If h ∈ G \ 〈R〉, there is a smallest positive integer y such that hy ∈ 〈R〉. This leads to
the following definition.

Definition 1.1. Let G be a finite Abelian group.

(1) Let R ⊂ G such that 〈R〉 =
⊗

g∈R〈g〉, and let h ∈ G. If h ∈ R, then let x be
the uniquely determined map in ZR such that (1.1) holds. We call x the extended
discrete logarithm (EDL) of h to the base R. We write

x = logR h.

(2) By the extended discrete logarithm problem (EDLP) we mean the following problem:
given R and h as in (1), determine the least positive integer y such that hy ∈ 〈R〉
and compute x = logR hy. We say that (x, y) is a solution of the EDLP for the base
(R, h).

The condition that the elements of R form a direct product is necessary for the unique-
ness of the representation. In the context of group structure computation this does not
mean a restriction. This is because even if the initially given generators do not form a
direct product, they can be transformed accordingly in the course of the computation
(see Teske, 1998a, for details).

In this paper we give an algorithm to solve the EDLP. This algorithm has the nice
property that x and y are computed “simultaneously”, which implies that the lack of any
a priori knowledge about y does not increase the run time. We show that, if combined
with the baby-step giant-step method, our algorithm has run time

O

(
max

{⌈
p1/2

⌉|R|
· logp ep

})
,

where the maximum is taken over all prime divisors of |G|, and ep denotes the exponent
of the p-Sylow subgroup of G. The exponent of a group is the least integer e such that
ge = 1 for all group elements g.

In the next section, we show how to reduce the EDLP to the EDLP in groups of prime
power order. In Section 3 we recall the Pohlig–Hellman algorithm and generalize it to the
EDLP with a single element as basis. Next, in Section 4 we present the algorithm Solve
EDLP; we prove its correctness in Section 5, and the analysis of its run time follows in
Section 6.

2. Reduction to Groups of Prime Power Order

Let G be the finite Abelian group generated by S := {h} ∪R. As before, let

|G| =
∏
p||G|
p prime

pη(p).

For each prime divisor p of |G| let

H(p) =
|G|
pη(p)

and
G(p) = {gH(p) : g ∈ G}.

524 E. Teske

It is immediately clear that G(p) is a subgroup of G, and that a generating set of G(p)
is given by

S(p) = {hH(p)} ∪R(p), where R(p) = {gH(p) : g ∈ R}.

Further, if p1, . . . , pk is an enumeration of the pairwise distinct primes p dividing |G|, the
map

G −→ G(p1)× · · · ×G(pk), g 7→ (gH(p1), . . . , gH(pk)) (2.2)

is an isomorphism of groups. Moreover, for every prime divisor p of |G|, the group G(p)
has group order pη(p) (and therefore is a Sylow p-subgroup of G).

The problem of computing the EDL of h to the base R can be reduced to the problem
of computing the EDL of each hH(p) to the base R(p). To see this, let us assume that for
each p dividing |G| we already know the solution of the EDLP for the base (hH(p), R(p)).
We denote this solution by (xp, yp). Put

y =
∏
p||G|

yp

and use the Chinese remainder algorithm to find x ∈ ZR such that

x(g) ≡ xp(g) · y
yp

mod pη(p), p||G|.

We claim that (x, y) solves the EDLP for the base (h,R). To show this, we put a =
h−y ∗Rx and note that for each prime divisor p of |G| we have

aH(p) =
(
h−H(p)yp ∗R(p)xp

)y/yp
= 1.

Since (2.2) defines an isomorphism of groups, it follows that a = 1 and x = logR hy. Now
let z be the least positive integer such that hz ∈ 〈R〉. Then, since z is the order of h〈R〉
in the factor group G/〈R〉, we have that z divides y. On the other hand, since (hH(p))z ∈
〈R(p)〉 for each p dividing |G|, we have that each yp divides z. Hence y =

∏
yp ≤ z ≤ y,

which implies that y = z.
Thus, from now on, we only work in groups of prime power order:

|G| = pη.

