Minimal enclosing discs, circumcircles, and circumcenters in normed planes (Part I) N

Javier Alonso ${ }^{\text {a }}$, Horst Martini ${ }^{\text {b }}$, Margarita Spirova ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Extremadura, 06006 Badajoz, Spain
${ }^{\text {b }}$ Fakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany

ARTICLE INFO

Article history:

Received 14 July 2011
Accepted 16 January 2012
Available online 20 January 2012
Communicated by O. Cheong

Keywords:

Circumcenters
Intersection of norm circles
Minimal enclosing balls
Minkowski geometry
Normed plane

Abstract

It is surprising that there are almost no results on the precise location of (all) minimal enclosing balls, circumballs, and circumcenters of simplices in finite-dimensional real Banach spaces. In this paper and a subsequent second part of it we give the starting point in this direction, also for computational investigations. More precisely, we present the first thorough study of these topics for triangles in arbitrary normed planes. In the present Part I we lay special emphasize on a complete description of possible locations of the circumcenters, and as a needed tool we give also a modernized classification of all possible shapes of the intersection that two homothetic norm circles can create. Based on this, we give in Part II the complete solution of the strongly related subject to find all minimal enclosing discs of triangles in arbitrary normed planes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that already elementary results and constructions from Euclidean geometry have non-trivial analogues and extensions in Minkowski geometry, i.e., in the geometry of finite-dimensional real Banach spaces. Simple notions like bisectors, circumcenters, circumballs, minimal enclosing balls and angular bisectors are still interesting subjects of research in real Banach spaces. The main reason is that their "convenient" geometric properties get lost when switching to sufficiently general norms. E.g., bisectors are, in general, no longer (topological) hyperplanes, and circumballs of simplices need not be unique, like also their minimal enclosing balls. Even in the planar situation there exist only a few observations and results in this direction.

A well known problem from Location Science and Computational Geometry is the so-called minimax or 1-center problem: for m given points in \mathbb{R}^{n}, find the (unique) point that minimizes its maximal distance to the given points. Basic references to this (also algorithmically studied) problem are [8,24,29,9,25,31]; but except for the very special class of norms considered in [26], until now this problem was not investigated for normed planes and spaces! It is easy to see that the solution of the 1-center problem yields the center of the minimal enclosing circle or ball of the given point set. We note that, historically, the minimal enclosing circle problem goes back to Sylvester [28]. In the present paper and a subsequent Part II we present, for triangles given in arbitrary normed planes, the first approach to the location of their minimal enclosing circles that always exist. Related to this we study also circumcircles and circumcenters of triangles; note that these do not

[^0]

Fig. 1. More than one circle through t_{1}, t_{2}, t_{3}.

Fig. 2. No circle through t_{1}, t_{2}, t_{3}.
always exist. Since such circles (related to fixed triangles) are also not necessarily unique, minimal circumcircles are also studied.

In particular, the present Part I contains the first complete description of possible locations of circumcenters of triangles (Theorems 4.1 and 4.2). As it turns out, the complete classification of the possible intersection shapes that two homothetic norm circles can create plays an essential role for this purpose. Therefore we also reprove and refine results on the shapes of these intersections which are due to Grünbaum [13] and Banasiak [3]. Namely, it was shown by Grünbaum [13] that the intersection of two circles in a normed plane is always the union of two segments, either disjoint or having a point in common, where such a segment may degenerate to a point or even to the empty set; see also Banasiak [3]. This is closely related to the fact that, in contrast to the Euclidean situation, a circle of minimal radius containing a segment need not be unique; see Fig. 1. On the other hand, there are normed planes (even strictly convex) with triangles that have no circumcircle; see Fig. 2. In fact, a normed plane is smooth if and only if any triangle in it has at least one circumcircle; see [15] and, for a wider discussion of that result, § 7.1 in [22]. One implication was extended to higher dimensions and even to gauges (i.e., to spaces whose unit balls are still convex, but not necessarily centered at the origin, thus creating a general convex distance function). Namely, already Gromov [11] proved that if the n-dimensional convex unit ball of a gauge is smooth, then at least one respective ($n-1$)-sphere passes through any $n+1$ non-collinear points. Makeev [20] reproved this; see also [21] for a local version. Strongly related results can be found in [10,14,17-19]; see also the discussion on page 125 of the survey [23].

Our results should be taken as starting points for extensions to more complicated given point sets (instead of triangles), to higher dimensions, and for algorithmical investigations. Also the reader should note that results of this type are basic for further research on the following notions, problems and fields with regard to finite-dimensional real Banach spaces: unit distance graphs [6], bisectors and Voronoi diagrams [23, Section 4], coresets, also in view of Approximation Theory and Computational Geometry (see [2,1]), and Location Science.

Minimal enclosing balls also have a long history in Classical Convexity (see [5, § 35 and § 44] and [27, § 14]), particularly in view of Jung's theorem (cf. [16, § 78], [12, p. 49], and [4]) and related Geometric Inequalities (see [7, § 11]).

Since this paper refers only to triangles in normed planes, we can easily define the following basic notions: Any circle containing three non-collinear points t_{1}, t_{2}, t_{3} in a normed plane is called circumcircle, and its center circumcenter, of the triangle $t_{1} t_{2} t_{3}$; and any circle of smallest possible radius containing in its closure these three points is a minimal enclosing circle of the set t_{1}, t_{2}, t_{3} or of the triangle $t_{1} t_{2} t_{3}$.

2. Preliminaries

Since our paper refers to the geometry of finite-dimensional real Banach spaces, also called Minkowski geometry, we cite, for general background, the monograph [30] and the survey [22]. Let $\left(\mathbb{R}^{2},\|\cdot\|\right)$ be a two-dimensional space of such type, called a normed plane, with unit disc \mathcal{D} and unit circle \mathcal{C}. Recall that \mathcal{D} is a compact, convex set with interior points and centered at the origin o. Homothetic copies of \mathcal{D} and \mathcal{C} are said to be discs and circles, respectively, and we write $\mathcal{C}(c, \rho)$ for the circle with center c and radius ρ.

A normed plane is called strictly convex if \mathcal{C} contains no segments, and smooth if there is a unique supporting line of \mathcal{D} at each point of \mathcal{C}.

For different points $p, q \in \mathbb{R}^{2}$, we denote the line through p and q, the segment with endpoints p and q, and the ray with origin p passing through q by $\langle p, q\rangle,[p, q]$ and $[p, r\rangle$, respectively. For brevity, we will refer to the relative interior of a segment in \mathbb{R}^{2} simply as the interior of such segment. If p and q are two different points and x is a point not in $\langle p, q\rangle$, then the closed half-plane bounded by $\langle p, q\rangle$ and containing x will be denoted by $H P_{x}^{+}(p, q)$, the opposite one by $H P_{x}^{-}(p, q)$. For $x, y \in\left(\mathbb{R}^{2},\|\cdot\|\right)$, we say that x is Birkhoff orthogonal to y, denoted by $x \dashv y$, if $\|x+\lambda y\| \geqslant\|x\|$ for every $\lambda \in \mathbb{R}$, i.e., if the line through x with direction of the vector y supports the circle with center o and radius $\|x\|$ at x.

Lemma 2.1. (Monotonicity lemma; cf. [22, Proposition 31].) Let $p, q, r \in\left(\mathbb{R}^{2},\|\cdot\|\right)$ be three points different from the origin $o, p \neq r$, with $[0, q\rangle$ between $[0, p\rangle$ and $[0, r\rangle$, and suppose that $\|q\|=\|r\|$. Then $\|p-q\| \leqslant\|p-r\|$, with equality if and only if either
(i) $q=r$,
(ii) or o and q are on opposite sides of $\langle p, r\rangle$, and $\left[\frac{r-p}{\|r-p\|}, \frac{q}{\|q\|}\right]$ is a segment on \mathcal{C},
(iii) or o and q are on the same side of $\langle p, r\rangle$, and $\left[\frac{r-p}{\|r-p\|}, \frac{-r}{\|r\|}\right]$ is a segment on \mathcal{C}.

Let t_{1}, t_{2}, t_{3} be three non-collinear points of \mathbb{R}^{2}. Referring to the incidence of the points t_{1}, t_{2}, t_{3} with a circle of $\left(\mathbb{R}^{2},\|\cdot\|\right)$, the following situations are possible:
(A) A unique circle passes through t_{1}, t_{2}, t_{3}. This happens always when the plane $\left(\mathbb{R}^{2},\|\cdot\|\right)$ is strictly convex and smooth; see, e.g., [22, Proposition 14 and Proposition 41].
(B) At least two circles pass through t_{1}, t_{2}, t_{3} (see Fig. 1). This is only possible when the plane $\left(\mathbb{R}^{2},\|\cdot\|\right)$ is not strictly convex; see [22, Proposition 14].
(C) There exists no circle passing through t_{1}, t_{2}, t_{3} (see Fig. 2). This is only possible when the plane $\left(\mathbb{R}^{2},\|\cdot\|\right.$) is not smooth; see [22, Proposition 41].

3. The intersection of two circles

The intersection of two circles in $\left(\mathbb{R}^{2},\|\cdot\|\right)$ was studied by Grünbaum [13] and Banasiak [3], where Theorem 3.1 was obtained. Here we will give a new proof of this theorem which yields more information about the different ways that two circles can intersect each other.

Let \mathcal{C} be the unit circle of $\left(\mathbb{R}^{2},\|\cdot\|\right)$, and let $\mathcal{C}_{1}=\mathcal{C}\left(c_{1}, \rho_{1}\right)$ and $\mathcal{C}_{2}=\mathcal{C}\left(c_{2}, \rho_{2}\right)$ be two different homothetic copies of \mathcal{C}. For $i=1,2$, let u_{i} and v_{i} be the intersection points of $\left\langle c_{1}, c_{2}\right\rangle$ and \mathcal{C}_{i}.

Theorem 3.1. (See [3].) The intersection of the circles \mathcal{C}_{1} and \mathcal{C}_{2} can have only one of the following forms.
(a) $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$.
(b) $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ consists of two closed, disjoint segments (one of them or both may be reduced to a point) lying on opposite sides of $\left\langle c_{1}, c_{2}\right\rangle$.
(c) $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ consists of two segments (one of them or both may be reduced to a point) with common point u_{1} or v_{1}.

Proof. To show in detail how $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ can look like, we assume, without loss of generality, that $\mathcal{C}_{1}=\mathcal{C}$, i.e., $c_{1}=0$ and $\rho_{1}=1$, and that $\rho_{2} \geqslant 1$. Let \prec be an orientation of $\left\langle c_{1}, c_{2}\right\rangle$. If $p \prec q$ or $p=q$, we use the notation $p \preccurlyeq q$. We assume that $c_{1} \prec c_{2}$ and $u_{i} \prec c_{i} \prec v_{i}, i=1,2$. We will describe the set $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ according to the position of all these points over $\left\langle c_{1}, c_{2}\right\rangle$. Table 1 "Circle intersections" summarizes all the possible situations. Observe that all cases can be achieved with the same unit circle \mathcal{C}.

Let $v_{1}^{*} \in \mathcal{C}$ be such that $v_{1} \dashv v_{1}^{*}$, and let P^{+}and P^{-}be the half-planes defined by $\left\langle c_{1}, c_{2}\right\rangle$ that contain v_{1}^{*} and $-v_{1}^{*}$, respectively, i.e., $P^{+}=H P_{v_{1}^{*}}^{+}\left(c_{1}, c_{2}\right)$ and $P^{-}=H P_{v_{1}^{*}}^{-}\left(c_{1}, c_{2}\right)$. Let $\theta \in[0,2 \pi] \rightarrow x(\theta) \in \mathcal{C}$ be an angle parametrization on \mathcal{C} where θ is the angle between $v_{1}=x(0)=x(2 \pi)$ and $x(\theta)$, and $v_{1}^{*}=x\left(\theta^{*}\right)$ with $0<\theta^{*}<\pi$.

