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SUMMARY

The Wnt/b-catenin pathway and Nanog are key reg-
ulators of embryonic stem cell (ESC) pluripotency
and the reprogramming of somatic cells. Here, we
demonstrate that the repression of Dkk1 by Nanog,
which leads indirectly to b-catenin activation, is
essential for reprogramming after fusion of ESCs
overexpressing Nanog. In addition, b-catenin is
necessary in Nanog-dependent conversion of prein-
duced pluripotent stem cells (pre-iPSCs) into iPSCs.
The activation of b-catenin by Nanog causes fluctu-
ations of b-catenin in ESCs cultured in serum plus
leukemia inhibitory factor (serum+LIF) medium, in
which protein levels of key pluripotency factors
are heterogeneous. In 2i+LIF medium, which favors
propagation of ESCs in a ground state of pluripo-
tency with many pluripotency genes losing mosaic
expression, we show Nanog-independent b-catenin
fluctuations. Overall, we demonstrate Nanog and
b-catenin cooperation in establishing naive pluripo-
tency during the reprogramming process and their
correlated heterogeneity in ESCs primed toward
differentiation.

INTRODUCTION

The activation of the Wnt signaling pathway enhances embry-

onic stem cell (ESC) self-renewal and reprogramming of somatic

cells to pluripotency (Kühl and Kühl, 2013; Lluis et al., 2008; Mar-

son et al., 2008; Sato et al., 2004; Sokol, 2011). b-Catenin is the

key effector of this pathway, and its stability is modulated by the

destruction complex, which is formed by Gsk3, Axin, APC, and

CK1 (Stamos and Weis, 2013). Dickkopf-related protein 1

(Dkk1) is one of the b-catenin targets, and it binds the LRP-5/6

Wnt coreceptor to prevent the binding of its ligand (Kawano

and Kypta, 2003).
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Mouse ESCs are transcriptionally heterogeneous. In serum

plus leukemia inhibitory factor (serum+LIF) medium, Esrrb (van

den Berg et al., 2008), Stella (Hayashi et al., 2008), Nanog,

zinc-finger protein 42, T box 3, and Klf4 showmetastable protein

expression levels (Cahan and Daley, 2013). In contrast, in ESCs

cultured in 2i+LIF medium, which include Mek and GSK3 inhib-

itors (Ying et al., 2008), the expression profile is homogeneous

(Marks et al., 2012; Wray et al., 2010).

Nanog is a key factor in the ESC core pluripotency network

and is necessary for maintenance of the naive pluripotent state

of ESCs (Chambers et al., 2003; Loh et al., 2006; Mitsui et al.,

2003). Overexpression of Nanog enhances cell-fusion-mediated

reprogramming (Silva et al., 2006) and is essential for conversion

of preinduced pluripotent stem cells (pre-iPSCs) to fully reprog-

rammed iPSCs (Silva et al., 2009).

Here, we demonstrate that Nanog controls b-catenin through

direct inhibition of Dkk1, which results in b-catenin accumulation

in ESCs overexpressing Nanog. b-Catenin is essential for re-

programming of somatic cells after their fusion with Nanog-over-

expressing ESCs and for the conversion of pre-iPSCs into

iPSCs, when Nanog establishes naive pluripotency during the

reprogramming process.

Furthermore, we show that b-catenin fluctuates synchro-

nously with Nanog in mouse ESCs cultured in serum+LIF, while

its fluctuations in 2i+LIF are independent of Nanog. We derived

a differential equation-based model that captures Nanog and

b-catenin fluctuations with bistable dynamics.

RESULTS

Nanog Regulates the Wnt/b-Catenin Pathway by
Repressing Dkk1
ESC pluripotency is regulated by a network of signaling path-

ways and transcription factors. We examined the functional cor-

relation between Nanog and b-catenin activities in ESCs.

First, we investigated Wnt pathway activity in ESCs that

overexpress Nanog (EF4 cells) (Silva et al., 2006) and in ESC

mutants lacking one Nanog allele (Nanog bgeo/+ cells) (Mitsui

et al., 2003). EF4 cells accumulated high levels of b-catenin,
thors
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Figure 1. Nanog Stabilizes b-Catenin Levels by Inhibiting Dkk1

(A and B) Western blot of total b-catenin and Nanog in E14Tg2a, EF4 (A), RF8, and Nanog bgeo/+ cells (B).