For g in G we define the non-negative integer σ(g) by

σ(g) = min{τ ∈ N0 : gp
τ

= 1}.

In other words, pσ(g) is the order of g ∈ G. For R ⊂ G this definition induces a map
σ : R → N0, g 7→ σ(g). Given g ∈ G and the prime number p such that |G| = pη, we
compute σ(g) simply by looking at the powers gp

i

, i = 0, 1, 2 . . . , where we use that

gp
i+1

=
(
gp
i
)p

. Then, if we use the binary method of exponentiation to compute the pth
powers, the computation of σ(g) takes at most

σ(g)(2 log p+ 1) ≤ 3 log(ord g) (2.3)

group multiplications and σ(g) + 1 equality checks.

The Pohlig–Hellman Method Generalized for Group Structure Computation 525

3. The Pohlig–Hellman Algorithm. Solving the EDLP for |R| = 1

Let g, h ∈ G and assume that ord g = pσ. The Pohlig–Hellman algorithm uses the fact
that if h ∈ 〈g〉, then x = logg h can be represented as

x = x0 + x1p+ · · ·+ xσ−1p
σ−1, (3.1)

where 0 ≤ xi < p for i = 0, . . . , σ − 1. The coefficients xi of this base p expansion can
be computed iteratively by solving discrete logarithm problems in the group generated
by gp

σ−1, which is of order p: the first coefficient, x0, is determined from the equation
h = gx, by raising g and h to the pσ−1th power,

hp
σ−1

=
(
gp
σ−1
)x0

.

Having computed x0, . . . , xi−1, one can determine xi (1 ≤ i < σ) by solving the equation(
h ∗ g−

∑ i−1
j=0 xjp

j
)pσ−(i+1)

=
(
gp
σ−1
)xi

.

If any of these equations are not solvable, the algorithm terminates with output “h /∈ 〈g〉”.
Now we consider the EDLP, for the case R = {g}. Since the least positive number y

such that hy ∈ 〈g〉 is the order of h〈g〉 in the factor group G/〈g〉, and since G is a group
of prime power order, we know that y is of the form y = pτ with some τ ≥ 0. Thus, we
have to find the least value of τ and 0 ≤ x < ord g such that hp

τ

= gx. A priori , we
know that 0 ≤ τ ≤ σ(h). Further, τ ≥ σ(h) − σ(g), since pσ(h)−τ = ordhp

τ

= ord gx ≤
pσ(g). Moreover, in the representation (3.1) the coefficients associated with powers pi for
i < σ(g)−σ(h) + τ must vanish; this follows from the fact that gxp

σ(h)−τ
= 1. Therefore,

we modify the Pohlig–Hellman algorithm as follows: we put

ν = σ(h)− τ

and write x in its base p expansion

x = x0p
σ(g)−ν + x1p

σ(g)−ν+1 + · · ·+ xν−1p
σ(g)−1 =

ν−1∑
i=0

xip
σ(g)−ν+i, (3.2)

where x0 6= 0 if ν > 0, and 0 ≤ xi < p. By a similar technique as above, we determine
recursively the coefficients x0, x1, A priori, we know that 0 ≤ ν ≤ min{σ(g), σ(h)}.
The more coefficients we succeed in computing, the larger the lower bound for ν, which is
strictly increasing, becomes. As soon as the upper bound for ν matches the lower bound,
or the computation of a coefficient fails, we can determine ν and τ exactly, as we shall
now show.

The least significant coefficient, x0, is determined by raising g and h to the pσ(g)−1th
and the pσ(h)−1th power, respectively:

hp
σ(h)−1

=
(
gp
σ(g)−1

)x0

.

