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Abstract

In this paper, one-dimensional (1D) nonlinear Schrodinger equation
iur —uxx + uPu=0, peN,

with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude
quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional
dynamical system. The proof is based on infinite-dimensional KAM theory, partial normal form and scaling
skills.
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1. Introduction and main result
In this paper, we will prove that one-dimensional (1D) nonlinear Schrodinger equation
ity — gy + [uPu=0 (1.1)

under periodic boundary conditions
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u(t,x)=u(t,x+2m) (1.2)

admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori.
As usual, we study Eq. (1.1) as a Hamiltonian system on P = H (T) = H{ ([0, 2 ]) with the

inner product (u, v) = Re fOZ” uv dx, the Sobolev space of all complex-valued L?-functions on
T with an L2-derivative. Let ¢;(x) = %e"fx ., Aj = j2, j € Z, be the basic modes and their
frequencies for the linear equation iu; = u,, with periodic boundary conditions. Then every

solution is the superposition of oscillations of the basic modes, with the coefficients moving on
circles,

u(t,x) = qu(t)d)j(x), q;(t)= q})e"kf".

JEL

Together they move on a rotational torus of finite or infinite dimension, depending on how many
modes are excited. In particular, for every choice

J={i<p}CZ

of 2 basic modes there is an invariant linear space E 7 of complex dimension 2 which is com-
pletely foliated into rotational tori:

Eg={u=q19; +0op: g€ C*}= | T7(D),
Iep?

where P2 ={I: I; >0} and

T7(D) ={u=qi¢;, + @2, lq;I* =2I; for 1 < j <2}.

In addition, each such torus is linearly stable, and all solutions have vanishing Lyapunov expo-
nents. This is the linear situation.

Upon restoration of the nonlinearity |u|?”u, we show that there exist a Cantor set C C P2, an
index set Z = {n1 < nz}, where n > ,/pny > 0, and a family of 2-tori

TZiC1=J Tz() C Ez
I1eC

over C, and a Whitney smooth embedding
D :T7[Cl— P,

such that the restriction of @ to each 77(/) in the family is an embedding of a rotational 2-
torus for the nonlinear equation. In [12], the image £7 of 77[C] is called a Cantor manifold of
rotational 2-tori given by the embedding @ : 77[C] — &7.

Theorem 1 (Main Theorem). Consider 1D nonlinear Schrodinger equation (1.1) with (1.2).
Then for any index set T = {n| < ny}, which satisfies ny > ,/pn| > 0, there exists a positive-
measure Cantor manifold 7 of real analytic, linearly stable, Diophantine 2-tori for the nonlin-
ear Schrodinger equation given by a Whitney smooth embedding @ : T7[C] — £7.
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Remark 1.1. For 1D nonlinear Schrddinger equations of higher order nonlinearities such as
vy — Vex +mv+ [v]?Pv=0 (1.3)
under periodic boundary conditions

u(t, x) = v(t, x +27), (1.4)

there exists a well-known transformation v = '™

are transformed to Eqgs. (1.1) and (1.2).

u, the above equation and boundary condition

Remark 1.2. Generally, one cannot prove that @ is a higher order perturbation of the inclusion
map @ : E7 — P restricted to 77[C]. The reason lies in the symplectic transformations ¥, ¥,.
See Section 2 for details.

There are some known works about Eq. (1.1). For p = 1 under Dirichlet boundary conditions,
see the well-known work of Kuksin and Poschel [12]. For p = 2 under Dirichlet boundary con-
ditions, Liang and You (see [13]) also got the similar conclusions as [12]. For the Schrédinger
equation under periodic boundary conditions, Bourgain obtained the existences of quasi-periodic
solutions for the Schrodinger equation including 1D and nD (n > 2) in [2,4,5]. His method,
called Craig-Wayne—Bourgain’s scheme (see [2-5,7]) is very powerful and different with KAM.
It avoids the, sometimes, cumbersome and famous “the second Melnikov conditions” but to a
high cost: the approximate linear equations are not of constant coefficients. It results in giving no
information on the linear stability of constructed quasi-periodic solutions.

The first work using KAM to construct quasi-periodic solutions of 1D nonlinear PDEs under
periodic boundary conditions is due to Chierchia and You (see [6]). They obtain the linearly
stable quasi-periodic solutions for 1D wave equation. For the Schrodinger equation (1.3) + (1.4)
when p = 1, it was included in the work of Geng and You [9]. Combing with the methods of [13]
and [10], Geng and Yi (see [11]) obtained the similar result for p = 2. But all known methods
are failed in p > 3.

In the following, we will give a heuristic discussion about our method which works for any p.
Our discussion will be confined in 1D Schrédinger equation (1.1) + (1.2). As before, the KAM
method for this equation is detached into two steps.

The first is to use some symplectic transformations to the original Hamiltonian. This is the
familiar normal form step. When p > 3 or p =2 and ny — ny € 2N, this step is more difficult
than before. The reason lies in that there exist many terms, which we cannot kill. For the common
views, the ones must be killed since they cannot be put into the higher order terms. Therefore,
one has to remain them. But we must know what they are. In fact, after some subtle analysis, we
can write out all the terms which cannot be killed in the normal form. Except that, we note that
the remained are highly symmetric. This is also very important for the following transformations.

More clearly, after introducing the parameters &1, &>, we have the Hamiltonian

H=(w§),y)+(Gx)w, w)+ho.t,
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where the infinite-dimensional normal matrix

te]}

[loe—ip(xl —x2)
-Qi,,fz ép726—2t (x1—x2)
G(x) = - :

~ 2i(x1—x2) oN
ap—e” ™! 2j,,

PR |
dpe'P'™ 2jy

where x1, x» is the angle coordinates and for a4, i; and j;, see (2.12), (2.7) and (2.8). Note
the symmetry of the normal matrix, we introduce a nonlinear symplectic transformation (see
Lemma 2.5) to the above Hamiltonian and re-scale the coordinates and parameters including #
and then use another symplectic transformation to diagonalize the normal infinite-dimensional
matrix. After all the transformations, one gets the following Hamiltonian

H=(w.y)+ ) 2jw,i, +hot.
j

This is a standard form for our applying the infinite KAM theorem.

