
Electronic Notes in Theoretical Computer Science 86 No. 2 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume86.html 27 pages

On-demand Evaluation by Program
Transformation 1

Maŕıa Alpuente 2 Santiago Escobar 3 Salvador Lucas 4

DSIC, Universidad Politécnica de Valencia, Spain

Abstract

Strategy annotations are used in eager programming languages (e.g., OBJ2, OBJ3,
CafeOBJ, and Maude) for improving efficiency and/or reducing the risk of nonter-
mination. Syntactically, they are given either as lists of natural numbers or as
lists of integers associated to function symbols whose (absolute) values refer to the
arguments of the corresponding symbol. A positive index forces the evaluation
of an argument whereas a negative index means “evaluation on-demand”. Re-
cently, we have introduced a formal description of the operational meaning of such
on-demand strategy annotations which improves previous formalizations that were
lacking satisfactory computational properties. In this paper, we introduce an au-
tomatic, semantics–preserving program transformation which produces a program
(without negative annotations) which can be then correctly executed by typical OBJ
interpreters. Moreover, to demonstrate the practicality of our ideas, the program
transformation has been implemented (in Haskell) and we compare the evaluation of
transformed programs with the original ones on a set of representative benchmarks.

1 Introduction

Eager rewriting-based programming languages such as Lisp, OBJ*, CafeOBJ,
ELAN, or Maude evaluate expressions by innermost rewriting. Since nonter-
mination is a known problem of innermost reduction, syntactic annotations
(generally specified as sequences of integers associated to function arguments,
called local strategies) have been used in OBJ2 [10], OBJ3 [12], CafeOBJ [11],
and Maude [7] to improve efficiency and (hopefully) avoid nontermination. Lo-
cal strategies are used in OBJ programs 5 for guiding the evaluation strategy

1 Work partially supported by CICYT TIC2001-2705-C03-01 and MCYT grants HA2001-
0059 and HU2001-0019.
2 Email:alpuente@dsic.upv.es, URL:http://www.dsic.upv.es/users/elp/alpuente.html
3 Email:sescobar@dsic.upv.es, URL:http://www.dsic.upv.es/users/elp/sescobar.html
4 Email:slucas@dsic.upv.es, URL:http://www.dsic.upv.es/users/elp/slucas.html
5 As in [12], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.

c©2003 Published by Elsevier Science B. V.

92

CC BY-NC-ND license.  Open access under 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81182712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


Alpuente, Escobar, and Lucas

(abbr. E-strategy): when considering a function call f(t1, . . . , tk), only the
arguments whose indices are present as positive integers in the local strategy
for f are evaluated (following the specified ordering). If 0 is found, then the
evaluation of f is attempted. Unfortunately, this restriction of rewriting can
have a negative impact in the ability to compute normal forms. Whenever
the user provides no local strategy for a given symbol, the (Maude, OBJ*,
CafeOBJ) interpreter automatically assigns a default E-strategy. For instance,
the default local strategy of Maude associates the list (1 2 · · · k 0) to each
k-ary symbol f having no explicit strategy, i.e. all arguments are marked as
evaluable.

Example 1.1 Consider the following OBJ program (borrowed from [19]) where
reductions on the second argument of the symbol cons are disallowed in order
to make the program terminating:

obj Ex1 is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1)] .
op from : Nat -> LNat [strat (1 0)] .
op 2nd : LNat -> Nat [strat (1 0)] .
vars X Y : Nat . var Ys : LNat .
eq 2nd(cons(X,cons(Y,Ys))) = Y .
eq from(X) = cons(X,from(s(X))) .

endo

The evaluation of the term 2nd(from(0)) as performed by a typical OBJ
interpreter 6 is:

Maude> red 2nd(from(0)) .
reduce in Ex1 : 2nd(from(0)) .
rewrites: 1 in -10ms cpu (0ms real) (~ rewrites/second)
result Nat: 2nd(cons(0, from(s(0))))

This corresponds to the following reduction sequence:

2nd(from(0)) → 2nd(cons(0,from(s(0))))

The evaluation stops at this point since reductions on the second argument of
cons are disallowed due to the local strategy (1).

The handicaps of using only positive annotations regarding correctness and
completeness of computations are discussed in [1,2,15,16,20,19]: the problem
is that the absence of some indices in the local strategies can have a negative
impact in the ability of such strategies to compute normal forms. For instance,
a further step is required (demanded by the rule of 2nd) in order to obtain the
desired outcome in Example 1.1:

6 We use the SRI’s Maude interpreter (version 1.0.5) available at:
http://maude.csl.sri.com/system/.

93



Alpuente, Escobar, and Lucas

2nd(cons(0,from(s(0)))) → 2nd(cons(0,cons(s(0),from(s(s(0))))))

At this stage, it is not necessary to perform any reduction on symbol from,
since reducing at the root position yields the final value:

2nd(cons(0,cons(s(0),from(s(s(0))))) → s(0)

In [20,19], negative indices are proposed to indicate those arguments that
should be evaluated only ‘on-demand’, where the ‘demand’ is an attempt to
match an argument term with the left-hand side of a rewrite rule [8,12,20]. For
instance, in [19] the authors suggest that (1 -2) is the “apt” local strategy for
cons in Example 1.1; i.e. the first argument is always evaluated but the second
argument is evaluated only “on-demand”. Then, the evaluation with strategy
(1 -2) for cons is able to reduce 2nd(from(0)) to s(0) without entering in a
non-terminating evaluation, whereas evaluation only with positive annotations
enters in an infinite derivation or does not provide the associated normal form.
It is worthy to note that the calculus is simpler than typical functional lazy
rewriting and the appropriate (on-demand) strategy annotations for achieving
suitable normal forms can be inferred from the program (see [1,2,15,16,20,19]).

On-demand strategy annotations have not been properly implemented to
date: even if negative annotations are (syntactically) accepted in current OBJ
implementations, namely OBJ3 and Maude, unfortunately they do not have
the expected (on-demand) effect over the computations.

Example 1.2 Consider the following OBJ program (similar to Example 1.1
except the on-demand strategy annotation for symbol cons):

obj Ex2 is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 -2)] .
op from : Nat -> LNat [strat (1 0)] .
op 2nd : LNat -> Nat [strat (1 0)] .
vars X Y : Nat . var Ys : LNat .
eq 2nd(cons(X,cons(Y,Ys))) = Y .
eq from(X) = cons(X,from(s(X))) .

endo

The OBJ3 interpreter does not implement negative (on-demand) annotations
though does accept this program and the evaluation of 2nd(from(0)) surpris-
ingly delivers the very same result as in Example 1.1. That is, the negative
annotation is just disregarded by the OBJ3 interpreter (which, in this case,
causes loss of completeness). On the other hand, the Maude interpreter nei-
ther implements negative (on-demand) annotations though does also accept
this program and the evaluation of the same expression diverges. This is be-
cause the negative annotation is interpreted by Maude as a positive one thus
resulting in non-termination.

On the other hand, CafeOBJ is able to deal with negative annotations using

94



Alpuente, Escobar, and Lucas

the on-demand evaluation model of [19]. For instance, the CafeOBJ interpreter
is able to compute the intended value s(0) of Example 1.1. However, in [1] we
discussed a number of problems of the on-demand evaluation model of [19,20],
as shown in the following example.

Example 1.3 [1] Consider the following OBJ program:

obj LENGTH is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1)] .
op from : Nat -> LNat .
op length : LNat -> Nat [strat (0)] .
op length’ : LNat -> Nat [strat (-1 0)] .
vars X Y : Nat . var Z : LNat .
eq from(X) = cons(X,from(s(X))) .
eq length(nil) = 0 .
eq length(cons(X,Z)) = s(length’(Z)) .
eq length’(Z) = length(Z) .

endo

The expression length’(from(0)) is rewritten (in one step) to the expression
length(from(0)). No evaluation is demanded on the argument of length’ for
enabling this step (i.e. the negative annotation -1 is included for length’ but
the corresponding rule includes a variable at the first argument of length’)
and no further evaluation on length(from(0)) should be performed (due to
the local strategy (0) of length which forbids evaluation on any argument of
length). However, the annotation -1 of function length’ is treated in such
a way by the operational model of [20,19] that the on-demand evaluation of
the expression length’(from(0)) yields an infinite evaluation sequence (see
[1] for a more detailed explanation).

We proposed in [1] a solution to these problems which is based on a suitable
extension of the E-evaluation strategy of OBJ-like languages (that only consid-
ers annotations given as natural numbers) to cope with on-demand strategy
annotations. Our strategy incorporates a better treatment of demandness
and also enjoys good computational properties; in particular, we show how
to use it for computing (head-)normal forms and we prove it is conservative
w.r.t. other on-demand strategies: lazy rewriting [9] and on-demand rewriting
[15]. A program transformation for proving termination of the on-demand
evaluation strategy was also formalized, which relies on standard techniques.
Furthermore, a direct implementation of the on-demand evaluation strategy
of [1] has been developed. The system is called OnDemandOBJ and is publicly
available at http://www.dsic.upv.es/users/elp/soft.html (see [3] for a
description).