If this equation has no solution, we know that hp
σ(h)−1

/∈ 〈g〉, hence τ = σ(h) and x = 0.
Having computed xi−1, we determine xi from the equation

hp
σ(h)−(i+1) ∗

(
g−

∑ i−1
j=0 xjp

j
)pσ(g)−(i+1)

=
(
gp
σ(g)−1

)xi
, (3.3)

526 E. Teske

for i = 1, . . . ,min{σ(g), σ(h)} − 1. If this equation has no solution, we know that
hp

σ(h)−(i+1)
/∈ 〈g〉. Then, we put τ = σ(h)− i and x =

∑i−1
j=0 xjp

j+σ(g)−(i+1) and stop.
This method has the advantage that each coefficient xi computed by the algorithm

also appears as a coefficient in the final result, although at the time of its computation
it is not known with which power of p it is associated. But this is clear as soon as the
algorithm stops. Thus, our algorithm performs as many discrete logarithm computations
in groups of order p as the original Pohlig–Hellman algorithm would have to perform to
compute x = loghpτ g under the assumption that τ is already known. In other words, we
obtain τ (almost) for free.

The proof of the correctness and the complexity analysis of our algorithm follow from
the corresponding statements for the general case in Sections 5 and 6.

4. Solving the EDLP

Let R be a subset of G whose elements generate a direct product. Let H denote the
subgroup of G generated by R. Similarly to the special case |R| = 1, we have that if
(x, y) is a solution of the EDLP for the base (R, h), the number y is the order of hH in
the factor group G/H and therefore a prime power: y = pτ for some τ ≥ 0.

We need the following preliminary result, which, for each non-negative integer i such
that pi is less than or equal to the exponent of H, provides a generating set of the
subgroup of H of exponent pi and such that this set generates a direct product.

Lemma 4.1. Let i ∈ N0, 0 ≤ i ≤ max{σ(g) : g ∈ R}. Let

ag,i =
{
gp
σ(g)−i

if σ(g) > i,
g if σ(g) ≤ i,

and

Ri = {ag,i : g ∈ R}.
Then σ(ag,i) = min{i, σ(g)} for all g ∈ R. Further, the set Ri generates the subgroup Ai
of all elements of H of order ≤ pi in G, and we even have

Ai =
⊗
a∈Ri
〈a〉.

Proof. The first assertion follows immediately from the definitions of ag,i and the map
σ. Given h ∈ Ai, let x ∈ ZR be the uniquely determined map such that

Rx = h and 0 ≤ x(g) < pσ(g), g ∈ R,

and put

y(ag,i) =
{
x(g)/pσ(g)−i if σ(g) > i,
x(g) if σ(g) ≤ i, g ∈ R. (4.1)

Using the facts that H =
⊗

g∈R〈g〉 and that gp
ix(g) = 1 for each g ∈ R, we obtain

that (4.1) defines a map y in ZRi , and we also have 0 ≤ y(a) < pσ(a) for all a ∈ Ri.
Moreover, Riy = Rx = h. That y is uniquely determined by these properties can be
easily derived from the uniqueness of x. 2

The Pohlig–Hellman Method Generalized for Group Structure Computation 527

Now, to simplify the notation, for i ∈ Z we define the map Pi ∈ ZR by

Pi(g) =
{
pσ(g)+i if i ≥ −σ(g),
1 if i < −σ(g),

g ∈ R.

If h ∈ H, and (x, pτ) is a solution of the EDLP for the base (R, h), then, analogously
to (3.2), there exists ν ∈ N0 and x0, . . . , xν−1 ∈ ZR such that

x = x0P−ν + x1P−ν+1 + · · ·+ xν−1P−1 =
ν−1∑
i=0

xiP−ν+i , (4.2)

i.e.

x(g) =
ν−1∑
i=0

xi(g)pσ(g)−ν+i, g ∈ R,

where
x0 6= 0 (if ν ≥ 1),

xi(g) = 0, i < ν − σ(g), g ∈ R,
0 ≤ xi(g) < p, i = 0, . . . , ν − 1, g ∈ R.

(4.3)

It is immediately seen that the coefficient maps x0, x1, . . . , xν−1 are uniquely determined.
They are computed recursively. We will give an algorithm that computes these maps and
determines ν and τ , from which we obtain the solution (x, pτ) of the EDLP with base
(R, h).

