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solution of ordinary differential equations with parameters. This paper deals with 
the convergence of such methods. There are some estimations of errors too. 0 1990 
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1. INTRODUCTION 

We assume throught that 

Y’(f) =.f(c Y(t)> 21, t~l=[a,Bl,cc<P. (1) 

is a system of q ordinary differential equations. The right-hand side of 
this system depends on p parameters I., so L = [,I,, . . . . IpIT E RP. Together 
with (1) the following boundary conditions are given and they are of the 
form 

Y(M) = Yo, (2) 

g(L Y(P)) = 0, (3) 

where y. is given in Rq and 8 is zero vector in RP. The function g is 
nonlinear. Now the exact solution (cp, I.) of BVP (l)-(3) consists of such 
cp E C(Z, Rq) and I E RP that both the Eq. (1) and the conditions (2)-(3) are 
satisfied (C(Z, Rq) denotes the collection of all continuous functions from 
Z into R"). 

A question of the existence and uniqueness of solutions of the problems 
(l)-(3) was considered by many authors (for example, see [ 10, 12, 
14-171). Our task is a problem of a numerical solution for (l)-(3). So due 
to this fact we assume that BVP (l))(3) has the unique solution (cp, 1) E 
C(Z, Rq)x RP. 
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To describe a numerical method, we first subdivide the interval I into N 
subintervals all of the same length h = (p - r)/N. The points of subdivision 
will be denoted by tlrO, t,, , . . . . t,,,v, where the ith such point is defined by 
t,;=cc+ih, igR,,,={O, l,..., N). 

Now we suggest a multistep method for yh combined with an iterative 
method for Ahi to determine the numerical solution ( Y,~, A,,) of ( l)-(3). This 
method can be written as 

A,, = A(), lo is given, 

A/?, /+ 1 = Ah, - BP ‘g(A,y, Y~(B; j*,j)), j = 0, 1, . ..) 
(4) 

and 

i=O 

= hF( t, . . . . t + kh - h, h, yh(t; Ahi), . . . . y,,(t + kh - h; A,), /I,) 

E h@( t, h, yh > Ahi), ak=l,fort=th,, nERNekr j=O, 1, . . . . (5) 

Conditions for ai, F, and B will be defined later. 
The use of (5) requires that the approximations of y, for 

thO, th,, ..., t,,,- , be computed first. We can apply any one-step method 
including the Runge-Kutta method as a natural for this purpose. Once the 
values of y, for the, . . . . th+ i are available, the formula (5) can be 
employed to compute the rest. Now knowing the approximate solution y, 
for t= t,,=p we are able to use (4) for determining the new value A,,,+, 
and then the corresponding numerical solution y, on the mesh points. 

The purpose of this paper is to give sufficient conditions for the 
convergence of (4)-(5). To get it, Lipschitz or Peron conditions are needed 
on F. Indeed it is necessary to assume that the method (4)-(5) is consistent. 
Some estimations of errors are given. 

The linear case, 

g(A Y,=@~+~Y-K fippxp, fipxy, &xl, (6) 

was discussed in [S] (one-step methods) and in [7, 91 (multistep 
methods). You can find there some numerical examples too. 

2. DEFINITIONS AND ASSUMPTIONS 

We introduce the following basic definitions. 

DEFINITION 1. The method (4)-(5) is said to be convergent to the 
solution (cp, A) of BVP (l)-(3) if 
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lim max Ildrh; 1) - .Yh(?hi; &,)I1 = 0, 
N-cc itRN 
.i- m 

lim 
N-CC 

I\& - II( = 0. 
j- cc 

DEFINITION 2. The method (4)-(5) is said to be consistent with the 
problem (1 k(3) on the solution (cp, 1) if there exists a function 
~:J~xH+R+=[O,co),.l~=[~(,fl-kh] such that 

N-k 

lim 1 ~(t,~, h) =O. 
N-rp i=. 

Let 

where u:~ = -ui(fhn, h), iE R,- 1. 

Now we have the following assumptions. 

ASSUMPTION H, . Suppose that 

1” F:IkxHxRYkxRP+RY, f:IxRYxRP+RY, H=[O,h,], h,>O, 
g:RPxRY+RP; 

2” there exist constants L, > 0, i E R,, and a function E,: Ix H + R + 
such that for (so,..., s& ,, h)EIkxHandzi, ZieRY, iERk--l, p, jigRP we 
have 

lIF(s 0, ..‘, Sk - 1, h, zo, ., z&l, ~)--F(~o,...,Sk~~,h,Zo,...,Zk~,,ji)lI 

k-l 

< c Lilb;-?,I1 +L,II~-filI +E&o,h), 

i=O 

and 
N-k 

lim h c E,(thi, h)=O; 
N-s i=O 
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3’ there exist a nonsingulur square matrix B of order p and u constant 
m, < 1 such that 

for pl, pz E R”, Y E RY; 

4” lIB-‘Cg(c1, y,)-gh ~dlll dm2 Y, - ?:r II II, .for peRP, ,rIq 
y, E RY. 