In this paper, we show how OBJ programs that use local strategies contain-
ing negative annotations (and hence could be correctly executed by using the

95



Alpuente, Escobar, and Lucas

evaluation strategy proposed in [1]) can be (also) executed in the existing OBJ
implementations which only admit positive annotations (e.g. Maude). This
is done by means of an automatic program transformation which encodes the
‘on-demand’ strategy instrumented by the negative annotations within new
function symbols (and corresponding program rules) that only use positive
strategy annotations. Before entering in too technical details, we give an
example which illustrates the power of our transformation.

Example 1.4 The program of Example 1.2 is transformed by using our method
into the following OBJ program without negative annotations.

obj Ex3 is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (0)] .
op consroot : Nat LNat -> LNat [strat (1 0)] .
op cons+2 : Nat LNat -> LNat [strat (2)] .
op from : Nat -> LNat [strat (1 0)] .
op 2nd : LNat -> Nat [strat (1 0)] .
op 2nd+1 : LNat -> Nat [strat (1 0)] .
op quoteNat : Nat -> Nat [strat (0)] .
op quoteLNat : LNat -> LNat [strat (0)] .
vars X Y : Nat . vars Xs : LNat .
eq 2nd(cons(X,Xs)) = 2nd+1(cons+2(X,Xs)) .
eq 2nd+1(cons+2(X,cons(Y,Xs))) = quoteNat(Y) .
eq from(X) = quoteLNat(cons(X,from(s(X)))) .
eq quoteNat(2nd(Xs)) = 2nd(quoteLNat(Xs)) .
eq quoteNat(2nd+1(Xs)) = 2nd(Xs) .
eq quoteNat(s(X)) = s(quoteNat(X)) .
eq quoteNat(0) = 0 .
eq quoteLNat(from(X)) = from(quoteNat(X)) .
eq quoteLNat(cons(X,Xs)) = consroot(quoteNat(X),Xs) .
eq quoteLNat(cons+2(X,Xs)) = cons(X,Xs) .
eq quoteLNat(nil) = nil .
eq consroot(X,Xs) = cons(X,Xs) .

endo

where consroot and cons+2 are new symbols introduced by the transformation
which perform the pattern matching in a stepwise manner, and quoteNat and
quoteLNat are auxiliary symbols which help to perform a correct evaluation to
head normal forms. Roughly speaking, for each constructor symbol c with a
negative annotation−i, we remove all strategy annotations for c and introduce
an auxiliary constructor symbol c+i with positive annotation i. Also, we
introduce a defined symbol croot without the negative annotations but with
the positive ones plus 0 and we introduce a new rule which is used to translate
the new symbol croot back to c. Then, we add new rules which re–define
symbols using constructor c in terms of c, croot, and c+i. Finally, for each
program rule l → r, we introduce a symbol quote in r (specialized for each

96



Alpuente, Escobar, and Lucas

sort) and add a number of new rules for symbols quote which transform c

into croot and help to appropriately (head)-normalize terms.

Now, the evaluation of 2nd(from(0)) using Maude yields:

Maude> red quoteNat(2nd(from(0))) .
reduce in Ex3 : quoteNat(2nd(from(0))) .
rewrites: 16 in -10ms cpu (0ms real) (~ rewrites/second)
result Nat: s(0)

which is the desired result. Note that for evaluating expression e, we only
need to call quoteτ (e) for the appropriate sort τ of e.

After some preliminaries in Section 2, we recall the on-demand evaluation
of [1] in Section 3. Then, Section 4 introduces the program transformation
together with completeness and correctness results. In Section 5, we experi-
mentally demonstrate that the program transformation pays off in practice.
Section 6 concludes. Proofs of all technical results can be found at the Ap-
pendix.

2 Preliminaries

Given a set A, P(A) denotes the set of all subsets of A. Let R ⊆ A × A be
a binary relation on a set A. We denote the reflexive closure of R by R=,
its transitive closure by R+, and its reflexive and transitive closure by R∗ [6].
An element a ∈ A is an R-normal form, if there exists no b such that a R b.
We say that b is an R-normal form of a (written a R! b), if b is an R-normal
form and a R∗b. We say that R is terminating iff there is no infinite sequence
a1 R a2 R a3 · · ·.

Throughout the paper, X denotes a countable set of variables and F de-
notes a signature, i.e. a set of function symbols {f, g, . . .}, each having a fixed
arity given by a function ar : F → N. We denote the set of terms built from
F and X by T (F ,X ). A term is said to be linear if it has no multiple oc-
currences of a single variable. Terms are viewed as labelled trees in the usual
way. Let Subst(T (F ,X )) denote the set of substitutions. We denote by id
the “identity” substitution: id(x) = x for all x ∈ X . Positions p, q, . . . are
represented by chains of positive natural numbers used to address subterms of
t. We denote the empty chain by Λ. By Pos(t) we denote the set of positions
of a term t. Given a set S ⊆ F ∪ X , PosS(t) denotes positions in t where
symbols in S occur. When no confusion arises, we denote Pos{f}(t) as Posf (t)
for a symbol f ∈ F ∪ X . Given positions p, q, we denote its concatenation as
p.q. Positions are ordered by the standard prefix ordering ≤. Positions can
also be ordered by the lexicographical ordering: p ≤lex q iff p ≤ q or p = w.i.p′,
q = w.j.q′, i, j ∈ N, and i < j. Given a set of positions P , minimal≤(P ) is
the set of minimal positions of P w.r.t. ≤. If p is a position, and Q is a set
of positions, p.Q is the set {p.q | q ∈ Q}. The subterm at position p of t is
denoted as t|p, and t[s]p is the term t with the subterm at position p replaced
by s. The symbol labelling the root of t is denoted as root(t).

97



Alpuente, Escobar, and Lucas

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is
the right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of
rewrite rules. L(R) denotes the set of lhs’s of R. A TRS R is left-linear if for
all l ∈ L(R), l is a linear term. Given R = (F , R), we take F as the disjoint
union F = C � D of symbols c ∈ C, called constructors and symbols f ∈ D,
called defined functions, where D = {root(l) | l → r ∈ R} and C = F − D.
We say that a rule l → r defines f ∈ D if root(t) = f . A TRS R = (C �D, R)
is a constructor system (CS) if for all f(l1, . . . , lk) ∈ L(R), li ∈ T (C,X ), for

1 ≤ i ≤ k. A term t ∈ T (F ,X ) rewrites to s (at position p), written t
p→R s

(or just t → s), if t|p = σ(l) and s = t[σ(r)]p, for some rule l → r ∈ R,
p ∈ Pos(t) and substitution σ.

A mapping µ : F → P(N) is a replacement map (or F -map) if ∀f ∈
F , µ(f) ⊆ {1, . . . , ar(f)} [14]. Let MF be the set of all F -maps. The ordering
� on MF , the set of all F -maps, is: µ � µ′ if for all f ∈ F , µ(f) ⊆ µ′(f). Let
µcan
R be the canonical replacement map, i.e. the most restrictive replacement
map which ensures that the non-variable subterms of the left-hand sides of
the rules of R are replacing, which is easily obtained from R: ∀f ∈ F , i ∈
{1, . . . , ar(f)}, i ∈ µcan

R (f) iff ∃l ∈ L(R), p ∈ PosF(l), (root(l|p) = f∧p.i ∈
PosF(l)). Let CMR = {µ ∈ MF | µcan

R � µ} be the set of replacement maps
which are less or equally restrictive than µcan

R .

3 On-demand evaluation strategy

A local strategy for a k-ary symbol f ∈ F is a sequence ϕ(f) of integers
taken from {−k, . . . ,−1, 0, 1, . . . , k} which are given in parentheses. Symbols
without an explicit local strategy are given a default annotation which depends
on the considered language. A mapping ϕ that associates a local strategy ϕ(f)
to every f ∈ F is called an E-strategy map [18,19]. The E-strategy maps
are used to correctly guide the evaluation strategy of OBJ-like languages in
order to evaluate expressions. In the following, we recall the on-demand E-
evaluation strategy of [1].

Let L be the set of all lists consisting of integers. We define an (embedding)
ordering � between sequences of integers as: nil � L, ∀L ∈ L; (i1 i2 · · · im) �
(j1 j2 · · · jn) if i1 = j1 and (i2 · · · im) � (j2 · · · jn); or (i1 i2 · · · im) �
(j1 j2 · · · jn) if i1 �= j1 and (i1 i2 · · · im) � (j2 · · · jn). An ordering �
between strategy maps is defined: ϕ � ϕ′ if, for all f ∈ F , ϕ(f) � ϕ′(f).
Roughly speaking, ϕ � ϕ′ if for all f ∈ F , ϕ′(f) is ϕ(f) except by the
introduction of some additional indices. Sometimes, it is interesting to get
rid of the ordering on (non-nullary) indices in a given local strategy; for this
reason, given an E-strategy map ϕ, we introduce the following replacement
map µϕ(f) = {|i| | i ∈ ϕ(f) ∧ i �= 0}.

