Multistep Methods for Nonlinear Boundary-Value Problems with Parameters

Tadeusz Jankowski
4 Rylkego Strasse, Gdansk 80-307, Poland
Submitted by V. Lakshmikantham

Received Septemher 8, 1987

Abstract

Multistep methods combined with iterative ones are applied to find a numerical solution of ordinary differential equations with parameters. This paper deals with the convergence of such methods. There are some estimations of errors too. © 1990 Academic Press, Inc.

1. Introdiuction

We assume throught that

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t), \lambda), \quad t \in I=[\alpha, \beta], \alpha<\beta, \tag{1}
\end{equation*}
$$

is a system of q ordinary differential equations. The right-hand side of this system depends on p parameters λ, so $\lambda=\left[\lambda_{1}, \ldots, \lambda_{p}\right]^{\mathrm{T}} \in R^{p}$. Together with (1) the following boundary conditions are given and they are of the form

$$
\begin{gather*}
y(\alpha)=y_{0}, \tag{2}\\
g(\lambda, y(\beta))=\theta, \tag{3}
\end{gather*}
$$

where y_{0} is given in R^{q} and θ is zero vector in R^{P}. The function g is nonlinear. Now the exact solution (φ, λ) of BVP (1)-(3) consists of such $\varphi \in C\left(I, R^{q}\right)$ and $\lambda \in R^{p}$ that both the Eq. (1) and the conditions (2)-(3) are satisfied ($C\left(I, R^{q}\right)$ denotes the collection of all continuous functions from I into R^{q}).

A question of the existence and uniqueness of solutions of the problems (1)-(3) was considered by many authors (for example, see [10, 12, 14-17]). Our task is a problem of a numerical solution for (1)-(3). So due to this fact we assume that $\operatorname{BVP}(1)(3)$ has the unique solution $(\varphi, \lambda) \in$ $C\left(I, R^{q}\right) \times R^{p}$.

To describe a numerical method, we first subdivide the interval I into N subintervals all of the same length $h=(\beta-\alpha) / N$. The points of subdivision will be denoted by $t_{h 0}, t_{h 1}, \ldots, t_{h N}$, where the i th such point is defined by $t_{h i}=\alpha+i h, i \in R_{N}=\{0,1, \ldots, N\}$.

Now we suggest a multistep method for y_{h} combined with an iterative method for $\lambda_{h j}$ to determine the numerical solution $\left(y_{h}, \lambda_{h j}\right)$ of (1)-(3). This method can be written as

$$
\begin{align*}
\lambda_{h 0} & =\hat{\lambda}_{0}, \quad \lambda_{0} \text { is given, } \\
\hat{\lambda}_{h, j+1} & =\lambda_{h j}-B^{-1} g\left(\lambda_{h j}, y_{h}\left(\beta ; \lambda_{h j}\right)\right), \quad j=0,1, \ldots, \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{i=0}^{k} a_{i}(t, h) y_{h}\left(t+i h ; \lambda_{h j}\right) \\
& \quad=h F\left(t, \ldots, t+k h-h, h, y_{h}\left(t ; \lambda_{h j}\right), \ldots, y_{h}\left(t+k h-h ; \lambda_{h j}\right), \lambda_{h j}\right) \\
& \quad \equiv h \mathscr{F}\left(t, h, y_{h}, \lambda_{h j}\right), \quad a_{k} \equiv 1, \text { for } t=t_{h n}, n \in R_{N-k}, j=0,1, \ldots . \tag{5}
\end{align*}
$$

Conditions for a_{i}, F, and B will be defined later.
The use of (5) requires that the approximations of y_{h} for $t_{h 0}, t_{h 1}, \ldots, t_{h, k-1}$ be computed first. We can apply any one-step method including the Runge-Kutta method as a natural for this purpose. Once the values of y_{h} for $t_{h 0}, \ldots, t_{h, k-1}$ are available, the formula (5) can be employed to compute the rest. Now knowing the approximate solution y_{h} for $t=t_{h N}=\beta$ we are able to use (4) for determining the new value $\lambda_{h, j+1}$ and then the corresponding numerical solution y_{h} on the mesh points.