(C and D) Quantitative PCR (qPCR) of Wnt pathway targets in E14Tg2a, EF4 (C), RF8, and Nanog bgeo/+ cells (D).

(E and F) FACS analysis of GFP distribution of TNGA and EL55 cells treated with Chiron (3 mM) for 1 day and the Mek inhibitor PD184352 (3 mM) for 7 days.

(G) Chromatin immunoprecipitation (ChIP) of Nanog on Dkk1 and Igx1A promoters in E14Tg2a and EF4 cells.

(legend continued on next page)
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while Nanog bgeo/+ cells showed reduced levels, as compared

to controls (E14Tg2a and RF8 cells, respectively) (Figures 1A,

1B, and S1A). The Wnt/b-catenin target genes Axin2, Cdx1,

and Brachyury were expressed at higher levels in EF4 cells (Fig-

ure 1C), and at lower levels in Nanog bgeo/+ cells (Figure 1D),

compared to controls. These data suggest that Nanog promotes

b-catenin accumulation in ESCs. Of note, levels of Nanog were

not altered in EF4 cells treated with the Wnt pathway inhibitors

Dkk1 or IWP2, while b-catenin levels and activity were reduced

(Figures S1B–S1D).

Wenext askedwhetherb-catenin isNanogdependent in TNGA

cells, an ESC line expressing GFP from Nanog allele (Chambers

et al., 2007), and in EL55 cells, an ESC line expressing endoge-

nous b-catenin fused with GFP (Figures S1E–S1I). GFP-tagged

b-catenin colocalized and had correlated expression levels with

endogenous b-catenin and did not show abnormal endosomal

accumulation (Figures S1J and S1K; r = 0.98). Untagged and

GFP-tagged forms of b-catenin in EL55 cells were increased

upon activation of the Wnt pathway using the GSK3 inhibitor

Chiron (CHIR99021) (Figure S1L), and b-catenin target genes

were turned on by Chiron treatment (Figure S1M).

To investigate whether b-catenin is Nanog dependent, we

used a Mek inhibitor (Meki) (Ying et al., 2008), which upregulates

Nanog (Silva et al., 2009), andChiron. UponChiron treatment, the

GFP distribution in TNGA cells was unaltered, while EL55 cells

became almost all GFP+ (Figures 1E and 1F, Hb-cat). In contrast,

upon Nanog induction using theMeki, both TNGA and EL55 cells

becameGFP+ (Figures 1E and 1F, Hb-cat, HN), which suggested

that Nanog controls b-catenin stabilization. Moreover there was

no b-catenin accumulation in Nanog null cells (Nanog bgeo/

Hygro) (Mitsui et al., 2003) upon Meki treatment (Figure S1N).

Dkk1 is a secreted factor (Niehrs, 2006) expressed by ESCs

(Kotini et al., 2011) that prevents binding of the Wnts (Kawano

and Kypta, 2003). Having observed activation of Wnt targets in

EF4 cells and induction of b-catenin accumulation by Nanog,

we investigated whether Nanog is a repressor of Dkk1. We

show Nanog binding to the Dkk1 promoter in ESCs and

increased binding in EF4 cells (Figure 1G), which suggests direct

regulation of Dkk1 transcription by Nanog. Accordingly, Dkk1

mRNA and protein levels were lower in EF4 cells and higher in

Nanog bgeo/+ cells compared to controls (Figures 1H and 1I).

Dkk1 levels were comparable in the different cell media (Fig-

ure 1J), indicating the prevalence of its autocrine regulation of

the Wnt pathway.

Overall, these data show that Nanog represses Dkk1 tran-

scription and thereby induces indirect activation of the Wnt/

b-catenin pathway by promoting b-catenin accumulation.

Nanog Enhances Cell-Fusion-Mediated Reprogramming
by Increasing b-Catenin Accumulation upon Dkk1
Repression
b-Catenin accumulation and Nanog overexpression in ESCs

enhance reprogramming after fusion (Lluis and Cosma, 2009;
(H) Dkk1 qPCR in EF4, wild-type ESCs (E14Tg2a, RF8), and Nanog bgeo/+.

(I) Western blot of Dkk1 in wild-type and mutant ESCs.

(J) Secreted Dkk1 concentration measured by ELISA assay.