Table 1
Circle intersections.
CASE 1: $u_{1} \prec c_{1} \prec v_{1} \prec u_{2} \prec c_{2} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}$: empty set.

CASE 2: $u_{1} \prec c_{1} \prec v_{1}=u_{2} \prec c_{2} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}: v_{1}$; a segment with v_{1} in its interior.

Table 1 (continued)

$$
\text { CASE 3: } u_{1} \prec c_{1} \preccurlyeq u_{2} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}
$$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}$: two points; a point and a segment of a line that cuts $\left\langle c_{1}, c_{2}\right\rangle$ in $p \prec u_{1}$ (if $\rho_{1}<\rho_{2}$); two segments parallel to $\left\langle c_{1}, c_{2}\right\rangle$ (if $\rho_{1}=\rho_{2}$).
CASE 4: $u_{1} \prec u_{2} \prec c_{1} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}$: two points; a point and a segment of a line that cuts $\left\langle c_{1}, c_{2}\right\rangle$ in $p \prec u_{1}$.
CASE 5: $u_{1}=u_{2} \prec c_{1} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}: u_{1}$; one or two segments with extreme u_{1}; a segment with u_{1} in its interior.
CASE 6: $u_{2} \prec u_{1} \prec c_{1} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}$: empty set.
CASE 7: $u_{1} \prec u_{2} \prec c_{1} \prec c_{2} \prec v_{1} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}$: two points; a point and a segment of a line that cuts $\left\langle c_{1}, c_{2}\right\rangle$ in $p \prec u_{1}$ (if $\rho_{1}<\rho_{2}$); two segments parallel to $\left\langle c_{1}, c_{2}\right\rangle$ (if $\rho_{1}=\rho_{2}$).
(continued on next page)

Assume first that $v_{1} \preccurlyeq c_{2}$. According to the position of u_{2}, the following cases are possible.

Case 1. $u_{1} \prec c_{1} \prec v_{1} \prec u_{2} \prec c_{2} \prec v_{2}$. Then it is obvious that $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$, because the lines $v_{1}+\lambda v_{1}^{*}$ and $u_{2}+\lambda v_{1}^{*}$ support \mathcal{C}_{1} and \mathcal{C}_{2} at the points v_{1} and u_{2}, respectively, and the distance between these two lines is $\left\|u_{2}-v_{1}\right\|>0$.

Table 1 (continued)
CASE 8: $u_{1}=u_{2} \prec c_{1} \prec c_{2} \prec v_{1} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}: u_{1}$; one or two segments with extreme u_{1}; a segment with u_{1} in its interior.
CASE 9: $u_{2} \prec u_{1} \prec c_{1} \prec c_{2} \prec v_{1} \prec v_{2}$

$\mathcal{C}_{1} \cap \mathcal{C}_{2}$: empty set.

Case 2. $u_{1} \prec c_{1} \prec v_{1}=u_{2} \prec c_{2} \prec v_{2}$. Then $c_{2}=\left(1+\rho_{2}\right) v_{1}$ and $v_{1} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$. Assume that there exists another point $x \in$ $\mathcal{C}_{1} \cap \mathcal{C}_{2}, x \neq v_{1}$. Then

$$
\frac{c_{2}-x}{\left\|c_{2}-x\right\|}=\frac{\left(1+\rho_{2}\right) v_{1}-x}{\rho_{2}}=v_{1}+\frac{1}{\rho_{2}}\left(v_{1}-x\right)
$$

Thus x, v_{1} and $\frac{c_{2}-x}{\left\|c_{2}-x\right\|}$ are three aligned points in \mathcal{C}_{1}, which implies that $I_{1}:=\left[x, v_{1}+\frac{1}{\rho_{2}}\left(v_{1}-x\right)\right] \subset \mathcal{C}_{1}$. Moreover, x, v_{1} and $c_{2}-\rho_{2} x=v_{1}+\rho_{2}\left(v_{1}-x\right)$ are aligned points in \mathcal{C}_{2}, which implies that $I_{2}:=\left[x, v_{1}+\rho_{2}\left(v_{1}-x\right)\right] \subset \mathcal{C}_{2}$. Since $I_{1} \subset I_{2}$, we obtain that $I_{1} \subset \mathcal{C}_{1} \cap \mathcal{C}_{2}$. Since v_{1} is an interior point of I_{1}, we get also that the vector v_{1}^{*} is parallel to that segment. Any other point in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ has to lie in a segment of the line $v_{1}+\lambda v_{1}^{*}$ with v_{1} as interior point. Therefore $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ is a closed segment parallel to v_{1}^{*} with v_{1} in its interior.

Case 3. $u_{1} \prec c_{1} \preccurlyeq u_{2} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$. First observe that the common points of \mathcal{C}_{1} and C_{2} have to lie between the parallel lines $u_{2}+\lambda v_{1}^{*}$ and $v_{1}+\lambda v_{1}^{*}$. Moreover,

$$
\begin{aligned}
\left\|x(0)-c_{2}\right\| & =\left\|v_{1}-\right\| c_{2}\left\|v_{1}\right\|=\left\|c_{2}\right\|-1<\left\|c_{2}\right\|-\left\|u_{2}\right\|=\rho_{2} \\
& <\left\|c_{2}\right\|+1=\left\|\left(1+\left\|c_{2}\right\|\right) v_{1}\right\|=\left\|-v_{1}-c_{2}\right\|=\left\|x(\pi)-c_{2}\right\| .
\end{aligned}
$$

Therefore, there must exist θ_{1} and $\bar{\theta}_{1}$ such that $0<\theta_{1} \leqslant \theta^{*}<\pi<\theta^{*}+\pi \leqslant \bar{\theta}_{1}<2 \pi$ and $\left\|x\left(\theta_{1}\right)-c_{2}\right\|=\left\|x\left(\bar{\theta}_{1}\right)-c_{2}\right\|=\rho_{2}$. That is, \mathcal{C}_{1} and \mathcal{C}_{2} intersect each other in at least two points, one in P^{+}and the other in P^{-}.

Suppose now that $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ contains at least three points. Thus we can assume that, without loss of generality, there exists θ_{2} such that $0<\theta_{2}<\theta_{1} \leqslant \theta^{*}<\pi$ and $\left\|x\left(\theta_{2}\right)-c_{2}\right\|=\rho_{2}$. Let θ_{1}^{\prime} and θ_{2}^{\prime} be such that $x\left(\theta_{1}^{\prime}\right)=\frac{x\left(\theta_{1}\right)-c_{2}}{\left\|x\left(\theta_{1}\right)-c_{2}\right\|}$ and $x\left(\theta_{2}^{\prime}\right)=$ $\frac{x\left(\theta_{2}\right)-c_{2}}{\left\|x\left(\theta_{2}\right)-c_{2}\right\|}$. Then $\theta_{1} \leqslant \theta^{*}<\theta_{1}^{\prime}<\pi$ and $\theta_{2}<\theta^{*}<\theta_{2}^{\prime}<\pi$. Moreover, $\theta_{1}^{\prime} \neq \theta_{2}^{\prime}$ because $x\left(\theta_{1}^{\prime}\right) \neq x\left(\theta_{2}^{\prime}\right)$. Assume that $\theta_{2}^{\prime}>\theta_{1}^{\prime}$. From Lemma 2.1 it follows that $\left[x\left(\theta_{1}\right), x\left(\theta_{1}^{\prime}+\pi\right)\right]$ is a segment of \mathcal{C}_{1} that contains $x\left(\theta_{2}\right)$ and cuts $\left\langle c_{1}, c_{2}\right\rangle$ in v_{1}. Similarly, we obtain that $\left[x\left(\theta_{1}\right), c_{2}-\rho_{2} x\left(\theta_{1}\right)\right]$ is a segment of \mathcal{C}_{2} that contains $x\left(\theta_{2}\right)$ and u_{2}, which implies $v_{1}=u_{2}$, against the hypothesis. Therefore $\theta_{2}^{\prime}<\theta_{1}^{\prime}$. Again it follows from Lemma 2.1 that $\left[x\left(\theta_{2}\right), x\left(\theta_{1}^{\prime}\right)\right] \subset \mathcal{C}_{1}$, and since $\theta_{2}<\theta_{1} \leqslant \theta^{*}<\theta_{2}^{\prime}<\theta_{1}^{\prime}$, we obtain that $\left[x\left(\theta_{1}\right), x\left(\theta_{2}\right)\right] \subset \mathcal{C}_{1} \cap \mathcal{C}_{2}$. Moreover, since $x\left(\theta_{1}\right)$ and $x\left(\theta_{1}^{\prime}\right)$ are in $\left\langle x\left(\theta_{1}\right), x\left(\theta_{2}\right)\right\rangle, \rho_{1}=1=\left\|x\left(\theta_{1}^{\prime}\right)\right\| \leqslant \rho_{2}=\left\|x\left(\theta_{1}\right)-c_{2}\right\|$ and the lines $\left\langle x\left(\theta_{1}^{\prime}\right), c_{1}\right\rangle$ and $\left\langle x\left(\theta_{1}\right), c_{2}\right\rangle$ are parallel, it follows that either $\left\langle x\left(\theta_{1}\right), x\left(\theta_{2}\right)\right\rangle$ is parallel to $\left\langle c_{1}, c_{2}\right\rangle$ (if $\rho_{1}=\rho_{2}$) or intersects the ray $u_{1}+\lambda\left(u_{1}-c_{1}\right), \lambda>0$ (if $\rho_{1}<\rho_{2}$).

Thus, we have shown that if there are two points in $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$, then the segment having these points as extremes belongs to $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. This implies that $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$is a segment. Moreover, the line that contains this segment either is parallel to $\left\langle c_{1}, c_{2}\right\rangle$ (if $\rho_{1}=\rho_{2}$) or intersects $\left\langle c_{1}, c_{2}\right\rangle$ (if $\rho_{1}<\rho_{2}$) in a point $p<u_{1}$.

Assume now that $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$also contains two points. From the above we know that if $x\left(\bar{\theta}_{1}\right)$ and $x\left(\bar{\theta}_{2}\right), \pi<\bar{\theta}_{1}<\bar{\theta}_{2}<$ 2π, belong to $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$, then these two points are in a segment of \mathcal{C}_{1} that contains $x\left(\theta^{*}+\pi\right)$, and therefore is parallel to $\left\langle x\left(\theta_{1}\right), x\left(\theta_{2}\right)\right\rangle$. Also we know that $\left\langle x\left(\bar{\theta}_{1}\right), x\left(\bar{\theta}_{2}\right)\right\rangle$ is either parallel to $\left\langle c_{1}, c_{2}\right\rangle$ or intersects $\left\langle c_{1}, c_{2}\right\rangle$ at $\bar{p} \prec u_{1}$. But the latter contradicts the parallelity of $\left\langle x\left(\theta_{1}\right), x\left(\theta_{2}\right)\right\rangle$ and $\left\langle x\left(\bar{\theta}_{1}\right), x\left(\bar{\theta}_{2}\right)\right\rangle$. Thus $\rho_{1}=\rho_{2}$, which implies that the segments $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$ and $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$are parallel to $\left\langle c_{1}, c_{2}\right\rangle$ and symmetric with respect $\frac{1}{2}\left(c_{1}+c_{2}\right)$.

Case 4. $u_{1} \prec u_{2} \prec c_{1} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$. In this case, necessarily $\rho_{1}<\rho_{2}$ holds. Moreover,

$$
\begin{aligned}
\left\|x(0)-c_{2}\right\| & =\left\|v_{1}-\right\| c_{2}\left\|v_{1}\right\|=\left\|c_{2}\right\|-1<\left\|c_{2}\right\|+\left\|u_{2}\right\| \\
& =\left\|c_{2}-u_{2}\right\|=\rho_{2}<\rho_{2}+\left\|u_{1}-u_{2}\right\|=\left\|x(\pi)-c_{2}\right\|,
\end{aligned}
$$

which implies that there exist θ_{1} and $\bar{\theta}_{1}$ such that $0<\theta_{1}<\pi<\bar{\theta}_{1}<2 \pi$ and $\left\|x\left(\theta_{1}\right)-c_{2}\right\|=\left\|x\left(\bar{\theta}_{1}\right)-c_{2}\right\|=\rho_{2}$. Therefore $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ has at least one point in P^{+}and another point in P^{-}.