The purpose of this paper is to give sufficient conditions for the convergence of (4)-(5). To get it, Lipschitz or Peron conditions are needed on F. Indeed it is necessary to assume that the method (4)-(5) is consistent. Some estimations of errors are given.

The linear case,

$$
\begin{equation*}
g(\lambda, y)=\tilde{M} \lambda+\tilde{N} y-\widetilde{K}, \quad \tilde{M}_{p \times p}, \tilde{N}_{p \times q}, \widetilde{K}_{p \times 1} \tag{6}
\end{equation*}
$$

was discussed in [8] (one-step methods) and in [7,9] (multistep methods). You can find there some numerical examples too.

2. Definitions and Assumptions

We introduce the following basic definitions.
Definition 1. The method (4)-(5) is said to be convergent to the solution (φ, λ) of BVP (1)-(3) if

$$
\begin{gathered}
\lim _{\substack{N \rightarrow \infty \\
j \rightarrow \infty}} \max _{i \in R_{N}}\left\|\varphi\left(t_{h i} ; \lambda\right)-y_{h}\left(t_{h i} ; \lambda_{h j}\right)\right\|=0 \\
\lim _{\substack{N \rightarrow \infty \\
j \rightarrow \infty}}\left\|\lambda_{h j}-\lambda\right\|=0
\end{gathered}
$$

Definition 2. The method (4)-(5) is said to be consistent with the problem (1)-(3) on the solution (φ, λ) if there exists a function $\varepsilon: J_{h} \times H \rightarrow R_{+}=[0, \infty), J_{h}=[\alpha, \beta-k h]$ such that

$$
\begin{gathered}
\left\|\sum_{i=0}^{k} a_{i}(t, h) \varphi(t+i h ; \lambda)-h \mathscr{F}(t, h, \varphi, \lambda)\right\| \leqslant \varepsilon(t, h), \quad t \in J_{h}, \\
\lim _{N \rightarrow \infty} \sum_{i=0}^{N-k} \varepsilon\left(t_{h i}, h\right)=0 .
\end{gathered}
$$

Let

$$
A_{n}^{h}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{0 n}^{h} & a_{1 n}^{h} & a_{2 n}^{h} & \cdots & a_{k-1, n}^{h}
\end{array}\right]
$$

where $a_{i n}^{h}=-a_{i}\left(t_{h n}, h\right), i \in R_{k-1}$.
Now we have the following assumptions.

Assumption \mathbf{H}_{1}. Suppose that

$1^{\circ} \quad F: I^{k} \times H \times R^{q k} \times R^{p} \rightarrow R^{q}, f: I \times R^{q} \times R^{p} \rightarrow R^{q}, H=\left[0, h_{0}\right], h_{0}>0$, $g: R^{p} \times R^{q} \rightarrow R^{p}$;
2° there exist constants $L_{i} \geqslant 0, i \in R_{k}$, and a function $\varepsilon_{F}: I \times H \rightarrow R_{+}$ such that for $\left(s_{0}, \ldots, s_{k-1}, h\right) \in I^{k} \times H$ and $z_{i}, \bar{z}_{i} \in R^{q}, i \in R_{k-1}, \mu, \bar{\mu} \in R^{p}$ we have

$$
\begin{aligned}
& \left\|F\left(s_{0}, \ldots, s_{k-1}, h, z_{0}, \ldots, z_{k-1}, \mu\right)-F\left(s_{0}, \ldots, s_{k-1}, h, \bar{z}_{0}, \ldots, \bar{z}_{k-1}, \bar{\mu}\right)\right\| \\
& \quad \leqslant \sum_{i=0}^{k-1} L_{i}\left\|z_{i}-\bar{z}_{i}\right\|+L_{k}\|\mu-\bar{\mu}\|+\varepsilon_{F}\left(s_{0}, h\right)
\end{aligned}
$$

and

$$
\lim _{N \rightarrow \infty} h \sum_{i=0}^{N-k} \varepsilon_{F}\left(t_{h i}, h\right)=0
$$

3° there exist a nonsingular square matrix B of order p and a constant $m_{1}<1$ such that

$$
\left\|\mu_{1}-\mu_{2}-B^{-1}\left[g\left(\mu_{1}, y\right)-g\left(\mu_{2}, y\right)\right]\right\| \leqslant m_{1}\left\|\mu_{1}-\mu_{2}\right\|
$$

for $\mu_{1}, \mu_{2} \in R^{p}, y \in R^{4}$;
$4^{\circ} \quad\left\|B^{-1}\left[g\left(\mu, y_{1}\right)-g\left(\mu, y_{2}\right)\right]\right\| \leqslant m_{2}\left\|y_{1}-y_{2}\right\|, \quad$ for $\quad \mu \in R^{p}, \quad y_{1}$, $y_{2} \in R^{q}$.