Let Ln be the set of all lists of integers whose absolute value does not
exceed n ∈ N. Given an E-strategy map ϕ, we use the signature F �

ϕ =

98



Alpuente, Escobar, and Lucas

∪{fL1|L2 , fL1|L2
| f ∈ F ∧L1, L2 ∈ Lar(f).(L1++L2 � ϕ(f))} (where the func-

tion ++ defines the concatenation of two sequences of integers) and labelled
variables X �

ϕ = {xnil|nil | x ∈ X} for marking ordinary terms t ∈ T (F ,X )
as terms in T (F �

ϕ,X �
ϕ). Overlining the root symbol of a subterm means that

no evaluation is required for this subterm, and the control goes back to the
parent. The list L2 of L1 | L2 denotes the (partially consumed) local strategy
being considered for a given symbol, whereas L1 is interpreted as a kind of
store which records previously considered annotations. The main idea is that
annotations move from L2 to L1 once they have been processed.

We use f � to denote f or f , for a symbol f ∈ F . We define the list of ac-

tivable indices of a labelled symbol f �
L1|L2

as activable(f �
L1|L2

) =


L1 if L1 �= nil

L2 if L1 = nil
.

The operator ϕ is extended to a mapping from T (F ,X ) to T (F �
ϕ,X �

ϕ) as fol-
lows:

ϕ(t) =


xnil|nil if t = x ∈ X

fnil|ϕ(f)(ϕ(t1), . . . , ϕ(tk)) if t = f(t1, . . . , tk)

Also, the operator erase : T (F �
ϕ,X �

ϕ) → T (F ,X ) removes all extra indices.

Given terms t, l ∈ T (F ,X ), we let Pos	=(t, l) = {p ∈ PosF(t) ∩ PosF(l) |
root(l|p) �= root(t|p)}. We define the set of demanded positions of t w.r.t. l (a
lhs of a rule defining root(t)), i.e. the set of (positions of) maximal disagreeing
subterms as:

DPl(t) =


minimal≤(Pos 	=(t, l)) if minimal≤(Pos 	=(t, l)) ⊆ PosD(t)

∅ otherwise

Note that the restriction of disagreeing positions to positions with defined
symbols (in other words, non-constructor symbols) disables the evaluation of
subterms which could never produce a redex (see [1,4,13,17]).

Example 3.1 Let us consider l1 = 2nd(cons(0,cons(Y,Ys))) and l2 =
2nd(cons(s(X),cons(Y,Ys))), where C = {cons, nil, s, 0} and
D = {2nd, from}. Let t1 = 2nd(cons(0,nil)), we haveDPl1(t1) = DPl2(t1) =
∅, i.e. no position is demanded by l1 or l2 because of a constructor conflict with
subterm nil at position 1.2. Let t2 = 2nd(cons(2nd(from(0)),from(0))),
we have DPl1(t2) = DPl2(t2) = {1.1, 1.2}, i.e. positions 1.1 and 1.2 are de-
manded by l1 and l2 because both positions are function-rooted. And, let
t3 = 2nd(cons(0,from(0))), we have DPl1(t3) = {1.2} but DPl2(t3) = ∅,
i.e. position 1.2 is demanded by l1 but not by l2 because of a constructor
conflict with l2.

We define the set of positive positions of a term s ∈ T (F �
ϕ,X �

ϕ) as PosP (s) =
{Λ}∪{i.PosP (s|i) | i > 0 and activable(root(s)) contains i} and the set of ac-
tivable positions as PosA(s) = {Λ}∪{i.PosA(s|i) | i > 0 and activable(root(s))
contains i or −i}. We also define the set of positions with empty annotation

99



Alpuente, Escobar, and Lucas

list as Posnil(s) = {p ∈ Pos(s) | root(s|p) = fL|nil}. Then, the set of activable
demanded positions of a term t ∈ T (F �

ϕ,X �
ϕ) w.r.t. l (a lhs of a rule defining

root(erase(t))) is defined as follows:

ADPl(t) =




DP ∩ PosA(t) if DP �⊆ PosP (t) ∪ Posnil(t)
where DP = DPl(erase(t))

∅ otherwise

and the set of activable demanded positions of t ∈ T (F �
ϕ,X �

ϕ) w.r.t. TRS R
as ADPR(t) = ∪{ADPl(t) | l → r ∈ R ∧ root(erase(t)) = root(l)}. Note that
the restriction of activable demanded positions to non-positive and non-empty
positions is consistent w.r.t the intended meaning of strategy annotations since
positive or empty positions should not be evaluated on-demand (see [1]).

Example 3.2 Let us consider the term l = 2nd(cons(0,cons(Y,Yz))). Let

t1 = 2nd(1)|(0)(cons(1 2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil))))

we have DPl(erase(t1)) = {1.2} but ADPl(t1) = ∅, i.e. position 1.2 is de-
manded by l but it is a positive position. Let

t2 = 2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|nil(snil|(1)(0nil|nil))))

we have ADPl(t2) = ∅, i.e. position 1.2 is still demanded by l but it is rooted
by a symbol with an empty annotation list. Let

t3 = 2nd(1)|(0)(cons(1)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil))))

we have ADPl(t3) = ∅, i.e. position 1.2 is again demanded by l but it is not
an activable position. Finally, let

t4 = 2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil))))

we have ADPl(t4) = {1.2}.

Given a term s ∈ T (F �
ϕ,X �

ϕ), the total ordering ≤s between activable positions
of s is defined as (1) Λ ≤s p for all p ∈ PosA(s); (2) if i.p, i.q ∈ PosA(s) and
p ≤s|i q, then i.p ≤s i.q; and (3) if i.p, j.q ∈ PosA(s), i �= j, and i (or −i)
appears before j (or −j) in activable(root(s)), then i.p ≤s j.q. The ordering
≤s allows us to choose a position from the set of all activable demanded
positions in s, which is consistent with user’s annotations (see min≤s below).
We define the set ODR(s) of on-demand positions of a term s ∈ T (F �

ϕ,X �
ϕ)

w.r.t. TRS R as follows:

if ADPR(s) = ∅ then ODR(s) = ∅ else ODR(s) = {min≤s(ADPR(s))}

Example 3.3 Continuing Example 3.2. Let us consider the term

t5 = 2nd(1)|(0)(cons(−1 −2)|nil(2ndnil|(10)(nilnil|nil), fromnil|(1 0)(0nil|nil)))

we have ADPl(t5) = {1.1, 1.2} but OD{l}(t5) = {1.1} since annotation -1

appears before -2 in the memoizing list for symbol cons and hence 1.1 ≤t5 1.2.

100



Alpuente, Escobar, and Lucas

Given a term t ∈ T (F �
ϕ,X �

ϕ) and position p ∈ Pos(t), mark(t, p) is the term s
with all symbols above p (except the root) marked as non-evaluable, in symbols
Pos(s) = Pos(t) and ∀q ∈ Pos(t), if Λ < q < p and root(t|q) = fL1|L2 , then

root(s|q) = fL1|L2
, otherwise root(s|q) = root(t|q). This is useful for avoiding

recursive definitions of the evaluation strategy (see [1]).

Example 3.4 Continuing Example 3.2. We have that mark(t4, 1.2) =

2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil))))

Given a TRS R and an E-strategy map ϕ, we formulate the on-demand
strategy via the evalϕR function, which returns the set of terms achievable from
a given term thorough the strategy map ϕ. In the following definition, the
symbol @ denotes appending an element at the end of a list.

Definition 3.5 Given a TRS R = (F , R) and an arbitrary E-strategy map ϕ

for F , we define: evalϕR(t) = {erase(s) ∈ T (F ,X ) | 〈ϕ(t),Λ〉 �→!
ϕ 〈s,Λ〉}. The

binary relation
�→ϕ on T (F �

ϕ,X �
ϕ)× N

∗
+ is defined as follows: 〈t, p〉 �→ϕ 〈s, q〉

if and only if p ∈ Pos(t) and either

(i) t|p = fL|nil(t1, . . . , tk), s = t and p = q.i for some i; or

(ii) t|p = fL1|i:L2(t1, . . . , tk), i > 0, q = p.i, and s = t[fL1@i|L2(t1, . . . , tk)]p; or

(iii) t|p = fL1|−i:L2(t1, . . . , tk), i > 0, q = p, and s = t[fL1@−i|L2(t1, . . . , tk)]p; or

(iv) t|p = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p for some
l → r ∈ R and substitution σ, q = p; or

(v) t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = ∅, s =
t[fL1|L2(t1, . . . , tk)]p, and q = p; or

(vi) t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = {p′}, s =
t[mark(t|p, p′)]p, q = p.p′; or

(vii) t|p = fL1|L2
(t1, . . . , tk), s = t[fL1|L2(t1, . . . , tk)]p and p = q.i for some i.