The second step is to estimate the thrown measure. In order to obtain the measure estimates
under periodic boundary conditions, an easy way is to prove that the perturbation terms always
satisfy some special properties. We remark that even though the properties as [10] and [11] do
not pertain after the nonlinear symplectic transformation ¥ (see Lemma 2.5), a similar property
still holds, which we call generalized compact form. One easily proves that this property holds
even after infinite KAM steps. The remained difficulty is the measure estimate in the first step,
while measure estimates of the remaining steps are standard as [13] and [14]. It is hard to get the
so-called twist inequality such as

R
aE2p

>c>0,

where f = (k, w) + 2, — §2,,. It needs some complex computations.

Before ending this section, we give a brief introduction in the recent development of infinite-
dimensional KAM theory of higher spatial dimensions. In [10], Geng and You proved the
existence and the linear stability of KAM tori for some semilinear beam equation and some
non-local Schrodinger equations. Very recently, Eliasson and Kuksin have derived the exciting
results of both the existence and the linear stability of KAM tori for nD nonlinear Schrédinger
equations in [8]. In [20], Yuan proved that there exist many invariant tori and thus quasi-periodic
solutions for nonlinear wave equations, Schrodinger equations and other equations of any spatial
dimension. The second Melnikov’s conditions are totally eliminated in his method. But till now,
the linear stability of the obtained quasi-periodic solutions and invariant tori for NLW equations
is still an open problem.

The rest of the paper is organized as follows: In Section 2 the Hamiltonian function is written
in infinitely many coordinates, which is then put into partial normal form. In Section 3, we give
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KAM steps and Theorem 2. Measure estimates are given in Section 4. In Appendix A, we explain
what are the compact form and generalized compact form. Some important lemmas are proved
there.

2. Normal form

Using the Hamiltonian formulation, we rewrite Eq. (1.1) with the periodic boundary condition
(1.2) as the Hamiltonian system u; = 1% where

2
H:/WM m+ /M”“w
0
Note that the operator A = —d,, with the periodic boundary conditions has an ortho-

normal basis {¢,(x) =,/ %e"’x} and corresponding eigenvalues w, = n®. Let u(x,1) =
Zn <7.9n(1)¢n(x). The coordinates are taken from the Hilbert spaces [# of all complex-valued
sequences g = (g;);ez With

2 2 2|j
lglly =" lg;17e*1” < oo.
J€Z

Fix p > 0 later. Then associated with the symplectic structure i), ., dqn Adqn, {gn}nez satisfies
the Hamiltonian equations

oH
Gn=1i7—, nekx, 2.1
aqn
where
H=A+G (2.2)
with
2p+2
A=) "pilgl,  G= o 1 anasn dx.

nez nez

Lemma 2.1. The gradient G is real analytic map from a neighbourhood of the origin of 1°
into I[P, with

1Ggll, =0 (lglP™).

The proof is similar as Lemma 3 in [12].
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Note that
2
1 - - - —
G= p+1 Z </¢i1 Bip 1 Pt P dx>6h1 Cbipn 9y Dip

LSTRN S B ) PR Jp+1 0

1 _ _

B ﬁ Z Giyipprjijpnrdin** Dipar sy Dipsr»
il)"'!i[l+lvjl ----- jp+l
where

2
Gi1~~~ip+1j1“~jp+1 :/¢i1 "'¢ip+1¢j1 "'¢jp+1 dx.
0

It is not difficult to verify that Gi1--~ip+1j1---jp+1 =O0unless iy +---+ipp1 =j1 + -+ jpt1.
Moreover, when iy + -+ +ipy1 = j1 + -+ jpy1, we have Gy jiojipy = (%)P“.

To transform the Hamiltonian (2.2) into a partial Birkhoff normal form, we fix ny, ns
(n1 # ny) and define the index sets Ay, * =0, 1, 2, 3, as follows. For each x =0, 1,2, A, is the
set of indices (i1, ...,ip+1, j1,-.-, jp+1) Which have exactly “*” components not in {ny, na}.
Aj is the set of the indices (i1,...,ip41, j1,-.., jp+1) Which have at least three components
not in {ny,n2}. We also consider the resonance sets N = {it,....ip+1,01, ..., ipr1} N Ao,

M={i1,...,ip41,01,...,ipp1} N As. For our convenience, denote the sets 77, 72,

Ti={G1ooesiprtsis o pr) € A \NM i+ 40 =T+ + i)

D= Al esipris s pr) € A \NM i+ 40 £ T+ + i}

Lemma 2.2. Let (1, s ipt1s J1s oo s jpt1) € (Ap\N)U AL UT. If iy +otipri=j1+
<o+ Jp+1, then

2 -2 2 2
Wiy e Wiy = My = = My =8 i =T = Jp #0.

Proof. If (i1, ...,ips1,j1,.--, jpt+1) € (Ao \ N), without losing generality, suppose there are
exactly x’s ny in {iy,...,ip41} and y’s ny in {ji1, ..., jp+1}. Itis obvious that x # y. Therefore,
fromiy+---+ipt1=j1+---+jpy1, wehave (x —y)n; = (x — y)n. Since ny #njz and x # y,
it is impossible. This means that if iy +--- +i,41 = j1 + -+ + jp41, there are no elements in
Ag\N.

If G1,....ip41, J1,--+»Jp+1) € Ay, without losing generality, suppose xi’s nj in
{i1,...,ipy1) and yi’s ny in {ji1,..., jp+1}. And the unique index in {ji, ..., j,4+1} different
with n1, nz is denoted by z;. Similarly, from iy +--- +ip11 = j1 + -+ + jpy1, One gets

(1t —yoni+ 1+ 1—xpDna=zi. (2.3)

It is easy to see that
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i i = = = = @ = yoni A+ On 1 xm3 — 2
2
=a1n% +( —al)n% — (a1n1 +( —al)nz)

=a;(1 —a)(ng —na)?,

where a; = x1 — yj. Since z1 # ny, na, this means a; # 0, 1 from (2.3). Therefore, a;(1 —
ap)(ny —n)?#0. O

Lemma 2.3. Given n| < ny, ny,ny € Z, there exists a real analytic, symplectic change of coor-
dinates I in a neighborhood of the origin of [? which transforms the Hamiltonian (2.2) into a
partial Birkhoff normal form

Hol'=A+G+G+G+K, (2.4)

such that the corresponding Hamiltonian vector fields X, X &, X and X are real analytic in
a neighborhood of the origin in [P, where

~ k+1 —
—Cp Z ij—l |qn1|2(p k)|CIn2|2(k+1)

k=—1
k 2 k 2k
+ep(Chi)” Y0 Z (C5) 10 PP 1, P,

n#ny,ny k=0

G=cp Z qiyGip19j1 " Djp+r>
i1 tpr1=j1+-+jp+1
{i1,..., ip+1njla-~-!.j])+le7~]}

G=cp Z iy Qip19j1 " Djps1>
it Fippr1=j1++jp+1
(i1, sipt1s s ip+1€43}

1K1=0(llgl37*?).

where ¢, = (27‘[)P71(p+1) Moreover, K (q, q) has a special form.