Assumption H_{2}. Suppose that

1° the conditions $1^{\circ}, 3^{\circ}$, and 4° of Assumption H_{1} are satisfied;
$2^{\circ} \quad\left\|A_{n}^{h}\right\| \leqslant 1+h \tilde{R}$ (maximum norm) for $n \in R_{N-k}, h \in H$, where \tilde{R} is a nonnegative constant;
3° there exist functions $\Omega: I^{k} \times H \times R_{+}^{k+1} \rightarrow R_{+}, \quad \varepsilon_{F}: H \rightarrow R_{+}$, $\lim _{h \rightarrow 0} \varepsilon_{F}(h)=0$, such that

$$
\begin{aligned}
& \left\|F\left(s_{0}, \ldots, s_{k-1}, h, z_{0}, \ldots, z_{k-1}, \mu\right)-F\left(s_{0}, \ldots, s_{k-1}, h, \bar{z}_{0}, \ldots, \bar{z}_{k-1}, \bar{\mu}\right)\right\| \\
& \quad \leqslant \Omega\left(s_{0}, \ldots, s_{k-1}, h,\left\|z_{0}-z_{0}\right\|, \ldots,\left\|z_{k-1}-\bar{z}_{k-1}\right\|,\|\mu-\bar{\mu}\|\right)+\varepsilon_{F}(h)
\end{aligned}
$$

for $\left(s_{0}, \ldots, s_{k-1}, h\right) \in I^{k} \times H, z_{i}, \bar{z}_{i} \in R^{q}, i \in R_{k-1}, \mu, \bar{\mu} \in R^{p}$;
4° the function Ω has the properties
(i) Ω is continuous and bounded and it is nondecreasing with respect to the last $k+1$ variables and $\Omega\left(s_{0}, \ldots, s_{k-1}\right.$, $0, \ldots, 0)=0$;
(ii) there exists a function $\xi: H \rightarrow R_{+}, \lim _{h \rightarrow 0} \xi(h)=0$ such that the inequality

$$
\begin{aligned}
\int_{t}^{t+h} & \Omega(s, \ldots, s, h, v, \ldots, v, \bar{v}) d s+h \xi(h) \\
& \geqslant h \Omega(t, \ldots, t+k h-h, h, v, \ldots, v, \bar{v})
\end{aligned}
$$

holds for $(t, h, v, \bar{v}) \in J_{h} \times H \times R_{+} \times R_{+} ;$
(iii) the function $v(t) \equiv 0$ is the only continuous solution of the problem

$$
\begin{gathered}
v^{\prime}(t)=\Omega(t, \ldots, t, 0, v(t), \ldots, v(t), u)+\widetilde{R} v(t), \quad t \in I, \\
v(\alpha)=0, \quad\left(1-m_{1}\right) u=m_{2} v(\beta),
\end{gathered}
$$

where m_{1} and m_{2} are defined in Assumption H_{1}.

3. CONVERGENCE OF (4)-(5)

In this section we wish to examine the convergence behaviour as $N \rightarrow \infty$ (or $h \rightarrow 0$) and $j \rightarrow \infty$ of the approximate solution ($y_{h}, \lambda_{h j}$). First it will be assumed that the function F satisfies a Lipschitz condition with suitable constants. We can prove the following main theorem:

Theorem 1. If Assumption H_{1} is satisfied and if
1° there exists the unique solution (φ, λ) of $B V P(1)-(3)$;
$2^{\circ} \quad\left\|A_{n}^{h}\right\| \leqslant 1+h \widetilde{R}$ (maximum norm), for $n \in R_{N-k}, h \in H$, where \widetilde{R} is a nonnegative constant;
$3{ }^{\circ} d=m_{1}+m_{2} A<1$, where

$$
A=\frac{L_{k}}{L}(D-1), \quad D=\exp (L(\beta-\alpha)), \quad L=\tilde{R}+\sum_{i=0}^{k-1} L_{i}
$$