Case (i) means that no more annotations are provided and the evaluation
is completed. In case (ii), a positive argument index is provided and the
evaluation jumps to the subterm at such argument (note that the index is
stored). Case (iii) only stores the negative index for further use. Cases (iv),
(v), and (vi) consider the attempt to match the term against the left-hand sides
of the rules of the program. Case (iv) applies if the considered (unlabelled)
subterm is a redex (which is, then, contracted). If the subterm is not a
redex, cases (v) and (vi) are considered (possibly involving some on-demand
evaluation). We use the lists of indices labelling the symbols for recording the
concrete positions on which we are able to allow on-demand evaluations; in
particular, the first (memoizing) list is crucial for achieving this (see definition
of set ODR, which uses function activable and the ordering ≤s for indicating
the positions demanded by some rule in order to become a redex). Case
(v) applies if no demanded evaluation is allowed (or required). Case (vi)

101



Alpuente, Escobar, and Lucas

〈2ndnil|( 1 0)(fromnil|(1 0)(0nil|nil)),Λ〉
�→ϕ 〈2nd(1)|(0)(fromnil|( 1 0)(0nil|nil)), 1〉
�→ϕ 〈2nd(1)|(0)(from(1)|(0)(0nil|nil )), 1.1〉
�→ϕ 〈2nd(1)|(0)(from(1)|( 0 )(0nil|nil)), 1〉
�→ϕ 〈2nd(1)|(0)(consnil|( 1 −2)(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1〉
�→ϕ 〈2nd(1)|(0)(cons(1)|( -2 )(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil (0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1〉
�→ϕ 〈2nd(1)|(0)(cons(1 -2 )|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))),Λ〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|( 1 0)(snil|(1)(0nil|nil)))), 1.2〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(0)(snil|( 1 )(0nil|nil)))), 1.2.1〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(0)(s(1)|nil(0nil|nil )))), 1.2.1.1〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(0)(s(1)|nil (0nil|nil)))), 1.2.1〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, from(1)|( 0 )(s(1)|nil(0nil|nil)))), 1.2〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, consnil|( 1 −2)(s(1)|nil(0nil|nil),

fromnil|(1 0)(snil|(1)(s(1)|nil(0nil|nil)))))), 1.2〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1)|(−2)(s(1)|nil (0nil|nil), · · ·))), 1.2.1〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1)|( -2 )(s(1)|nil(0nil|nil), · · ·))), 1.2〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1 −2)|nil (s(1)|nil(0nil|nil), · · ·))), 1.2〉
�→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil (0nil|nil, cons(1 −2)|nil(s(1)|nil(0nil|nil), · · ·))), 1〉
�→ϕ 〈2nd(1)|( 0 )(cons(1 −2)|nil(0nil|nil, cons(1 −2)|nil(s(1)|nil(0nil|nil), · · ·))),Λ〉
�→ϕ 〈s(1)|nil(0nil|nil),Λ〉

Fig. 1. On-demand evaluation of term 2nd(from(0))

applies if the on-demanded evaluation of the subterm t|p.p′ is required. In this
case, the symbols lying on the path from t|p to t|p.p′ (excluding the border
ones) are overlined. Then, the evaluation process continues onto t|p.p′ . Once
the evaluation of t|p.p′ has finished, the only possibility is the repeated (but
possibly empty) application of steps corresponding to the last case (vii), which
implements the return of the evaluation process back to position p (which
originated the on-demand evaluation).

Example 3.6 Following the Example 1.2, the appropriate evaluation sequence
of the term 2nd(from(0)) via evalϕR is depicted in Figure 1, where the index
considered in each step is surrounded by a box. Roughly speaking, the follow-
ing rewriting sequence

2nd(from(0))

→ 2nd(cons(0,from(s(0))))

→ 2nd(cons(0,cons(s(0),from(s(s(0))))))

→ s(0)

102



Alpuente, Escobar, and Lucas

is performed while managing strategy annotations.

4 The Program Transformation

In the following, we formalize a program transformation which translates OBJ
programs with arbitrary indices into OBJ programs with positive indices alone.
We first explain the awkward points associated to the evaluation with negative
indices in order to discern how to transform these indices into positive ones.

Example 4.1 Consider the following OBJ program which is mainly borrowed
from a CafeOBJ program in [20] where we consider negative indices for cons:

obj Ex3rd is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 -2)] .
op from : Nat -> LNat [strat (1 0)] .
op 3rd : LNat -> Nat [strat (1 0)] .
vars X Y Z : Nat . var Zs : LNat .
eq 3rd(cons(X,cons(Y,cons(Z,Zs)))) = Z .
eq from(X) = cons(X,from(s(X))) .

endo

Let us introduce an auxiliary function symbol inf, which returns an infinite se-
quence of symbols s (note that the evaluation of the call inf is non-terminating
since the strategy annotation for the constructor s above is 1):

op inf : -> Nat .
eq inf = s(inf) .

Consider the following term t = 3rd(cons(0,cons(inf,cons(s(0),nil)))).
The on-demand E-evaluation of t terminates and returns s(0), since the term
inf is not under a positive (reducible) position nor is demanded by the rule
defining 3rd.

Let us consider a näıve approach for transforming negative indices into
positive indices which duplicates the symbols containing negative indices into
new symbols containing the positive counterparts (as in the program transfor-
mation showed in [1] for approximating termination). The raw application of
such program transformation to the previous example delivers the following
rules:

eq 3rd(cons(X,Zs)) = 3rd(cons+2(X,Zs)) .
eq 3rd(cons+2(X,cons(Y,Zs))) = 3rd(cons+2(X,cons+2(Y,Zs))) .
eq 3rd(cons+2(X,cons+2(Y,cons(Z,Zs)))) = Z .

together with the following definitions for symbols cons and cons+2:

op cons : Nat LNat -> LNat [strat (1)] .
op cons+2 : Nat LNat -> LNat [strat (2)] .

However, the evaluation of the previous call t w.r.t. this new program enters

103



Alpuente, Escobar, and Lucas

in an infinite reduction sequence, since the term inf will be under a positive
(reducible) position after transforming the leftmost symbol cons of t into
cons+2.

In order to avoid this problem, the solution is to remove all positive anno-
tations of symbol cons, i.e. we obtain:

op cons : Nat LNat -> LNat [strat (0)] .
op cons+2 : Nat LNat -> LNat [strat (2)] .

However, occurrences of symbol cons appearing at positive positions of the
original program rules do not behave correctly now, e.g. 3rd(cons(inf,from(s(0)))
does not have an infinite reduction sequence as in the original program because
the subterm inf does not appear under a positive position.

Nevertheless, we can define a new symbol consroot which inherits the be-
havior of the original symbol cons (i.e. the positive indices of cons), and
consistently rename the symbols in the TRS through a special symbol quote
before evaluating each term (note that quote is specialized to sorts). More-
over, we introduce a new rule for translate consroot back to cons. We finally
obtain the program:

obj Ex3rdA is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (0)] .
op consroot : Nat LNat -> LNat [strat (1 0)] .
op cons+2 : Nat LNat -> LNat [strat (2)] .
op from : Nat -> LNat [strat (1 0)] .
op 3rd : LNat -> Nat [strat (1 0)] .
op quoteNat : Nat -> Nat [strat (0)].
op quoteLNat : LNat -> LNat [strat (0)].
vars X Y Z : Nat . var Zs : LNat .
eq 3rd(cons(X,Zs)) = 3rd(cons+2(X,Zs)) .
eq 3rd(cons+2(X,cons(Y,Zs))) = 3rd(cons+2(X,cons+2(Y,Zs))) .
eq 3rd(cons+2(X,cons+2(Y,cons(Z,Zs)))) = quoteNat(Z) .
eq from(X) = quoteLNat(cons(X,from(s(X)))) .
eq quoteNat(3rd(Zs)) = 3rd(quoteLNat(Zs)) .
eq quoteNat(s(X)) = s(quoteNat(X)) .
eq quoteNat(0) = 0 .
eq quoteLNat(from(X)) = from(quoteNat(X)) .
eq quoteLNat(cons(X,Zs)) = consroot(quoteNat(X),Zs) .
eq quoteLNat(nil) = nil .
eq consroot(X,Zs) = cons(X,Zs) .

endo

However, in order to speed up the evaluation, we use more f+i symbols from
the root of the left hand side traversing the on-demand path (see Section 4.2).

We define the complete transformation for a TRS by two different trans-
formers which tackle the two difficulties described above. That is, the trans-

104



Alpuente, Escobar, and Lucas

formation starts by applying the first transformer which introduces symbols
froot and specialized symbols quote in order to set the stage for the second
transformer. Then, the second transformer is applied iteratively, which turns
the negative indices into positive ones by introducing symbols f+i. This trans-
former finally removes all negative annotations together with positive anno-
tations of conflictive symbols (such as symbol cons in the previous example).

4.1 Transformation for fixing rules

Let R = (F , R) be a TRS, and ϕ be an E-strategy map. We define the set
of positions which are activable (but not reducible) of a term t ∈ T (F �

ϕ,X �
ϕ)

as PosA−P (t) = PosA(t)−PosP (t). Given a strategy map ϕ, ϕ+ denotes the
result of removing all negative indices from ϕ.

Let us define the set of symbols of the original TRS at positions activable
but not reducible which have positive indices which can be lost as Fϕ

R = {f ∈
F | ar(f) > 0∧ϕ+(f) �= nil∧∃l ∈ L(R) : Posf (l)∩PosA−P (ϕ(l)) �= ∅}. Note
that if R is a CS, then Fϕ

R ⊆ C. In the following, we define the set of auxiliary
rules QuoteRI,Fϕ

R to appropriately (head)-normalize terms. Intuitively, quote
translates a symbol f ∈ Fϕ

R at a positive position into the new symbol froot.