We give an explanation for which K has a special form. If K = Za’ﬂ Kaﬁq“cjﬂ, then

Kop #0 implies Zoti =Z,3j,

i€’ JEZ

where o = (@;)iez and B = (B;) jez. The proof of Lemma 2.3 is a copy of Proposition 3.1 in [11].

The specific form for G is very important for the following proof. We will give it clearly.
For our convenience, we will rewrite the coordinates by a, b, which are different with n, n; in
{i1, ... ipt1s J1s -+ -s jp+1) € 71 It is obvious that a # b. Otherwise, we have n| = n». For
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G=c¢cp > Giv - ip1 @iy Djper
it tipr1=ji+-+jp+1
{itsesipgtsfloeipr1€71)

we will suppose there exist k1’s g, k2°S @n,, [1’S qn,, [2”s gn,. Before we give the concrete form
for G, we need a preparation lemma.

Lemma 2.4. When q,(or qp) € {qi,, ..., ql-pﬂ}, one must have gp(or ) €{qj,, ..., c}jpﬂ}.
Proof. Without losing generality, assume that g4, g € {gi,, - .-, qi,,, }. Itis easy to get

ki +lhi=p—1,

ky+h=p+1,

kini +lino+a+b=kun+hny.

We will prove that
a® 4+ b2 4 kin? + 11n3 # kan? + Ln3.
If this is not true, one gets

a+b+ (ki —k)ni+ (1 —lh)ny =0,
a? +b> + (ki — ko)n + (4 — )n3 =0.

Write s1 = k1 — kp. It follows [} — [ = —2 — s7. Therefore,

a+b+sin+(=2—s1)ny =0,
a2+b2+s1n%+(—2—s1)n%=0.

Thus, it follows

2a% + 2(s1n1 — (2+s1)n2)a + 51051 + l)n% + 245 —l—sl)n% —2s1(s1 +2)n1np, =0.

(2.5)

Note A = —4s1(s; + 2)(n; — n2)?, one can draw the contradictions from the following three
cases.

Case1.If s; =0o0rs; =—2.

If s1 =0, then a = ny. If sy = —2, then a = n;. It both contradicts with the choice of a.

Case?2.1f sy >0ors; < —2.

Since A < 0 in this case, it is obvious (2.5) cannot hold.

Case3.If -2 <51 <O0.

Since 51 € Z, it follows s; = —1 and A =4(n; — n2)2. From (2.5), itis easy to geta =ny, ny.

It is impossible. O
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Thus, from Lemma 2.4, one has

ki +lh =k +1=p,
a+kiny+liny=b+kyny +hns,
2 2 2_ 32 2 2
a® +kiny 4 lLin5 =b” 4 koni + lon3,

where k1, ko =0,1,...,p, 11,1 =0,1,..., p. If denote k; — kp = s, one has k1 —ky =5 =
l» — [;. Further, we have

sny—sny+a—b=0,
sn%—sn%—{—az—bQ:O.

From a # b, we get

1

a= E(S + D2 —ny1) +ny,
1

b= E(S + 1Dy —nz) +na.

Itis clear that s #0,£1, s =k —ko =L — 11, se{—p,...,—1,0,1,...,p} and k1 + [} =
ky+1D =p.

On the contrary, we could clearly write all the terms in G. Firstly, give all
se{—p,...,—2,2,..., p} satisfying

1
G=E(S+1)(n2—n1)+n1 €z,

1
b:z(s—i—l)(nl —ny)+ny e’

Denote this set of s by R;. Corresponding to every s € R mentioned above, we have many
integer pairs (ki, kp) satisfying k1 — ko = s, k1, k2 € {0, 1, ..., p}. Denote this set of (ki, k2)
by R3. From (ky, k2) € R and ki + I} = kz + [ = p, we can give the corresponding integer
pairs (I1, [2). In this way, for every s € R, we find many terms in G. More concretely, they are
all terms made of ¢pqaqn. grsGsdnidn, Where a = (s + 1)(n2 — n1) +n1, b= L (s + ) (ny —
ny) +ny and (ky, k2) € R5. When varying s € R, we have get all terms in G.

In this way, suppose that np — n; € 2N, we get

p—2 t p—2 t
. i e
G=cpD D ditm  dindidn Gnn +cp ) D didm dm didiny Gy (26)
=0 j=0 t=0 j=0

where
1
lz=§(l7—t+1)(n1—n2)+n2, 2.7

o1
jtzz(p—t+1)(n2—n1)+n1, te”T. (2.8)
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When ny, —n1 € 2N — 1 and p € 2N, we get

p—2  t p—2
A P—=j J = Zt=j=p—t+j t—j p=t+j- =-p—j=j
G_Cp Z 9j9n, " 9nr9i,9n, " 9n, +Cp Z Z%’,qm qn, 4 9n, Y9n,-
=0 j=0 =0 j=0
te2Z+1 te2Z+1

2.9)

When ny —n; € 2N — 1 and p € 2N+ 1, we get

p—2 t p—2 ¢
. S im0 it il
G=cp Y D aiah andian at, " o DY aian any ' d@idn ', (2.10)
t=0 j=0 t=0 j=0
te2Z te2Z
Remark 2.1. Note the simple case p =2. When ny —n; € 2N — 1, (from (2.9)) we know that
there is no term in G. This responds to the case in [11]. When ny — n1 € 2N, we have

x 2 - -2 2 - -2
G = 29a9y,9b9y, + €29b49,,9a9y, »
where a = %(nz —ny)+n,b= %(nl —ny) +ns.