4° there exists a function $\eta: H \rightarrow R_{+}, \lim _{h \rightarrow 0} \eta(h)=0$, such that

$$
\max _{j} \max _{s \in R_{k-1}}\left\|y_{h}\left(t_{h s} ; \lambda_{h j}\right)-\varphi\left(t_{h s} ; \lambda\right)\right\| \leqslant \eta(h) ;
$$

5° the method (4)-(5) is consistent with BVP (1)-(3) on the solution (φ, λ);
then the method (4)-(5) is convergent to the solution (φ, λ) of $B V P(1)-(3)$ and the estimations

$$
\begin{gather*}
\left\|\lambda_{h j}-\lambda\right\| \leqslant u_{j}(h), \quad j=0,1, \ldots, \tag{7}\\
\max _{n \in R_{N}}\left\|y_{h}\left(t_{h n} ; \lambda_{h j}\right)-\varphi\left(t_{h n} ; \lambda\right)\right\| \leqslant A u_{j}(h)+D w(h), \quad j=0,1, \ldots, \tag{8}
\end{gather*}
$$

hold true with

$$
\begin{aligned}
& u_{j}(h)=d^{j}\left\|\lambda_{0}-\lambda\right\|+m_{2} D w(h) \frac{1-d^{j}}{1-d} \\
& w(h)=\eta(t)+\sum_{i=0}^{N-k}\left[\varepsilon\left(t_{h i}, h\right)+h \varepsilon_{F}\left(t_{h i}, h\right)\right] .
\end{aligned}
$$

Proof. Put

$$
\begin{aligned}
z_{h n}^{j} & =\left\|y_{h}\left(t_{h n} ; \lambda_{h j}\right)-\varphi\left(t_{h n} ; \hat{\lambda}\right)\right\|, \quad n \in R_{N-k}, j=0,1, \ldots, \\
e_{h n}^{j} & =\max _{s \in R_{k-1}} z_{h, n+s}^{j}, \\
\tilde{\varepsilon}(t, h) & =\varepsilon(t, h)+h \varepsilon_{F}(t, h) .
\end{aligned}
$$

Repeating the proof of the first part of Theorem 2 in [9], we have

$$
e_{h n}^{j} \leqslant A\left\|\lambda_{h j}-\lambda\right\|+D\left[e_{h 0}^{j}+\sum_{i=0}^{n-1} \tilde{\varepsilon}\left(t_{h i}, h\right)\right], \quad n \in R_{N-k+1}, j=0,1, \ldots
$$

Now using the definition of $\lambda_{h j}$ and Assumptions 3° and 4° of H_{1} we note

$$
\begin{aligned}
\left\|\lambda_{h . j+1}-\lambda\right\|= & \| \lambda_{h j}-\lambda-B^{-1}\left[g\left(\lambda_{h j}, \varphi(\beta ; \lambda)\right)-g(\lambda, \varphi(\beta ; \lambda))\right] \\
& +B^{-1}\left[g\left(\hat{\lambda}_{h j}, \varphi(\beta ; \lambda)\right)-g\left(\lambda_{h j}, y_{h}\left(\beta ; \hat{\lambda}_{h j}\right)\right)\right] \| \\
\leq & m_{1}\left\|\lambda_{h j}-\lambda\right\|+m_{2} z_{h N}^{\prime}
\end{aligned}
$$

or

$$
\left\|\lambda_{h, j+1}-\lambda\right\| \leqslant d\left\|\lambda_{h j}-\lambda\right\|+m_{2} D w(h)
$$

Hence, by Lemma 1.2 in [5] we have the estimation (7) and then (8). The convergence follows directly from (7)-(8).

