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Multistep methods combined with iterative ones are applied to find a numerical
solution of ordinary differential equations with parameters. This paper deals with
the convergence of such methods. There are some estimations of errors too.  © 1990

Academic Press, Inc.

1. INTRODUCTION

We assume throught that
y'()=f(t, y(t),4), tel=[a, Bl a<p, (1)

is a system of g ordinary differential equations. The right-hand side of
this system depends on p parameters 4, so A= [4,, .., ).p]Te R?, Together
with (1) the following boundary conditions are given and they are of the
form

y(@) = yo, (2)
(4, y(B)) =10, 3)

where y, is given in R? and 6 is zero vector in R”. The function g is
nonlinear. Now the exact solution (¢, 1) of BVP (1)—(3) consists of such
@ € C(I, RY) and A€ R” that both the Eq. (1) and the conditions (2)—(3) are
satisfied (C(Z, R?) denotes the collection of all continuous functions from
I into RY).

A question of the existence and uniqueness of solutions of the problems
(1)-(3) was considered by many authors (for example, see [10, 12,
14-171]). Our task is a problem of a numerical solution for (1)~(3). So due
to this fact we assume that BVP (1)-(3) has the unique solution (¢, 4) €
C(I, R%) x R”.
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To describe a numerical method, we first subdivide the interval I into N
subintervals all of the same length 4 = (f — «)/N. The points of subdivision
will be denoted by 7,4, #,, ..., 1,~, Where the ith such point is defined by
tu=0a+ih ieRy=1{0,1,., N}

Now we suggest a multistep method for y, combined with an iterative
method for 4,; to determine the numerical solution (y,, 4,;) of (1)—(3). This
method can be written as

Ao = A0, Ao is given,
. s . . (4)
Ah,j+l=lhj_B g(/"hj’ yh(ﬁ’ /'h_[))’ JZO’ 13---,
and
k
Z a;(t, h) y,(t+ih; lhj)
i=0
=hF(t, .., t+kh—h, h, y,(1; Ay), s it +kh—h; 4y), Ay;)
=hF (L, h, vy, Ay), a.=l,fort=t,,,neRy _,,j=0,1, ... (5)

Conditions for q;, F, and B will be defined later.

The use of (5) requires that the approximations of y, for
Lugs thys o thi—, be computed first. We can apply any one-step method
including the Runge-Kutta method as a natural for this purpose. Once the
values of y, for t,9,..,t,, | are available, the formula (5) can be
employed to compute the rest. Now knowing the approximate solution y,
for t=1,,=p we are able to use (4) for determining the new value 4, ;. ,
and then the corresponding numerical solution y, on the mesh points.

The purpose of this paper is to give sufficient conditions for the
convergence of (4)-(5). To get it, Lipschitz or Peron conditions are needed
on F. Indeed it is necessary to assume that the method (4)-(5) is consistent.
Some estimations of errors are given.

The linear case,
g(l’ y)=M1+Ny_k’ Mpxpaﬁpxq’kpxb (6)

was discussed in [8] (one-step methods) and in [7, 9] (multistep
methods). You can find there some numerical examples too.
2. DEFINITIONS AND ASSUMPTIONS
We introduce the following basic definitions.

DEerFiNiTION 1. The method (4)-(5) is said to be convergent to the
solution (¢, 4) of BVP (1)-(3) if
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lim max [ @(t,:; A) — yultss Al =0,
N—o ie Ry
j—o

lim |4, — Al =O0.
N—> oo X

J—o oo

DEerFINITION 2. The method (4)-(5) is said to be consistent with the
problem (1)}-(3) on the solution (¢, A) if there exists a function
eJ,xH—> R, =[0, ), J,=[a, p—kh] such that

k
S a,(t, ) @(i+ih; 1) — hF (1, h, o, ”H <ol h), el

i=0

N—k
lim Y e(ty, h)=0.
Nooo o
Let
0 1 0 0
4 0 0 1 0
agn ailln agn e aﬁA 1,n
where a’ = —a,(t,,, h), ie R, _,.