QuoteRI,Fϕ
R =

⋃
f∈F


quote(f(x)) → froot(ρf (x)) if f ∈ Fϕ

R

quote(f(x)) → f(ρf (x)) if f �∈ Fϕ
R

where ρf (xi) =


quote(xi) if (i) � ϕI(f)

xi if (i) �� ϕI(f)

We define the first transformer for fixing strategy annotationsRI = (F I, RI)
and ϕI as follows: F I = F ∪ {froot | f ∈ Fϕ

R}, and

RI = {f(t) → quote(r) | f(t) → r ∈ R} ∪ {froot(x) → f(x) | f ∈ Fϕ
R}

∪QuoteRI,Fϕ
R

Also, ϕI(f) = ϕ(f) for all f ∈ F , ϕI(froot) = ϕ(f)++(0) for all f ∈ Fϕ
R, and

ϕI(quote) = (0).

Example 4.2 Consider the TRS R and the E-strategy map ϕ of Example
4.1. The TRS RI together with ϕI is:

obj Ex3rdI is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 -2)] .
op consroot : Nat LNat -> LNat [strat (1 -2 0)] .
op from : Nat -> LNat [strat (1 0)] .
op 3rd : LNat -> Nat [strat (1 0)] .
op quoteNat : Nat -> Nat [strat (0)] .

105



Alpuente, Escobar, and Lucas

op quoteLNat : LNat -> LNat [strat (0)] .
vars X Y Z : Nat . var Zs : LNat .
eq 3rd(cons(X,cons(Y,cons(Z,Zs)))) = quoteNat(Z) .
eq from(X) = quoteLNat(cons(X,from(s(X)))) .
eq quoteNat(3rd(Zs)) = 3rd(quoteLNat(Zs)) .
eq quoteNat(s(X)) = s(quoteNat(X)) .
eq quoteNat(0) = 0 .
eq quoteLNat(from(X)) = from(quoteNat(X)) .
eq quoteLNat(cons(X,Zs)) = consroot(quoteNat(X),Zs) .
eq quoteLNat(nil) = nil .
eq consroot(X,Zs) = cons(X,Zs) .

endo

4.2 Transformation for eliminating negative indices

We formulate the transformer for switching negative indices into positive ones.
Intuitively, we tranform a rule l → r with a position p which is activable but
not reducible into the rules l[x]p → l′[x]p and l′ → r, where each symbol f
in l from the root to p has been replaced in l′ by the new symbol f+i and its
negative indices are replaced by their positive counterparts.

Let R = (F , R) be a TRS, and ϕ be an E-strategy map. Given l ∈ L(R),
we define the set of position of a lhs l which are activable but not reducible as
Iϕ(l) = PosA−P (ϕ(l))∩PosF(l). Assume that Iϕ(l) �= ∅ for a rule l → r ∈ R,
the position to be transformed is p.i = max≤ϕ(l)

(Iϕ(l)) for p.i ∈ Pos(l) and
i ∈ N (note that Λ �∈ Iϕ(l) by definition), and the set of symbols involved
in the transformation are fΛ, . . . , fp such that root(l|q) = f q ∈ F for q ≤ p.
Then, the transformer for eliminating negative indices Rneg = (Fneg, Rneg)
and ϕneg is as follows: Fneg = F ∪ {fΛ+jΛ

, . . . , fp
+jp

} where jΛ, . . . , jp ∈ N and
q.jq ≤ p.i for q ≤ p; and

Rneg = R − {l → r} ∪ {l[y]p.i → l′[y]p.i, l
′ → r} ∪ {quote(f q

+jq
(x)) → f q(x)}

where y is a fresh variable and l′ is obtained from l such that ∀q ∈ Pos(l′):

root(l′|q) =


f q

+jq
if q ≤ p

root(l|q) otherwise
We let ϕneg(f) = ϕ(f) for f ∈ F and

ϕneg(f+j) =

{
(j 0) if (-j 0) � ϕ(f) ∨ (j 0) � ϕ(f)

(j) if (-j 0) �� ϕ(f) ∧ (j 0) �� ϕ(f)

Example 4.3 Consider the TRS R = RI and the E-strategy map ϕ = ϕI

in Example 4.2. The application of the transformer, the TRS Rneg together
with ϕneg, is:

obj Ex3rdINeg is
sorts Nat LNat .
op 0 : -> Nat .

106



Alpuente, Escobar, and Lucas

op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 -2)] .
op consroot : Nat LNat -> LNat [strat (1 -2 0)] .
op cons+2 : Nat LNat -> LNat [strat (2)] .
op from : Nat -> LNat [strat (1 0)] .
op 3rd : LNat -> Nat [strat (1 0)] .
op 3rd+1 : LNat -> Nat [strat (1 0)] .
op quoteNat : Nat -> Nat [strat (0)] .
op quoteLNat : LNat -> LNat [strat (0)] .
vars X Y Z : Nat . var Zs : LNat .
eq 3rd(cons(X,cons(Y,Zs))) = 3rd+1(cons+2(X,cons+2(Y,Zs))) .
eq 3rd+1(cons+2(X,cons+2(Y,cons(Z,Zs)))) = quoteNat(Z) .
eq from(X) = quoteLNat(cons(X,from(s(X)))) .
eq quoteNat(3rd(Zs)) = 3rd(quoteLNat(Zs)) .
eq quoteNat(3rd+1(Zs)) = 3rd(Zs) .
eq quoteNat(s(X)) = s(quoteNat(X)) .
eq quoteNat(0) = 0 .
eq quoteLNat(from(X)) = from(quoteNat(X)) .
eq quoteLNat(cons(X,Zs)) = consroot(quoteNat(X),Zs) .
eq quoteLNat(cons+2(X,Zs)) = cons(X,Zs) .
eq quoteLNat(nil) = nil .
eq consroot(X,Zs) = cons(X,Zs) .

endo

Note the relevant changes in the rule for symbol 3rd:

eq 3rd(cons(X,cons(Y,Zs))) = 3rd+1(cons+2(X,cons+2(Y,Zs))) .
eq 3rd+1(cons+2(X,cons+2(Y,cons(Z,Zs)))) = quoteNat(Z) .

The second transformation process starts from RI and ϕI and applies as
many transformation stepsRneg and ϕneg for removing negative indices as nec-
essary to obtain R′ = (F ′, R′) and ϕ′ such that no negative index is necessary,
i.e. Iϕ′

(l) = ∅ for all l ∈ L(R′).
The final TRS RII = (F II, RII) and ϕII is obtained as F II = F ′, RI = R′,

and ϕII(f) = ϕ′
+(f) for f ∈ F ′ −Fϕ

R and ϕII(f) = nil for f ∈ Fϕ
R.

Example 4.4 Continuing with Example 4.3. The final TRS RII together
with ϕII is:

obj Ex3rdII is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (0)] .
op consroot : Nat LNat -> LNat [strat (1 0)] .
op cons+2 : Nat LNat -> LNat [strat (2)] .
op from : Nat -> LNat [strat (1 0)] .
op 3rd : LNat -> Nat [strat (1 0)] .
op 3rd+1 : LNat -> Nat [strat (1 0)] .
op quoteNat : Nat -> Nat [strat (0)] .

107



Alpuente, Escobar, and Lucas

op quoteLNat : LNat -> LNat [strat (0)] .
vars X Y Z : Nat . var Zs : LNat .
eq 3rd(cons(X,Zs)) = 3rd+1(cons+2(X,Zs))) .
eq 3rd+1(cons+2(X,cons(Y,Zs))) = 3rd+1(cons+2(X,cons+2(Y,Zs))) .
eq 3rd+1(cons+2(X,cons+2(Y,cons(Z,Zs)))) = quoteNat(Z) .
eq from(X) = quoteLNat(cons(X,from(s(X)))) .
eq quoteNat(3rd(Zs)) = 3rd(quoteLNat(Zs)) .
eq quoteNat(3rd+1(Zs)) = 3rd(Zs) .
eq quoteNat(s(X)) = s(quoteNat(X)) .
eq quoteNat(0) = 0 .
eq quoteLNat(from(X)) = from(quoteNat(X)) .
eq quoteLNat(cons(X,Zs)) = consroot(quoteNat(X),Zs) .
eq quoteLNat(cons+2(X,Zs)) = cons(X,Zs) .
eq quoteLNat(nil) = nil .
eq consroot(X,Zs) = cons(X,Zs) .

endo

We would like to emphasize that the transformation defined in this paper
is able to deal with the general case where more than one negative annota-
tion exist for the same function symbol and different demandness paths are
possible; which are just ordered using the ordering ≤s between positive and
negative annotations and managed by using symbols f+i which traverse the
path from the root. This is not illustrated in our main example due to space
restrictions, though we give some hints in the following example.

Example 4.5 Consider the following program rule:

min(s(X),0,s(0),s(s(Y))) = 0

with the strategy map ϕ(min) = (-3 -2 1 -4 0), ϕ(s) = (-1), and ϕ(0) =
nil. The transformation of this rule produces (without considering symbol
quote):

min(s(X),Z,W,Y) = min+3(s(X),Z,W,Y)

min+3(s(X),Z,s(W),Y) = min+3(s(X),Z,s+1(W),Y)

min+3(s(X),Z,s+1(0),Y) = min+2(s(X),Z,s(0),Y)

min+2(s(X),0,s(0),Y) = min+4(s(X),0,s(0),Y)

min+4(s(X),0,s(0),s(Y)) = min+4(s(X),0,s(0),s+1(Y))

min+4(s(X),0,s(0),s+1(s(Y))) = 0

and the strategy map ϕII(min) = (1 0), ϕII(min+2) = (2 0), ϕII(min+3) =
(3 0), ϕII(min+4) = (4 0), ϕII(s) = nil, ϕII(s+1) = (1), and ϕII(0) = nil.
This transformed program reproduces the ordering between the different on-
demand paths of the left-hand side.