Proposition 4.1. Let τ be the smallest non-negative integer such that hp
τ ∈ H. Let

x = logR hp
τ

be written as in (4.2) with x0, . . . , xν−1 as in (4.3). Then we have ν =
σ(h)− τ .

Proof. If ν = 0 in (4.2), we have x = 0. Therefore, hp
τ

= 1. Because of the minimality
of τ this implies that τ = σ(h). Now assume that ν ≥ 1 in (4.2). Since for each g in R
we have that

ord gx(g) =
ord g

gcd(x(g), ord g)
≤ ord g
pσ(g)−ν = pν ,

the order of Rx is bounded by pν . But since ν ≥ 1, there exists ĝ in R such that
x0(ĝ) 6= 0, which implies that ĝx(ĝ) has order pν . Therefore, ordRx = pν . Since hp

τ

has
order pσ(h)−τ , it follows that ν = σ(h)− τ . 2

The method to compute ν and τ and the coefficient maps x0, . . . , xν−1 works analo-
gously to the technique used for |R| = 1. The complicating difference is that we have to
deal with all elements of R simultaneously.

In the beginning we set

σmax = max{σ(g) : g ∈ R},
ν0 = min{σmax, σ(h)}. (4.4)

Note that ν0 is an upper bound for ν, while the index i below always serves as a lower
bound for ν. If ν0 = 0, we put

τ = σ(h) and x = 0

528 E. Teske

and stop. If ν0 > 0, we necessarily have R 6= {1} so that σ(g) ≥ 1 for all g in R. We set

T = {gpσ(g)−1
: g ∈ R} (= R1 from Lemma 4.1),

α0 = hp
σ(h)−ν0

,

γ0 = hp
σ(h)−1

,

(4.5)

and for i = 0, 1, 2, . . . we do the following. We check whether γi ∈ 〈T 〉. If this is not the
case, we put

ν = i, τ = σ(h)− ν and x =
ν−1∑
i=0

xiP−ν+i

and stop. Otherwise, we compute

xi = logT γi

and determine

νi+1 = min{{νi} ∪ {σ(g) + i : xi(g) 6= 0}}, (4.6)

which serves as a new upper bound for ν. If νi+1 = i+ 1, we put

ν = νi+1, τ = σ(h)− ν and x =
ν−1∑
i=0

xiP−ν+i

and stop. Otherwise, we compute

αi+1 = αp
νi−νi+1

i ∗R−xiP−νi+1+i ,

γi+1 = αp
νi+1−i−2

i+1 .
(4.7)

Note that since νi+1 ≤ σ(g) for all g with xi(g) 6= 0, and νi+1 ≥ i+ 2, both expressions
on the right-hand sides are well defined. We then increment i and do the next loop.

Here is the pseudocode for this algorithm.

Algorithm 4.1. Solve EDLP

The Pohlig–Hellman Method Generalized for Group Structure Computation 529

Input: h ∈ G, R ⊆ G such that 〈R〉 =
⊗

g∈R〈g〉, prime number p such
that |G| = pη for some η ∈ N.

Output: x ∈ ZR and τ ∈ N0 such that (x, pτ) solves the EDLP for the
base (R, h).

σmax = max{σ(g) : g ∈ R}
ν = min{σmax, σ(h)}
if (ν 6= 0) then
T = {gpσ(g)−1

: g ∈ R}
α = hp

σ(h)−ν

γ = hp
σ(h)−1

i = 0 /∗ i = current lower
while (i < ν) do bound for ν ∗/

check whether γ ∈ 〈T 〉
if (γ /∈ 〈T 〉) then
ν = i

else
compute xi = logT γ /∗ xi ∈ ZR ∗/
µ = ν
ν = min{{ν} ∪ {σ(g) + i : xi(g) 6= 0, g ∈
R}}
if (ν > i+ 1) then
α = αp

µ−ν ∗R−xiP−ν+i /∗ prepare for next
γ = αp

ν−i−2
while loop ∗/

fi
i = i+ 1

fi
od

fi
x =

∑ν−1
i=0 xiP−ν+i /∗ x ∈ ZR ∗/

τ = σ(h)− ν
return x,τ

Remark 4.1. We intentionally do not specify how to check whether γ ∈ 〈T 〉, and how
to compute logT γ if this is the case. For example, this can be done by Shanks’ baby-step
giant-step method (Buchmann et al., 1997) or Pollard’s rho method (Teske, 1998b).