Now we have the following assumptions.

AssuMPTION H,. Suppose that
1° FiI*xHxR¥*xR'>RY, f:IxR'xR* >R H=[0, hy], ho>0,
g: R x RY— R?;
2°  there exist constants L, 20, i€ R,, and a function ¢x: IxH— R,

such that for (sg, ... S, 1, h)el*x H and z;, Z,e R?, ie R, _|, i, jie R” we
have

NE(Sqs oo Sk — 15 1y Zos s Zi— 10 1) — F(Sgs ey Sk 15 Py 2oy oy 21 ol

k—1
< 2 Lillzi= 2l + Ll — &l + &£(so, h),
i=0

and

N

—k
lim £ Y ep(1,,h)=0;

N—oow oo



4 TADEUSZ JANKOWSKI

3°  there exist a nonsingular square matrix B of order p and a constant
m,; <1 such that

gy — 12— B~ [gluys ¥) — glua, VI <myllpy — 5]

Jor py, peR?, ye RY;

4° B '[glw yi)—glp, y) I Smyllyy—yall,  for  wueR?,  yi,
y.€ R,

AsSsUMPTION H,. Suppose that

1°  the conditions 1°, 3°, and 4° of Assumption H, are satisfied,;

2° | A% <1+ hR (maximum norm) for ne Ry _,, he H, where R is a
nonnegative constant;

3° there exist functions Q:I*xHxR**'-R,, eH-R,,
lim,, o ep(h) =0, such that

”F(S09 rey skal) h, ZO’ ey Zk —~ 1 )u)_F(SO’ arsy skfl, h’ Z_O’ seey Z_kf 1> ﬂ)”

SS0s s S 15 My 120 = Zolly woos llzx v = Ze il I — a2} + &£ (h),

for (so’ma Sk*]sh)eIkXH9 Zf’ Z_,-ER('I, ieRk-la /’t’ ﬂERP;
4°  the function Q has the properties

(1) £ is continuous and bounded and it is nondecreasing
with respect to the last k+1 variables and s, ..,s, |,
0,..,0)=0;

(ii) there exists a function &: H— R, lim,_ o, &(h)=0 such that
the inequality

r+h
f QS o 5, by 0, oy v, ) ds + BE(R)
> hQt, oy t+kh—h, by v, .. v, §)

holds for (t, h,v,0)eJ,x HXR, xR ;

(iii) the function v(t)=0 is the only continuous solution of the
problem

v'(1)=Q(t, .., 1,0, 0(1), ..., v(2), u) + Ro(z), tel,
va)=0,  (1—m)u=m,y0(p),

where m, and m, are defined in Assumption H,.



NONLINEAR BOUNDARY-VALUE PROBLEMS 5
3. CONVERGENCE OF (4)-(5)

In this section we wish to examine the convergence behaviour as N — oo
(or h—>0) and j — oo of the approximate solution (y,, 4,;). First it will be
assumed that the function F satisfies a Lipschitz condition with suitable
constants. We can prove the following main theorem:

THEOREM 1. [If Assumption H, is satisfied and if

1°  there exists the unique solution (¢, i) of BVP (1)-(3);

2° A" <1+ hR (maximum norm), for ne Ry _,, he H, where R is
a nonnegative constant;

3° d=m +m,A<1, where

4°  there exists a function n: H— R, lim, _ o n(h) =0, such that

max max || y,(t,; Ay) — ot M <n(h);

J s€Rk—1

5°  the method (4)-(5) is conmsistent with BVP (1)—(3) on the solution
(@, 2);

then the method (4)—(S) is convergent to the solution (¢, 1) of BVP (1)-(3)
and the estimations