Data are means ± SEM (n = 3). p > 0.1, *p < 0.05, **p < 0.01.
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Lluis et al., 2008, 2010; Silva et al., 2006). As Nanog overexpres-

sion stabilizes b-catenin in EF4 cells through Dkk1 repression,

we investigated whether reprogramming of somatic cells after

EF4-cell fusion was due to Nanog in cooperation with the Wnt/

b-catenin pathway. Thus, we fused NPCs-Oct4-Puro-GFP

(neural precursor cells carrying the Oct4-Puro-GFP transgene)

with wild-type ESCs, with EF4, and with Dkk1-treated EF4 cells

(Figures 2A and S1C). GFP-positive reprogrammed clones were

stained for alkaline phosphatase (AP) and counted. As expected,

overexpression of Nanog in EF4 cells increased reprogramming.

In contrast, AP+ and GFP+ colonies were strongly reduced by

Dkk1 pretreatment of EF4 cells (Figures 2B, 2C, and S2A). Of

note, cell-fusion efficiency was not modulated by Nanog overex-

pression or Dkk1 treatment (Figure S2B). These data indicated

that activation of the Wnt pathway is essential for enhancement

of reprogramming by Nanog.

These results were confirmed by the silencing of Dkk1 in

wild-type ESCs (E14Tg2a) with a small hairpin (ShRNA) (Figures

S2C–S2E), which induced stabilization of b-catenin (Figure S2D),

increased levels of Axin2, and no changes in Nanog expres-

sion (Figure S2E); AP+ and GFP+ colonies were increased in

ShRNA-Dkk1-E14Tg2a fused with NPCs-Oct4-Puro-GFP (Fig-

ures S2F–S2H).

Next, we generated DN4 and N1 clones after overexpressing

Nanog in ESCs deleted for b-catenin (D/D) and in the parental

wild-type cell line (fl/fl) (Lyashenko et al., 2011). These lines

carried Nanog expression levels comparable to those in EF4

cells (Figure S2I), while Axin2, Cdx1, andBrachyury were overex-

pressed in N1, but not in DN4 cells (Figure S2J).

There was no increase in AP+ and GFP+ clones after fusion of

DN4 cells with NPCs-Oct4-Puro-GFP, while there was increased

reprogramming after fusion of N1 cells, with respect to controls

(Figures 2D, 2E, and S2K). These data show that b-catenin is

essential in the reprogramming process mediated by Nanog.

We ruled out reprogramming defects due to loss of stem fea-

tures or cell-fusion capability of b-catenin null cells. Indeed, in

serum+LIF medium, b-catenin null and the parental line had

similar morphology (Figure S2L) and expressed normal levels

of pluripotency genes (Figures S2M and S2N, fl/fl, D/D;

Lyashenko et al., 2011). Furthermore, b-catenin null cells had

no cell-adhesion defects, as shown by normal E-cadherin levels,

which was probably due to upregulation of Plakoglobin and

unchanged fusion efficiency (Figures S2N–S2P, fl/fl, D/D; Lya-

shenko et al., 2011). Similar features were also confirmed in

another b-catenin null ESC line (Wray et al., 2011) (Figures S2N

and S2O, fl/�, D/�; Wray et al., 2011).

Esrrb cooperates with Nanog in enhancement of reprogram-

ming (Festuccia et al., 2012; Martello et al., 2012). We observed

no changes in the expression of Esrrb, thereby excluding its role

in reprogramming when Wnt/b-catenin activity was perturbed

(Figure S2Q).

Finally, we also noted that Wnt3a levels were slightly higher in

EF4 cells as compared to DN4 cells (Figure S2R); however,
thors



Figure 2. b-Catenin Is Essential for Nanog-Mediated Reprogramming of NPCs after Cell Fusion and for Conversion of Pre-iPSCs in iPSCs

(A) Scheme of spontaneous cell fusion between mESCs and NPCs.

(B and C) Reprogramming efficiency of E14Tg2a, EF4, and EF4 cells pretreated with Dkk1 (50 ng/ml, 24 hr), counting AP+ (B) and GFP+ (C) colonies. (C, inset)

Representative GFP clone.

(legend continued on next page)
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Chiron treatment induced upregulation of Wnt3a to similar levels

in wild-type and bgeo/+ ESCs over the controls (Figure S2S).

These data therefore excluded that overexpression of Nanog in-

duces an upregulation of Wnt3a, which is dependent on b-cate-

nin instead.

