On a Ring of invariant Polynomials on a Hermitian Symmetric Space

KENNETH D. JOHNSON

Department of Mathematics, University of Georgia, Athens, Georgia 30602

Communicated by J. Tits
Received December 8, 1978

1. INTRODUCTION AND NOTATION

Suppose Ω is a noncompact irreducible Hermitian symmetric space. Let G be the group of holomorphic transformations of Ω. Fix $e \in \Omega$ and let K be the isotropy of e in G. Then K is a maximal compact subgroup of G and $G/K = \Omega$. Let \mathfrak{g} (\mathfrak{k} respectively) denote the Lie algebra of G (K respectively). There is a Cartan decomposition $\mathfrak{g} = \mathfrak{f} + \mathfrak{p}$, and complexifying \mathfrak{g} we have $\mathfrak{g}_{c} = \mathfrak{f}_{c} + \mathfrak{p}_{+} + \mathfrak{p}_{-}$, where $\mathfrak{p}_{c} = \mathfrak{p}_{+} + \mathfrak{p}_{-}$, $[\mathfrak{p}_{\pm}, \mathfrak{p}_{\pm}] = 0$, $[\mathfrak{p}_{\pm}, \mathfrak{f}_{c}] = 0$ and $[\mathfrak{f}_{c}, \mathfrak{p}_{c}] = \mathfrak{p}_{c}$ (see [6]).

Select \mathfrak{h} a Cartan subalgebra of \mathfrak{f}_{c}. Then \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g}_{c}. If $a \in \mathfrak{h}^* \sim \{0\}$ we say that a is a root if the space

$$\mathfrak{g}_a = \{U \in \mathfrak{g}_c : [U, H] = a(H)U \text{ for all } H \in \mathfrak{h}\}$$

is $\neq \{0\}$. If Φ is the set of all roots and $a \in \Phi$ we say that a is compact (resp. noncompact) if $\mathfrak{g}_a \subset \mathfrak{f}_c$ (resp. $\mathfrak{g}_a \subset \mathfrak{p}_c$). According to Harish-Chandra [3] there is an ordering on Φ so that if a is a positive (resp. negative) noncompact root $\mathfrak{g}_a \subset \mathfrak{p}$ (resp. $\mathfrak{g}_a \subset \mathfrak{p}_c$).

The roots a and β are called strongly orthogonal if neither $a + \beta$ nor $a - \beta$ are roots. There is a set A of strongly orthogonal noncompact positive roots such that $|A| = r$, where r is the rank of the symmetric space Ω. It is well known (see [6]) that the elements of A are linearly independent elements of \mathfrak{h}^*, and no other set of strongly orthogonal noncompact positive roots has more than r elements.

Fix \mathfrak{n} a nilpotent subalgebra of \mathfrak{f}_c so that $\mathfrak{h} + \mathfrak{n}$ is a Borel subalgebra of \mathfrak{f}_c. We may assume that \mathfrak{n} is spanned by the positive compact root spaces. We now fix $A = \{\gamma_1, \ldots, \gamma_r\}$ so that γ_1 is the lowest positive noncompact root and assuming $\gamma_1, \ldots, \gamma_k$ have been chosen select γ_{k+1} to be the lowest positive noncompact root strongly orthogonal to $\gamma_1, \ldots, \gamma_k$.

* Research partially supported by a grant from the National Science Foundation.

0021-8693/80/110072-10$02.00/0
Copyright © 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.
In general, if V is a complex vector space let $P(V)$ be the ring of polynomials on V. Dualizing the action of \mathfrak{t}_c on p_+ we obtain an action of \mathfrak{t}_c on $P(p_+)$. Let I be the ring of \mathfrak{n}-invariant polynomials in $P(p_+)$. By the theory of the highest weight, we know that I is spanned by the highest weight vectors of the irreducible representations of \mathfrak{t}_c, which occur in $P(p_+)$. Fixing Ω an irreducible Hermitian symmetric space of rank r and $\Delta = \{\gamma_1, \ldots, \gamma_r\}$ ordered as above we now state the main theorem of this paper.