1Ay — Al <u;(h),  j=0,1,.., (7)
max | Ya(tins A = @(thns A < Auy(h) + Dw(h),  j=0,1,..,  (8)
hold true with
w(h) =’ g 21 +my Dwlh) =%

w(h)=n(t) + i Le(tpis h) + hep (1), )]

i=

Proof. Put
Zin = ”yh(thn; )"hj)— q)(t;,,,; ;“)”’ nERN‘k’ .]=O9 19 ey
el = max z/,, ..

se Rx_

E(t,h)y=c¢(t, h)+ hep(t, h).
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Repeating the proof of the first part of Theorem 2 in [9], we have

n

eI{n<A1|}Iu '“+D|:€ho+ Z thn ):lw HERNVk»JfI’ J:O’I?

i=0

Now using the definition of 4,, and Assumptions 3° and 4° of H, we
note

1dn ;o1 —All=1lAy— 24— B~ [ g4y, @(B; 1)) — g(4, 0(B; 1))]
+ B[ g(Ay, 9(B; 1)) — g(ih,-, yalBs A1l
<my Ay — Al +myz],
or
A 11— Al < d Ay — Al + my Dw(h).
Hence, by Lemma 1.2 in [5] we have the estimation (7) and then (8).
The convergence follows directly from (7)—(8).

Remark 1. Instead of the modified Newton method (4) we may take

’]~h,_/+1 = )“hj_ Bil('{hp yu(B; '{hj)) g('{hj, yu(B; /]4.;)), j=0.1,..

Using a slight modification we may get its convergence provided that the

matrix B,, , is nonsingular for each pair (1,;, y,).

Remark 2. It follows from the proof that Theorem 1 remains true if
condition 3° of Assumption H, is satisfied only on the solution ¢, ie., if
y=0(B; ).

Remark 3. Put p=gq. Assume that for all u, ve R? the matrix

P(u,v)=D, g(u,v)+ D, g(u, v),

D, glu, v)=[—-—agia(:f v)], D, g(u, v)=[0gia(:; v)],

7

has a representation of the form
P(u, v)=Po(I + Z(u, v))

with a constant nonsingular matrix P, and there are constants v, v,,
vy + v, <1 such that

1Z(u, v)| <v,, Py ' D, glu,v)| <v, for all u, ve RY.

Now with a suitable choice of B, namely B= P,, condition 3° of
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Assumption H, is satisfied with m, =v,; 4+ v,. Such case was considered in
[18, see p. 476].
Indeed, we have
p—p— Pyl [g(pa+ sy — s 1) — g2, ¥)]
==t~ P! D, gty — ta), p)bs — p13)
=H _#2—P(;1[P(T(#1 — M), )= Dy g(t(py — pa), ¥) 1y — p2)
=[—Z(t(y — p2), )+ Py ' D, g(t(pty — p2), ¥) (1 — ),

and hence we have our assertion.
We note that for

glu,v)= Mu+ Nv—K,
if M+ N is a nonsingular square matrix of order ¢, Ke R, we have
Po=M+N, Z=0,v,=0, [(M+FN)'N|<v,=m,.

This linear case was discussed in [8] for one-step methods for y,
combined with an iterative method for 4,;.

Now assuming a Peron condition for F, the corresponding result for
convergence of (4)—(5) is given in the following theorem:

THEOREM 2. If both Assumption H, and conditions 1°, 4°, and 5° of
Theorem 1 are satisfied with

&(t, h) = he(h), e(h) -0,

then the method (4)—(5) is convergent to the solution (¢, A) of BVP (1)-(3)
and

j
lim ) z,,m{"'=0, (9)
jooe T
N oo i=0

where z', is defined in the proof of Theorem 1.