Remark 2.2. The similar phenomenon, as the terms of G do not vanish, exists very popularly. It
definitely exists in 1D Schrodinger equation with the nonlinearity |u|*”u (p > 2) under Dirichlet
boundary conditions. It is why it is difficult to generalize the conclusions of [13] to any p. We
point out that this phenomenon also exists in many other equations such as 1D wave equation
and beam equation with the nonlinearity «?" ! (7 > 3) under different boundary conditions. For
example, it exists in 1D wave equation

Uy — gy +mu+u =0, m>0,7>3,

under Dirichlet boundary conditions. If use the same notation as [14], when 7 = 3, we will find
that the nonresonant term z,,,z> \ZiZn, Zn,2j cannot be Killed for some m > 0 (depending on i, j),

where i, j are normal sites and n1, ny are tangent ones and A; = +/iZ + m, Aj = Vj2+m,
Any = /N7 + m satisfy

2)»,11 + A =)Lj,
dny+i=j.

This also partly explains why existent KAM results for this equation only hold true for positive
measure of m > (. See Bambusi [1] and Liang and You [14] for details.

In the following, we will restrict in the most complex case when ny —ny € 2N. Whenny —nj €
2N — 1, the proof is parallel and the conclusion is the same. We omit it.

Note (2.6), we introduce the symplectic polar and complex coordinates to the Hamiltonian
(2.4) by setting

o {\/(Ej +ype i, j=ny,n,
qj =

wj, J#ni,na,
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depending on parameters & € [0, 11%. In order to simplify the expression, we substitute Snj,
Jj=1,2,byé&;, j=1,2. Then one gets

iy dgjndgi= Y dxjndy;+i Y dw;Adi;.
JEZ Jj=ni,n2 J#ni,n2
Now the new Hamiltonian is
H=(oE).y)+ Y 2u@waity+71+72+73, (2.11)
n#ny,ny
where

—k
wl(é)—nl-i-cpz p+1 +17k§1p 5,

k=0

—k
wz(E)—”2+CpZ Cﬁii Cll+1'§1p &,

k=0
2 u —k
20E) =n"+¢,(Cpry) D (Cp)E &, n#nin,
k=0
p—2 p—2
T = Zdtwjt u-)l.tefl(l’*f)(xlfxz) + Zétu_)jr witel(p*t)(xrxz)’
t=0 t=0
(p+t=2j) . 5( t+2)
al_cnglzl’ J%_z[’ J
j=0
— p—1 2 p—1 2
o =0(1” yI?) + O (1P ylwl?).
_1
r3=0(1P 2 |wl}) + O(I&]*H). (2.12)

Denote P = 717 + 73 + 73. Consider the Taylor—Fourier expansion of P,

P= Z Prop ()X w b

k.o,
‘We have
Prap(y) #0.  implies ki +hkoma+ ) (e + Bu)n =0,
neZ\{ny,nz}
In order to cut our expression, write A" = {ig, ..., ip—2,jo,--.» jp—2yand J ={jo,..., jp—2}. It

is easy to see that i <ij <--- <ip_2 < jp—2 <--- < j1 < jo.
Now we will continue to make a symplectic coordinates transformation for the Hamiltonian
(2.11) to obtain the suitable form for our applying the infinite KAM method. Our object is to
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transform 77 to the terms which do not include the angle variables. The following nonlinear
symplectic coordinates transformation works.

Lemma 2.5. The map ¥; : (x, y,w,w) — (xT, yT, wt, w") defined by

x+=x,
p—2
+ 2
=y+ > kilw %,
t=0

(W) = EWiien,
wl+ =w;, [¢N,

is symplectic, where
T
E =diag(1, ..., 1, ¢/fr-2:2)nd ™0,
(wi)iEN = (wios sy wip,z’ wjp,zv ey wjo)T'
Remark 2.3. The similar symplectic transformation as ¥ was used in [18].

Under the above symplectic coordinates transformation ¥, the Hamiltonian (2.11) is changed
into the new Hamiltonian (for simplicity, we still use the old coordinates (x, y, w, w))

H+ = H @] lp]
=No+ Py
p—2
(@,9) + Y (2uzn.Zn) + Y _(Aizi, Zi) + Po, (2.13)
ng¢gN =0
where
in = Wp, n ¢N7
zi= (i wi)', Z, =i, w))"
Ai, — Kgi, a; 2.
a  $£2;,+(p-nA
i k
5 k+1 1 —k ek
AZZCP[(CP+1) Cp+l kK~ (Cp——tl) Ck+1]5f’ &, (2.14)
0

and w, £2 is the same as those in (2.11). Checking directly, we know that Py satisfies a generalized
compact form with respect to n1, ny and J (see Appendix A for the definition). More concretely,
consider the Taylor—Fourier expansion of Py,
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Po= " Porap(n)e wwF,

k,o,B
we have that Py xqg(y) # 0 implies
p—2
kini+kana+ Y (—an+Bn=(n—n2) Y (@, —Bi)p—1. (215
neZ\{n,nz} =0

4

For (2.13), rescaling E% by €%, w, w by €*w, e*w, and y by €®y, one obtains a new Hamil-

tonian given by the rescaled Hamiltonian

H= e6p+8H+(x, egy, w, e*w, %, e)

pP—2
= (@, Y)+ Y (uzn, Zn) + Y _(Ai2i,, %) + € Po, (2.16)
n¢/N t=0
where
2p—2k
wl(é)— +cpZ k) Ch & e
2p—2k
wz(é)— +CPZC§111 Ck+155p &*
n? - 2p—2k
@& = —; +p(Cpia) 2(C Ve e, nnyn,
k=0
X': éir _ ar
" a 2, +(p—-0A)’
2
at_cng{’” Tgh=i+2 (2.17)
- 2(p—k)
1 k+1
AZZ [(Cp+1) Cp+1—k (C,:H) Ck+1]§1p 5’ (2.18)
0

£ € O =[1,2]% It is obvious that Py also satisfies a generalized compact form with respect to
ny, ny and J. For our convenience, we rewrite Hby H,®by w, 2 by £2, Aby A, B by B and
Py by Py.