ASSUMPTION H,. Suppose that 

1” the conditions lo, 3 “, and 4” of Assumption H 1 are satisfied; 

2” I~A~l~<l+hi?(maximumnorm)forn~R,~,,h~H,wherei?isa 
nonnegative constant; 

3” there exist functions Q: Ik x Hx Rk,+l -+ R,, Ed: H+ R,, 
lim h _ 0 EF(h) = 0, such that 

/If@,, . . . . Sk-- ,, h, zo, . . . . zk - 1, P))--(&J, . . . . Sk-,, h, 20, . . . . zkpI, j)li 

< Q(s,, . . . . Sk - , , h, I/Z0 - %/I, . . . . Iizk~~,--f,&,II, b-fiiI)+&~(h), 

fOr(Sg ,..., Sk~,,h)ElkXH,Z,,Z,ERY, iERk-,,&jiLERP; 

4” the function Q has the properties 

(i) Q is continuous and bounded and it is nondecreasing 
with respect to the lust k + 1 variables and R(s,, . . . . sk-, , 
0 ) . ..) 0) = 0; 

(ii) there exists a function t: H -+ R, , lim, _ o t(h) = 0 such that 
the inequality 

s f+h 

L’(s, . . . . s, h, v, . . . . v, 6) ds + hQh) 
I 

3 hQ(t, . . . . t + kh - h, h, v, . . . . v, 6) 

holdsfor (t,h,v,~)~JhxHxR+xR+; 

(iii) the function v(t)-0 is the only continuous solution of the 
problem 

u’(t)=Q(t, . ..) t, 0, v(t), . ..) u(t), zd)+Rv(t), t E I, 

u(a) = 0, (1-ml)u=m2uU0 

where m, and m, are defined in Assumption H, 
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3. CONVERGENCE OF (4t(5) 

In this section we wish to examine the convergence behaviour as N -+ co 
(or h + 0) and j + co of the approximate solution ( y,, A,). First it will be 
assumed that the function F satisfies a Lipschitz condition with suitable 
constants. We can prove the following main theorem: 

THEOREM 1. Zf Assumption H, is satisfied and ij 

1” there exists the unique solution (cp, 2) of BVP (l)-(3); 
2” IIA:ll<l+hiT (maximum norm), for nER,-,, heH, where R is 

a nonnegative constant ; 

3” d=m, $m,A< 1, where 

A=$-1), 
k-l 

D = ev(L(P - a)), L=R+ 1 L,; 
i=o 

4” there exists a function q : H + R, , lim, _ o q(h) = 0, such that 

5” the method (4t(5) is consistent with BVP (l)-(3) on the solution 
(cp, 1); 

then the method (4)-(5) is convergent to the solution (cp, 1) of BVP (lt(3) 
and the estimations 

II&- ~~11 Q u,(h), j=o, 1, . ..) (7) 

E”R”, IIYh(fhn; A,) - (P(t/m; n)(l <Au,(h) + Dw(h), j=O, 1 9 . . . . (8) 

hold true with 

1-d’ 
u,(h)=dj/II,--illI +m2Dw(h)n 

N-k 

w(h)=q(t) + 1 [E(t,;, h) +h&,(t,i, h)l. 
i=O 

Proof: Put 

ZL = IIYh(fhn; &)- (P(fhi A)113 nERN-k, j=o, I,..., 

4~=s~,yL+,~ 

El( t, h) = E( t, h) + he,( t, h). 
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Repeating the proof of the first part of Theorem 2 in [9], we have 

Now using the definition of i, and Assumptions 3” and 4” of H, we 
note 

IIA h,,+~-~Il~dIl~hj-~II+m~~W(h). 

Hence, by Lemma 1.2 in [S] we have the estimation (7) and then (8). 
The convergence follows directly from (7)-(g). 

Remark 1. Instead of the modified Newton method (4) we may take 

J-h,i+i =J-hj-Bp’(~h,, Yh(BJ Ah,)) g(~h,2 Yh(Bi Ahj)L j=O, 1 3 . ..’ 

Using a slight modification we may get its convergence provided that the 
matrix B, x p is nonsingular for each pair (A,, yh). 

Remark 2. It follows from the proof that Theorem 1 remains true if 
condition 3” of Assumption H, is satisfied only on the solution cp, i.e., if 
Y = cp(P; J-1. 

Remark 3. Put p = q. Assume that for all u, u E RY the matrix 

agil% u) D,g(u, 0) = ~ [ 1 agib, 4 
auj ’ D,g(u, u)= ~ F 1 aui ' 

has a representation of the form 

P(u, u) = P,(ZS Z(u, 0)) 

with a constant nonsingular matrix P, and there are constants v, , v2, 
v, + v2 < 1 such that 

lIZ(4 u)ll d Vl> II&T’ D, g(u, u)ll G v2 for all u, u E RY. 

Now with a suitable choice of B, namely B = P,, condition 3” of 
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Assumption H, is satisfied with m, = v, + v2. Such case was considered in 
[18, see p. 4761. 