Remark 1. Instead of the modified Newton method (4) we may take

$$
\lambda_{h, j+1}=\lambda_{h j}-B^{-1}\left(\lambda_{h j}, y_{h}\left(\beta ; \lambda_{h j}\right)\right) g\left(\lambda_{h j}, y_{h}\left(\beta ; \lambda_{h j}\right)\right), \quad j=0,1, \ldots
$$

Using a slight modification we may get its convergence provided that the matrix $B_{p \times p}$ is nonsingular for each pair $\left(\lambda_{h j}, y_{h}\right)$.

Remark 2. It follows from the proof that Theorem 1 remains true if condition 3° of Assumption H_{1} is satisfied only on the solution φ, i.e., if $y=\varphi(\beta ; \lambda)$.

Remark 3. Put $p=q$. Assume that for all $u, v \in R^{q}$ the matrix

$$
\begin{gathered}
P(u, v)=D_{u} g(u, v)+D_{v} g(u, v), \\
D_{u} g(u, v)=\left[\frac{\partial g_{i}(u, v)}{\partial u_{j}}\right], \quad D_{v} g(u, v)=\left[\frac{\partial g_{i}(u, v)}{\partial v_{j}}\right],
\end{gathered}
$$

has a representation of the form

$$
P(u, v)=P_{0}(I+Z(u, v))
$$

with a constant nonsingular matrix P_{0} and there are constants v_{1}, v_{2}, $v_{1}+v_{2}<1$ such that

$$
\|Z(u, v)\| \leqslant v_{1}, \quad\left\|P_{0}^{-1} D_{v} g(u, v)\right\| \leqslant v_{2} \quad \text { for all } \quad u, v \in R^{q}
$$

Now with a suitable choice of B, namely $B=P_{0}$, condition 3° of

Assumption H_{1} is satisfied with $m_{1}=v_{1}+v_{2}$. Such case was considered in [18, see p. 476].
Indeed, we have

$$
\begin{aligned}
\mu_{1}- & \mu_{2}-P_{0}^{-1}\left[g\left(\mu_{2}+\mu_{1}-\mu_{2}, y\right)-g\left(\mu_{2}, y\right)\right] \\
& =\mu_{1}-\mu_{2}-P_{0}^{-1} D_{u} g\left(\tau\left(\mu_{1}-\mu_{2}\right), y\right)\left(\mu_{1}-\mu_{2}\right) \\
& =\mu_{1}-\mu_{2}-P_{0}^{-1}\left[P\left(\tau\left(\mu_{1}-\mu_{2}\right), y\right)-D_{v} g\left(\tau\left(\mu_{1}-\mu_{2}\right), y\right)\right]\left(\mu_{1}-\mu_{2}\right) \\
& =\left[-Z\left(\tau\left(\mu_{1}-\mu_{2}\right), y\right)+P_{0}^{-1} D_{v} g\left(\tau\left(\mu_{1}-\mu_{2}\right), y\right)\right]\left(\mu_{1}-\mu_{2}\right),
\end{aligned}
$$

and hence we have our assertion.
We note that for

$$
g(u, v)=\tilde{M} u+\tilde{N} v-\tilde{K},
$$

if $\tilde{M}+\tilde{N}$ is a nonsingular square matrix of order $q, \tilde{K} \in R^{q}$, we have

$$
P_{0}=\tilde{M}+\tilde{N}, \quad Z=\theta, v_{1}=0, \quad\left\|(\tilde{M}+\tilde{N})^{-1} \tilde{N}\right\| \leqslant v_{2}=m_{1}
$$

This linear case was discussed in [8] for one-step methods for y_{h} combined with an iterative method for $\lambda_{h j}$.

Now assuming a Peron condition for F, the corresponding result for convergence of (4)-(5) is given in the following theorem:

Theorem 2. If both Assumption H_{2} and conditions $1^{\circ}, 4^{\circ}$, and 5° of Theorem 1 are satisfied with

$$
\varepsilon(t, h)=h \varepsilon(h), \quad \varepsilon(h) \rightarrow 0,
$$

then the method (4)-(5) is convergent to the solution (φ, λ) of $B V P(1)-(3)$ and

$$
\begin{equation*}
\lim _{\substack{i \rightarrow \infty \\ N \rightarrow \infty}} \sum_{i=0}^{j} z_{h N}^{i} m_{1}^{j-i}=0, \tag{9}
\end{equation*}
$$

where $z_{h N}^{i}$ is defined in the proof of Theorem 1.
Proof. We note that

$$
\begin{align*}
& \sum_{i=0}^{k} a_{i}(t, h)\left[y_{h}\left(t+i h ; \lambda_{h j}\right)-\varphi(t+i h ; \lambda)\right] \\
&= h \mathscr{F}\left(t, h, y_{h}, \lambda_{h j}\right)-h \mathscr{F}(t, h, \varphi, \lambda) \\
&+h \mathscr{F}(t, h, \varphi, \lambda)-\sum_{i=0}^{k} a_{i}(t, h) \varphi(t+i h ; \lambda) . \tag{10}
\end{align*}
$$