Theorem A. There exist r homogeneous polynomials p_1, \ldots, p_r in Z with $\deg p_i = i$ for each i such that:

(i) p_i is of weight λ_i, where $\lambda_i = -\gamma_1 - \gamma_2 - \cdots - \gamma_i$ with respect to \mathfrak{h}; and,

(ii) Z is the free polynomial algebra on p_1, \ldots, p_r (i.e., $I = C[p_1, \ldots, p_r]$).

As a corollary to this theorem we obtain the following result which is due to Schmid [8] in general and Hua [4] for the classical domains.

Corollary. Any irreducible representation of \mathfrak{t}_c which occurs in $P(p_+)$ occurs with multiplicity one and it must have a highest weight with respect to \mathfrak{h} of the form

$$k_1\lambda_1 + \cdots + k_r\lambda_r,$$

where k_1, \ldots, k_r are integers ≥ 0. Moreover, this representation occurs in polynomials of degree

$$k_1 + 2k_2 + \cdots + rk_r.$$

In Section 2, we prove a result which will greatly simplify the proof of Theorem A. In Section 3, we prove Theorem A for the irreducible classical domains and in Section 4 we prove Theorem A for the two irreducible exceptional domains. (Recall that noncompact irreducible Hermitian symmetric spaces are irreducible bounded symmetric domains and conversely by a result of Harish-Chandra [3]). For the classical domains we will prove our result by explicitly constructing the polynomials p_1, \ldots, p_r.

Although our main theorem is Theorem A, the primary result of this paper is the explicit construction of the polynomials p_1, \ldots, p_r when Ω is a classical domain. This, we feel, is important to invariant theory. Finally, it should be mentioned that these polynomials are actually implicit in the book of Hua [4].
2. A Simplification of the Proof

In this section \(\mathcal{Q} \) will be an irreducible Hermitian symmetric space of noncompact type of rank \(r \). Then if \(\mathfrak{a} \) is a maximal abelian subalgebra of \(\mathfrak{p} \) it has dimension \(r \). If \(\mathbb{P}(\mathfrak{p}) \) is the ring of polynomials with complex coefficients on the real vector space \(\mathfrak{p} \) the restriction map \(R: \mathbb{P}(\mathfrak{p}) \to \mathbb{P}(\mathfrak{a}) \) is an isomorphism which carries \(\mathfrak{t}_c \)-irreducible modules to \(\mathfrak{t} \)-irreducible modules and hence \(\mathfrak{t}_c \)-invariant polynomials to \(\mathfrak{t} \)-invariant polynomials.

If \(\mathcal{M} \) is the centralizer of \(a \) in \(K \) and \(\mathcal{M}' \) is the normalizer of \(a \) in \(K \), \(\mathcal{W} = \mathcal{M}'/\mathcal{M} \) is a finite group called the restricted Weyl group and \(\mathcal{W} \) acts on \(a \) and hence on \(\mathbb{P}(\mathfrak{a}) \). By a theorem of Chevalley the restriction map

\[
R: \mathbb{P}(\mathfrak{p}) \to \mathbb{P}(\mathfrak{a})
\]

gives an isomorphism of \(\mathbb{P}(\mathfrak{p})^K \) with \(\mathbb{P}(\mathfrak{a})^W \).

Recall that \(\lambda \in \mathfrak{a}^* \) is a restricted root if the space \(\mathfrak{g}_\lambda = \{ X \in \mathfrak{g} : [H,X] = \lambda(H) \text{ for all } H \in \mathfrak{a} \} \neq \{0\} \). By a theorem of Moore [7], \(\Omega \) has the restricted root systems of type \(B_r \) or of type \(C_r \). Hence \(\mathbb{P}(\mathfrak{a})^W \) is isomorphic to the \(\text{ad } B_r \)-invariant polynomials on \(B_r \), or the \(\text{ad } C_r \)-invariant polynomials in \(C_r \). In either case we have

Lemma 2.1. \(\mathbb{P}(\mathfrak{p})^K \cong \mathbb{P}(\mathfrak{a})^W \cong \mathbb{C}[\Delta_1, \ldots, \Delta_r] \), where \(\Delta_i \) is a \(K \)-invariant homogeneous polynomial on \(\mathfrak{p} \) of degree \(2i \).