To further investigate b-catenin and Nanog interplay in reprog-

ramming, we asked whether ESCs deleted for Nanog in one

allele (Nanog bgeo/+) might not reprogram somatic cells after

fusion, due to low b-catenin accumulation. Thus, we treated

Nanog bgeo/+ and RF8 cells with Chiron, to stabilize b-catenin

and activate target genes, without altering the levels of Nanog

(Figures S2T and S2U), and fused these cells with NPCs-Oct4-

Puro-GFP. No reprogrammed clones were selected after fusion

of Nanog bgeo/+ ESCs, while reprogramming was greatly

increased after fusion of Nanog bgeo/+ ESCs pretreated with

Chiron (Figures 2F, 2G, and S2V). These data demonstrate that

b-catenin stabilization with Chiron can rescue the lack of reprog-

ramming after fusion of Nanog bgeo/+ ESCs.

Of note, Nanog bgeo/+ cells do not show pluripotency defects

(Mitsui et al., 2003). Furthermore, E-cadherin and Plakoglobin

levels and fusion efficiency were comparable to the parental

line (Figures S2W–S2Y). Finally, reprogramming efficiency was

not rescued by Wnt3a pretreatment of Nanog bgeo/+ ESCs

(Figures S2Z–S2BI). The low Nanog levels and consequently

high Dkk1 in this cell line (Figure 1I) likely impaired the binding

of Wnt3a to its receptor, as shown also by the lack of Wnt

pathway activity (Figure S2CI).

b-Catenin Is Essential for Nanog-Mediated Conversion
of Pre-iPSCs into iPSCs
Stepwise modulation of the Wnt pathway is necessary for re-

programming mouse embryonic fibroblasts (MEFs) into iPSCs

(Aulicino et al., 2014; Ho et al., 2013). Furthermore, Nanog is

necessary for pre-iPSCs to become iPSCs (Silva et al., 2009).

However, whether the Wnt pathway and Nanog cooperate in

this conversion has not been studied.

MEFs stably carrying a GFP reporter for Nanog were infected

with the mouse transcription factors Oct4, Klf4, Sox2, and

c-Myc (OKSM) (Figure 2H). In pre-iPSCs positive for SSEA-1

and negative for Nanog (Figure S2DI), we upregulated Nanog

using a Mek inhibitor (Silva et al., 2008), and at the same time,

we inhibited the Wnt pathway by adding Dkk1 (Figures 2H

and S2EI). There was a significantly reduced number of iPSCs

generated from pre-iPSCs, while iPSCs were efficiently gener-

ated without inhibition of the Wnt pathway (Figures 2I–2K and
(D and E) Reprogramming efficiency comparing Nanog overexpression in b-caten

(D) and GFP+ (E) colonies. (E, inset) Representative GFP clone.

(F and G) Reprogramming efficiency stabilizing b-catenin with Chiron (3 mM, 24

sentative GFP clone.

(H) Scheme of iPSC generation. MEFsNanog-GFP were infected with OKSM. Nan

PD0325901 (Meki, 1 mM) ± Dkk1 (50 ng/ml).

(I and J) Immunofluorescence of pre-iPSCs grown in ESCmedium containingMek

converted into iPSCs (J).

(K) Percentage of Nanog-GFP+ iPSCs over total pre-iPSC clones.

(L) Scheme of iPSC generation fromMEFsb-cat flox/flox after infection with OKSM. b

iPSCs ±tamoxifen were cultured in ESC medium with Meki to stabilize Nanog.

(M) Percentages of Nanog+ iPSCs over total pre-iPSC clones.

Data are means ± SEM (n = 5). p > 0.1, *p < 0.05, **p < 0.01, ***p < 0.0001. Scal
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S2FI–S2HI). We then further showed that inhibition of the Wnt

pathway impairs the activity of Nanog in the late phase of re-

programming, as although Nanog was overexpressed in pre-

iPSCs, the addition of Dkk1 drastically decreased iPSC number

(Figures S2II–S2KI).

Next, we investigated whether deletion of b-catenin in pre-

iPSCs impairs their conversion into iPSCs. MEFsb-cat fl/fl were

infected with OKSM (Figure 2L). The b-catenin gene was deleted

in pre-iPSC colonies positive for SSEA-1 and negative for Nanog

(FiguresS2LI andS2MI). The deletionwasnot complete, however.

After induction of Nanog with Mek inhibitor, pre-iPSCsb-cat �/�

failed to become iPSCs, and there were no clones positive for

Nanog and negative for b-catenin (Figures 2M and S2NI). The

fewNanog-positiveclonesselected (Figure2M)werealsopositive

for b-catenin, which indicated that they derived from MEFs that

escaped b-catenin deletion. These were indistinguishable from

iPSCs generated from pre-iPSCsb-cat fl/fl (Figures 2M and S2OI).