Now the new Hamiltonian is

p—2
(@, )+ Y (220, Zn) + ) _(Ai,2i,,%i,) +€Po. (2.19)
n¢g/N t=0

It is well known that there exists real orthogonal matrix P, r =0, ..., p — 2, satisfying
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Pl A, P, =P A, P = A;, = diag(h1 s, M),

where

1 1 2 2 A2
Ay =82 + E(p—t)A— E,/4a, +(p—1)“A

and

1 1/ 2 2 A2
)\.2’129”4—5(17—1‘)14-{-5 4a,—|—(p—t)A

Lemma 2.6. The map ¥, : (x, y,2,2) — (xT, y¥, z7,z") defined by

ZT"»:Pt_IZity t=07"'7p_21

It

=z i¢lio.....ip2},

is symplectic.
Proof. It is easy to check that

dxt Adyt +idzt AdZT =dx Ady+idzadz. O

(2.20)

2.21)

(2.22)

Under the symplectic coordinates transformation ¥, the Hamiltonian (2.19) is changed into

the new Hamiltonian

HY=How,
p—2
={w. 3+ D (2ugh )+ (A ) +ery
ngN t=0

where

wl(i")— +CpZ p+1 Cpii- g

2p—2k
06 =~ +cpZ Chi) Ch g e
n2 2 2p 2k 2k
(&) =~ +¢p(Cpa) 2_(Ch . n#nin,
k=0

_fre O
Alt_< O )\'2,1)’

(2.23)
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& € O. For A1, Ay, see (2.21) and (2.22). From Lemma A.3, we know that PO+ satisfies the
generalized compact form with respect to ny, np and 7. For our convenience, we will rewrite
HT by H, y* by y, z;} by z,, Z,| by Z, and € P, by P. Therefore, the Hamiltonian is

H=N+P
p—2
= (0, Y) + (220 T) + Y _(Ai2i, Zi) + P(x, 3,2, 2,6, €)
ngN =0
=(0.y)+ Y 2jwaiby + P(x,y,w, 0, £, €), (2.24)
j
where
i, j¢N,

Q=Y j=inteT,
My, j=J, t€T,
and P satisfies a generalized compact form (2.15). (The subscript j of £2 j certainly satisfies
J #ni1, np. We do not mention it again in the following.)
In the following, we will use the KAM iteration which involves infinite many steps of co-
ordinate transformations to prove the existence of the KAM tori. To make this quantitative we

introduce the following notations and spaces.
Define the phase space:

P:.= ((C2/2n22) x C2x 1P x I°.
We endow P with a symplectic structure dx A dy + 1 ZjeZdwj ANdwj, (x,y,w,w) € P. Let
1¢ = (R?/27Z%) x {y =0} x {w =0} x {w =0} C P.
Then 762 is a torus in P. Introducing a complex neighborhood of ’]62 in P:
D(s,r) ={(x,y, w, ®) € P: [Imx| <s, |y| <r% |wll, <r, lwll, <r},
where | - | denotes the sup-norm for complex vectors. Define a weighted phase space norms
(Wl =1Wlp = Ix|+ r%lyl + %”w”p + %Ilwllp,

for W = (x, y, w, w) € P. Let O C R? be compact and of positive Lebesgue measure. For a map

W :D(s,r) x O — P, set

Wi,y Dis.ryx® = sup [W(x.8)|,
(x,£)eD(s,r)xO
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and
YW (x,
|W|:<p D(s.r)xO = Jnax sup A %
R 2182 (¢ £yeD(s,r)x O § o
For an 8 p order Whitney smooth function F(§), define
N “F
[F|" = max sup ,
<8P ¢ 5] IE*
*F
[Fll« = max sup .
I<Iel<8p ¢ 5] D€

To functions F, associate a Hamiltonian vector field defined as X p = {—F), Fy, —i F,1Fy}.

Denote the norm for X r by letting

1
r2

1
r

0“F,
FEC

3% F,
g

I9F,,
dE

|XFlr.p(s. = Max sup [
loe| <8p £cO

(x,y,w,w)eD(r,s)

p 95¢

J

In the whole of this paper, by c a universal constant, whose size may be different in different
place. If f < cg, we write this inequality as f < -g when we do not care the size of the constant c.

Similarly, if f > cg, we write f > -g.

3. KAM step

Theorem 1 will be proved by a KAM iteration which involves an infinite sequence of changes
of variables. Each step of KAM iteration makes the perturbation smaller than the previous step at
the cost of excluding a small set of parameters. At the end, the KAM iteration will be convergent

and the measure of the total excluding set will remain to be small.
We introduce some notations in the following. Denote the sets

c|k|8pr+6

SSZ{E |(k:0)v)_1| <Tv k750},

&y

cmax{|k|8P7+0 1} }

Sy = {é: |(¢k, wv) + Qv,n)_1| S Po
&y

~ 4 _ ax!|k|3PT+6 1
(s @0) + Lo+ Ru) | < R
&y” (|n|=lm[l+1)

where n,m ¢ N orn,m e N,

~ ~ _ 8pt+6
v k@) + 2o+ 27 < R
S =14 b0 (llig|—Inl[+1)
wheren ¢ N, t € T, |kiny + kona| = |n + iy,
~ ~ _ 8pt+6 1}
k,a) + 60 + 80, 1 < cmax{|k| A}
(W o Lo 200 VS 5 Sy

wheren ¢ N, t € T, |kin) + kana| = |n+ ji + (n1 —n2)(p — 1)|

3.1)

(3.2)

. (33
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and
(ks @) + Ry — Bo) ™| < CmRRTTED)
' ' 50 (nl—pmil+1)
where n,m ¢ N, |k| + ||n| — |m|| £ 0, |kiny + kana| = |n —m)|,
(e, @) + 2o — 2o < W
n|—|ml||+
where n,m e N, |k|+ |n —m|#0,
85,2 = %'Z 5 5 . cmax{\k\ngrﬁ 1 s (34)
[({k, wy) + 8200 — $20,;,) 7 | < m,
wheren ¢ N, t € T, |kiny + kana| = |n — iy,
~ 1 k8p1+61
[((k, @) + 2vn — $20,j,) 71 < W
wheren ¢ N, t € T, |kiny +kana| = |n — j; — (ng —n2)(p —1)|
where wy = w, 20, = §2,,, and'
e, v=0,
&y = {Ev» v, (3.5

To begin with the KAM iteration, we fix r, s, p > 0 and restrict the Hamiltonian (2.24) to the
domain D(s, r) and restrict the parameters to the set Op = O\ RO, where

0o CSJUSIUSY USY,, (3.6)
where 0 < |k| < Ko and
RY=RyU (R} URY,) URY.
Please refer to Section 4 and Lemma 4.12 for more. B is a constant and will be chosen later.

Suppose [|@|l« < My, max ez |[}j|* < Mo, M+ M, > 1. Define M = (M, + M,)?P. Initially,
we set wg = w, 20, = 2y, No=N, Pp=P,rg=r,so=s, Mo =M and

No = {wo, y) +Zénwnu_)nv
n

Hy= Ny + Py.