Theorem 2.2. Suppose \(Z = \mathbb{C}[p_1, \ldots, p_r] \), where each \(p_i \) is homogeneous of weight \(\lambda_i \) and degree \(i \) with \(\lambda_1 \), \ldots, \(\lambda_r \) linearly independent. Then \(Z = \mathbb{C}[p_1, \ldots, p_r] \).

Proof: In a polynomial ring \(R \) let \(R_n \) denote the homogeneous elements of degree \(n \). Let \(A = \mathbb{C}[\Delta_1, \ldots, \Delta_r] \) in Lemma 2.1. Clearly, \(\dim \mathbb{C}[p_1, \ldots, p_r]_n = \dim A_n \leq \dim I_n \) but we claim that in general \(\dim I_n \leq \dim A_n \).

Let \(P(\mathfrak{p}_+) \cong V_1 \oplus \ldots \oplus V_m \) where each \(V_j \) \(j < r \) is a \(\mathfrak{t}_c \)-irreducible module. The natural map from \(P(\mathfrak{p}_+ \otimes P(\mathfrak{p}_-)) \to P(\mathfrak{p}_+) \) is an isomorphism and a \(\mathfrak{t}_c \)-invariant pairing. Hence the number of times the trivial representation of \(\mathfrak{t}_c \) occurs in \(P(\mathfrak{p}_+) \) is at least \(m \). Thus \(\dim I_n \leq \dim A_n \) in general. Hence \(I_n = \mathbb{C}[p_1, \ldots, p_r]_n \) for all \(n \) and since \(Z \) is generated by homogeneous elements we have our result.

From the theory of the highest weight, we have the following result.

Corollary. There exist homogeneous polynomials \(p_1 \), \ldots, \(p_r \) in \(Z \) with each \(p_i \) of degree \(i \) and of weight \(\lambda_i \) with \(\lambda_1 \), \ldots, \(\lambda_r \) linearly independent if and only if there exists an irreducible \(\mathfrak{t}_c \)-module \(V_i \) in \(P(\mathfrak{p}_+) \) of highest weight \(\lambda_i \) for \(i \leq r \) with \(\lambda_1 \), \ldots, \(\lambda_r \) independent.

Remark. The reader should compare Theorem 2.2 to Herman Weyl's use of the Capelli identities in [9].
3. The Proof of Theorem A (The Classical Domains)

There are four classes of irreducible Hermitian symmetric spaces of noncompact type $SU(m, n)/SU(m) \times SU(n)$ and $SO^*(2n)/U(n)$. We will prove Theorem A for each of these classes but first we introduce some notations.

Suppose Z is an $m \times n$-matrix $m \geq n$ with complex entries so $Z = (Z_{ij})$. If $k \leq n$ let Z_k be the $k \times k$-matrix whose (i, j)th entry is $z_{m-k+i+1, n-k+j+1}$. That is, Z_k is the $k \times k$-matrix in the lower right-hand corner of Z.

Case 1. $G = SU(m, n)$, $K = SU(m) \times SU(n)$ ($m \geq n$), rank $\Omega = n$.

Then

$$ t_c = \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} : A \in \mathfrak{gl}(m, C), B \in \mathfrak{gl}(n, C), \text{tr } A + \text{tr } B = 0 \right\}, $$

and

$$ p_+ = \left\{ \begin{pmatrix} 0 & Z \\ 0 & 0 \end{pmatrix} : Z \text{ is an } m \times n \text{-matrix with complex entries} \right\}. $$

Let \mathfrak{g} be the diagonal matrices in t_c and let n be the matrices in t_c of the form

$$ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}, $$

where A is upper triangular, B lower triangular and both A and B have O's down the diagonal. It is easy to see that the homogeneous polynomials p_r, where

$$ p_r \begin{pmatrix} 0 & Z \\ 0 & 0 \end{pmatrix} = \det Z_r, $$

are n-invariant of degree r. Let $HE \mathfrak{h}$ with

$$ H = \begin{pmatrix} x_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & y_n \end{pmatrix}. $$

Then $A = \{y_1, \ldots, y_n\}$, where $y_k(H) = x_{m-k+1} - y_{n-k+1}$.
Case 2. \(G = \text{Sp}(n, \mathbb{R}), K = U(n), \text{rank } \Omega = n \)