4.3 Properties

In the following, we establish the main results of the program transformation.
We define a standard E-strategy map ϕ as an E-strategy map where no index
different to 0 appears at the right of any index 0 in the annotation sequence.

108



Alpuente, Escobar, and Lucas

Given a strategy map ϕ for F , we say that a TRSR = (F , R) is ϕ-terminating

if, for all t ∈ T (F ,X ), there is no infinite
�→ϕ -rewrite sequence starting from

〈ϕ(t),Λ〉. Note that Examples 1.2, 1.3, and 4.1 can be proved ϕ-terminating
using the technique developed in [1]. A defined function f ∈ D is completely
defined if it does not occur in any ground term in normal form, i.e. functions
are reducible on all ground terms (of appropriate sort). A TRSR is completely
defined (or CD) if each defined function of the signature is completely defined.
In the following theorem we prove completeness of the transformation, i.e. that
the transformation preserves normal forms.

Theorem 4.6 (Completeness) Let R = (F , R) = (C � D, R) be a CS and
ϕ be a standard E-strategy map such that R is ϕ-terminating. Let RII =
(F II, RII) and ϕII. For all t ∈ T (F ,X ) and s ∈ T (C,X ), if s ∈ evalϕR(t), then
s ∈ evalϕ

II

RII(t).

Correctness of the transformation is also proved without any condition on
termination of the TRS.

Theorem 4.7 (Correctness) Let R = (F , R) = (C�D, R) be a CS and ϕ be
a standard E-strategy map. Let RII = (F II, RII) and ϕII. For all t ∈ T (F ,X )

and s ∈ T (C,X ), if s ∈ evalϕ
II

RII(t), then s ∈ evalϕR(t).

Finally, termination is preserved by the transformation.

Theorem 4.8 (Termination) Let R = (F , R) = (C � D, R) be a CS and ϕ
be a standard E-strategy map. R is ϕ-terminating iff RII is ϕII-terminating.

5 Experiments

A prototype implementation of the transformation proposed in this paper has
been developed in Haskell (using ghc 5.04.2). The system is publicly available
http://www.dsic.upv.es/users/elp/soft.html.

Tables 1, and 2, show the runtimes 7 in milliseconds and the number of
evaluation steps of the benchmarks for the different OBJ-family systems. The
OnDemandOBJ interpreter is the on-demand prototype interpreter of the on-
demand evaluation of [1]. CafeOBJ 8 is developed in Lisp at the Japan Ad-
vanced Inst. of Science and Technology (JAIST); OBJ3 9 , also written in
LISP, is maintained by the University of California at San Diego; Maude 10

is developed in C++ and maintained by the Computer Science Lab at SRI
International. OBJ3 and Maude provide only computations with positive an-
notations whereas CafeOBJ provides computations with negative annotations
as well, using the on-demand evaluation of [20,19]. OnDemandOBJ computes

7 The average of 10 executions measured in a Pentium III machine running redhat 7.2.
8 Available at http://www.ldl.jaist.ac.jp/Research/CafeOBJ/system.html.
9 Available at http://www.kindsoftware.com/products/opensource/obj3/OBJ3/.
10Available at http://maude.cs.uiuc.edu/current/system/.

109



Alpuente, Escobar, and Lucas

with negative annotations using the on-demand evaluation of [1]. Note that
CafeOBJ and OBJ3 implement sharing of variables whereas Maude and OnDe-
mandOBJ do not; thus, the number of evaluation steps in Table 2 is pairwise
equivalent: CafeOBJ and OBJ3 in one hand and Maude and OnDemandOBJ
in the other hand. Also, since Maude is implemented in C++, typical execu-
tion times are nearly 0 milliseconds. Finally, the mark overflow in Table 2
indicates that execution raised a memory overflow and normal form was not
achieved; whereas the mark unavailable in Tables 1 and 2 indicates that the
program can not be executed in such OBJ implementation.

The benchmark pi codifies the well-known infinite serie expansion to ap-

proximate number π:
π

4
= 1−

1

3
+

1

5
−

1

7
+ · · · and uses negative annotations

to obtain a terminating and complete example, which can not be obtained
using only positive annotations. Termination of the program can be formally
proved using the technique of [1]. Also, by using the results in [2], we can
guarantee that every expression such as pi(n) for some n of sort Nat pro-
duces (as expected) a completely evaluated expression of sort LRecip. The
benchmark pi noneg consists of the application of the program transformation
described in this paper to pi. Table 1 compares the evaluation of expression
pi(square(square(3))) using pi and pi noneg. Note that the right input
expression for pi noneg is quoteLRecip(pi(square(square(3)))). It wit-
nesses that negative annotations are extremely useful in practice and that the
program transformation enables the execution of negatively annotated pro-
grams in all OBJ implementations. On the other hand, Table 1 also evidences
that the implementation of the on-demand evaluation strategy in other sys-
tems is quite promising.

On the other hand, Table 2 illustrates the interest of using negative anno-
tations to improve the behavior of programs: the benchmark msquare eager

codifies the functions square, minus, times, and plus over natural numbers
using only positive annotations. Every k-ary symbol f is given a strategy
(1 2 · · · k 0) (this corresponds to default strategies in Maude). Note that
the program is terminating as a TRS (i.e., without any strategy annotation).
The benchmark msquare apt is similar to msquare eager, but canonical pos-
itive strategies are provided: the i-th argument of a symbol f is annotated
if there is an occurrence of f in the left-hand side of a rule having a non-
variable i-th argument; otherwise, the argument is not annotated (see [5]).
The benchmark msquare neg is similar to msquare eager, though canonical
arbitrary strategies are provided: now (from left-to-right), the i-th argument
of a defined symbol f is annotated if all occurrences of f in the left-hand
side of the rules contain a non-variable i-th argument; if all occurrences of
f in the left-hand side of the rules have a variable i-th argument, then the
argument is not annotated; in any other case, annotation −i is given to f
(see [5]). The benchmark msquare noneg represents the application of the

110



Alpuente, Escobar, and Lucas

ms./rewrites pi pi noneg

OnDemandOBJ 25/364 215/35532

CafeOBJ 30/364 190/35532

OBJ3 unavailable 100/35532

Maude unavailable 30/35532

Table 1
Execution of call pi(square(square(3)))

ms./rewrites msquare eager msquare apt msquare neg msquare noneg

OnDemandOBJ 33/ 715 62/ 1640 0/ 1 0/ 4
40/ 914 78/ 1992 80/ 1992 750/ 126089

CafeOBJ 40/ 715 50/ 715 0/ 1 0/ 4
50/ 914 60/ 914 60/ 914 630/ 126089

OBJ3 20/ 715 overflow unavailable 0/ 4
30/ 914 overflow unavailable overflow

Maude 0/ 715 0/ 1640 unavailable 0/ 4
0/ 914 3/ 1992 unavailable 90/ 126089

Table 2
Execution of terms minus(0,square(square(5))) and

minus(square(square(5)),square(square(3)))

program transformation to msquare neg. Note that the right input expres-
sions for msquare noneg are quoteNat(minus(0,square(square(5)))) and
quoteNat(minus(square(square(5)),square(square(3)))). Then, for in-
stance, program msquare neg runs in less time and requires a smaller number
of rewrite steps than msquare eager or msquare apt, which do not include
negative annotations. Note the difference in the number of rewrite steps
of benchmarks msquare eager and msquare apt for the Maude and OnDe-
mandOBJ systems, which is due to the absence of variable sharing. More-
over, note that the program transformation is also very useful since execu-
tion of the expression minus(0,square(square(5))) is improved. These
experimental results, together with the OBJ source programs, are available
at http://www.dsic.upv.es/users/elp/ondemandOBJ/experiments. The
OBJ source programs can also be found at [3].

6 Conclusions

The paper presents a contribution to the extension of evaluation strategies for
functional languages of the OBJ family with evaluation on demand, thereby

111



Alpuente, Escobar, and Lucas

introducing a flavour of laziness into such languages. Our proposal is based
on a program transformation for OBJ programs which achieves correctness
and works well in current OBJ interpreters. The main technical results of this
work are as follows:

• The proposed transformation preserves the termination of the original pro-
gram which uses (positive and) negative annotations. That is, if the original
program terminates under the evaluation strategy of [1], then the trans-
formed program terminates also.

• Correct and completeness of the transformation holds w.r.t. the semantics of
strategy annotations given in [1]. That is, the semantics of input expressions
in the original program (under the on-demand E-strategy of [1]) and in the
transformed program (under the E-strategy) do coincide.

Moreover, our transformation is useful both for

(i) making possible the use of arbitrary strategy annotations in languages
that (syntactically) allow them but that still do not provide the necessary
operational support (e.g., OBJ3).

(ii) providing a notion of negative strategy annotation (somewhat laziness)
for languages that does not allow them (e.g., Maude).

and hence we think that our work contributes to foster the use of OBJ in
programming. As future work, we plan to formally determine the overhead
associated to the evaluation in the transformed program.