So we have a family of recurrent equations of order k,

$$
\begin{equation*}
\sum_{i=0}^{k} a_{i}\left(t_{h n}, h\right) v_{h, n+i}^{j}=c_{h n}^{j}, \quad n \in R_{N, k}, \tag{11}
\end{equation*}
$$

where

$$
v_{h n}^{j}=y_{h}\left(t_{h n} ; \lambda_{h j}\right)-\varphi\left(t_{h n} ; \lambda\right)
$$

and $c_{h n}^{j}$ is defined by the right-hand side of (10) for $t=t_{h n}$. Indeed (11) may be written by

$$
\begin{equation*}
V_{h, n+1}^{j}=A_{n}^{h} V_{h n}^{j}+W_{h n}^{j}, \quad n \in R_{N-k}, \tag{12}
\end{equation*}
$$

where

$$
V_{h n}^{j}=\left[v_{h n}^{j}, \ldots, v_{h, n+k-1}^{j}\right]^{\mathrm{T}}, \quad W_{h n}^{j}=\left[\theta, \ldots, \theta, c_{h n}^{j}\right]^{\mathrm{T}}, \quad \theta \in R^{q},
$$

with the matrix A_{n}^{h} defined before the assumptions. So we have

$$
\left\|V_{h, n+1}^{j}\right\| \leqslant\left\|A_{n}^{h}\right\|\left\|V_{h n}^{j}\right\|+\left\|W_{h n}^{j}\right\|
$$

or

$$
\begin{aligned}
e_{h, n+1}^{j}= & \max _{s \in R_{k-1}} z_{h, n+s+1}^{j} \leqslant(1+h \tilde{R}) e_{h n}^{j}+h\left[\varepsilon(h)+\varepsilon_{F}(h)\right] \\
& +h \Omega\left(t_{h n}, \ldots, t_{h, n+k-1}, h, e_{h n}^{j}, \ldots, e_{h n}^{j}, \delta_{j}^{h}\right) \stackrel{\mathrm{df}}{=} w_{h, n+1}^{j}
\end{aligned}
$$

where

$$
\delta_{j}^{h}=\left\|\lambda_{h j}-\lambda\right\| \quad \text { and } \quad w_{h 0}^{j}=\eta(h) .
$$

Now we consider the problem

$$
\begin{align*}
& \omega^{\prime}(t)=\tilde{R} \omega(t)+\Omega\left(t, \ldots, t, h, \omega(t), \ldots, \omega(t), \delta_{j}^{h}\right)+\xi(h)+\varepsilon(h)+\varepsilon_{F}(h) \\
& \omega(\alpha)=\eta(h) . \tag{13}
\end{align*}
$$

This problem has a solution, $\omega_{h}\left(t ; \delta_{j}^{h}\right)$, which is a nondecreasing and continuous function. We are able to prove

$$
\omega_{h}\left(t_{h n} ; \delta_{j}^{h}\right) \geqslant w_{h n}^{j}, \quad n \in R_{N-k}, j=0,1, \ldots .
$$