Remark 4.2. We implemented Solve EDLP in C++ using the Computer Algebra Sys-
tem LiDIA (1997). We used it in the context of group structure computation for groups
of points of elliptic curves over finite fields of characteristic 6= 2, 3 and for class groups of
imaginary quadratic orders.

530 E. Teske

4.1. a toy example

Let G = F∗97 be the multiplicative group of the finite field F97 with group order
|G| = 25 · 3. Let g = 73 and h = 23. We want to solve the EDLP for the base ({g}, h).
All computations are modulo 97. In the 2-Sylow group of G we work with g2 = 733 = 47
and h2 = 233 = 42. Then σ(g2) = 3 and σ(h2) = 5 and T = 96. Initially, we have ν = 3
and α = 33 and γ = 96. Since γ = T , we obtain that x0 = 1 and compute the updated
values for α and γ as α = 33 ∗ 47−1 = 75 and γ = 752 = 96. Since γ = T , we have
x1 = 1. The new values for α and γ are α = 75 ∗ 47−2 = 1 and γ = 1, which implies
that x2 = 0. We then obtain that τ = 2 and xp=2(g) = 3, i.e. h2

4 = g2
3. In the 3-Sylow

group of G we work with g3 = 7332 = 35 and h3 = 2332 = 61. Hence, σ(g3) = σ(h3) = 1.
Moreover, T = 35 and, initially, ν = 1 and α = γ = 61. We compute that x0 = 2 and
τ = 0, which means that xp=3 = 2 and h3 = g3

3. Hence, y = 4 and x(g) ≡ 3 mod 8 and
x(g) ≡ 2 mod 3. By Chinese remaindering we get that (y, x) = (2, 11) solves the EDLP
for the base ({g}, h): h4 = g11 while h2 /∈ 〈g〉.

5. Correctness of the Algorithm Solve EDLP

Now we prove that the algorithm Solve EDLP always terminates and that its output
{x, τ} is correct. This will follow from the next two theorems.

Theorem 5.1. Let τ be the smallest non-negative integer such that hp
τ ∈ H. Let ν =

σ(h)− τ , and let T and γi, νi, i = 0, 1, 2, . . . be given by the equations (4.4)–(4.7). Then
the following two implications hold.

γi ∈ 〈T 〉 =⇒ νi+1 ≥ ν ≥ i+ 1, i = 0, 1, 2, . . . , (5.1)

and

γi /∈ 〈T 〉 =⇒ ν ≤ i, i = 0, 1, 2, (5.2)

Let x0, x1, x2, . . . be the coefficient maps computed by EDL for p-Groups. Then

hp
σ(h)−i−1

= R
∑ i
j=0 xjP−i+j−1 , i = 0, 1, 2, (5.3)

Proof. First note that when working with γi, i = 1, 2, . . ., we always assume that
γj ∈ 〈T 〉 for 0 ≤ j < i. There is no loss of generality, since this is exactly the situation of
Solve EDLP.

From (4.5) and (4.7) we obtain by induction over i that

αi = hp
σ(h)−νi ∗R−

∑ i−1
j=0 xjP−νi+j , i = 0, 1, 2, . . . ,

hence

γi = hp
σ(h)−i−1 ∗R−

∑ i−1
j=0 xjP−i+j−1 , i = 0, 1, 2, (5.4)

Now assume that for some non-negative integer i we have γi ∈ 〈T 〉, and let xi = logT γi.
Then (5.4) can be rewritten as

hp
σ(h)−i−1

= T xi ∗R
∑ i−1
j=0 xjP−i+j−1 = R

∑ i
j=0 xjP−i+j−1 , i = 0, 1, 2, (5.5)

Note that if i ≥ 1, the term γi is only computed if i < νi. Further, if j is such that
0 ≤ j ≤ i − 1 and xj(g) 6= 0, we have by (4.6) that νi ≤ σ(g) + j. This implies that

The Pohlig–Hellman Method Generalized for Group Structure Computation 531

σ(g)− i+ j−1 ≥ 0 if xj(g) 6= 0, so that the terms in (5.5) are well defined. This equation
gives (5.3) and also implies that τ ≤ σ(h)− i− 1, hence ν ≥ i+ 1.