These data demonstrate that b-catenin is essential in the conver-

sion of pre-iPSCs into iPSCs in establishing Nanog-mediated

ground-state pluripotency.

b-Catenin Fluctuates Synchronously with Nanog in
Serum+LIF Medium
Nanog fluctuates in ESCs cultured in serum+LIFmedium (Cham-

bers et al., 2007; MacArthur et al., 2012). We therefore investi-

gated whether, apart from controlling reprogramming of somatic

cells, the above-described Nanog regulation of Dkk1 affects

b-catenin distribution and dynamics in ESCs.

In immunofluorescence experiments, there were heteroge-

neous levels of total and active b-catenin in E14Tg2a cultured

in serum+LIF, with active b-catenin localized also in the nucleus,

as expected (Figure 3A). Single cells expressing more Nanog

also expressed high total and active b-catenin (Figure 3A), with

high correlation (r = 0.78; Figure 3A). b-catenin-GFP was also

heterogeneously expressed in EL55 cells, with these expressing

high levels of b-catenin and Nanog, or low levels of both, as indi-

cated by the correlation plot (r = 0.76; Figure 3B). Overall, these

data indicate correlated heterogeneity of b-catenin and Nanog in

ESCs cultured in serum+LIF.

We next investigated the dynamics of b-catenin in population

studies and with time-lapse single-cell imaging. EL55 cultured in

serum+LIF showed 45% ± 10% of GFP-positive cells, 15% ±

10% of GFP-negative cells, and a population with intermediate

GFP levels (Figure 3C, Hb-cat, Lb-cat). Sorted Hb-cat (GFP+)

had higher levels of both b-catenin and Nanog with respect to
in D/D background (DN4) and in b-catenin fl/fl background (N1), counting AP+

hr) in bgeo/+ cells, counting AP+ (F) and GFP+ (G) colonies. (G, inset) Repre-

og-negative pre-iPSCs were cultured in ESC medium with the Mek inhibitor

i and Dkk1 (I) and of pre-iPSCs grown in ESCmedium plusMeki (without Dkk1),

-catenin was deleted in Nanog-negative pre-iPSCs with tamoxifen (1 mM). Pre-

e bars represennt 200 mm (C, E, and G inset) and 25 mm (I and J).

thors



Figure 3. Correlated Fluctuations of b-Catenin and Nanog in ESCs Cultured in Serum+LIF Medium

(A and B) Immunofluorescences of total b-catenin, active b-catenin (ABC) and Nanog in E14Tg2a and EL55 cells cultured in serum+LIF. Arrows indicate zoomed

regions with correlated expression of b-catenin and Nanog. The correlation plots of endogenous (A) and GFP-tagged (B) b-catenin with Nanog are shown

(r, Pearson correlation coefficient).

(C) GFP distribution of the EL55 clone in serum+LIF analyzed by FACS. Hb-cat, high b-catenin; Lb-cat, low b-catenin.

(D) Western blot of GFP-positive (Hb-cat) and GFP-negative (Lb-cat) EL55 cells from FACS sorting (day 0) and 4 days of culture (day 4).

(legend continued on next page)
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sorted Lb-cat (GFP�) cells (Figure 3D, day 0). Levels of pluripo-

tency genes were comparable (Figures S3A and S3B).

Next, we asked whether b-catenin spontaneously fluctuates

over time, as had already been reported for Nanog. Hb-cat

(GFP+) and Lb-cat (GFP–) fluorescence-activated cell sorting

(FACS)-sorted cells passed from both Nanog and b-catenin

‘‘high states’’ to ‘‘low states’’ and vice versa, after 4 days of cul-

ture (Figure 3D).

We then analyzed b-catenin fluctuations using time-lapse sin-

gle-cell imaging. The GFP signal was normalized against stably

expressed red fluorescent protein fused to histone H2B (H2B-

RFP). Unsynchronized EL55 cells cultured in serum+LIF showed

increases and decreases in GFP levels over time (Movie S1; Fig-

ures 3E and S3C).