The group \(G \) is the group of all real \(2n \times 2n \)-matrices \(g \) such that \(gJg' = J \), where \(J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \) and \(I_n \) is the \(n \times n \)-identity. Then

\[
\mathfrak{t}_c = \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} : A, B \in \mathfrak{gl}(n, \mathbb{C}) \text{ and } A' = -A, B = B' \right\},
\]
\[
\mathfrak{p}_+ = \left\{ \begin{pmatrix} Z & iZ \\ iZ & -Z \end{pmatrix} : Z = Z \in \mathfrak{gl}(n, \mathbb{C}) \right\}.
\]

Observe that \(\mathfrak{t}_c \) is isomorphic with \(\mathfrak{gl}(n, \mathbb{C}) \) via the map

\[
\begin{pmatrix} A & B \\ -B & A \end{pmatrix} \to A + iB,
\]

and identify \(\begin{pmatrix} Z & iZ \\ iZ & -Z \end{pmatrix} \) with \(Z \). Now if \(U = A + iB \) with \(\begin{pmatrix} A & B \\ -B & A \end{pmatrix} \in \mathfrak{t}_c \)

\[
\begin{pmatrix} Z & iZ \\ iZ & -Z \end{pmatrix} = \begin{pmatrix} UZ + ZU' & i(UZ + ZU') \\ i(UZ + ZU') & -(UZ + ZU') \end{pmatrix}.
\]

Let \(\mathfrak{h} \) be the diagonal elements of \(\mathfrak{gl}(n, \mathbb{C}) \) and \(n \) the upper triangular elements of \(\mathfrak{gl}(n, \mathbb{C}) \) with \(0 \)'s down the diagonal. For \(k \leq n \) let

\[
P_k \left(\begin{pmatrix} Z & iZ \\ iZ & -Z \end{pmatrix} \right) = \det Z_k.
\]

Each \(P_k \) is a homogeneous polynomial of degree \(k \) and is \(n \)-invariant.

If

\[
H = \begin{pmatrix} x_1 & & 0 \\ & \ddots & \\ 0 & & x_n \end{pmatrix}
\]

\(\Delta = \{\gamma_1, \ldots, \gamma_n\}, \text{ where } \gamma_k(H) = 2x_{n-k+1} \).

Case 3. \(G = SO^*(2n), K = U(n), \text{rank } \Omega = [n/2] \)

The group \(G \) is the group of all complex \(2n \times 2n \)-matrices \(g \in SO(2n, \mathbb{C}) \) such that \(gJ^*g = J \). Then

\[
\mathfrak{t}_c = \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} : A, B \in \mathfrak{gl}(n, \mathbb{C}) \text{ and } A' = -A, B = B' \right\},
\]
\[
\mathfrak{p}_c = \left\{ i \begin{pmatrix} A & B \\ B & -A \end{pmatrix} : A, B \in \mathfrak{gl}(n, \mathbb{C}) \text{ and } A' = -A, B = -B' \right\}.
\]
and

\[p_+ = \left\{ \begin{pmatrix} Z & iZ \\
Z & -Z \end{pmatrix} : Z = -Z' \in \mathfrak{gl}(n, \mathbb{C}) \right\}. \]

Take \(\mathfrak{k}_c \cong \mathfrak{gl}(n, \mathbb{C}) \), \(\mathfrak{h} \) and \(n \) as in Case 2. Then again the homogeneous polynomials

\[q_k \left(\begin{pmatrix} Z & iZ \\
Z & -Z \end{pmatrix} \right) = \det Z_k \]

are \(n \)-invariant. However, as \(Z_k = -Z_k', q_k = 0 \) if \(k \) is odd. Writing \(Z_{2k} \) as an element of \(\bigwedge^2 \mathbb{C}^{2k} \) we have that the Pfaffian of \(Z_{2k}, Pf(Z_{2k}) = p_k(Z) \), is a well-defined (see [9, p. 82]) square root of \(q_{2k} \). Hence the \(p_1, \ldots, p_{[n/2]} \) are \(n \)-invariant homogeneous polynomials with \(p_k \) of degree \(k \).

Let

\[H = \begin{pmatrix} x_1 & \cdots & 0 \\
& \ddots & \vdots \\
0 & \cdots & x_n \end{pmatrix} \in \mathfrak{h} \]

Then \(A = \{ \gamma_1, \ldots, \gamma_{[n/2]} \} \), where \(\gamma_k(H) = x_{n-2k+1} + x_{n-2k+2} \).