Assume that $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$contains at least two points. Then it follows, as in Case 3, that $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$is a segment and, since $\rho_{1}<\rho_{2}$, the line that contains this segment intersects $\left\langle c_{1}, c_{2}\right\rangle$ in a point $p \prec u_{1}$. Moreover, $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$has only one point.

Case 5. $u_{1}=u_{2} \prec c_{1} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$. Then $u_{1} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$. Consider the parametrization of $\mathcal{C}_{2}, y(\theta)=c_{2}+\rho_{2} x(\theta), 0 \leqslant \theta \leqslant 2 \pi$. From Lemma 2.1 it follows that the function $\|y(\theta)\|$ is decreasing in $[0, \pi]$ and increasing in $[\pi, 2 \pi]$. Then, $\|y(\theta)\| \geqslant$ $\|y(\pi)\|=\left\|c_{2}+\rho_{2} u_{1}\right\|=\left\|u_{2}\right\|=\left\|u_{1}\right\|=\rho_{1}$ for $0 \leqslant \theta \leqslant 2 \pi$. Therefore, for any $x \in \mathcal{C}_{2}$ we have $\|x\| \geqslant \rho_{1}$.

Assume that in $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$there exists another point $x \neq u_{1}$. Again from Lemma 2.1 it follows that $\left[u_{1}, x\right] \subset \mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$, and therefore $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$is a segment with extreme u_{1}. The same situation holds with $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$.

Thus, the set $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ can have the following forms: (a) the point u_{1}; (b) a segment with extreme u_{1}; (c) two non-aligned segments with u_{1} as common extreme; (d) a segment with u_{1} as interior point.

Case 6. $u_{2} \prec u_{1} \prec c_{1} \prec v_{1} \preccurlyeq c_{2} \prec v_{2}$. Considering the parametrization of \mathcal{C}_{2} given in Case 5 we obtain that $\|y(\theta)\| \geqslant$ $\|y(\pi)\|=\left\|u_{2}\right\|>\left\|u_{1}\right\|=\rho_{1}$ for $0 \leqslant \theta \leqslant 2 \pi$, which implies that $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$.

Assume now that $c_{2} \prec v_{1}$. Since we are assuming that $\rho_{1} \leqslant \rho_{2}$, we have that $v_{1} \prec v_{2}$ and $u_{2} \prec c_{1}$. Thus only the following cases are possible.

Case 7. $u_{1} \prec u_{2} \prec c_{1} \prec c_{2} \prec v_{1} \prec v_{2}$. This case is very similar to Case 3. Now we have $\left\|x(0)-c_{2}\right\|=\rho_{1}-\left\|c_{1}-c_{2}\right\|<$ $\rho_{1}+\left\|c_{1}-c_{2}\right\|=\left\|x(\pi)-c_{2}\right\|$. Therefore, at least one point exists in $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$, and another point in $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$. Assume that $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$contains two points. Then there exist $0<\theta_{2}<\theta_{1}<\pi$ such that $\left\|x\left(\theta_{1}\right)-c_{2}\right\|=\left\|x\left(\theta_{2}\right)-c_{2}\right\|=\rho_{2}$. Let θ_{1}^{\prime} and θ_{2}^{\prime} be such that $x\left(\theta_{1}^{\prime}\right)=\frac{x\left(\theta_{1}\right)-c_{2}}{\left\|x\left(\theta_{1}\right)-c_{2}\right\|}$ and $x\left(\theta_{2}^{\prime}\right)=\frac{x\left(\theta_{2}\right)-c_{2}}{\left\|x\left(\theta_{2}\right)-c_{2}\right\|}$. Then $\theta_{1}^{\prime} \neq \theta_{2}^{\prime}, \theta_{1}<\theta_{1}^{\prime}<\pi$ and $\theta_{2}<\theta_{2}^{\prime}<\pi$. Assume that $\theta_{2}^{\prime}>\theta_{1}^{\prime}$. Then $\left[x\left(\theta_{1}\right), x\left(\theta_{1}^{\prime}+\pi\right)\right] \subset \mathcal{C}_{1}$ and $\left[x\left(\theta_{1}\right), c_{2}-\rho_{2} x\left(\theta_{1}\right)\right] \subset \mathcal{C}_{2}$. But since both segments contains $x\left(\theta_{2}\right)$ and intersect $\left\langle c_{1}, c_{2}\right\rangle$, it follows that \mathcal{C}_{1} and \mathcal{C}_{2} have a common point in $\left\langle c_{1}, c_{2}\right\rangle$, which contradicts the hypothesis. Therefore $\theta_{2}^{\prime}<\theta_{1}^{\prime}$, which implies that $\left[x\left(\theta_{2}\right), x\left(\theta_{1}^{\prime}\right)\right] \subset \mathcal{C}_{1}$, and since $\theta_{1}, \theta_{2}^{\prime} \in\left(\theta_{2}, \theta_{1}^{\prime}\right)$, we get that $\left[x\left(\theta_{1}\right), x\left(\theta_{2}\right)\right] \subset \mathcal{C}_{1} \cap \mathcal{C}_{2}$. Therefore $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$ is a segment. As in Case 3, this segment is parallel to $\left\langle c_{1}, c_{2}\right\rangle$ or is in a line that intersects $\left\langle c_{1}, c_{2}\right\rangle$ in a point $p \prec u_{1}$, depending on whether $\rho_{1}=\rho_{2}$ or $\rho_{1}<\rho_{2}$. As in Case 3, we have again that if $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$contains also two points, then $\rho_{1}=\rho_{2}$ and the segments $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{+}$and $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap P^{-}$are parallel to $\left\langle c_{1}, c_{2}\right\rangle$ and symmetric with respect $\frac{1}{2}\left(c_{1}+c_{2}\right)$.

Case 8. $u_{1}=u_{2} \prec c_{1} \prec c_{2} \prec v_{1} \prec v_{2}$. This case is like Case 5, since there we have not used that $v_{1} \preccurlyeq c_{2}$.
Case 9. $u_{2} \prec u_{1} \prec c_{1} \prec c_{2} \prec v_{1} \prec v_{2}$. As in Case 6, it follows that $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$.
The following statements directly follow from Theorem 3.1.
Corollary 3.1. Let $\left(\mathbb{R}^{2},\|\cdot\|\right)$ be a normed plane with unit circle \mathcal{C}. Assume that $\mathcal{C}_{1}=\mathcal{C}\left(c_{1}, \rho_{1}\right)$ and $\mathcal{C}_{2}=\mathcal{C}\left(c_{2}, \rho_{2}\right)$ are two different circles whose intersection $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ contains three non-collinear points t_{1}, t_{2} and t_{3}. Let u_{1} and v_{1} be the points in which the line $\left\langle c_{1}, c_{2}\right\rangle$ intersects \mathcal{C}_{1}.
(a) If $\rho_{1}=\rho_{2}$, then $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ consists of two closed, disjoint non-degenerate segments, parallel to $\left\langle c_{1}, c_{2}\right\rangle$ and symmetric with respect to $\frac{1}{2}\left(c_{1}+c_{2}\right)$.
(b) If $\rho_{1} \neq \rho_{2}$, then $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ can have only one of the following forms:
(b.1) $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ consists of a non-degenerate segment and a point lying on the opposite sides of $\left\langle c_{1}, c_{2}\right\rangle$. Moreover, the segment is not parallel to $\left\langle c_{1}, c_{2}\right\rangle$.
(b.2) $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ consists of two non-degenerate segments, lying on the opposite sides of $\left\langle c_{1}, c_{2}\right\rangle$, with common endpoint u_{1} or v_{1}.

Therefore, in all three situations one of the segments contains a side of the triangle $t_{1} t_{2} t_{3}$.

4. Where is the circumcenter?

Let t_{1}, t_{2}, t_{3} be three non-collinear points in a normed plane $\left(\mathbb{R}^{2},\|\cdot\|\right)$. Assume that there exists a circle which passes through the three points. Theorem 4.1 describes the region of the plane where the center of that circle has to be located. (See also Fig. 3.) Let

Fig. 3. The region where the center of a circle passing through t_{1}, t_{2}, t_{3} has to be located.

Fig. 4. Proof of Theorem 4.1, $c \notin \bigcup_{i=0}^{3} K_{i}\left(t_{1}, t_{2}, t_{3}\right)$.

$$
K_{0}\left(t_{1}, t_{2}, t_{3}\right)=\operatorname{conv}\left\{\frac{t_{1}+t_{2}}{2}, \frac{t_{2}+t_{3}}{2}, \frac{t_{3}+t_{1}}{2}\right\},
$$

and define, for $\{i, j, k\}=\{1,2,3\}$, the cones

$$
K_{i}\left(t_{1}, t_{2}, t_{3}\right)=\left\{t_{i}+x_{1}\left(t_{j}-t_{i}\right)+x_{2}\left(t_{k}-t_{i}\right): x_{1} \geqslant \frac{1}{2}, x_{2} \geqslant \frac{1}{2}\right\} .
$$

Theorem 4.1. Let t_{1}, t_{2}, t_{3} be three non-collinear points in \mathbb{R}^{2}. There exists a norm $\|\cdot\|$ and a circle $\mathcal{C}(c, \rho)$ in ($\left.\mathbb{R}^{2},\|\cdot\|\right)$ passing through the three points if and only if $c \in \bigcup_{i=0}^{3} K_{i}\left(t_{1}, t_{2}, t_{3}\right)$.

Proof. Assume that $c \notin \bigcup_{i=0}^{3} K_{i}\left(t_{1}, t_{2}, t_{3}\right)$ and that there exists $\rho>0$ such that $\mathcal{C}(c, \rho)$ passes through the three points. We will get a contradiction. Without loss of generality, we can assume that

$$
c=\frac{t_{1}+t_{3}}{2}+\mu\left[\beta\left(\frac{t_{1}+t_{2}}{2}\right)+(1-\beta)\left(\frac{t_{2}+t_{3}}{2}\right)-\frac{t_{1}+t_{3}}{2}\right]
$$

with $\mu>1$ and $0<\beta<1$ (see Fig. 4). According to the values of μ and β, we consider the following six cases:

1. Assume that $1<\mu<2$. Then $0<\frac{\mu-1}{\mu}<\frac{1}{\mu}<1$.
1.1. Assume that $0<\beta<\frac{\mu-1}{\mu}$. Taking $\gamma=1-2 \beta$ and $\delta=\frac{\mu-1-\mu \beta}{\mu(1-2 \beta)}$, we have that

$$
c-t_{2}=\gamma\left(\delta\left(c-t_{1}\right)+(1-\delta)\left(t_{3}-c\right)\right)
$$

1.2. Assume that $\frac{\mu-1}{\mu} \leqslant \beta \leqslant \frac{1}{\mu}$. Taking $\gamma=\frac{2-\mu}{\mu}$ and $\delta=\frac{1-\mu+\mu \beta}{2-\mu}$, we have that

$$
c-t_{2}=\gamma\left(\delta\left(t_{1}-c\right)+(1-\delta)\left(t_{3}-c\right)\right)
$$

1.3. Assume that $\frac{1}{\mu}<\beta<1$. Taking $\gamma=2 \beta-1$ and $\delta=\frac{1-\mu+\mu \beta}{\mu(2 \beta-1)}$, we have that

$$
c-t_{2}=\gamma\left(\delta\left(t_{1}-c\right)+(1-\delta)\left(c-t_{3}\right)\right)
$$

Fig. 5. Proof of Theorem 4.1.
2. Assume that $\mu \geqslant 2$. Then $0<\frac{1}{\mu} \leqslant \frac{\mu-1}{\mu}<1$.
2.1. Assume that $0<\beta<\frac{1}{\mu}$. Taking $\gamma=1-2 \beta$ and $\delta=\frac{\mu-1-\mu \beta}{\mu(1-2 \beta)}$, we have that

$$
c-t_{2}=\gamma\left(\delta\left(c-t_{1}\right)+(1-\delta)\left(t_{3}-c\right)\right)
$$