Proof. We note that

k
Z (6, WLyt +ih; Ay) — ot +ih; 4)]

'__h‘/(t’ h’ Vs Zhj)—h'g;(t, h, @, 'l)
k

F(t,h @, 2)= Y alt,h)e(t+ih; 1) (10)

i=0



8 TADEUSZ JANKOWSKI

So we have a family of recurrent equations of order £,

k
Z ai(t/"" h) U/;,n+i:(‘lgn’ HGRN ks (11)

i=0
where
Ui{n - yh(lhn; ;thj) - (p(thns ;“)
and ¢}, is defined by the right-hand side of (10) for ¢ = 1,,,. Indeed (11) may
be written by

j
Vh.n+l

=AVi,+ Wi, neRy_,, (12)
where

V=100 o 0fii 117, wi=16,.,0,¢.,1°, 0OeRY,
with the matrix A” defined before the assumptions. So we have

WV < TAGN IVl + W7

or
e!{.n+l =SI€nRax Z!jr‘,n+s+l < (1 + hR)eZn +h[£(h) + SF(h)]
k- 1
j jooshy 3
+hQts s thpsi 1 By €], s €,y 07) = Wi .1
where

5;1 = ”'lhj — Al and W}{o =n(h).
Now we consider the problem
o' (1) = Rw(t) + Q(t, ..., 1, h, (1), ..., o(1), 37)+ E(h) + e(h) + ep(h)
w(a) =n(h).

This problem has a solution, w,,(t;&j’ ), which is a nondecreasing and
continuous function. We are able to prove

(13)

. sh ; )
wh(thn>5j)>w;ﬁna nERN,k, jzo, 1,

It is obviously true for n=0. Assuming that it is true for fixed s and
integrating (13) from ¢, to 1, ., ,, we have
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~ [Ths+l
(J)h(lh,s+1;6;’)=wh(thx;6;l)+RJ. wh(r;éj'.')d‘f

Ths

thos+
[0 et b 01180, s (13 80), 8)

ths

+h[E(h) +e(h) +ep(h)]

Ihs+1
o | .
>wi + Rhwi, +j QT ot by Wi, o wih, 0%) di

7
ths
+h[E(h) +e(h) +ep(h)]
> (1+ Rh)e] + hQ(tyg, oy lyy i1y by €y, €, 07)
+hleh) +ep(h)]=w] .

Now as in the proof of Theorem 1 we have

5;’+1<m15f+m22;{,\,, j=0,1, ... (14)
Let
&= max(mle, [ /1“), w,(f; §) is bounded by S,
5;'+1=m15;'+m2wh(ﬂ;5;'), J=0,1, ..
Indeed,

It is easy to see
8 =m, 8+ myw, (3 85) <m, 8y +m,S
<my 84+ max(m, S, |2, — A) = 5.
It means the sequence {51’.'} is nonincreasing with respect to j, ie.,

§..<8< - <8,

It has a limit «*, where

= (B "),

But according to assumption 4° (iii) of H, we note that lim,_ , w,(t; u")
=0 so =0 and we have the convergence of our method. Now the
estimation (9) follows directly from (14). The proof is completed.
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Remark 4 (see [6]). The condition 4- (11) of Assumption H, remains
true if we add:

(i) & 1s the continuous function with respect to the variables 1st.
rith, .., r,th uniformly with respect to the left variables (1<r, < .-+ <
ry<k);

(it} Q is the non-increasing function with respect to the variables
nth, .., n th, where {n,, ..n,} =1{2, . k}\{r,, .. r};or

(iii) € is the continuous function with respect to the variables
r th, .., r.th uniformly with respect to the left variables;

(iv) Q is the non-decreasing function with respect to the first variable
and it is the non-increasing function with respect to the variables
n,th, .., n,th.

Remark 5. Let there exist constants L; >0 such that
k
Q(SO"'-> Sk l’hs Ugs ooy uk): Z Liui'

Theorem 2 remains true though the function € is not bounded. In this case
the function

v(t) :% ulexp(L(t—a))—1]

is the solution of the initial-value problem given in 4" (iii) of Assumption H,.
Now adding the boundary condition

(1 —my)u=m,v(p)

we have
(1—m—myA)u=0

and if condition 3° of Theorem 1 is satisfied then ¥ =0 and hence really
v(¢) =0 is the solution of BVP given in 4° (iii) of Assumption H,.

Remark 6. Some numerical examples for one-step methods you can
find in [8].
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