References

[1] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. Improving on-demand
strategy annotations. In M. Baaz and A. Voronkov, editors, Proc. 9th Int. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’02),
volume 2514 of Lecture Notes in Computer Science, pages 1–18, Tbilisi, Georgia,
2002. Springer-Verlag, Berlin.

[2] M. Alpuente, S. Escobar, and S. Lucas. Correct and complete (positive) strategy
annotations for OBJ. In J. Giavitto and P. Moreau, editors, Proc. of the
4th International Workshop on Rewriting Logic and its Applications, WRLA
2002, volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier
Sciences Publisher, 2002.

[3] M. Alpuente, S. Escobar, and S. Lucas. Ondemandobj: a laboratory for
strategy annotations. In J. Giavitto and P. Moreau, editors, Proc. of the
4th International Workshop on Rule-Based Programming, RULE 2003, volume
86.2 of Electronic Notes in Theoretical Computer Science. Elsevier Sciences
Publisher, 2003.

[4] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy
Functional Logic Programs. In Proc. of the ACM SIGPLAN Conf. on Partial

112



Alpuente, Escobar, and Lucas

Evaluation and Semantics-Based Program Manipulation, PEPM’97, volume 32,
number 12 of ACM Sigplan Notices, pages 151–162. ACM Press, New York,
1997.

[5] S. Antoy and S. Lucas. Demandness in rewriting and narrowing. In M. Comini
and M. Falaschi, editors, Proc. of the 11th Int’l Workshop on Functional and
(Constraint) Logic Programming WFLP’02, volume 76 of Electronic Notes in
Theoretical Computer Science. Elsevier Sciences Publisher, 2002.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[7] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proc. of the 1st International Workshop on Rewriting Logic
and its Applications, RWLW 96, volume 4 of Electronic Notes in Theoretical
Computer Science, pages 65–89. Elsevier Sciences Publisher, 1996.

[8] S. Eker. Term rewriting with operator evaluation strategies. In C. Kirchner
and H. Kirchner, editors, Proc. of the 2nd International Workshop on Rewriting
Logic and its Applications, WRLA 98, volume 15 of Electronic Notes in
Theoretical Computer Science. Elsevier Sciences Publisher, 2000.

[9] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on eager
machinery. ACM Transactions on Programming Languages and Systems,
22(1):45–86, 2000.

[10] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In Proc. of 12th Annual ACM Symp. on Principles of Programming Languages
(POPL’85), pages 52–66. ACM Press, New York, 1985.

[11] K. Futatsugi and A. Nakagawa. An overview of CAFE specification environment
– an algebraic approach for creating, verifying, and maintaining formal
specification over networks –. In 1st International Conference on Formal
Engineering Methods, 1997.

[12] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering
with OBJ: algebraic specification in action. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

[13] R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A Demand Driven
Computation Strategy for Lazy Narrowing. In Proc. of PLILP’93, volume 714
of Lecture Notes in Computer Science, pages 184–200. Springer-Verlag, Berlin,
1993.

[14] S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal of Functional and Logic Programming, 1998(1):1–61, 1998.

[15] S. Lucas. Termination of on-demand rewriting and termination of obj programs.
In Proc. of 3rd International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, PPDP’01, pages 82–93. ACM Press, New
York, 2001.

113



Alpuente, Escobar, and Lucas

[16] S. Lucas. Lazy rewriting and context-sensitive rewriting. In M. Hanus,
editor, Proc. of the 10th Int’l Workshop on Functional and (Constraint) Logic
Programming WFLP’01, volume 64 of Electronic Notes in Theoretical Computer
Science. Elsevier Sciences Publisher, 2002.

[17] J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with
Functions and Predicates: The language Babel. Journal of Logic Programming,
12(3):191–224, 1992.

[18] T. Nagaya. Reduction Strategies for Term Rewriting Systems. PhD thesis,
School of Information Science, Japan Advanced Institute of Science and
Technology, March 1999.

[19] M. Nakamura and K. Ogata. The evaluation strategy for head normal form
with and without on-demand flags. In K. Futatsugi, editor, Proc. of the
3rd International Workshop on Rewriting Logic and its Applications, WRLA
2000, volume 36 of Electronic Notes in Theoretical Computer Science. Elsevier
Sciences Publisher, 2001.

[20] K. Ogata and K. Futatsugi. Operational semantics of rewriting with the on-
demand evaluation strategy. In Proc. of 2000 International Symposium on
Applied Computing, SAC’00, pages 756–763. ACM Press, New York, 2000.

114



Alpuente, Escobar, and Lucas

A Proofs

Given two strategy lists L,L′ ∈ L, the restriction of L to L′, denoted as L↓L′ ,
is the maximal sublist L′′ such that L′′ � L and L′′ � L′. In the follow-
ing, we define three different translations of terms in T (F �

ϕ,X �
ϕ) into terms of

T (F II�
ϕII,X �

ϕII): without considering extra symbols froot and f+i (translation

t↓ϕII), considering the insertion of symbols froot (translation posp(t)), or con-
sidering the insertion of symbols f+i (translation negp(t)). Note that for all
f ∈ F , ϕII(f) � ϕ(f).

Definition A.1 Let ϕ be a strategy map over signature F . Let ϕII be a
strategy map over signature F II. Let t ∈ T (F �

ϕ,X �
ϕ). We define the translation

of t into terms T (F II�
ϕII ,X �

ϕII) as t↓ϕII = s where Pos(s) = Pos(t) and ∀q ∈
Pos(t).root(t|q) = fL1|L2 , root(s|q) = fL′

1|L′
2
where L′

1 = L1↓ϕII(f) and L′
2 =

L2↓ϕII(f).

Definition A.2 Let ϕ be a strategy map over signature F and ϕII be a
strategy map over signature F II. Let t ∈ T (F �

ϕ,X �
ϕ) and p ∈ PosA(t). We

define the translation of t into terms T (F II�
ϕII,X �

ϕII) as posp(t) = s where

Pos(s) = Pos(t) and ∀q ∈ Pos(t).root(t|q) = fL1|L2 , we have:

root(s|q) =




frootL′
1|L′

2
if p ∈ PosP (t), q ≤ p, and f ∈ Fϕ

R;
where L′

1 = L1↓ϕII(froot), and L′
2 = L2↓ϕII(froot)

fL′
1|L′

2
otherwise; where L′

1 = L1↓ϕII(f), and L′
2 = L2↓ϕII(f)

Definition A.3 Let ϕ be a strategy map over signature F and ϕII be a
strategy map over signature F II. Let t ∈ T (F �

ϕ,X �
ϕ) and p ∈ PosA(t). We

define the translation of t into terms T (F II�
ϕII ,X �

ϕII) as negp(t) = s where

Pos(s) = Pos(t) and ∀q ∈ Pos(t).root(t|q) = fL1|L2 , we have:

root(s|q) =




f+iL′
1|L′

2
if p ∈ PosA−P (t) and q.i ≤ p; where L′

1 = (i) and

L′
2 =


(0) if (-i 0) � ϕ(f) ∨ (i 0) � ϕ(f)

nil if (-i 0) �� ϕ(f) ∧ (i 0) �� ϕ(f)

fL′
1|L′

2
otherwise; where L′

1 = L1↓ϕII(f), and L′
2 = L2↓ϕII(f)

The following proposition shows that each evaluation step with negative
annotations can be simulated by the transformed program.

Proposition A.4 Let R = (F , R) = (C � D, R) be a CS and ϕ be a stan-
dard E-strategy map such that R is ϕ-terminating. Let RII = (F II, RII)

and ϕII. For all t, s ∈ T (F �
ϕ,X �

ϕ), and q ∈ PosA(s), if 〈t,Λ〉 �→ϕ,R 〈s, q〉,
then 〈posΛ(t),Λ〉 �→∗

ϕII,RII 〈s′, q〉 where either (1) s′ = quoteτ (s↓ϕII), (2) s′ =

posΛ(s), (3) s′ = negq(s), or (4) s and s′ are �→ -normal forms with a defined
symbol at root position.

115



Alpuente, Escobar, and Lucas

Proof. We consider the different cases for
�→ϕ,R .

(i) The cases t = fL|nil(t1, . . . , tk) or t = fL1|L2
(t1, . . . , tk) are impossible.

(ii) Let t = fL1|i:L2(t1, . . . , tk), i > 0, q = i, and s = fL1@i|L2(t1, . . . , tk).
If f �∈ Fϕ

R, then root(posΛ(t)) = fL1|i:L2 and the conclusion follows. If
f ∈ Fϕ

R, then root(posΛ(t)) = fL′
1|i:L′

2
such that L′

1 and L′
2 do not contain

negative annotations. Thus, the conclusion follows and condition (2) is
fulfilled.

(iii) Let t = fL1|−i:L2(t1, . . . , tk), i > 0, q = Λ, and s = fL1@−j|L2(t1, . . . , tk).
In this case, it is clear that index −i would not appear in posΛ(t). Thus,

since negΛ(t
′) = t′ for any term t′, 〈posΛ(t),Λ〉 �→=

ϕII,RII 〈negΛ(posΛ(t)),Λ〉
and condition (2) is fulfilled.

(iv) Let t = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l for l → r ∈ R and
substitution σ, s = σ(ϕ(r)), and q = Λ. Note that since R is a CS and
f ∈ D, f �∈ Fϕ

R and root(posΛ(t)) = fL′
1|0:L′

2
.