2.2. Assume that $\frac{1}{\mu} \leqslant \beta \leqslant \frac{\mu-1}{\mu}$. Taking $\gamma=\frac{\mu-2}{\mu}$ and $\delta=\frac{\mu-1-\mu \beta}{\mu-2}$, we have that

$$
c-t_{2}=\gamma\left(\delta\left(c-t_{1}\right)+(1-\delta)\left(c-t_{3}\right)\right)
$$

2.3. Assume that $\frac{\mu-1}{\mu}<\beta<1$. Taking $\gamma=2 \beta-1$ and $\delta=\frac{1-\mu+\mu \beta}{\mu(2 \beta-1)}$, we have that

$$
c-t_{2}=\gamma\left(\delta\left(t_{1}-c\right)+(1-\delta)\left(c-t_{3}\right)\right)
$$

In the six cases we have $0 \leqslant \gamma<1,0 \leqslant \delta \leqslant 1$, and

$$
\rho=\left\|c-t_{2}\right\| \leqslant \gamma\left(\delta\left\|c-t_{1}\right\|+(1-\delta)\left\|c-t_{3}\right\|\right)=\gamma(\delta \rho+(1-\delta) \rho)=\gamma \rho<\rho,
$$

which is absurd.
Conversely, assume that $c \in \bigcup_{i=0}^{3} K_{i}\left(t_{1}, t_{2}, t_{3}\right)$. For $i=1,2$, 3, let \bar{t}_{i} be the point symmetric to t_{i} with respect to c, i.e., $\bar{t}_{i}=2 c-t_{i}$. We assume first that $c \in K_{0}\left(t_{1}, t_{2}, t_{3}\right)$. Then for $\{i, j, k\}=\{1,2,3\}$ we have that $\bar{t}_{i} \in \operatorname{conv}\left\{-t_{i}+t_{j}+t_{k}, t_{j}, t_{k}\right\}$ (see Fig. 5(A)), which implies that the hexagon with consecutive vertices $t_{1}, \bar{t}_{3}, t_{2}, \bar{t}_{1}, t_{3}, \bar{t}_{2}$ is convex and symmetric with respect to c, i.e., it is a sphere of a certain norm in \mathbb{R}^{2} centered at c. Observe that this hexagon is reduced to a rectangle if c is the midpoint of a side of the triangle $t_{1} t_{2} t_{3}$. Assume now that $c \in K_{i}\left(t_{1}, t_{2}, t_{3}\right)$ with $i \in\{1,2,3\}$. Without loss of generality, we can assume that $c \in K_{1}\left(t_{1}, t_{2}, t_{3}\right)$ (see Fig. $5(\mathrm{~B})$). We will show that the hexagon with consecutive vertices t_{1}, $t_{2}, \bar{t}_{3}, \bar{t}_{1}, \bar{t}_{2}, t_{3}$ is convex. For that purpose it is enough to see that $t_{1} \in H P_{c}^{-}\left(t_{2}, t_{3}\right) \cap H P_{c}^{+}\left(\bar{t}_{2}, t_{3}\right) \cap H P_{c}^{+}\left(t_{2}, \bar{t}_{3}\right)$, which is equivalent to the situation that $t_{1}=\delta t_{2}+(1-\delta) t_{3}+\gamma\left(t_{2}-\bar{t}_{3}\right)$, with $0 \leqslant \delta \leqslant 1$ and $\gamma \geqslant 0$. Since $c \in K_{1}\left(t_{1}, t_{2}, t_{3}\right)$, we know that $c=t_{1}+x_{1}\left(t_{2}-t_{1}\right)+x_{2}\left(t_{3}-t_{1}\right)$, with $x_{1} \geqslant \frac{1}{2}$ and $x_{2} \geqslant \frac{1}{2}$. If $x_{1}+x_{2}=1$, then $x_{1}=x_{2}=\frac{1}{2}$, i.e., $c=\frac{t_{2}+t_{3}}{2} \in K_{0}\left(t_{1}, t_{2}, t_{3}\right)$. Therefore we can assume that $x_{1}+x_{2}>1$. Taking

$$
\gamma=\frac{1}{2\left(x_{1}+x_{2}-1\right)}, \quad \delta=\frac{2 x_{1}-1}{2\left(x_{1}+x_{2}-1\right)}
$$

we have $\gamma>0,0 \leqslant \delta \leqslant 1$, and $\delta t_{2}+(1-\delta) t_{3}+\gamma\left(t_{2}-\bar{t}_{3}\right)=t_{1}$, and the proof is complete.

Now we consider the case in which two circles $\mathcal{C}(c, \rho)$ and $\mathcal{C}\left(c^{\prime}, \rho^{\prime}\right)$ pass through three non-collinear points t_{1}, t_{2}, t_{3}. Recall that then (Corollary 3.1) at least one side of the triangle $t_{1} t_{2} t_{3}$ belongs to both circles. Theorem 4.2 will show that in this situation the region where the centers c and c^{\prime} can be located is more restricted. This long theorem gives a complete (analytical and geometrical) description of this region. It is divided in four sections according to the location of c and c^{\prime} in the sets $K_{i}\left(t_{1}, t_{2}, t_{3}\right), i=0,1,2,3$. The case in which $c, c^{\prime} \in K_{2}\left(t_{1}, t_{2}, t_{3}\right) \backslash K_{0}\left(t_{1}, t_{2}, t_{3}\right)$ is not considered because it

Fig. 6. Theorem 4.2(b).
is completely similar to the case (c), in which $c, c^{\prime} \in K_{1}\left(t_{1}, t_{2}, t_{3}\right) \backslash K_{0}\left(t_{1}, t_{2}, t_{3}\right)$. Figs. 6,7 and 8 illustrate the different situations.

Theorem 4.2. Let t_{1}, t_{2}, t_{3} be three non-collinear points in $\left(\mathbb{R}^{2},\|\cdot\|\right)$. Assume that there are two different circles, $\mathcal{C}(c, \rho)$ and $\mathcal{C}\left(c^{\prime}, \rho^{\prime}\right)$ that pass through the three points, and that $\left[t_{1}, t_{2}\right] \subset \mathcal{C}(c, \rho) \cap \mathcal{C}\left(c^{\prime}, \rho^{\prime}\right)$. Then the following statements hold true:
(a) No center c or c^{\prime} is in $K_{3}\left(t_{1}, t_{2}, t_{3}\right)$.
(b) If $c \in K_{0}\left(t_{1}, t_{2}, t_{3}\right)$, then $c \in\left[\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right]$ and $\rho=\frac{\left\|t_{1}-t_{3}\right\|}{2}=\frac{\left\|t_{2}-t_{3}\right\|}{2}$. Moreover, if $c=\alpha\left(\frac{t_{1}+t_{3}}{2}\right)+(1-\alpha)\left(\frac{t_{2}+t_{3}}{2}\right)$, with $0 \leqslant$ $\alpha \leqslant 1$, then $c^{\prime} \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle \cup K_{1}(c) \cup K_{2}(c)$, where

$$
K_{1}(c)=\left\{t_{1}+y_{1}\left(t_{2}-t_{1}\right)+y_{2}\left(t_{3}-t_{1}\right): \frac{1}{2} \leqslant y_{2} \leqslant \frac{y_{1}}{1+\alpha}\right\} \subset K_{1}\left(t_{1}, t_{2}, t_{3}\right)
$$

and

$$
K_{2}(c)=\left\{t_{2}+y_{1}\left(t_{1}-t_{2}\right)+y_{2}\left(t_{3}-t_{2}\right): \frac{1}{2} \leqslant y_{2} \leqslant \frac{y_{1}}{2-\alpha}\right\} \subset K_{2}\left(t_{1}, t_{2}, t_{3}\right)
$$

Moreover, if $c^{\prime}=t_{i}+x_{1}^{\prime}\left(t_{3-i}-t_{i}\right)+x_{2}^{\prime}\left(t_{3}-t_{i}\right) \in K_{i}(c)$, with $i=1$ or 2 , then $\rho^{\prime}=2 x_{2}^{\prime} \rho$. Besides, the sets $K_{1}(c)$ and $K_{2}(c)$ can be equivalently defined by

$$
K_{1}(c)=\left\{c_{1}+\bar{\alpha}\left(t_{2}-t_{1}\right)+\bar{\beta}\left(c_{1}-t_{1}\right): \bar{\alpha} \geqslant 0, \bar{\beta} \geqslant 0\right\}
$$

and

$$
K_{2}(c)=\left\{c_{2}+\bar{\alpha}\left(t_{1}-t_{2}\right)+\bar{\beta}\left(c_{2}-t_{2}\right): \bar{\alpha} \geqslant 0, \bar{\beta} \geqslant 0\right\},
$$

where $c_{1}=t_{2}+t_{3}-c$ and $c_{2}=t_{1}+t_{3}-c$ (see Fig. 6).
(c) Assume that $c, c^{\prime} \in K_{1}\left(t_{1}, t_{2}, t_{3}\right) \backslash K_{0}\left(t_{1}, t_{2}, t_{3}\right)$, i.e.,

$$
\begin{aligned}
& c=t_{1}+x_{1}\left(t_{2}-t_{1}\right)+x_{2}\left(t_{3}-t_{1}\right), \quad x_{1} \geqslant \frac{1}{2}, x_{2} \geqslant \frac{1}{2},\left(x_{1}, x_{2}\right) \neq\left(\frac{1}{2}, \frac{1}{2}\right), \\
& c^{\prime}=t_{1}+x_{1}^{\prime}\left(t_{2}-t_{1}\right)+x_{2}^{\prime}\left(t_{3}-t_{1}\right), \quad x_{1}^{\prime} \geqslant \frac{1}{2}, x_{2}^{\prime} \geqslant \frac{1}{2},\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \neq\left(\frac{1}{2}, \frac{1}{2}\right) .
\end{aligned}
$$

Then $x_{2} \rho^{\prime}=x_{2}^{\prime} \rho$. Moreover, if $x_{1}+x_{2} \leqslant x_{1}^{\prime}+x_{2}^{\prime}$, then

$$
\frac{\left(2 x_{2}^{2}-x_{2}\right) x_{1}^{\prime}+x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}+1\right)-1} \leqslant x_{2}^{\prime} \leqslant \frac{x_{2}}{x_{1}} x_{1}^{\prime}
$$

whereas if $x_{1}+x_{2} \geqslant x_{1}^{\prime}+x_{2}^{\prime}$, then

$$
\frac{x_{2}}{x_{1}} x_{1}^{\prime} \leqslant x_{2}^{\prime}
$$

and

$$
2 x_{1} x_{2}^{\prime 2}+2\left(1-x_{2}\right) x_{1}^{\prime} x_{2}^{\prime}-x_{2} x_{1}^{\prime}-\left(x_{1}+1\right) x_{2}^{\prime}+x_{2} \leqslant 0 .
$$

3) $\left\langle c, t_{1}\right\rangle$ cuts $\left[\frac{t_{2}+t_{3}}{2}, t_{3}\right]$.

4) $c \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$ and H degenerates to two lines.