Case 4. \(G = SO^0(n, 2), K = SO(n) \times O(2)^0, \) rank \(\Omega = 2 \)

Then

\[\mathfrak{k}_c = \left\{ \begin{pmatrix} A & 0 \\
0 & B \end{pmatrix} : A \in \mathfrak{o}(n) \text{ and } B \in \mathfrak{o}(2) \right\}, \]

and

\[p_+ = \left\{ \begin{pmatrix} 0 & \overline{Z} - i\overline{Z} \\
\overline{Z}' & 0 \\
Z & i \overline{Z}' \end{pmatrix} : Z \in \mathbb{C}^n \right\}. \]

Choose \(\mathfrak{h} \) to be the \(\text{artan} \) subalgebra consisting of all matrices in \(\mathfrak{k}_c \) of the form

\[
\begin{pmatrix}
0 & ix_1 & 0 & 0 \\
-ix_1 & 0 & i x_2 & 0 \\
0 & -ix_2 & 0 & \ddots \\
0 & 0 & \cdots & 0 & iy \\
0 & iy & 0 & 0
\end{pmatrix}
\]

with 0 in the \((n, n)\)th position if \(n \) is odd.
If \(n \) is even \(n = 2k \), we write elements of \(\mathfrak{f}_c \) as \((A_0 \quad 0)\), where \(A_0 = (a,...) \) \(u, v \leq k \). where \(a_{uv} \) is a 2 \(\times \) 2-matrix and \(a_{uv} = a'_{uv} \). In this case, we take \(\mathfrak{n} \) as all elements of \(\mathfrak{f}_c \), where \(A_0 = (a,...) \) and if \(u \leq v \ a_{uv} = r_{uv}(\frac{1}{-i} \quad \frac{i}{1}) + s_{uv}(\frac{1}{-i} \quad \frac{i}{1}) \) with \(r_{uv}, s_{uv} \in \mathbb{R} \). If \(n = 2k + 1 \) every element of \(\mathfrak{f}_c \) may be written as

\[
\begin{pmatrix}
A_0 & a \\
-a' & 0 \\
0 & B
\end{pmatrix}
\]

where \(A_0 \) is as above and \(a \in \mathbb{C}^{2k} \). In this case \(\mathfrak{n} \) consists of elements of the form where \(A_0 = (a_{uv}) \) is as above and \(a' = (a,...,a_{2k}) \) with \(a_{2j+1} = -ia_{2j} \).

Then in either case, we may take

\[
p_1 \begin{pmatrix} 0 & Z & -iZ \\ Z' & 0 & 0 \\ -iZ' & 0 & 0 \end{pmatrix} = z_1 - iz_2
\]

and

\[
p_2 \begin{pmatrix} 0 & Z & -iZ \\ Z' & 0 & 0 \\ -iZ' & 0 & 0 \end{pmatrix} = z_1^2 + z_2^2 + \cdots + z_n^2.
\]

Both are \(n \)-invariant and if \(H \in \mathfrak{h} \) is chosen as above \(A = \{y_1, y_2\} \), where \(y_1(H) = -8x \) and \(y_2(H) = y - x_1 \).

The proof of Theorem A for \(\mathfrak{Q} \) a classical irreducible bounded symmetric domain now follows from Theorem 2.2 and our above constructions.

4. The Proof of Theorem A (the Exceptional Domains)

There are exactly two irreducible bounded symmetric domains of noncompact type. One is given as \(G/K \) where \(G \) is a noncompact real group of type \(E_6 \) and \(K \) is \(\text{Spin} \) 10 \(T \) with \(T \) a one dimensional circle group. The second case occurs where \(G \) is a noncompact real group of type \(E_6 \) and \(K \) is of type \(E_6 \) \(T \). Throughout this section, we shall have occasion to use Dynkin diagrams and the classification results of Wolf [10].

Case 1. \(G \) is of type \(E_6 \), \(K = \text{Spin}(10) \) \(T \), rank \(\mathfrak{Q} = 2 \).