If l → r ∈ RII, then the conclusion follows and condition (1) is fulfilled.
Consider l → r �∈ RII. Then, there is a set of rules l1 → r1, . . . , ln →
rn ∈ RII such that l1 = l[x]Q for a set of positions Q and rn = quoteτ (r).
Moreover, when these rules are applied sequentially to term posΛ(t), they
produce term s′ = quoteτ(root(s))(σ(ϕ

II(r))). Hence, the conclusion fol-
lows and condition (1) is fulfilled.

(v) Let t = fL1|0:L2(t1, . . . , tk), erase(t) is not a redex w.r.t. R, ODR(t) = ∅,
s = fL1|L2(t1, . . . , tk), and q = Λ. If erase(t) is not a redex neither w.r.t.
RII, then the conclusion follows and condition (2) is fulfilled.
First, note that it is impossible that erase(t) is not a redex w.r.t. RII

but ODR(t) �= ∅, since there are no negative annotations in RII.
Consider erase(t) = σ(l) for l → r ∈ RII. By definition, ∃l′ → r′ ∈ R

s.t. l differs from l′ in a set of variables positions, ∃Q ⊆ Pos(l′) s.t.
l = l′[x]Q. Then, there is a set of rules l1 → r1, . . . , ln → rn ∈ RII such
that l1 = l and rn = quoteτ (r

′). Moreover, when these rules are applied
sequentially to term posΛ(t), they produce a term t′ which differs from
t in a set of symbols {fΛ, . . . , f q′} for a position q′ ∈ Pos(t) such that
t′ = t[fΛ, . . . , f q′ ]{Λ,...,q′}. Note that since erase(t) is not a redex w.r.t. R,
the sequence of rules l1 → r1, . . . , ln → rn will not be able to evaluate t to
rn at it will stop at some intermediate step, which is just the expression
t′ with symbols f+i. Then, since R is ϕ-terminating, the term t′ can
be produced without entering in an infinite evaluation sequence. Hence,
condition (4) is fulfilled.

(vi) Let t = fL1|0:L2(t1, . . . , tk), erase(t) is not a redex w.r.t. R, ODR(t) =
{p′}, s = mark(t, p′) and q = p′.
Again, there is a set of rules l1 → r1, . . . , ln → rn ∈ RII such that

l1 = l[x]Q for a set of positions Q and ln differs from l in a set of symbols
{fΛ, . . . , f p′′} for a position p′′ ∈ Pos(l) s.t. p′′.i = p′ for i ∈ N and

116



Alpuente, Escobar, and Lucas

ln = l[y]Q′ [fΛ, . . . , fp′′ ]{Λ,...,p′′} for another set of positions Q′. That is,
these rules are auxiliary rules introduced to stepwise the pattern matching
process until position p′ (which is the demanded position) is reached and
its evaluation started. Hence, condition (3) is fulfilled.

2

We denote by pos(t) the extension of posp(t) to include symbols froot w.r.t.
all positive positions in t, i.e. root(pos(t)|p) = frootL′

1|L′
2
if p ∈ PosP (t) ∩

PosFϕ
R(t), where t|p = fL1|L2 , L′

1 = L1↓ϕII(froot), and L′
2 = L2↓ϕII(froot); and

root(pos(t)|p) = fL′
1|L′

2
otherwise, where t|p = fL1|L2 , L′

1 = L1↓ϕII(f), and
L′
2 = L2↓ϕII(f).

The following lemma ensures that normalization from a term quoteτ (t) or
from a term pos(t) is equivalent.

Lemma A.5 Let R = (F , R) be a TRS and ϕ be a standard strategy map.

Let RII = (F II, RII) and ϕII. Let t, s ∈ T (F II�
ϕII,X �

ϕII) s.t. τ = τ(root(t)).

Then, 〈quoteτ (t),Λ〉
�→!

ϕII,RII 〈s,Λ〉 if and only if 〈pos(t),Λ〉 �→!
ϕII,RII 〈s,Λ〉.

Proof. Straightforward because pos and quoteτ modify the same symbols in
PosP (t) ∩ PosFϕ

R(t) and, since ϕ is a standard strategy map, positive indices
are always reduced before the root symbol. 2

In the following theorem we prove completeness of the transformation, i.e.
that the transformation preserves normal forms (while they can include extra
symbols at some inner positions).

Definition A.6 [Maximal constructor context] Let R = (F , R) = (C �D, R)
be a TRS and ϕ be an E-strategy map. The maximal constructor context
Ct[ ] of a term t ∈ T (F �

ϕ,X �
ϕ) is defined as: Ct[ ] = 2 if root(erase(t)) �∈ C;

Ct[ ] = c(Ct1 [ ], . . . , Ctk [ ]) if root(erase(t)) = c ∈ C.

Theorem A.7 Let R = (F , R) = (C � D, R) be a CS and ϕ be a standard
E-strategy map such that R is ϕ-terminating. Let RII = (F II, RII) and ϕII.

For all t, s ∈ T (F �
ϕ,X �

ϕ), if 〈t,Λ〉
�→!

ϕ,R 〈s,Λ〉, then 〈pos(t),Λ〉 �→!
ϕII,RII 〈s′,Λ〉

where Cs = Cs′ and ∀p ∈ minimal≤(PosF II−F(s′)), s′|p is a
�→ -normal form.

Proof. (Sketch) By induction on the length of the sequence 〈t,Λ〉 �→!
ϕ,R 〈s,Λ〉

and considering Proposition A.4 and Lemma A.5. 2

Theorem 4.6 Let R = (F , R) = (C � D, R) be a CS and ϕ be a standard
E-strategy map such that R is ϕ-terminating. Let RII = (F II, RII) and ϕII.

For all t ∈ T (F ,X ) and s ∈ T (C,X ), if s ∈ evalϕR(t), then s ∈ evalϕ
II

RII(t).

Proof. By Theorem A.7 and Lemma A.5. 2

On the other hand, to prove correctness, we provide a translation of the

labeling of terms in T (F II�
ϕII,X �

ϕII) back to the labeling of T (F �
ϕ,X �

ϕ). Given

117



Alpuente, Escobar, and Lucas

two strategy lists L,L′ ∈ L, we denote by L↑L′ the maximal sublist L′′ such
that L � L′′ and L′′ � L′.

Definition A.8 Let ϕ be a strategy map over signature F . Let ϕII be a

strategy map over signature F II. Let t ∈ T (F II�
ϕII ,X �

ϕII). We define the trans-

lation of t into terms T (F �
ϕ,X �

ϕ) as rem(t) = s where Pos(s) = Pos(t) and
∀q ∈ Pos(t),

root(s|q) =




fL′
1|L′

2
if t|q = fL1|L2 ; where L′

1 = L1↑ϕ(f), L′
2 = L2↑ϕ(f),

and L1 ++L2 � ϕ(f)

fL′
1|L′

2
if t|q = frootL1|L2

; where L′
1 = L1↑ϕ(f), L′

2 = L2↑ϕ(f),
and L1 ++L2 � ϕ(f)

fL′
1|L′

2
if t|q = f+iL1|L2

; where L′
1 =

{
(-i)↑ϕ(f) if (-i) � ϕ(f)

(i)↑ϕ(f) if (i) � ϕ(f)

L′
2 = L2↑ϕ(f), and L1 ++L2 � ϕ(f)

Proposition A.9 Let R = (F , R) = (C � D, R) be a CS and ϕ be a stan-

dard E-strategy map. Let RII = (F II, RII) and ϕII. For all t, s ∈ T (F II�
ϕII,X �

ϕII)

without symbols quoteτ , and q ∈ PosA(s), if 〈t,Λ〉 �→ϕII,RII 〈s, q〉, then
〈rem(t),Λ〉 �→=

ϕ,R 〈rem(s), q〉.

Proof. Straightforward since cases of
�→ for positive strategy annotations

are only considered. 2

Theorem A.10 Let R = (F , R) = (C�D, R) be a CS and ϕ be a standard E-

strategy map. Let RII = (F II, RII) and ϕII. For all t, s ∈ T (F II�
ϕII,X �

ϕII) with-

out symbols quoteτ , and q ∈ PosA(s), if 〈t,Λ〉 �→!
ϕII,RII 〈s,Λ〉, then

〈rem(t),Λ〉 �→!
ϕ,R 〈s′, q〉 where Cs = Cs′ and ∀p ∈ minimal≤(PosF II−F(s)),

s′|p is a �→ -normal form.

Proof. Similar to Theorem A.7 but using Proposition A.9 and without any
condition on termination. 2

Theorem 4.7 Let R = (F , R) = (C � D, R) be a CS and ϕ be a standard
E-strategy map. Let RII = (F II, RII) and ϕII. For all t ∈ T (F ,X ) and

s ∈ T (C,X ), if s ∈ evalϕ
II

RII(t), then s ∈ evalϕR(t).

Proof. By Theorem A.10 and Lemma A.5. 2

Finally, termination is preserved by the transformation.

Theorem 4.8 Let R = (F , R) = (C � D, R) be a CS and ϕ be a standard
E-strategy map. R is ϕ-terminating iff RII is ϕII-terminating.

Proof. By Propositions A.4 and A.9. 2

118