Fig. 7. Theorem 4.2(c).
Geometrically this means that, with respect to c, the point c^{\prime} must be in the region $\left(\widetilde{K}_{1}(c) \cup \widehat{K}_{1}(c)\right) \cap K_{1}\left(t_{1}, t_{2}\right.$, $\left.t_{3}\right)$, where $\widetilde{K}_{1}(c)$ is the cone

$$
\widetilde{K}_{1}(c)=\left\{c+\bar{\alpha}\left(c-t_{1}\right)+\bar{\beta}(c-w): \bar{\alpha} \geqslant 0, \bar{\beta} \geqslant 0\right\},
$$

being

$$
w= \begin{cases}\left\langle t_{1}, t_{2}\right\rangle \cap\left\langle 2 c-t_{2}, t_{3}\right\rangle & \text { if } c \notin\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle, \\ \frac{t_{2}+t_{3}}{2} & \text { if } c \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle,\end{cases}
$$

and $\widehat{K}_{1}(c)$ is the region limited by the line $\left\langle c, t_{1}\right\rangle$ and the conic that goes through the points $t_{2}, \frac{t_{2}+t_{3}}{2},\left\langle c, t_{1}\right\rangle \cap\left\langle\frac{t_{1}+t_{2}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$ and is tangent to $\langle c, w\rangle$ at c (see Fig. 7). If $\left\langle c, t_{1}\right\rangle \cap\left\langle\frac{t_{1}+t_{2}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle=\frac{t_{2}+t_{3}}{2}$, then the conic is also tangent to $\left\langle\frac{t_{1}+t_{2}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$ at $\frac{t_{2}+t_{3}}{2}$ (see Fig. $7(2)$). If $x_{2}=1$, the conic is a parabola. In other case, the conic is a hyperbola that degenerates to two lines when $x_{2}=\frac{1}{2}$, i.e., when $c \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$ (see Fig. 7(4)). If $c, c^{\prime} \in K_{2}\left(t_{1}, t_{2}, t_{3}\right) \backslash K_{0}\left(t_{1}, t_{2}, t_{3}\right)$, then the situation is similar.
(d) Assume that $c \in K_{1}\left(t_{1}, t_{2}, t_{3}\right)$ and $c^{\prime} \in K_{2}\left(t_{1}, t_{2}, t_{3}\right)$, i.e.,

$$
\begin{array}{ll}
c=t_{1}+x_{1}\left(t_{2}-t_{1}\right)+x_{2}\left(t_{3}-t_{1}\right), \quad x_{1} \geqslant \frac{1}{2}, x_{2} \geqslant \frac{1}{2} \\
c^{\prime}=t_{2}+x_{1}^{\prime}\left(t_{1}-t_{2}\right)+x_{2}^{\prime}\left(t_{3}-t_{2}\right), \quad x_{1}^{\prime} \geqslant \frac{1}{2}, x_{2}^{\prime} \geqslant \frac{1}{2} .
\end{array}
$$

Then $x_{2} \rho^{\prime}=x_{2}^{\prime} \rho$. Moreover, the following situations are possible (see Fig. 8):

Fig. 8. Theorem 4.2(d).
(d.1) Both centers c and c^{\prime} can be simultaneously in $\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$. In such a case $\rho=\rho^{\prime}$.
(d.2) If $c \notin\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$, then $c^{\prime} \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$, i.e., $x_{2}^{\prime}=\frac{1}{2}$. Moreover, $x_{1} \geqslant x_{2}\left(1+2 x_{1}^{\prime}\right)$, which geometrically means that

$$
c \in K_{1}^{*}\left(c^{\prime}\right)=\left\{\bar{c}^{\prime}+y_{1}\left(t_{2}-t_{1}\right)+y_{2}\left(\bar{c}^{\prime}-t_{1}\right): y_{1} \geqslant 0, y_{2} \geqslant 0\right\}
$$

where $\bar{c}^{\prime}=t_{2}+t_{3}-c^{\prime}$ is the point symmetric to c^{\prime} with respect to $\frac{t_{2}+t_{3}}{2}$.
(d.3) If $c^{\prime} \notin\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$, then $c \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$, i.e., $x_{2}=\frac{1}{2}$. Moreover, $x_{1}^{\prime} \geqslant x_{2}^{\prime}\left(1+2 x_{1}\right)$, which geometrically means that

$$
c^{\prime} \in K_{2}^{*}(c)=\left\{\bar{c}+y_{1}\left(t_{1}-t_{2}\right)+y_{2}\left(\bar{c}-t_{1}\right): y_{1} \geqslant 0, y_{2} \geqslant 0\right\},
$$

where $\bar{c}=t_{1}+t_{3}-c$ is the point symmetric to c with respect to $\frac{t_{1}+t_{3}}{2}$.
Proof. (a) Assume that $c \in K_{3}\left(t_{1}, t_{2}, t_{3}\right)$, i.e., $c=t_{3}+x_{1}\left(t_{1}-t_{3}\right)+x_{2}\left(t_{2}-t_{3}\right)$, with $x_{1} \geqslant \frac{1}{2}$ and $x_{2} \geqslant \frac{1}{2}$. Then $\left(x_{1}+x_{2}-1\right) \times$ $\left(t_{3}-c\right)=\left(x_{1}+x_{2}\right)\left(\frac{x_{1}}{x_{1}+x_{2}} t_{1}+\frac{x_{2}}{x_{1}+x_{2}} t_{2}-c\right)$, and since $\left[t_{1}, t_{2}\right] \subset \mathcal{C}(c, \rho)$, we get that $\left(x_{1}+x_{2}-1\right) \rho=\left(x_{1}+x_{2}\right) \rho$, which is absurd. Obviously, a similar absurdity holds when $c^{\prime} \in K_{3}\left(t_{1}, t_{2}, t_{3}\right)$.
(b) Assume that $c \in K_{0}\left(t_{1}, t_{2}, t_{3}\right)$, i.e.,

$$
c=\frac{t_{2}+t_{3}}{2}+x_{1}\left(t_{1}-t_{2}\right)+x_{2}\left(t_{1}-t_{3}\right)
$$

with $0 \leqslant x_{1} \leqslant \frac{1}{2}$ and $0 \leqslant x_{2} \leqslant \frac{1}{2}$. Then

$$
\left(1-2 x_{2}\right)\left(c-t_{3}\right)=\left(1+2 x_{2}\right)\left(\frac{2 x_{1}+2 x_{2}}{1+2 x_{2}} t_{1}+\frac{1-2 x_{1}}{1+2 x_{2}} t_{2}-c\right)
$$

and recalling that $\left[t_{1}, t_{2}\right] \subset \mathcal{C}(c, \rho)$ we get $\left(1-2 x_{2}\right) \rho=\left(1+2 x_{2}\right) \rho$. Therefore $x_{2}=0$, and then

$$
c=\alpha\left(\frac{t_{1}+t_{3}}{2}\right)+(1-\alpha)\left(\frac{t_{2}+t_{3}}{2}\right)
$$

where $\alpha=2 x_{1}$, i.e., $c \in\left[\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right]$. Moreover, from the identities

$$
\frac{t_{1}-t_{3}}{2}=\left(\frac{1+2 x_{1}}{2}\right) t_{1}+\left(\frac{1-2 x_{1}}{2}\right) t_{2}-c
$$

and

$$
\frac{t_{2}-t_{3}}{2}=x_{1} t_{1}+\left(1-x_{1}\right) t_{2}-c
$$

it follows that $\rho=\frac{\left\|t_{1}-t_{3}\right\|}{2}=\frac{\left\|t_{2}-t_{3}\right\|}{2}$.
Now, from Theorem 4.1 we know that $c^{\prime} \in \bigcup_{i=0}^{3} K_{i}\left(t_{1}, t_{2}, t_{3}\right)$, but from (a) we know that $c^{\prime} \notin K_{3}\left(t_{1}, t_{2}, t_{3}\right)$. Assume that $c^{\prime} \in K_{0}\left(t_{1}, t_{2}, t_{3}\right)$. Then, as it happened with c, we have that $c^{\prime} \in\left[\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right] \subset\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$. Assume that $c^{\prime} \in K_{1}\left(t_{1}, t_{2}, t_{3}\right)$, i.e.,

$$
c^{\prime}=t_{1}+x_{1}^{\prime}\left(t_{2}-t_{1}\right)+x_{2}^{\prime}\left(t_{3}-t_{1}\right)
$$

with $x_{1}^{\prime} \geqslant \frac{1}{2}$ and $x_{2}^{\prime} \geqslant \frac{1}{2}$. First we will obtain the relation between ρ and ρ^{\prime}. For that purpose, consider the identities

$$
\begin{equation*}
t_{2}-c^{\prime}=2 x_{2}^{\prime}\left(\gamma\left(t_{1}-c\right)+(1-\gamma)\left(t_{2}-c\right)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{2}-c=\left(\gamma+\frac{1}{2 x_{2}^{\prime}}\right)\left(t_{2}-c^{\prime}\right)+\gamma\left(c^{\prime}-t_{1}\right) \tag{2}
\end{equation*}
$$

where

$$
\gamma=\frac{x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha x_{2}^{\prime}}{2 x_{2}^{\prime}} \geqslant 0
$$

Now assume that $\gamma \leqslant 1$. Since $\left[t_{1}, t_{2}\right] \subset \mathcal{C}(c, \rho)$, it follows from (1) that $\rho^{\prime}=2 x_{2}^{\prime} \rho$. On the other hand, assume that $\gamma>1$. Then, again from (1), it follows that

$$
\rho^{\prime}=2 x_{2}^{\prime}\left\|\gamma\left(t_{1}-c\right)+(1-\gamma)\left(t_{2}-c\right)\right\| \geqslant 2 x_{2}^{\prime}(\gamma \rho-(\gamma-1) \rho)=2 x_{2}^{\prime} \rho,
$$

and from (2) we get that

$$
\rho \geqslant\left(\gamma+\frac{1}{2 x_{2}^{\prime}}\right) \rho^{\prime}-\gamma \rho^{\prime}=\frac{\rho^{\prime}}{2 x_{2}^{\prime}}
$$

Therefore, in any case,

$$
\begin{equation*}
\rho^{\prime}=2 x_{2}^{\prime} \rho \tag{3}
\end{equation*}
$$

Now, having (3) in mind, we obtain the identity

$$
x_{2}^{\prime}\left(x_{1}^{\prime}+x_{2}^{\prime}+\alpha x_{2}^{\prime}\right)\left(c^{\prime}-t_{3}\right)=\frac{x_{1}^{\prime} \rho^{\prime}}{\rho}\left(t_{2}-c\right)+x_{2}^{\prime}\left(x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha\left(x_{2}^{\prime}-1\right)\right)\left(c^{\prime}-t_{1}\right)
$$

and then

$$
\begin{equation*}
x_{2}^{\prime}\left(x_{1}^{\prime}+x_{2}^{\prime}+\alpha x_{2}^{\prime}\right) \rho^{\prime} \leqslant x_{1}^{\prime} \rho^{\prime}+x_{2}^{\prime}\left|x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha\left(x_{2}^{\prime}-1\right)\right| \rho^{\prime} \tag{4}
\end{equation*}
$$