Hence, H is real analytic on D(rg, so) and also depends on & € Oy Whitney smoothly. It is clear
that there is a constant ¢g > O such that

X Po 1}y Diro.se).0p < COE = €0. (3.7)

Py satisfies a general compact form (2.15).

' Note the difference between €, and gy .
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Suppose that after a vth KAM step, we arrive at a Hamiltonian

H=H,=N,+ P,(x,y,w,w),

N =N, =(0,&),y)+ D 2nEwyiby,

which is real analytic in (x, y, w,w) € D, = D(ry, s,) and depends on & € O, C O Whitney
smoothly, where

0, CSJUSIUSY, USY,, (3.8)

0< k| < K{,z for some r, < ro, s, < 59 and
Ko, v
K/ — ’
‘We also assume that

*
X P17, DGy 50 S €0 S €0

and P, = Zk’a’ B P{aﬁ(y)e“k*x)w"ti)ﬂ has a generalized compact form with respect to n1, ns
and J.

To simplify notations, in what follows, the quantities without subscripts refer to the ones at the
vth step, while the quantities with subscripts “4”” denote the corresponding ones at the (v + 1)th
step. We will construct a symplectic transformation @ = &,,, which, in smaller frequency and
phase domains, carries the above Hamiltonian into the next KAM cycle.

3.1. Solving the linearized equations

Expand P into the Fourier—Taylor series

P= Z Pklaﬁei<k’x>ylwalbﬂ,
k.loa,p

where? k € 72, | ¢ N% and the multi-index «, B run over the set @ = (...,q,,...),
B=C(..,Bu, ...), dn, Bn € Np, with finitely many non-vanishing components. We denote by
0 the multi-index whose components are all zeros and by e, the multi-index whose nth compo-
nent is 1 and other components are all zeros.

2 Where “lk| < 00” means “|k| < 00.” We confuse the notation for simplicity.
3 Np means N U {0}.
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Let R be the truncation of P given by
R(x,y, w, b)) = Z Prooe®y! + Z (P,{down 4 Prilcmwn)euk,x)
k1<K, 1111 k| <K,n

+ Y (PR waw + PR + Pl wy ) el ®),
|k|I<K,n,m

where PX10 = Pyjop with o = e, B = 0; PO = Pyjop with o = 0, B = en; PX20 = Pijop with

a=e,+ey, B=0; Pk11 Pyiop witha = ey, B =ep; Pko = Prqop with —0 B=e,+ep.
Since P has a generalized compact normal form with respect to ny, nz, J, this means
PY0=0, ifkini+kny—n—i;#0, n¢N, teT,
P,fzj‘j =0, ifkini+kmr—n—ji#m —n)(p—1), né¢N,teT,
PHIV =0, ifkiny 4+ kony —n4+m#£0, n,m ¢ N,
Pl =0, ifkini+kna—n+i #0, n¢N, teT,
PY =0, ifkini +hkong —n+ ji # (i —n)(t —p). n¢ N, 1 €T,
PY2 =0, ifkini+kmny+n+i#0, n¢gN, teT,
P,f‘jf 0, ifkini+kmo+n+ji#m—n)t—p),ne¢N,teT.
In particular, P,fnlll =0if |k| =0 and n # m, where n,m ¢ N.
Below we look for a special F, defined in a domain D4 = D(r4, s4+) such that the time one

map @ =@ }, of the Hamiltonian vector field X r defines a map from Dy — D and transforms
H into Hy.

More precisely, by second order Taylor formula, we have

Ho®L=(N+R)o®L+(P—R)o®}
=N+{N,F}+R

+/(1—t){{N,F},F}o¢;dt+f{R,F}oq>;dt+(P—R)oqb;
= N+ P+ (N, F} + R — Poooo — (@, y) = ZRO“wnuvn, (3.9)
where

’

P
o = f —dx
dy w=w=0, y=0

Ni=N+N=N+ Py + (&, y)-l—ZRO”w,,wn, (3.10)




2204 Z. Liang / J. Differential Equations 244 (2008) 2185-2225
P, = /(1 —O{{N, F}, F} o &L dt + /{R, Fyo®Ldi+(P—R)o®.  (3.11)

satisfying the homological equation

(N, F}+ R — Pyooo — (@', y) ZR Yw,, =0. (3.12)

Note the term ), Ronwn wy has not been eliminated by symplectic change, so we define
FOIl — 0,
In order to solve the homological equation (3.12), let F has the form

F(x7vavw):F0+F1+F2
= > Fuoe®™y' + Y (FOw, + F i) el
k<K, <1 k<Ko
+ Y (Fewawn + Fiwnim + Fpy wyiy,) el ),
|k|<K,n,m

By comparing the coefficients, it is easy to see that the homological equation (3.12) is equivalent
to

(k, @) Frioo =1Prioo, k#0, 1| <1
((k, ) + $2,) FY'° =iPf1°,
((k, w) — §2,) FKO! =i pko1,
((k, @) + 24 + 20 F20 = 1PN,
(k. ) + 24 — Q) Fay! =iPht k| +|In] — Iml] #0,
((k, ) — 2y — ) FXO% = i P02,

where 0 < |k| < K’. Hence the homological equation (3.12) is uniquely solvable on O to yield
the function F which is real analytic in (x, y, w, w) and Whitney smooth in w € O. Since P has
a generalized compact form with respect to ny, ny and 7, it is easy to see that F also has the
same property. The following lemma is standard, see [15] and [16] for details.

Lemma 3.1. F satisfies a generalized compact form with respect to ny, np and J and

|XN|rD(9 r) |XR|rD(s r)’

Xrl* <M __\xpr
| F|r,D(s7<r,r) N c@ptDBogh | er,D(x,r)7

where u =8p(8p + 1)t + 56p + 8.
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Lemma 3.2. If |XF|f,D(S—U,r) < o, then for any & € O, the flow X%(-, &) exists on D(s — 20, %)
for |t| < 1 and maps D(s — 20, %) into D(s — o, r). Moreover, for |t| < 1,

|XZF - id|j,D(s—2z7,%)’ o || DX;" - Id”j,r,D(s—fi(r, :T) < ClXFl;k,D(S_UJ)’

where D is the differentiation operator with respect to (x, y, z, Z), id and 1d are identity mapping
and unit matrix, and the operator norm

IAG, mwll,,F
AG,m|; = sup sup —————,
” ”r,r,D(s,r) neD(s,r) w#0 ”w”p,r
N %A
Al = max > .
lel<8p L[| 95 .,

For the proof refer to [16].
Below we consider the new perturbation under the symplectic transformation @ = X' |;—1.