It is obviously true for $n=0$. Assuming that it is true for fixed s and integrating (13) from $t_{h s}$ to $t_{h, s+1}$, we have

$$
\begin{aligned}
\omega_{h}\left(t_{h, s+1} ; \delta_{j}^{h}\right)= & \omega_{h}\left(t_{h s} ; \delta_{j}^{h}\right)+\tilde{R} \int_{t_{h s}}^{t_{h, s+1}} \omega_{h}\left(\tau ; \delta_{j}^{h}\right) d \tau \\
& +\int_{t_{h s}}^{t_{h, s+1}} \Omega\left(\tau, \ldots, \tau, h, \omega_{h}\left(\tau ; \delta_{j}^{h}\right), \ldots, \omega_{h}\left(\tau ; \delta_{j}^{h}\right), \delta_{j}^{h}\right) d \tau \\
& +h\left[\xi(h)+\varepsilon(h)+\varepsilon_{F}(h)\right] \\
\geqslant & w_{h s}^{j}+\widetilde{R} h w_{h s}^{j}+\int_{t_{h s}}^{t_{h . s+1}} \Omega\left(\tau, \ldots, \tau, h, w_{h s}^{j}, \ldots, w_{h s}^{j}, \delta_{j}^{h}\right) d \tau \\
& +h\left[\xi(h)+\varepsilon(h)+\varepsilon_{F}(h)\right] \\
\geqslant & (1+\widetilde{R} h) e_{h s}^{j}+h \Omega\left(t_{h s}, \ldots, t_{h, s+k-1}, h, e_{h s}^{j}, \ldots, e_{h s}^{j}, \delta_{j}^{h}\right) \\
& +h\left[\varepsilon(h)+\varepsilon_{F}(h)\right]=w_{h, s+1 .}^{j}
\end{aligned}
$$

Now as in the proof of Theorem 1 we have

$$
\begin{equation*}
\delta_{j+1}^{h} \leqslant m_{1} \delta_{j}^{h}+m_{2} z_{h N}^{j}, \quad j=0,1, \ldots . \tag{14}
\end{equation*}
$$

Let

$$
\begin{aligned}
\delta_{0}^{h} & =\frac{\max \left(m_{2} S,\left\|\lambda_{0}-\lambda\right\|\right)}{1-m_{1}}, \\
\delta_{j+1}^{h} & =m_{1}(\beta ; \delta) \text { is bounded by } S, \\
\delta_{j}^{h}+m_{2} \omega_{h}\left(\beta ; \delta_{j}^{h}\right), & j=0,1, \ldots
\end{aligned}
$$

Indeed,

$$
\delta_{j}^{h} \leqslant \widetilde{\delta}_{j}^{h}, \quad j=0,1, \ldots
$$

It is easy to see

$$
\begin{aligned}
\delta_{1}^{h} & =m_{1} \tilde{\delta}_{0}^{h}+m_{2} \omega_{h}\left(\beta ; \tilde{\delta}_{0}^{h}\right) \leqslant m_{1} \tilde{\delta}_{0}^{h}+m_{2} S \\
& \leqslant m_{1} \tilde{\delta}_{0}^{h}+\max \left(m_{2} S,\left\|\lambda_{0}-\lambda\right\|\right)=\widetilde{\delta}_{0}^{h} .
\end{aligned}
$$

It means the sequence $\left\{\tilde{\delta}_{j}^{h}\right\}$ is nonincreasing with respect to j, i.e.,

$$
\bar{\delta}_{j+1}^{h} \leqslant \bar{\delta}_{j}^{h} \leqslant \cdots \leqslant \tilde{\delta}_{0}^{h}
$$

It has a limit u^{h}, where

$$
u^{h}=\frac{m_{2}}{1-m_{1}} \omega_{h}\left(\beta ; u^{h}\right) .
$$

But according to assumption 4° (iii) of H_{2} we note that $\lim _{h \rightarrow 0} \omega_{h}\left(t ; u^{h}\right)$ $\equiv 0$ so $u=0$ and we have the convergence of our method. Now the estimation (9) follows directly from (14). The proof is completed.

Remark 4 (see [6]). The condition 4 (ii) of Assumption H_{2} remains true if we add:
(i) Ω is the continuous function with respect to the variables 1 st, r_{1} th, \ldots, r_{s} th uniformly with respect to the left variables $\left(1<r_{1}<\cdots<\right.$ $r_{s} \leqslant k$);
(ii) Ω is the non-increasing function with respect to the variables n_{1} th,..,n_{q} th, where $\left\{n_{1}, \ldots, n_{q}\right\}=\{2, \ldots, k\} \backslash\left\{r_{1}, \ldots, r_{s}\right\}$; or
(iii) Ω is the continuous function with respect to the variables r_{1} th, ..., r_{s} th uniformly with respect to the left variables;
(iv) Ω is the non-decreasing function with respect to the first variable and it is the non-increasing function with respect to the variables n_{1} th,..,n_{q} th.