Assume that $x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha\left(x_{2}^{\prime}-1\right) \geqslant 0$. Then it follows from (4) that

$$
x_{2}^{\prime} \leqslant \frac{x_{1}^{\prime}}{1+\alpha}
$$

and then $c^{\prime} \in K_{1}(c)$. Assume now that $x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha\left(x_{2}^{\prime}-1\right)<0$. We will see that in this case $c^{\prime} \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$. From the identity

$$
\left(x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha x_{2}^{\prime}\right)\left(c^{\prime}-t_{3}\right)=2\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)\left(t_{2}-c\right)+\left(1-x_{1}^{\prime}-x_{2}^{\prime}-\alpha\left(x_{2}^{\prime}-1\right)\right)\left(t_{2}-c^{\prime}\right)
$$

it follows that

$$
\left(x_{1}^{\prime}+x_{2}^{\prime}-1+\alpha x_{2}^{\prime}\right) \rho^{\prime} \leqslant 2\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right) \rho+\left(1-x_{1}^{\prime}-x_{2}^{\prime}-\alpha\left(x_{2}^{\prime}-1\right)\right) \rho^{\prime}
$$

and having (3) in mind, we get

$$
x_{2}^{\prime}\left(2\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)+\alpha\left(2 x_{2}^{\prime}-1\right)\right) \leqslant x_{1}^{\prime}+x_{2}^{\prime}-1
$$

which yields $x_{2}^{\prime} \leqslant \frac{1}{2}$. Therefore $x_{2}^{\prime}=\frac{1}{2}$, and then $c^{\prime}=\left(1-2 x_{1}^{\prime}\right)\left(\frac{t_{1}+t_{3}}{2}\right)+2 x_{1}^{\prime}\left(\frac{t_{2}+t_{3}}{2}\right)$.
Finally, taking $\bar{\alpha}=y_{1}-(1+\alpha) y_{2}$ and $\bar{\beta}=2 y_{2}-1$, it follows that

$$
t_{1}+y_{1}\left(t_{2}-t_{1}\right)+y_{2}\left(t_{3}-t_{1}\right)=c_{1}+\bar{\alpha}\left(t_{2}-t_{1}\right)+\bar{\beta}\left(c_{1}-t_{1}\right)
$$

which gives the equivalent definition of $K_{1}(c)$.
Similarly we can see that if $c^{\prime} \in K_{2}\left(t_{1}, t_{2}, t_{3}\right)$, then $c^{\prime} \in K_{2}(c) \cup\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$, and also that the two definitions of $K_{2}(c)$ are equivalent.
(c) To simplify the notation, we consider $e_{1}=t_{2}-t_{1}$ and $e_{2}=t_{3}-t_{1}$. Assume first that $x_{1}+x_{2} \leqslant x_{1}^{\prime}+x_{2}^{\prime}$. Consider the convex function $f(\mu)=\left\|t_{2}-c-\mu e_{1}\right\|$. Since $\left[t_{1}, t_{2}\right] \subset \mathcal{C}(c, \rho)$, we have that $f(\mu)=\rho$ for all $\mu \in[0,1]$. Taking

$$
\mu_{1}=1-x_{1}+\frac{x_{2} x_{1}^{\prime}}{x_{2}^{\prime}}, \quad \mu_{2}=\mu_{1}-\frac{x_{2}}{x_{2}^{\prime}}
$$

we have that

$$
f\left(\mu_{1}\right)=\left\|t_{2}-c-\mu_{1} e_{1}\right\|=\left\|\frac{x_{2}}{x_{2}^{\prime}}\left(t_{1}-c^{\prime}\right)\right\|=\frac{x_{2}}{x_{2}^{\prime}} \rho^{\prime}=\left\|\frac{x_{2}}{x_{2}^{\prime}}\left(t_{2}-c^{\prime}\right)\right\|=\left\|t_{2}-c-\mu_{2} e_{1}\right\|=f\left(\mu_{2}\right) .
$$

Now we will see that $x_{1} x_{2}^{\prime} \leqslant x_{2} x_{1}^{\prime}$. Assume on the contrary that $x_{1} x_{2}^{\prime}>x_{2} x_{1}^{\prime}$. Then $\mu_{2}<\mu_{1}<1$, and since $f\left(\mu_{2}\right)=f\left(\mu_{1}\right)$, we get from the convexity of $f(\mu)$ that $f\left(\mu_{2}\right)=f\left(\mu_{1}\right)=f(0)=\rho$, which implies that

$$
\begin{equation*}
\rho^{\prime}=\frac{x_{2}^{\prime}}{x_{2}} \rho . \tag{5}
\end{equation*}
$$

Consider now the identity

$$
\begin{equation*}
\left(x_{1}^{\prime}+x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}\right)\left(t_{3}-c^{\prime}\right)=x_{1}^{\prime}\left(t_{3}-c\right)+\left(x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}+x_{1}^{\prime}-x_{1}\right)\left(t_{1}-c^{\prime}\right) \tag{6}
\end{equation*}
$$

Since

$$
\begin{aligned}
x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}+x_{1}^{\prime}-x_{1} & =\left(\frac{x_{1}}{x_{1}+x_{2}}\right)\left(x_{1}+x_{2}\right)\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)+x_{1}^{\prime}\left(1-x_{1}-x_{2}\right) \\
& \geqslant\left(\frac{x_{1}^{\prime}}{x_{1}^{\prime}+x_{2}^{\prime}}\right)\left(x_{1}+x_{2}\right)\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)+x_{1}^{\prime}\left(1-x_{1}-x_{2}\right) \\
& =\frac{x_{1}^{\prime}\left(x_{1}^{\prime}+x_{2}^{\prime}-x_{1}-x_{2}\right)}{x_{1}^{\prime}+x_{2}^{\prime}} \geqslant 0
\end{aligned}
$$

(recall that we are assuming $x_{1}^{\prime}+x_{2}^{\prime} \geqslant x_{1}+x_{2}$), we get from (6) that

$$
\left(x_{1}^{\prime}+x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}\right) \rho^{\prime} \leqslant x_{1}^{\prime} \rho+\left(x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}+x_{1}^{\prime}-x_{1}\right) \rho^{\prime}
$$

and from (5) it follows that

$$
\frac{\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}\right) \rho^{\prime}}{x_{2}^{\prime}} \geqslant 0
$$

which is absurd. Therefore,

$$
\begin{equation*}
x_{2}^{\prime} \leqslant \frac{x_{2}}{x_{1}} x_{1}^{\prime} \tag{7}
\end{equation*}
$$

Then $\mu_{1} \geqslant 1$, and since

$$
\mu_{2}=\mu_{1}-\frac{x_{2}}{x_{2}^{\prime}} \geqslant \mu_{1}-\frac{x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)}{x_{2}^{\prime}\left(x_{1}+x_{2}\right)}=\frac{\left(x_{1}+x_{2}-1\right)\left(x_{1}^{\prime} x_{2}-x_{1} x_{2}^{\prime}\right)}{x_{2}^{\prime}\left(x_{1}+x_{2}\right)} \geqslant 0
$$

again the convexity of $f(\mu)$ implies that (5) holds.
To get the left bound of x_{2}^{\prime}, assume first that $x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}-x_{1}^{\prime}>0$. From the identity

$$
\left(x_{1}+x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}\right)\left(t_{3}-c\right)=x_{1}\left(t_{3}-c^{\prime}\right)+\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}-x_{1}^{\prime}\right)\left(t_{1}-c\right)
$$

(5), and (7) we get that

$$
\left(x_{1}+x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}\right) \rho \leqslant x_{1} \rho^{\prime}+\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}-x_{1}^{\prime}\right) \rho=\frac{x_{1} x_{2}^{\prime}}{x_{2}} \rho+\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}-x_{1}^{\prime}\right) \rho
$$

from which it follows that $0 \leqslant\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}\right) \rho \leqslant 0$, and therefore $x_{2} x_{1}^{\prime}=x_{1} x_{2}^{\prime}$. But then $0<x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}-x_{1}^{\prime}=x_{1}-x_{1}^{\prime}$, which implies $x_{1}^{\prime}<x_{1}$, and then $x_{1}^{\prime}+x_{2}^{\prime}=\frac{x_{1}^{\prime}\left(x_{1}+x_{2}\right)}{x_{1}}<x_{1}+x_{2}$, against the hypothesis. Therefore $x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}-x_{1}^{\prime} \leqslant 0$. Now, from the identity

$$
\begin{equation*}
\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}+x_{2}^{\prime}-1\right)\left(t_{3}-c\right)=\left(x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}+x_{1}^{\prime}-x_{1}\right)\left(c-t_{2}\right)+\left(x_{1}+x_{2}-1\right)\left(t_{3}-c^{\prime}\right) \tag{8}
\end{equation*}
$$

it follows that

$$
\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}+x_{1}+x_{2}^{\prime}-1\right) \rho \leqslant\left(x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}+x_{1}^{\prime}-x_{1}\right) \rho+\left(x_{1}+x_{2}-1\right) \rho^{\prime}
$$

Having in mind (5), we obtain

$$
\begin{equation*}
\frac{\left(2 x_{2}^{2}-x_{2}\right) x_{1}^{\prime}+x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}+1\right)-1} \leqslant x_{2}^{\prime} \tag{9}
\end{equation*}
$$

(Observe that $x_{1} \geqslant \frac{1}{2}, x_{2} \geqslant \frac{1}{2},\left(x_{1}, x_{2}\right) \neq\left(\frac{1}{2}, \frac{1}{2}\right)$ implies that $x_{1}\left(2 x_{2}+1\right)-1>0$.)

Assume now that $x_{1}+x_{2} \geqslant x_{1}^{\prime}+x_{2}^{\prime}$. Interchanging the roles of x_{i} and $x_{i}^{\prime}(i=1,2)$, we get (5) again, and from (7) and (9) it follows that

$$
\begin{equation*}
\frac{x_{2}}{x_{1}} x_{1}^{\prime} \leqslant x_{2}^{\prime} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
2 x_{1} x_{2}^{\prime 2}+2\left(1-x_{2}\right) x_{1}^{\prime} x_{2}^{\prime}-x_{2} x_{1}^{\prime}-\left(x_{1}+1\right) x_{2}^{\prime}+x_{2} \leqslant 0 \tag{11}
\end{equation*}
$$

We now come to the geometric interpretation of this case. First, let us consider the case $x_{1}+x_{2} \leqslant x_{1}^{\prime}+x_{2}^{\prime}$. We will show that then $c^{\prime} \in \widetilde{K}_{1}(c)$. For that purpose, we will see that $\widetilde{K}_{1}(c)=K_{1}^{\prime}(c)$, where

$$
K_{1}^{\prime}(c)=\left\{t_{1}+x_{1}^{\prime} e_{1}+x_{2}^{\prime} e_{2}: \frac{\left(2 x_{2}^{2}-x_{2}\right) x_{1}^{\prime}+x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}+1\right)-1} \leqslant x_{2}^{\prime} \leqslant \frac{x_{2}}{x_{1}} x_{1}^{\prime}\right\}
$$

Recall that we have defined

$$
\widetilde{K}_{1}(c)=\left\{c+\bar{\alpha}\left(c-t_{1}\right)+\bar{\beta}(c-w): \bar{\alpha} \geqslant 0, \bar{\beta} \geqslant 0\right\},
$$

where

$$
w= \begin{cases}\left\langle t_{1}, t_{2}\right\rangle \cap\left\langle 2 c-t_{2}, t_{3}\right\rangle & \text { if } c \notin\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle \\ \frac{t_{2}+t_{3}}{2} & \text { if } c \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle\end{cases}
$$

Assume that $c \notin\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$. Then $2 x_{2}-1>0$, and the intersection point of $\left\langle t_{1}, t_{2}\right\rangle$ and $\left\langle 2 c-t_{2}, t_{3}\right\rangle$ is

$$
w=t_{3}+\gamma\left(t_{3}-2 c+t_{2}\right)=t_{1}+\gamma^{\prime}\left(t_{1}-t_{2}\right)
$$

where $\gamma=1 /\left(2 x_{2}-1\right)$ and $\gamma^{\prime}=\left(2 x_{1}-1\right) /\left(2 x_{2}-1\right)$. Let $c^{\prime} \in \widetilde{K}_{1}(c)$, i.e., $c^{\prime}=c+\bar{\alpha}\left(c-t_{1}\right)+\bar{\beta}(c-w)$ with $\bar{\alpha} \geqslant 0$ and $\bar{\beta} \geqslant 0$. Straightforward computations show that $c^{\prime}=t_{1}+x_{1}^{\prime} e_{1}+x_{2}^{\prime} e_{2}$, where

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{\left(2 x_{2}-1\right)\left(2 x_{1}-1+2 \bar{\alpha} x_{1}\right)+2 \bar{\beta}\left(2 x_{1} x_{2}+x_{1}-1\right)}{2\left(2 x_{2}-1\right)}+\frac{1}{2} \\
& x_{2}^{\prime}=(1+\bar{\alpha}+\bar{\beta}) x_{2} .
\end{aligned}
$$