Let | X p|:i DGs.r) < €. From the above, we have
_ Mo q g ik, x)
R = Rimggy  wiwie .
k| <K
2|m|+|g+q1<2

Thus |XR7 p ) < IXPIE ps.py < € and for n < g,

!

X PRIy D=0y < 1€+ K e (3.13)
Due to the generalized compact form of P with respect to ny, no and J, w, and w_, are not

coupled in P for any n # 0 (we check this in Appendix A). This leads to the following simple
new normal form

N+=N+(w’,y>+ZP,?,llwn@n
n

={(wy,y)+ Zé—&-,nwnwn»
n

where wy = o + ({Poioo}j1j=1)» Q+,n =0, + Pno,}]. By Lemma 3.1, one has |X]¢,|;"’D(S’r) < e
Therefore,

loy — of*, 124 — 21" <, (3.14)
where || 2* = max ez |flj|*. If Mﬁiﬂ < 1, by Lemmas 3.1 and 3.2, it follows that for
7] <1,

1., o , . cMel—@p+DBo
;\XF - ld|r,D(s—2a,§)’ DXy — Id||r,r,D(s—3<7,£) < T (3.15)
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Under the transformation @ = X}p, (N+ R)o® = N; + Ry, where Ry = fol{(l — t)I(’ +
IR, F}o X' Thus, Ho® =N, + R, + (P — R) o ® = N, + P, where the new perturbation

1
P+=R++(P—R)oq>=(P—R)oq>+/{1é(t),F}ox;dt,
0

where R(t) = (1 — t)]\7 + tR. Hence, the Hamiltonian vector field of the new perturbation is
Xp, = (XlF)*(Xp_R) +f01 (X})*[XR([), Xr]ldt. For the estimate of X p,, we need the following
lemma.

Lemma 3.3. If the Hamiltonian vector field W(-,&) on V = D(s — 40, 2nr) depends on the
parameter & € O with |W|%,, < 400, and ® = X% :U=D(s —50,nr) = V, then ®*W =

_ . cMel—Bp+DEy
DO 'Wood andlfcenzT <1, we have |@*WIIL, ; < cllWI, y-
For the proof refer to [15].
. . 1-@p+D)f
Now we estimate X p, . By Lemma 3.3, if % <1,

1

C C *
1 XP, . D6=50.r) S 51X P=RlyDs—do.20m) T+ §/|[Xk<t>’XF]|nr,D<s—4g,znr> dr.
0

By Cauchy’s inequality and Lemma 3.2, one obtains

I _ eM B0y
|[ R(t)° F]|77r,D(s—40,2nr)\ 2n2G/L+1

‘M
= — €,
B n
where one chooses 7° = %. Combining (3.13) we have

* ¢ —K'o
|XP+|77r,D(s75a,r)r) < EMTIG te €.

If choose K = Ko = |lr:%| and as we know before K| =00, v > 2, we get

*
|XP+ |nr,D(s75(r,17r) S cMne.

Lemma 3.4. P, has a generalized compact form with respect to n1, no and J.
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Proof. Note that
1 1
Py =P —R+(P.F)+ S {{N.F}, F} + 2 {(P. F}, F}
1 1
ot = INCFY P (PR P
n! —_— n! —
n's F n's F

Since P has a generalized compact form with respecttoni, ny and 7,sodo P — R and {N, F} =
Poooo + (@', y) + Zn POMwn w;,, — R. The lemma then follows from Lemma A.2. O

nn

3.2. Iteration lemma

To iterate the KAM step infinitely we must choose suitable sequences. For v > 0 set

4 1
4_1@3p+1) _
cM©)e} 3Bp+Dfo oy 3 63 @p+Dho
(SRR e s Oy41 = s n, = 5
vt L+ v = v T
Oy

where By = m. Furthermore,

8
Syt1 =Sy — S0y, Fyt1 = Nyly, M) = (M) + My +2c(eo+ -+ €-1)) b,

and D, = D(s,,r,). As initial value fix op = 5% < % Assume

6(ut1) 1 o\t
% .
€0 < Y00, , Y < mln{ EIEEmyyzeR <§> } (3.16)

where ¢y = %cp(Zp)!(p + 1). Finally, let K, 1 = K¢2". We must emphasize that the readers
must notice the difference between K, and K.

Lemma 3.5. Suppose H, = N, + P, (v > 0), is given on D, x O,, where N, = (w,(§), y) +
($2,, z2) is a normal form satisfying

4 C|k|8p‘f+6
|tk 0) | < =5, k#0,
€y
cmax{|k|3P710 1}

(k@) + 20.0) | < -
€y

)

< = o1 cmax{lk[*PTHe, 1)
|(<k7wv>+9v,n+9v,m) | < Bo s
& (lln] = Iml|| +1)

wheren,m ¢ N orn,me N,

- <~ \—1, . cmax{|k|3PTt0 1)}
|(<kaa)v>+9v,n+gv,i,) | < Bo 11 >
e (lic] = In]l + 1)

wheren ¢ N', t € T, |kiny + kana| = |n +1i;],
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. ~ cmax{|k|3P710, 1}
|(<k, wy) + 2y n+ -Qu,jt) | < Bo 1 s
& (Ijil = Inl[+1)

wheren ¢ N, t € T, |kiny + kona| = ’n +ji+ (1 —n2)(p—1)
~ ~ -1 cmax{|k[3P710 1}
(k) + 200 — 2om) [ < :
€ (|ln] —[m||+ 1)
wheren,m ¢ N, |k|+|In| — [m|| #0, |kini + kanz| = |n —ml,
~ ~ -1 cmax{|k[3P716 1}
| (ks 0) + 2o = o) [ < :
€ (|ln] —[m||+ 1)
wheren,m e N, |k| +|n —m| #0,
~ N cmax{[k[3P7+0 1}
|(<k7 wv) + Qv,n - Qv,i,) | < Booir s
€v (lig] — Inll + 1)
wheren ¢ N, t € T, |kiny + kona| = |n — iy,
. ~ cmax{|k|3PT16 1}
|(<k7 wy) + §2y0 — -Qv,j,) | < Boo . s
€ (ljel = Inll+ 1)
wheren ¢ N, t € T, |kini +kana| = |n — j — (n1 —n2)(p — 1)

3

)

for above all k satisfying 0 < |k| < K|, P, has a generalized compact form with respect to ny,
ny and J, and

|XPU|;|’<V,DV < €.