To prove the statement in (5.1) on the upper bound for ν we set γ−1 = 1 and x−1 =
0 ∈ ZR. Then (5.4) and (5.5) hold for i = −1, 0, 1, We then use induction over i ≥ −1.
Consider first ν0 = min{σ(h), σmax}. If ν0 = σ(h), then ν0 ≥ ν by the definition of ν. If
ν0 = max{σ(g) : g ∈ R}, let x ∈ ZR such that hp

τ

= Rx. Since

pν = pσ(h)−τ = ordhp
τ

= ordRx ≤ max{ord g : g ∈ R} = pν0 ,

we have ν0 ≥ ν. Now assume (5.1) holds for i−1 ≥ −1. Let γi ∈ 〈T 〉, and let xi = logT γi.
We have to show that νi+1 ≥ ν. If in (4.6) we have νi+1 = νi, we use the induction
hypothesis νi ≥ ν to obtain that νi+1 ≥ ν. If νi+1 6= νi, let ĝ ∈ R such that xi(ĝ) 6= 0
and νi+1 = σ(ĝ) + i. We use (5.5) and write

hp
σ(h)−i−1

= ĝy(ĝ) ∗
(∏
g∈R\{ĝ}

g
∑ i
j=0 xj(g)pσ(g)−i+j−1

)
,

where the exponent y(ĝ) of ĝ satisfies

0 < y(ĝ) = xi(ĝ)pσ(ĝ)−1 +
i−1∑
j=0

xj(ĝ)pσ(ĝ)−i+j−1 < pσ(ĝ).

Now assume νi+1 < ν. Then there exists some non-negative integer ρ such that νi+1 +
1 + ρ = ν, hence σ(ĝ) + i+ 1 + ρ = σ(h)− τ . Equivalently, σ(h)− i− 1 = τ + σ(ĝ) + ρ.
Let x = logR hp

τ

. Then

hp
σ(h)−i−1

=
(
hp

τ
)pσ(ĝ)+ρ

= (Rx)p
σ(ĝ)+ρ

=

(∏
g∈R\{ĝ}

gx(g)

)pσ(ĝ)+ρ

,

since ĝx(ĝ)pσ(ĝ)+ρ
= 1. This is a contradiction to the uniqueness of logR hp

σ(h)−i−1
. Hence,

νi+1 ≥ ν, which completes the proof of (5.1).
Next, from (5.4) we deduce that

γi−1 = γpi ∗ T xi−1 , i = 1, 2,

On the other hand, we have γi−1 = T xi−1 , i = 1, 2, Therefore, γpi = 1 for i = 1, 2, . . .,
so that γi has order ≤ p, which also holds for i = 0. This, together with Lemma 4.1,
implies that if γi ∈ H, then γi ∈ 〈T 〉. In other words, γi /∈ 〈T 〉 implies that γi /∈ H. Now
assume there exists i ≥ 0 such that γi /∈ 〈T 〉 and ν > i. Then since τ ≤ σ(h)− i− 1 and
since hp

τ ∈ H, there exists y ∈ ZR such that Ry = hp
σ(h)−i−1

. Together with (5.4) this
yields

γi = Ry−
∑ i−1
j=0 xjP−i+j−1 ∈ H,

which is a contradiction. Therefore, we must have ν ≤ i if γi /∈ 〈T 〉, so that (5.2) holds.
2

Theorem 5.2.

(1) Solve EDLP always terminates.
(2) The output of Solve EDLP is correct.