Since $x_{1} \geqslant \frac{1}{2}$ and $x_{2} \geqslant \frac{1}{2}$, we have that $x_{1}^{\prime} \geqslant \frac{1}{2}$ and $x_{2}^{\prime} \geqslant \frac{1}{2}$. Moreover,

$$
\frac{x_{2}}{x_{1}} x_{1}^{\prime}-x_{2}^{\prime}=\frac{\bar{\beta} x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}-1\right)} \geqslant 0
$$

and

$$
x_{2}^{\prime}-\frac{\left(2 x_{2}^{2}-x_{2}\right) x_{1}^{\prime}+x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}+1\right)-1}=\frac{\bar{\alpha} x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}+1\right)-1} \geqslant 0,
$$

which implies that $c^{\prime} \in K_{1}^{\prime}(c)$. Conversely, assume that $c^{\prime} \in K_{1}^{\prime}(c)$, i.e., $c^{\prime}=t_{1}+x_{1}^{\prime} e_{1}+x_{2}^{\prime} e_{2}$ with

$$
\delta:=\frac{\left(2 x_{2}^{2}-x_{2}\right) x_{1}^{\prime}+x_{2}\left(2 x_{1}-1\right)}{x_{1}\left(2 x_{2}+1\right)-1} \leqslant x_{2}^{\prime} \leqslant \frac{x_{2}}{x_{1}} x_{1}^{\prime}
$$

Taking

$$
\bar{\alpha}=\frac{\left(x_{2}^{\prime}-\delta\right)\left(2 x_{2} x_{1}+x_{1}-1\right)}{x_{2}\left(2 x_{1}-1\right)}, \quad \bar{\beta}=\frac{\left(2 x_{2}-1\right)\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}\right)}{x_{2}\left(2 x_{1}-1\right)}
$$

if $x_{1}>\frac{1}{2}$, and $\bar{\alpha}=\bar{\beta}=\frac{2 x_{1}^{\prime}-1}{2}$ if $x_{1}=\frac{1}{2}$ (observe that in this case $w=t_{1}$ and $\delta=x_{2}^{\prime}=2 x_{2} x_{1}^{\prime}$), we have that $c^{\prime}=c+\bar{\alpha}\left(c-t_{1}\right)+$ $\bar{\beta}(c-w)$, with $\bar{\alpha} \geqslant 0$ and $\bar{\beta} \geqslant 0$. Thus $c^{\prime} \in \widetilde{K}_{1}(c)$. So we have $\widetilde{K}_{1}(c)=K_{1}^{\prime}(c)$.

Assume now that $c \in\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$. Then $x_{2}=\frac{1}{2}$ (and therefore $x_{1}>\frac{1}{2}$) and $w=\frac{t_{2}+t_{3}}{2}$. Taking $\bar{\alpha}=2 x_{2}^{\prime}-1$ and $\bar{\beta}=$ $\frac{4\left(x_{2} x_{1}^{\prime}-x_{1} x_{2}^{\prime}\right)}{2 x_{1}-1}$, we have that $c+\bar{\alpha}\left(c-t_{1}\right)+\bar{\beta}(c-w)=t_{1}+x_{1}^{\prime} e_{1}+x_{2}^{\prime} e_{2}$, which shows that $K_{1}^{\prime}(c) \subset \widetilde{K}_{1}(c)$. On the other hand, taking $x_{1}^{\prime}=x_{1}(1+\bar{\alpha})+\bar{\beta}\left(x_{1}-\frac{1}{2}\right)$ and $x_{2}^{\prime}=\frac{1+\bar{\alpha}}{2}$, we get the same identity, which shows that $\widetilde{K}_{1}(c) \subset K_{1}^{\prime}(c)$.

Now we consider the case $x_{1}+x_{2} \geqslant x_{1}^{\prime}+x_{2}^{\prime}$. We will show that then $c^{\prime} \in \widehat{K}_{1}(c)$. But first let us see that $x_{1} \geqslant x_{1}^{\prime}$ and $x_{2} \geqslant x_{2}^{\prime}$. From (10) it follows that $x_{1}^{\prime} \leqslant x_{1}+x_{2}-x_{2}^{\prime} \leqslant x_{1}+x_{2}-\frac{x_{2} x_{1}^{\prime}}{x_{1}}$, and then

$$
x_{1}^{\prime} \leqslant \frac{x_{1}+x_{2}}{1+\frac{x_{2}}{x_{1}}}=x_{1}
$$

Moreover, from (11) we get that

$$
\begin{equation*}
x_{2} \geqslant x_{2}^{\prime}\left(\frac{2 x_{1} x_{2}^{\prime}+2 x_{1}^{\prime}-x_{1}-1}{2 x_{1}^{\prime} x_{2}^{\prime}+x_{1}^{\prime}-1}\right)=x_{2}^{\prime}\left(1+\frac{\left(2 x_{2}^{\prime}-1\right)\left(x_{1}-x_{1}^{\prime}\right)}{2 x_{1}^{\prime} x_{2}^{\prime}+x_{1}^{\prime}-1}\right) \geqslant x_{2}^{\prime} \tag{12}
\end{equation*}
$$

Let us consider the function

$$
h\left(y_{1}, y_{2}\right)=2 x_{1} y_{2}^{2}+2\left(1-x_{2}\right) y_{1} y_{2}-x_{2} y_{1}-\left(x_{1}+1\right) y_{2}+x_{2}=\left(\begin{array}{lll}
1 & y_{1} & y_{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
y_{1} \\
y_{2}
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{ccc}
x_{2} & \frac{-x_{2}}{2} & \frac{-\left(x_{1}+1\right)}{2} \\
\frac{-x_{2}}{2} & 0 & 1-x_{2} \\
\frac{-\left(x_{1}+1\right)}{2} & 1-x_{2} & 2 x_{1}
\end{array}\right)
$$

and the conic

$$
H=\left\{t_{1}+y_{1} e_{1}+y_{2} e_{2}: h\left(y_{1}, y_{2}\right)=0\right\}
$$

Since $\operatorname{det} A=-\frac{1}{2} x_{2}\left(x_{1}+x_{2}-1\right)\left(2 x_{2}-1\right)$, $\operatorname{det}\left(\begin{array}{cc}0 & 1-x_{2} \\ 1-x_{2} & 2 x_{1}\end{array}\right)=-\left(1-x_{2}\right)^{2}$, and $x_{2}\left(x_{1}+x_{2}-1\right)>0$, it follows that if $x_{2} \neq 1$, then H is a hyperbola (that degenerate into two lines if $x_{2}=\frac{1}{2}$). If $x_{2}=1, H$ is a parabola. It is immediate to see that H passes through the points

$$
\begin{aligned}
& c=t_{1}+x_{1} e_{1}+x_{2} e_{2} \\
& t_{2}=t_{1}+e_{1} \\
& \frac{t_{2}+t_{3}}{2}=t_{1}+\frac{1}{2} e_{1}+\frac{1}{2} e_{2} \\
& s=t_{1}+\frac{1}{2} e_{1}+\frac{x_{2}}{2 x_{1}} e_{2}
\end{aligned}
$$

where $\{s\}=\left\langle c, t_{1}\right\rangle \cap\left\langle\frac{t_{1}+t_{2}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$, and straightforward computations show that its tangent at c coincides with the line $\langle c, w\rangle$. Moreover, if $s=\frac{t_{2}+t_{3}}{2}$, i.e., $x_{1}=x_{2}$, then H is also tangent to the line $\left\langle\frac{t_{1}+t_{2}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$ at s.

Now we have to consider several cases. Assume that $x_{2}=x_{2}^{\prime}$. Since we can consider that $c^{\prime} \neq c$, it follows from (12) that $x_{2}=x_{2}^{\prime}=\frac{1}{2}$, and then $h\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=h\left(x_{1}^{\prime}, \frac{1}{2}\right)=0$, i.e., $c^{\prime} \in H$. Assume that $2 x_{1} x_{2}^{\prime}-x_{2}=0$. Then it follows from (10) that $0=2 x_{1} x_{2}^{\prime}-x_{2} \geqslant 2 x_{2} x_{1}^{\prime}-x_{2}=x_{2}\left(2 x_{1}^{\prime}-1\right) \geqslant 0$, which implies that $x_{1}^{\prime}=\frac{1}{2}$ and $h\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\frac{1}{2}\left(2 x_{2}^{\prime}-1\right)\left(2 x_{1} x_{2}^{\prime}-x_{2}\right)=0$, and we get also that $c^{\prime} \in H$. Finally, assume that $x_{2}>x_{2}^{\prime}$ and $2 x_{1} x_{2}^{\prime}-x_{2}>0$, and let

$$
p=t_{1}+\left(\frac{x_{1} x_{2}^{\prime}}{x_{2}}\right) e_{1}+x_{2}^{\prime} e_{2}, \quad q=t_{1}+\left(\frac{x_{2}-x_{2}^{\prime}-x_{1} x_{2}^{\prime}+2 x_{1} x_{2}^{\prime 2}}{x_{2}^{\prime}\left(2 x_{2}-1\right)+x_{2}-x_{2}^{\prime}}\right) e_{1}+x_{2}^{\prime} e_{2}
$$

Then we have $p \in\left\langle c, t_{1}\right\rangle$ and $q \in H$. Moreover, $c^{\prime}=\mu p+(1-\mu) q$ with

$$
\mu=\frac{-h\left(x_{1}^{\prime}, x_{2}^{\prime}\right) x_{2}}{\left(x_{2}-x_{2}^{\prime}\right)\left(2 x_{1} x_{2}^{\prime}-x_{2}\right)}=\frac{-h\left(x_{1}^{\prime}, x_{2}^{\prime}\right) x_{2}}{-h\left(x_{1}^{\prime}, x_{2}^{\prime}\right) x_{2}+\left(x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}\right)\left(x_{2}-2 x_{2}^{\prime}+2 x_{2} x_{2}^{\prime}\right)}
$$

and since $x_{2}-2 x_{2}^{\prime}+2 x_{2} x_{2}^{\prime} \geqslant x_{2}^{\prime}-2 x_{2}^{\prime}+2 x_{2} x_{2}^{\prime}=x_{2}^{\prime}\left(2 x_{2}-1\right) \geqslant 0$, it follows from (10) and (11) that $0 \leqslant \mu \leqslant 1$. This which implies that $c^{\prime} \in \widehat{K}_{1}(c)$.
(d) Since

$$
\begin{aligned}
\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)\right) \rho & =\left\|\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)\right)\left(c-t_{2}\right)\right\|=\left\|\left(x_{2} x_{1}^{\prime}+x_{2}^{\prime}\left(x_{1}+x_{2}-1\right)\right)\left(c-t_{1}\right)+x_{2}\left(c^{\prime}-t_{2}\right)\right\| \\
& \leqslant\left(x_{2} x_{1}^{\prime}+x_{2}^{\prime}\left(x_{1}+x_{2}-1\right)\right) \rho+x_{2} \rho^{\prime}
\end{aligned}
$$

we get that $x_{2}^{\prime} \rho \leqslant x_{2} \rho^{\prime}$. On the other hand, since

$$
\begin{aligned}
\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)\right) \rho^{\prime} & =\left\|\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)\right)\left(c^{\prime}-t_{1}\right)\right\|=\left\|\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)\right)\left(c^{\prime}-t_{2}\right)+x_{2}^{\prime}\left(c-t_{1}\right)\right\| \\
& \leqslant\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)\right) \rho^{\prime}+x_{2}^{\prime} \rho,
\end{aligned}
$$

we get that $x_{2} \rho^{\prime} \leqslant x_{2}^{\prime} \rho$. Therefore,

$$
\begin{equation*}
x_{2} \rho^{\prime}=x_{2}^{\prime} \rho . \tag{13}
\end{equation*}
$$

The cases (d.1)-(d.3) will follow from the four cases that result from considering the sign of the following quantities:

$$
\begin{aligned}
& \lambda=x_{1}\left(x_{2}^{\prime}-1\right)+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right) \\
& \lambda^{\prime}=x_{1}^{\prime}\left(x_{2}-1\right)+x_{2}^{\prime}\left(x_{1}+x_{2}-1\right)
\end{aligned}
$$