Fixing a Cartan subalgebra of \(\mathfrak{f}_c \) we decompose \(\mathfrak{g}_c \) under the action of \(\mathfrak{h} \) and obtain the following Dynkin diagram
where the α_i's are the compact simple roots and γ_i is the noncompact simple root. A simple calculation yields $A = \{\gamma_1, \gamma_2\}$, where

\[\gamma_2 = \gamma_1 + a_2 + 2a_3 + 2a_4 + a_5. \]

Now $\dim(G/K) = 32$ and $\dim_{\mathbb{C}} p_+ = 16$. Also, t_c acts irreducibly on p_+ with lowest weight γ_1 and so dualizing we have that the highest weight of the representation of t'_c on $P(p_+)_1$ is given by $\lambda_1 = -\gamma_1$.

From the Weyl dimension formula the degree of the representation of highest weight $2\lambda_1$ is found to be 136. Since

\[\dim P(p_+)_2 = 146 \]

the corollary of Section 2 yields that an irreducible representation of t'_c of dimension 10 must occur. An elementary calculation yields that this representation has highest weight $\lambda_2 = -\gamma_1 - \gamma_2$ and this proves Theorem A for this domain.

Case 2. G is of type E_6, K is of type $E_6 T$, rank $\Omega = 3$, and $\dim p_+ = 27$.

Fixing h a Cartan subalgebra of t_c we decompose g_c under the action of h and obtain the following Dynkin diagram

\[a_6 \]

\[a_1 a_2 a_3 a_4 a_5 \gamma_1 \]

where the α_i's are the compact simple roots and γ_i is the noncompact simple root. A simple calculation now yields $A = \{\gamma_1, \gamma_2, \gamma_3\}$, where

\[\gamma_2 = \gamma_1 + a_2 + 2a_3 + 2a_4 + 2a_5 + a_6. \]
and

\[\gamma_3 = \gamma_1 + 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 3\alpha_4 + 2\alpha_5 + 2\alpha_6. \]

Now \(e_6 \), the semisimple part of \(\mathfrak{t}_c \) acts irreducibly on \(\mathfrak{p}_+ \). Since \(\dim_\mathbb{C} \mathfrak{p}_+ = 27 \) the representation of \(e_6 \) on \(\mathfrak{p}_+ \) is the same as the representation of \(e_6 \) on the complexification of \(J_c \), the exceptional simple Jordan algebra. However, in [2], Freudenthal showed that there is polynomial \(N \) of degree 3 on \(J_c \) such that

\[e_6 = \{ X \in \mathfrak{gl}(J_c) : XN = 0 \}. \]

Since the representations of \(e_6 \) on \(\mathfrak{p}_+ \) and \(J_c \) are equivalent the trivial representation of \(e_6 \) must occur in \(P(\mathfrak{p}_+, J_c) \). As the natural map

\[P(\mathfrak{p}_+)_1 \otimes P(\mathfrak{p}_+)_2 \rightarrow P(\mathfrak{p}_+)_3 \]

is \(\mathfrak{t}_c \)-invariant and a fortiori \(e_6 \)-invariant the dual representation to that of \(e_6 \) on \(P(\mathfrak{p}_+)_1 \) must occur in \(P(\mathfrak{p}_+)_2 \).

Now the representation of \(\mathfrak{t}_c \) with highest weight \(\lambda_1 = -\gamma_1 \) occurs in \(P(\mathfrak{p}_+)_1 \). The representation of \(\mathfrak{t}_c \) with highest weight \(\lambda = \gamma_1 \) restricted to \(e_6 \) is dual to the representation of \(e_6 \) on \(P(\mathfrak{p}_+)_1 \) and \(\lambda = \gamma_1 - \gamma_2 - \gamma_3 \) is 0 on \(\mathfrak{h} \cap e_6 \). Since \(\lambda \) and \(\Lambda \) have the correct eigenvalues for the representations of \(\mathfrak{t} \) on \(P(\mathfrak{p}_+)_2 \) and \(P(\mathfrak{p}_+)_3 \) we have Theorem A for this case also.

This completes the proof of Theorem A for all cases.

5. **Final Remarks**

If the bounded symmetric domain \(\Omega \) is not irreducible, it is the product of irreducible bounded symmetric domains. It is an easy exercise to show that the ring \(I \) is then the tensor product of the corresponding rings for the irreducible factors of \(\Omega \).

References