Remark 5. Let there exist constants $L_{i} \geqslant 0$ such that

$$
\Omega\left(s_{0}, \ldots, s_{k-1}, h, u_{0}, \ldots, u_{k}\right)=\sum_{i=0}^{k} L_{i} u_{i}
$$

Theorem 2 remains true though the function Ω is not bounded. In this case the function

$$
v(t)=\frac{L_{k}}{L} u[\exp (L(t-\alpha))-1]
$$

is the solution of the initial-value problem given in 4° (iii) of Assumption H_{2}. Now adding the boundary condition

$$
\left(1-m_{1}\right) u=m_{2} v(\beta)
$$

we have

$$
\left(1-m_{1}-m_{2} A\right) u=0
$$

and if condition 3° of Theorem 1 is satisfied then $u=0$ and hence really $v(t) \equiv 0$ is the solution of BVP given in 4° (iii) of Assumption H_{2}.

Remark 6. Some numerical examples for one-step methods you can find in [8].

References

1. R. Conti, Problèmes linéaires pour les équations différentielles ordinaires, Math. Nachr. 23 (1961), 161-178.
2. G. Dahlquist and A. Boörck, "Numerical Methods," Prentice-Hall, Englewood Cliffs, NJ, 1974.
3. J. W. Daniel and R. E. Moore, "Computation and Theory in Ordinary Differential Equations," Freeman, San Francisco, 1970.
4. A. Gasparini and A. Mangini, Sul calcolo numerico delle soluzioni di un noto problema ai limiti per lequazione $y^{\prime}=\lambda f(x, y)$, Matematiche (Catania) 22 (1965), 101-121.
5. P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations," Wiley, New York, 1962.
6. T. Jankowski, On the convergence of multistep methods for ordinary differential equations with discontinuities, Demonstratio Math. 16 (1983), 651-675.
7. T. Jankowski, Convergence of multistep methods for systems of ordinary differential equations with parameters, Apl. Mat. 32 (1987), 257-270.
8. T. Jankowski, One-step methods for ordinary differential equations with parameters, in press.
9. T. Jankowski, Multistep methods for ordinary differential equations with parameters, in press.
10. T. Jankowski and M. Kwapisz, On the existence and uniqueness of solutions of boundary-value problem for differential equations with parameters, Math. Nachr. 71 (1976), 237-247.
11. H. B. Keller, "Numerical Solution of Two-Point Boundary Value Problems," Soc. Indus. Appl. Math., Philadelphia 24 (1976).
12. A. V. Kibenko and A. I. Perov, A two-point boundary value problem with parameter, Azerbaidžan. Gos. Univ. Učen. Zap. Ser. Fiz.-Mat.i Him. Nauk 3 (1961), 21-30. [Russian]
13. J. Lambert, "Computational Methods in Ordinary Differential Equations," WileyInterscience, London, 1973.
14. A. PasQuali, Un procedimento di calcolo connesso ad un noto problema ai limiti per l'equazione $x^{\prime}=f(t, x, \lambda)$, Matematiche (Catania) 23 (1968), 319-328.
15. T. Pomentale, A boundary-value problem for the equation $y^{\prime}=\lambda f(x, y)+h(x, y)-$ $g(x, y) y, Z$. Angew. Math. Mech. 54 (1974), 723-728.
16. T. Pomentale, A constructive theorem of existence and uniqueness for the problem $y^{\prime}=f(x, y, \lambda), y(a)=\alpha, y(b)=\beta, Z$. Angew. Math. Mech. 56 (1976), 387-388.
17. 7. B. Serionv, A multistep boundary value problem with a parameter for systems of differential equations in Banach space, Sibirsk. Mat. Zh. 9 (1968), 223-228. [Russian]
1. J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis," Springer-Verlag, New York/Heidelberg/Berlin, 1980.
2. H. J. Stetter, "Analysis of Discretization Methods for Ordinary Differential Equations," Springer-Verlag, New York/Heidelberg/Berlin, 1973.