Case 1. Assume that $\lambda \geqslant 0$ and $\lambda^{\prime} \geqslant 0$. We will see that this case is not possible. From the identities

$$
\left(\lambda+x_{1}+x_{2}\right)\left(c^{\prime}-t_{3}\right)=x_{1}^{\prime}\left(t_{1}-c\right)+\lambda\left(c^{\prime}-t_{2}\right)
$$

and

$$
\left(\lambda^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}\right)\left(t_{3}-c\right)=x_{1}\left(c^{\prime}-t_{2}\right)+\lambda^{\prime}\left(t_{1}-c\right)
$$

it follows that

$$
\left(\lambda+x_{1}+x_{2}\right) \rho^{\prime} \leqslant x_{1}^{\prime} \rho+\lambda \rho^{\prime}
$$

and

$$
\left(\lambda^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}\right) \rho \leqslant x_{1} \rho^{\prime}+\lambda^{\prime} \rho
$$

By summing up the above inequalities, we obtain the absurdity $x_{2} \rho^{\prime}+x_{2}^{\prime} \rho \leqslant 0$.
Case 2. Assume that $\lambda \leqslant 0$ and $\lambda^{\prime} \leqslant 0$. In this case, $x_{2}-1 \leqslant 0$ and $x_{2}^{\prime}-1 \leqslant 0$. Therefore,

$$
x_{1} x_{2}^{\prime}+\left(x_{2}-1\right)\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right) \geqslant x_{1} x_{2}^{\prime}+\frac{\left(x_{2}-1\right) x_{1}\left(1-x_{2}^{\prime}\right)}{x_{2}}=\frac{x_{1}\left(x_{2}+x_{2}^{\prime}-1\right)}{x_{2}} \geqslant 0
$$

and

$$
x_{2} x_{1}^{\prime}+\left(x_{2}^{\prime}-1\right)\left(x_{1}+x_{2}-1\right) \geqslant x_{2} x_{1}^{\prime}+\frac{\left(x_{2}^{\prime}-1\right) x_{1}^{\prime}\left(1-x_{2}\right)}{x_{2}^{\prime}}=\frac{x_{1}^{\prime}\left(x_{2}+x_{2}^{\prime}-1\right)}{x_{2}^{\prime}} \geqslant 0
$$

and from the identities

$$
x_{2}^{\prime}\left(t_{3}-c\right)=\left(x_{1} x_{2}^{\prime}+\left(x_{2}-1\right)\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)\right)\left(c^{\prime}-t_{2}\right)-\lambda^{\prime}\left(c^{\prime}-t_{1}\right)
$$

and

$$
x_{2}\left(c^{\prime}-t_{3}\right)=\left(x_{2} x_{1}^{\prime}+\left(x_{2}^{\prime}-1\right)\left(x_{1}+x_{2}-1\right)\right)\left(t_{1}-c\right)-\lambda\left(t_{2}-c\right)
$$

as well as (13), it follows that

$$
x_{2} \rho^{\prime}=x_{2}^{\prime} \rho \leqslant\left(x_{1} x_{2}^{\prime}+\left(x_{2}-1\right)\left(x_{1}^{\prime}+x_{2}^{\prime}-1\right)-\lambda^{\prime}\right) \rho^{\prime}=\left(1-x_{2}\right) \rho^{\prime}
$$

and

$$
x_{2}^{\prime} \rho=x_{2} \rho^{\prime} \leqslant\left(x_{2} x_{1}^{\prime}+\left(x_{2}^{\prime}-1\right)\left(x_{1}+x_{2}-1\right)-\lambda\right) \rho=\left(1-x_{2}^{\prime}\right) \rho
$$

Therefore, $x_{2} \leqslant \frac{1}{2}$ and $x_{2}^{\prime} \leqslant \frac{1}{2}$, and then $x_{2}=x_{2}^{\prime}=\frac{1}{2}$. This corresponds to case (d.1).
Case 3. Assume that $\lambda \leqslant 0$ and $\lambda^{\prime} \geqslant 0$. From the identity

$$
\left(\lambda^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}\right)\left(t_{3}-c\right)=x_{1}\left(c^{\prime}-t_{2}\right)+\lambda^{\prime}\left(t_{1}-c\right)
$$

it follows that

$$
\begin{equation*}
\left(x_{1}^{\prime}+x_{2}^{\prime}\right) \rho \leqslant x_{1} \rho^{\prime} \tag{14}
\end{equation*}
$$

and from the identity

$$
\left(\lambda^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}\right)\left(c^{\prime}-t_{3}\right)=x_{1}^{\prime}\left(t_{1}-c\right)+\lambda\left(c^{\prime}-t_{2}\right)
$$

and (13) it follows that

$$
\left(\lambda+\lambda^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}\right) \rho^{\prime} \leqslant x_{1}^{\prime} \rho=\frac{x_{1}^{\prime} x_{2} \rho^{\prime}}{x_{2}^{\prime}}
$$

Therefore,

$$
0 \geqslant x_{2}^{\prime}\left(\lambda+\lambda^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}\right)-x_{1}^{\prime} x_{2}=\left(2 x_{2}^{\prime}-1\right)\left(x_{1} x_{2}^{\prime}+x_{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)\right),
$$

and we obtain $x_{2}^{\prime}=\frac{1}{2}$. Moreover, from (13) and (14) we get that $x_{1} \geqslant x_{2}\left(1+2 x_{1}^{\prime}\right)$, corresponding to case (d.2). The geometric interpretation follows from the identity

$$
c=\bar{c}^{\prime}+\left(x_{1}-x_{2}\left(1+2 x_{1}^{\prime}\right)\right)\left(t_{2}-t_{1}\right)+\left(2 x_{2}-1\right)\left(\bar{c}^{\prime}-t_{1}\right) .
$$

Case 4. Assume that $\lambda \geqslant 0$ and $\lambda^{\prime} \leqslant 0$. This case is completely analogous to the above one by considering the identities

$$
\left(\lambda+x_{1}+x_{2}\right)\left(c^{\prime}-t_{3}\right)=x_{1}^{\prime}\left(t_{1}-c\right)+\lambda\left(c^{\prime}-t_{2}\right)
$$

and

$$
\left(\lambda+x_{1}+x_{2}\right)\left(t_{3}-c\right)=x_{1}\left(c^{\prime}-t_{2}\right)-\lambda^{\prime}\left(c-t_{1}\right)
$$

yielding case (d.3).

The next corollary follows easily from Theorem 4.2.
Corollary 4.1. Under the hypothesis of Theorem 4.2, the two centers c and c^{\prime} are in $\left\langle\frac{t_{1}+t_{3}}{2}, \frac{t_{2}+t_{3}}{2}\right\rangle$ if and only if $\rho=\rho^{\prime}$.
Remark 4.1. From the proof of Theorem 4.2 one can also deduce that if the centers c and c^{\prime} are situated in the described regions, then it is possible to define a polygonal norm such that c and c^{\prime} are the centers of two circles that meet at t_{1}, t_{2}, and t_{3}. In Figs. 6, 7, and 8 it is shown how such circles look like.

Acknowledgements

The authors wish to express their thanks to the referees for their careful reading of the manuscript and helpful hints.

References

[1] P.K. Agarwal, S. Har-Peled, K.R. Varadarajan, Geometric approximation via coresets, in: J.E. Goodman, J. Pach, E. Welzl (Eds.), Combinatorial, Computational Geometry, Cambridge University Press, 2005, pp. 1-30.
[2] M. Bǎdoiu, K.L. Clarkson, Optimal core-sets for balls, Comput. Geom. 40 (2008) 14-22.
[3] J. Banasiak, Some contributions to the geometry of normed linear spaces, Math. Nachr. 139 (1988) 175-184.
[4] V. Boltyanski, H. Martini, Jung's theorem for a pair of Minkowski spaces, Advances in Geometry 6 (2006) 645-650.
[5] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1974 (first ed. 1934).
[6] P. Brass, Erdős-type distance problems in normed spaces, Comput. Geom. 6 (1996) 195-214.
[7] Yu.D. Burago, V.A. Zalgaller, Geometric Inequalities, Springer, New York, 1988.
[8] R. Chandrasekaran, The weighted Euclidean 1-center problem, Oper. Res. Lett. 1 (1981/82) 111-112.
[9] J. Elzinga, D.W. Hearn, Geometrical solution for some minimax location problems, Transportation Sci. 6 (1972) 379-394.
[10] P.R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93 (1983) 25-34.
[11] M.L. Gromov, Simplexes inscribed in a hypersurface, Mat. Zametki 5 (1969) 81-89 (in Russian); Engl. transl.: Math. Notes 8 (1969) 52-56.
[12] P.M. Gruber, Convex and Discrete Geometry, Springer, Berlin, 2007.
[13] B. Grünbaum, Borsuk's partition conjecture in Minkowski planes, Bull. Res. Council Israel. Sect. F 7F (1957/1958) 25-30.
[14] C. Icking, R. Klein, N.-M. Lê, F. Ma, Convex distance functions in 3-space are different, in: Proc. 9th Annual ACM Sympos. Comput. Geom., 1993, pp. 116-123; Fund. Inform. 22 (1995) 331-352.
[15] H. Kramer, A.B. Németh, The application of Brouwer's fixed point theorem to the geometry of convex bodies, An. Univ. Timişoara Ser. Şti. Mat. 13 (1975) 33-39 (in Romanian).
[16] K. Leichtweiss, Konvexe Mengen, Deutscher Verlag der Wissenschaften, Berlin, 1980.
[17] N.-M. Lê, Voronoi diagrams in the L_{p}-metric in R^{D}, Discrete Comput. Geom. 16 (1996) 177-196.
[18] N.-M. Lê, Randomized incremental construction of simple abstract Voronoi diagrams in 3-space, in: Lecture Notes in Computer Science, vol. 965, Springer, Berlin, 1995, pp. 333-342; Comput. Geom. 8 (1997) 297-298.
[19] L. Ma, Bisectors and Voronoi diagrams for convex distance functions, Dissertation, Fernuniversität Hagen, 1999.
[20] V.V. Makeev, The degree of mapping in some problems of combinatorial geometry, J. Soviet. Math. 51 (1990) 2544-2546.
[21] V.V. Makeev, Inscribed simplices of a convex body, J. Math. Sci. 72 (1994) 3189-3190.
[22] H. Martini, K.J. Swanepoel, G. Weiss, The geometry of Minkowski spaces - a survey, Part I, Expositiones Math. 19 (2001) 97-142.
[23] H. Martini, K.J. Swanepoel, The geometry of Minkowski spaces - a survey, Part II, Expositiones Math. 22 (2004) 93-144.
[24] N. Megiddo, The weighted Euclidean 1-center problem, Math. Oper. Res. 8 (1983) 498-504.
[25] B. Pelegrín, A general approach to the 1-center problem, Cahiers Centre Études Rech. Opér. 28 (1986) 293-301.
[26] B. Pelegrín, L. Cánovas, An improvement and an extension of the Elzina and Hearn's algorithm to the 1 -center problem in \mathbb{R}^{n} with $l_{2 b}$-norms, Top 4 (1996) 269-284.
[27] H. Rademacher, O. Toeplitz, Von Zahlen und Figuren, Springer, Berlin, 1930.
[28] J.J. Sylvester, A question in the geometry of situation, Quart. J. Pure Appl. Math. 1:79 (1857).
[29] J.-F. Thisse, J.E. Ward, R.E. Wendell, Some properties of location problems with block and round norms, Oper. Res. 32 (1984) $1309-1327$.
[30] A.C. Thompson, Minkowski Geometry, Encyclopedia of Mathematics and Its Applications, vol. 63, Cambridge University Press, 1996.
[31] E. Welzl, Smallest enclosing disks (balls, ellipsoids), in: Lecture Notes in Computer Science, vol. 555, 1991, pp. 359-370.

[^0]: से Research partially supported by MICINN (Spain) and FEDER (UE) grant MTM2008-05460, and by Junta de Extremadura grant GR10060 (partially financed with FEDER).

 * Corresponding author.

 E-mail addresses: jalonso@unex.es (J. Alonso), horst.martini@mathematik.tu-chemnitz.de (H. Martini), margarita.spirova@mathematik.tu-chemnitz.de (M. Spirova).