532 E. Teske

Proof. (1) Let νi, γi and T be as in (4.4)–(4.6). If ν0 = 0, or if for some i ≥ 0 it
happens that logT γi does not exist, the finiteness of Solve EDLP is clear. Now assume
that ν0 ≥ 1 and that for i = 0, 1, 2, . . . we have γi ∈ 〈T 〉. We claim that for some i ≤ ν0

we have νi+1 = i + 1. To see this, note that the sequence (νi)i∈N0 is decreasing and the
sequence (ci)i∈N0 given by ci = i is strictly increasing. Therefore, and since the sequence
(ci) is discrete, there exists a smallest number i∗ ∈ N such that νi∗+1 ≤ i∗ + 1. On the
other hand, it follows from (5.1) that νi+1 ≥ i+1 for i = 0, 1, 2, Hence, νi∗+1 = i∗+1,
so that the algorithm terminates when i = i∗.

(2) Solve EDLP can terminate on three different occasions:
(i) it terminates because ν0 = 0. Then σ(h) = 0, or σ(g) = 0 for all g ∈ R, if σ(h) = 0.

This means that h = 1, hence h = Rx with x = 0. If σ(g) = 0 for all g ∈ R, we have
H = {1}. Therefore, hp

y ∈ H only if y ≥ σ(h) and the smallest such number y is given
by σ(h); then hp

σ(h)
= Rx with x = 0. In both cases, the output x = 0 and τ = σ(h) is

correct.
(ii) There is some i∗ ≥ 0 such that logT γi∗ does not exist. Equations (5.1) and (5.2) of

Theorem 5.1 imply that ν ≥ i∗ and ν ≤ i∗, hence ν = i∗. With τ denoting the smallest
non-negative integer such that hp

τ ∈ H and ν = σ(h) − τ , putting i = ν − 1 in (5.3)
yields

hp
τ

= R
∑ ν−1
j=0 xjP−ν+j ,

so that the output x =
∑ν−1
j=0 xjP−ν+j and τ = σ(h)− i∗ is correct.

(iii) There is some i∗ ≥ 1 such that log γi∗ exists and νi∗+1 = i∗ + 1. In this case,
Equation (5.1) gives i∗ + 1 ≤ ν ≤ νi∗+1. Therefore, ν = i∗ + 1. Just as in case (ii) we
then obtain from (5.3) that the output x =

∑i∗
j=0 xjP−i0+j and τ = σ(h) − (i∗ + 1) is

correct. 2

6. Run Time of Solve EDLP

To estimate the run time of the algorithm Solve EDLP, we consider the algorithm
to check whether γ ∈ 〈T 〉 and to compute xi = logT γ as a black-box algorithm with
(expected) run time bounded by Z(p, t), where p is the exponent and t is the rank of the
subgroup 〈T 〉. Note that since 〈T 〉 is the direct product of its generators (Lemma 4.1),
we have t = |T | = |R|. For example, if we use the baby-step giant-step method in this
black-box algorithm, by arguments similar to those in Buchmann et al. (1997), we obtain
that one has to perform

ZS(p, t) = Θ
(⌈
p1/2

⌉t)
group multiplications, and the space requirements are of the same size.

The run time of the algorithm Solve EDLP in terms of the black-box run time Z(·, ·)
is given by the following theorem.

Theorem 6.1. Let h, R and p be the input of Solve EDLP, and let s be such that ps

is the exponent of 〈R〉. Let G be the group generated by R∪{h}. To compute the solution
(x, pτ) of the EDLP for the base (R, h), the algorithm Solve EDLP needs a run time
bounded by

min{s, σ(h)} · Z(p, |R|)

The Pohlig–Hellman Method Generalized for Group Structure Computation 533

and, in addition to this, performs

min{s, σ(h)} ·O(log |G|)
group multiplications, |R| inversions and O(log |G|) equality checks.