Finally, we showed correlated dynamics of Nanog and b-cat-

enin in TNGA cells. FACS-sorted GFP+ (HN) had high levels of

b-catenin, while GFP� (LN) cells had almost no b-catenin accu-

mulation (Figure 3F, day 0). GFP+ cells had decreased levels of

both b-catenin and Nanog at day 4. Symmetrical dynamics

were observed in the GFP� population (Figure 3F). These data

indicate that the levels of b-catenin and Nanog are dynamically

interconnected in ESCs cultured in serum+LIF.

A Mathematical Model Recapitulates Nanog- and
b-Catenin-Correlated Fluctuations
Different models have been proposed to explain Nanog dy-

namics (Fidalgo et al., 2012; Glauche et al., 2010; Kalmar et al.,

2009; Navarro et al., 2012). To recapitulate the two different sub-

states of Nanog and b-catenin in serum+LIF, we modeled the

system as a bistable one, in which the low and high states of

Nanog, and consequently of b-catenin, are both stable and the

transition from one to the other is due to noise. Of note, gene

expression noise is a major determinant of the distribution of

Nanog in stem cells (Wu and Tzanakakis, 2012).

Oct4, Sox2, Nanog, Dkk1, and b-catenin interactions are

considered in our model. The topology encompasses a positive

autofeedback loop of Oct4-Sox2 heterodimer (Glauche et al.,

2010), which activates Nanog expression (Rodda et al., 2005),

and a positive autofeedback loop of Nanog (Loh et al., 2006;

Mullin et al., 2008) (Figures 3G and S3D). Nanog has also been

suggested to fluctuate because of autorepression (Fidalgo

et al., 2012; Navarro et al., 2012). Here, we described the system

using a minimal topology that encompasses bistability, as we

mainly focused on the effects of Nanog fluctuations on b-catenin

through Dkk1 repression, rather than on the regulation that

controls the dynamics of Nanog.

We used first-order degradation kinetics and Hill functions for

the transcriptional interactions. The model includes stochastic

terms, implemented as zero-mean Gaussian processes, which
(E) Snapshots of live EL55 cell imaging. Quantifications of GFP signal normalized

yellow arrows, GFP switch on.

(F) HN (GFP+) and LN (GFP�) cells FACS sorted from TNGA ESCs and analyzed

(G) Topology of the interactions among the Oct4-Sox2 heterodimer, Nanog, Dkk

(H) Differential equations (DEs) model of the network.

(I) Nanog, Dkk1, and b-catenin simulated time course.

(J) Bimodal distribution of Nanog and b-catenin.

(K) Bifurcation plots of the model; red and blue lines indicate stable, while gray li
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are added to the equations for Nanog and b-catenin (Figure 3H).

Starting from parameter values reported before (Abranches

et al., 2013; Glauche et al., 2010), we measured the half-life of

b-catenin (Figures S3E and S3F; Table S1) andmodified the tran-

scription rates and the amplitude of noise to fit the distribution of

Nanog and b-catenin in TNGA and EL55 cells, respectively.

When simulating over time, a typical trajectory of Nanog,

Dkk1, and b-catenin is presented (Figure 3I); due to noise, in ser-

um+LIF, cells can switch from one steady state to the other, with

correlated Nanog and b-catenin dynamics in antiphase with the

Dkk1 ones. Simulating the model for a high number of cells and

estimating the Kelner density (Cao et al., 1994), we recapitulated

the stationary GFP distribution of TNGA and EL55 cells (Figures

1E, 1F, steady-state conditions, and Figure 3J). We captured the

distributions observed in the two cell lines and the distances be-

tween the positive and negative states. Figure 3K shows typical

bistability continuation plots; continuing the steady state on s4
(the maximal rate of the autofeedback of Nanog), two saddle-

node bifurcations delimit the bistability region.

b-Catenin Protein Is Heterogeneous in ESCs Cultured in
2i+LIF Medium
Recent reports have shown that Nanog and other members

of the pluripotency network do not fluctuate when ESCs are

cultured in 2i+LIF medium (Ying et al., 2008). We therefore

asked whether b-catenin heterogeneity is also abrogated in

ESCs cultured in 2i+LIF.

Nanog was overall homogeneously expressed in E14Tg2a

cells, and instead, b-catenin was heterogeneous, with some

cells accumulating more b-catenin in the nucleus and in the

membranes than other cells in the same clone (Figure 4A).

Furthermore, the correlation between Nanog and b-catenin

levels was much lower in ESCs cultured in 2i+LIF (r = 0.51), as

compared to serum+LIF (r = 0. 78) (Figures 3A and 4A). In

EL55 cells cultured in 2i+LIF, although b-catenin-GFP fully colo-

calized with endogenous b-catenin with correlated expression

(r = 0.98; Figure S4A), it was heterogeneously expressed, poorly

correlating with Nanog (r = 0.56; Figure 4B).