Indeed, we have 

and hence we have our assertion. 
We note that for 

g(u,o)=lilu+ivu-R, 

if & + fl is a nonsingular square matrix of order q, KE RY, we have 

p,=ii;l+G, z=e, v, =o, II(fi+iVp’fQ Qv,=m,. 

This linear case was discussed in [S] for one-step methods for y, 
combined with an iterative method for 1,. 

Now assuming a Peron condition for F, the corresponding result for 
convergence of (4)-(5) is given in the following theorem: 

THEOREM 2. Zf both Assumption H, and conditions l”, 4”, and 5” of 
Theorem 1 are satisfied with 

E( t, h) = hE( h), E(h) + 0, 

then the method (4t(S) is convergent to the solution (cp, A) of BVP (l)-(3) 
and 

where zi, is defined in the proof of Theorem 1. 

Proof: We note that 

j~oar(r.h)[Vh(t+ih;i*r)--LP(t+ih;~”)l 

= hF(t, h, y,, ihj) - hF(t, h, cp, A) 

(9) 

+hF(t,h,cp,l)- 5 a,(t,h)cp(t+ih;L). 
,=O 

(10) 
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So we have a family of recurrent equations of order k, 

,io a,(t,,,,> h) v/:,,,+, = c.;,,. 11 E R,v k , (11) 

where 

‘hn ’ = L)htthn; ‘b,[)- dt,,; jb) 

and ch is defined by the right-hand side of (10) for t = t,,. Indeed (11) may 
be written by 

V/L+1=Aj:K+ WIL flERN-k> (12) 

where 

with the matrix Ai defined before the assumptions. So we have 

or 

II ViL + 1 II G lIA!3 II V;nII + II win11 

ehJ,n+l = max zi,,,+,+l 
StRp-, 

< (I+ h&g + h[@z) + cF(h)] 

+hQn(t/,,,,..., th,,,+k~,,h,ehJ,,...,e~,,,6:) g U.i,,+,, 

where 

sf= lllhjpi// and w& = q(h). 

Now we consider the problem 

w’(t) = h(t) + B(t, . . . . t, h, w(t), . . . . o(t), 8,“) + 5(h) + e(h) + cF(h) 

4~) = v(h). 
(13) 

This problem has a solution, coh(t ; S,“), which is a nondecreasing and 
continuous function. We are able to prove 

It is obviously true for n = 0. Assuming that it is true for fixed s and 
integrating (13) from t,, to th,,s+ ,, we have 
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+ s 
ks+ I 

Q(T, . . . . T, h, o,(T; Si”), . . . . o,(T; S;), 6;) dz 
f/n 

+ @S(h) + E(h) + &F(h)1 

+ hCt(h) + E(h) + &&)I 

>(l+i?h)e~s+hQ(t,, ,..., th,.,+k-l,h,eis ,..., eis,S/h) 

+ hC4h) + EdhI = wh/,A + , . 

Now as in the proof of Theorem 1 we have 

ST+, fm,6f+m,z,‘,, j=O, 1, . . . . (14) 

Let 

Bh = maxhX IV0 - 41) 
0 l-m, ’ 

wh(p; 6) is bounded by S, 

TT+,=m, ~~+mm,o,(/?;iY~), j=O, 1, . . . . 

Indeed, 

Sf6iy, j=O, 1 , . . . . 

is easy to see 

dm, 27: + max(m,S, 112, -%(I) 

means the sequence {a;} is nonincreasing with 

a;“, 1 ,<a;< .‘. <<al;. 

has a limit u”, where 

Uh = * o&l; 24”). 
I 

= a;. 
respect to j, i.e., 

But according to assumption 4” (iii) of H, we note that lim,,, coh(t; u”) 
E 0 so u= 0 and we have the convergence of our method. Now the 
estimation (9) follows directly from (14). The proof is completed. 
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Remark 4 (see [6] ). The condition 4 (ii) of Assumption Hz remains 
true if we add: 

(i) Q is the continuous function with respect to the variables 1st. 
r1 th, . . . . r,th uniformly with respect to the left variables (1 <r, < .. < 
r, 6 k); 

(ii) 52 is the non-increasing function with respect to the variables 
n, th, . . . . n,th, where {n,, . . . . n,} = j2, . . . . k)\{r,, . . . . r,}; or 

(iii) Q is the continuous function with respect to the variables 
r, th, ..,, r,sth uniformly with respect to the left variables; 

(iv) .Q is the non-decreasing function with respect to the first variable 
and it is the non-increasing function with respect to the variables 
n, th, . . . . n,th. 

Remark 5. Let there exist constants Li 2 0 such that 

Q(s 0, . . . . Sk , , h. Ug, . . . . uk) = i L;U;. 
,=O 

Theorem 2 remains true though the function Q is not bounded. In this case 
the function 

is the solution of the initial-value problem given in 4” (iii) of Assumption Hz. 
Now adding the boundary condition 

we have 
(1 -m, -m,A)u=O 

and if condition 3” of Theorem 1 is satisfied then u = 0 and hence really 
o(r) E 0 is the solution of BVP given in 4” (iii) of Assumption H,. 

Remark 6. Some numerical examples for one-step methods you can 
find in [S]. 
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