Proof. Since the elements of R generate a direct product, we have∏
g∈R

pσ(g) =
∏
g∈R

ord g = |〈R〉|. (6.1)

Together with the bound (2.3), this implies that to compute σ(g) for all g ∈ R, Solve

EDLP performs at most 3 log |〈R〉| group multiplications and at most |R|+ log |〈R〉|
log p equal-

ity checks. Note that |R| ≤ log |〈R〉|
log p . To compute σ(h) requires at most 3 log(ordh) group

multiplications and 1 + log(ordh)/ log p equality checks. Equation (6.1) also implies that
to compute the set T = {gpσ(g)−1

: g ∈ R} requires at most 2 log |〈R〉| group multipli-
cations, if we use the binary method of exponentiation. Correspondingly, to initialize α
and γ requires at most 4 log(ordh) multiplications. Thus, the whole initialization step
requires O(log |G|) multiplications and equality checks in G. It remains to estimate the
run time of the while loop, which is executed at most min{s, σ(h)} times. Each while
loop requires time Z(p, |R|), plus the time to update α and γ by the binary method of
exponentiation. To estimate the latter time, note that µ− ν ≤ σ(h), and that ν > i+ 1
implies that xi(g)pσ(g)−ν+i ≤ pσ(g)−2 for each g ∈ R. We use these estimates together
with (6.1) and obtain that to update each α requires at most 2 log(ordh) + 2 log |〈R〉|
multiplications in G. Moreover, in the first while loop, |R| inversions are performed to
compute {g−1 : g ∈ R}. To update γ requires at most 2 log(ordh) multiplications. Hence,
to execute all while loops requires run time at most min{s, σ(h)} · Z(p, |R|), at most

min{s, σ(h)} ·O(log |G|)
multiplications and |R| inversions. 2

Remark 6.1. It can immediately be seen from the proof of Theorem 6.1 that as O-
constants for the numbers of multiplications and equality checks we can choose 18 and
4, respectively.

Remark 6.2. Using Pohlig–Hellman-like techniques to check for j = 0, 1, 2, . . . whether
hp

j ∈ 〈R〉 and to compute an appropriate x ∈ ZR if this is the case has run time
O
(
min{s, σ(h)}2 · Z(p, |R|)

)
(cf. Paulus, 1992).

7. Conclusion

We have generalized the discrete logarithm problem to the cases that a set of several
elements serves as a base rather than a single element, and that h /∈ 〈g〉 but the least
number y is wanted such that hy ∈ 〈g〉. We have described and analyzed a Pohlig–
Hellman-like algorithm to solve this extended DLP. We implemented this algorithm,
Solve EDLP, in C++ using the Computer Algebra System LiDIA (1997).

References
Buchmann, J., Jacobson, Jr, M. J., Teske, E. (1997). On some computational problems in finite Abelian

groups. Math. Comput., 66, 1663–1687.

534 E. Teske

Hafner, J. L., McCurley, K. S. (1989). A rigorous subexponential algorithm for computation of class
groups. J. Am. Math. Soc., 2, 839–850.

LiDIA (1997). LiDIA–A library for computational number theory, Version 1.3. LiDIA Group, Technische
Universität Darmstadt. Available from http://www.informatik.tu-darmstadt.de/TI/LiDIA.

Paulus, S. (1992). Algorithmen für endliche abelsche Gruppen. Master’s Thesis, Universität des Saar-
landes, Saarbrücken, Germany.

Pohlig, S. C., Hellman, M. E. (1978). An improved algorithm for computing logarithms over GF (p) and
its cryptographic significance. IEEE Trans. Inf. Theory, 24, 106–110.

Schoof, R. J. (1985). Elliptic curves over finite fields and the computation of square roots mod p. Math.
Comput., 44, 483–494.

Teske, E. (1998a). New algorithms for finite Abelian groups. Ph.D. Thesis, Technische Universität Darm-
stadt, Germany.

Teske, E. (1998b). A space efficient algorithm for group structure computation. Math. Comput., 67,
1637–1663.

Originally Received 31 July 1998
Accepted 05 April 1999

	Introduction
	Reduction to Groups of Prime Power Order
	The Pohlig--Hellman Algorithm. Solving the EDLP for |R| = 1
	Solving the EDLP
	Correctness of the Algorithm Solve EDLP
	Run Time of Solve EDLP
	Conclusion
	References