Single-cell time lapses of EL55 cells cultured in 2i+LIF showed

increases or decreases of GFP levels over time (Movies S2 and

S3; Figures 4C, S4B, and S4C), which clearly demonstrated

that b-catenin can fluctuate in ESCs in 2i+LIF.

In addition, we studied the dynamics of the pathway activity

using TOP-dGFP, a well-known Wnt reporter carrying destabi-

lized GFP (Biechele and Moon, 2008). Only 8% ± 5% of cells

were GFP+ in 2i+LIF medium (Figure 4D). Furthermore, after

plating the unsorted cells, we observed a variable number of

GFP+ cells over time (Figures 4E and S4D), which confirmed the

heterogeneous activity of theWnt/b-catenin pathway. In addition,
against RFP signal, plotted as a function of time. White arrows, GFP switch off;

by western blot. HN, high Nanog; LN, low Nanog.

1, and b-catenin.

nes indicate unstable steady state. Scale bar represents 25 mm.

thors



Figure 4. Dynamics of b-Catenin in Mouse ESCs Cultured in 2i+LIF Medium

(A and B) Immunofluorescences of b-catenin, active b-catenin (ABC), and Nanog in wild-type ESCs (E14Tg2a) and EL55 cells cultured in 2i+LIF. Arrows indicate

zoomed regions with both correlated and uncorrelated expression of b-catenin and Nanog. The correlation plots of endogenous (A) andGFP-tagged (B) b-catenin

with Nanog are shown (r, Pearson correlation coefficient).

(C) Snapshots of live EL55 cells imaged in 2i+LIF. Quantification of GFP normalized against RFP signal is plotted. White arrows, GFP switch off; yellow arrows,

GFP switch on.

(legend continued on next page)
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time-lapse single-cell imaging of E14/TOP-dGFP showed switch-

ing on and off of the reporter over time, as well as fluctuations

between the two states (Movie S4; Figures 4F and S4E).

Finally, the TOP-dGFP reporter was activated 3 days after

culturing FACS-sorted GFP� population in 2i+LIF, while it was

inactivated in sorted GFP+ cells (Figure 4G). Target genes

were active only in the sorted GFP+ cells, while Nanog did not

change in both populations (Figure 4H).

Overall, these data indicate that b-catenin and its target genes

can fluctuate in ground pluripotency state.

DISCUSSION

Crosstalk between the Wnt/b-catenin pathway and Nanog is

important for ESC physiology. Here, we show that Nanog re-

presses an important negative regulator of the Wnt pathway,

Dkk1, and in turn indirectly activates b-catenin. This is essential

for the function of Nanog during somatic cell reprogramming. On

the other hand, we cannot exclude additional regulation by

Nanog of other effectors of the pathway or that repression of

Dkk1 by Nanog is in cooperation with a recruited repressor com-

plex. Impairment of reprogramming due to lack of Nanog can be

rescued by b-catenin stabilization, which implies a key function

of b-catenin as a downstream effector of Nanog. Interestingly,

there have been similar findings for Esrrb (Festuccia et al.,

2012; Martello et al., 2012) and Tet1 and Tet2 (Costa et al.,

2013), which are also Nanog-dependent factors in the establish-

ment of pluripotency and reprogramming.

The regulation of Nanog on b-catenin in the reprogramming

process is relevant regardless of transcriptional (Nusse, 2008;

ten Berge et al., 2011) and nontranscriptional activities of b-cat-

enin (Faunes et al., 2013), which might be synergistic, and there-

fore may be both important in the control of ESC pluripotency.

We used b-catenin null ESCs and confirmed published data

(Lyashenko et al., 2011; Wray et al., 2011) that in the presence

of LIF, these cells maintain pluripotency. Other studies have re-

ported that removal of b-catenin affects pluripotency (Faunes

et al., 2013). These divergences are probably due to the different

strategies used to generate the lines.

Nanog is heterogeneous in serum+LIF, but only under feeder-

free conditions,while it is homogeneous in 2i+LIFmedium (Cahan

and Daley, 2013; Smith, 2013), although some variability is ex-

pected (Faddah et al., 2013). Nanog dynamics were modeled

as a single, stable, and high steady state, from which ESCs can

escape due to intrinsic noise toward a transient state with low

Nanog expression, in an excitable fashion (Kalmar et al., 2009).

High and low Nanog states were also shown equally probable,

and the dynamics of the transition between these as monotonic

(Abranches et al., 2013). Here, we included Dkk1 and b-catenin

and demonstrated that Nanog and b-catenin fluctuate synchro-

nously with bistable dynamics due to stochastic noise.
(D) GFP distribution in E14/TOP-dGFP by FACS. GFP+, high TOP-dGFP activity

(E) Time course of unsorted E14/TOP-dGFP grown in 2i+LIF and analyzed by FA

(F) Snapshots of live single E14/TOP-dGFP cell imaging andquantifications ofGFP

(G) FACS analysis of GFP+ and GFP� cells sorted from E14/TOP-dGFP and cul

(H) qPCR of Axin2, Cdx1, and Nanog in GFP+ and GFP� cells sorted from E14/TO

represents 25 mm.
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Interestingly, in 2i+LIF medium, b-catenin fluctuates indepen-

dently of Nanog. Fluctuations are probably regulated by negative

feedback loops that result in Wnt pathway activation (Lee et al.,

2003), as the 2i medium contains Chiron.

Nanog-dependent fluctuations are stochastic and are due to

transcriptional noise; they might be important to prime cells

toward differentiation. Upon Wnt pathway activation, fluctuating

dynamics of b-catenin are not stochastic, as they can be

controlled by negative feedback loops induced by drug treat-

ments. Whether controlled b-catenin dynamics can maintain

the ground state of ESC pluripotency remains an open question.

EXPERIMENTAL PROCEDURES

Cell Hybrids

For ESC and neural precursor cell (NPC) cocultures, 1.0 3 106 ESCs were

plated onto preplated 1.0 3 106 NPCs. These were cocultured for 4 hr, first

for 2 hr in NPC medium and then for 2 hr in ESC medium. The cells were

then trypsinized and plated at 1/5 into p100 gelatin-coated dishes in ESC

medium. After 72 hr, puromycin or hygromycin were added to the ESCmedium

for hybrid selection.

Time-Lapse Live Fluorescence Imaging

Images were acquired with a 403 (numerical aperture 0.55) lens using 488 nm

and 561 nm excitation. A pinhole size of �3 Airy units was used to increase

signal. Cells were imaged at 37�C in a humidified environmental chamber in

5%CO2. A time interval of 1 hr was set between time points. Image processing

and fluorescence quantification were performed using ImageJ v1.47p.

Mathematical Model Simulation and Analysis

The stability and bifurcation analyses were realized using the software

tool xppaut (http://www.math.pitt.edu/�bard/xpp/xpp.html). To approximate

numerical solutions of the stochastic differential equations, we applied the

Euler-Maruyama method. Stochastic simulations were implemented using

the programming language C++. Density plots were generated under the

MATLAB platform (MathWorks).

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures,

four figures, one table, and fourmovies and can be foundwith this article online

at http://dx.doi.org/10.1016/j.celrep.2014.08.011.

AUTHOR CONTRIBUTIONS

M.P.C., L.M., and E.P. designed the experiments and data analysis. L.M., E.P.,

U.D.V., and B.S.E. performed experiments. M.I. designed the tagging strategy.

L.M. developed the mathematical model. M.P.C., L.M., and E.P. wrote the

manuscript. M.P.C. supervised the project.

ACKNOWLEDGMENTS

We thank K. Arumugam, F. Aulicino, A. Corsinotti, D. di Bernardo, J. Frade, F.

Lluis, B. Keyes, L. Ombrato, and I. Theka for suggestions on themanuscript; B.

Di Stefano for helping with pre-iPSC generation; M. Herberg for suggestions
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Kalmar, T., Lim, C., Hayward, P., Muñoz-Descalzo, S., Nichols, J., Garcia-

Ojalvo, J., and Martinez Arias, A. (2009). Regulated fluctuations in nanog

expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7,

e1000149.

Kawano, Y., and Kypta, R. (2003). Secreted antagonists of the Wnt signalling

pathway. J. Cell Sci. 116, 2627–2634.

Kotini, A.G., Mpakali, A., and Agalioti, T. (2011). Dnmt3a1 upregulates tran-

scription of distinct genes and targets chromosomal gene clusters for epige-

netic silencing in mouse embryonic stem cells. Mol. Cell. Biol. 31, 1577–1592.
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