Then there exist a Whitney smooth family of real analytic symplectic coordinate transformations
@41 : Dyt x O, — D, and a closed subset

Ovt1=0y\ (Rv+l (€v+l))

of O,, where
R e =Ry URIFTURMTTURYH,
Ry =Ra1 YRy, YR
Ry =RYTURIURYLURITL
and
6/30
R(‘;(-)H: U {ge(ﬂv: |(k,wv+1)|<clk|‘gﬁ, k;éO},
K >kI>K,
vl 5 6511
Rig = U E€Oy: [(k,wyg1) + Lupin| < cmax{|k|81”+6,1}}’

KL+12\k|>KV,n
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U+1(||n| lm[|+ 1)
cmax{|k|3pT+6 1} ’

R;&}: U S;'EOUI |<k,wv+1)+[~2v+l,n+éu+l,m|

|)+]2\k\>K n,m

where n,m ¢ N orn,m e/\f},

U+1(||lt| — Inll + 1)
cmax{|k|8PT+6 1} ~

R;g%— U {“3 €O, |<k’wv+l)+~(~2v+1,n+év+l,i,|

Kl 2 Ikl> Kyt
wheren ¢ N, t € T, |kiny + kano| = |n+i,|},

L ljel = Il + 1)
cmax{|k|8rT+6 1} ’

R;a:%: U O,y |<k7w1}+1)+QU+1,H+S}U+1,j7| <

v+1/‘k‘>KV n,t
wheren ¢ N', t € T, |kiny + kano| = |n+j,+(n1 —nz)(p—t)|},

vH(IInI Im|| 4 1)
¢ max{|k[BreFo, 1}

RYT} = U £ecO,: ‘(kswv+])+év+l,n_év+],m’

v+]2\k\>K\, n,m

wheren,m ¢ N, |k|+|In| — |m|| #0, |kini + kana| = |n —m|},

v+1(||n| Im|| + 1)
cmax{|k|8rT+6 1} ’

Rlﬁ:é: U {é €O, |(k, wv+l)+[}v+l,n _-év+l,m|

KV+1/\k\>K\, n,m

wheren,m e N, |k|+|n—m|;£0},

1,+1(||lz| —Inll+1)
cmax{|k|8PT+6 1} °

R‘l)?:;z U §e€0,: |<kaa)u+1)+[~2v+1,n_fzv+1,i,| <

v+1/‘k‘>KV n,t
wheren ¢ N', t € T, |kiny +kana| = |n —i,l},

2 ljel = Imll + 1)
cmax{|k|8rT+6 1} °

Rﬁ,l: U £ €Oy |(k,wy1) + 2opin — 2oy15| <

K/ >lk|>Ky ..t

wheren ¢ N, t € T, |kiny + kono| = |n —ji—(ny—ny)(p

such that for H,11 = Hy o @41 = Ny4+1 + Py41 the same assumptions are satisfied with v + 1
in place of v.
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Proof. Note (3.16), by induction one verifies that

6‘1—(81?4-1)/30

< <1
1+/‘L N
500
ce, KT L ebo eﬁl.

It is easy to check that (A.5) holds. From Lemma 3.4, we know P, has a generalized compact
form with respect to n1, ny and 7. For the remained proof, see Iterative lemma in [15]. O

With (3.14) and (3.15), we also obtain the following estimate.
Lemma 3.6.

CM(V)Ei_(8p+1)ﬁO

*
”D(pv-H - I”rv,rv,DuH X w1
Oy

1 .
0_v|(pv+1 —1d|;k“,Du+l, ) (3.17)
lover = ol 12041 = 2ullp,,, < cev. (3.18)
v v+1
3.3. Convergence and proof of the existences of tori

Let "V =®@10Pr0---0®,,v=1,2,.... Inductively, we have that ®* : D, x O,,_; — Dy
and

Hyo®"=H,=N, + P,

forallv > 1.

Let O, = Moo Ov. We apply Lemmas 3.5, 3.6 and standard arguments (see [15]) to conclude
that H,, N,,, Py, ®*, D®", w,, (}m converge uniformly on D(%so, 0) x O, say to, Hx, Noo,
P, @, DO, weo, Qoo,n, respectively. It is clear that

Noo = (00, y) + Z-éoo,nwnwn‘
n

Further, we have

1X Pool p (140,000 = 0-

Let (qu denote the flow of any Hamiltonian vector field X g. Since Hy o @* = H,,, we have
that

dtho od’ =" o(Pfqv.

The uniform convergence of @V, D@V, Xy imply that one can pass the limit in the above to
conclude that

P 0 dX =0F 0 dy
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on D(%so, 0) x (’jg. It follows that

Py, (0 (T? x (£}) = 2@, (T? x {£}) = &>(T° x {£))

for all £ € O.. Hence <1>°°(T2 x {£€}) is an embedded invariant torus of the original perturbed
Hamiltonian system at & € (9 We remark that the frequencies weo (&) associated with @ (T2 x
{£}) are slightly deformed from the unperturbed ones w (£). The normal behaviors of the invariant
tori @ (T2 x {£}) are governed by their respective normal frequencies f)oo,,l &).

In fact, combining with Sections 3 and 4 below, we have the following theorem.

Theorem 2. For the Hamiltonian (2.24)

H=N+P

= (way>+zéjwnwn+P(x7ys wv d)agve)a
J

and P satisfies a generalized compact form with respect to ny, np and J. Suppose that
|XP|;D(SJ) =€< J/S6(l+”)y (3.19)

where y depends on p,t and M. Then there exist a Cantor set Oc C O =11, 2)? with the mea-
sure satisfying

~ 1
1O\ Oc| < €950,

a Whitney smooth family of torus embeddings @ : T2 x O — P, and a Whitney smooth map
oo : Oc — R2, such that for each & € O, the map @ restricted to T? x {£} is a real analytic
embedding of a rotational torus with frequencies ws (&) for the Hamiltonian H at &.

Each embedding is real analytic on |Imx| < 5, and

P — Dolly < ce3,

oy — ol < ce
uniformly on that domain and Oe, where @y is the trivial embedding T?> x O — ’]62.

Remark 3.1. For the estimates of @e, see Section 4 for details.

Remark 3.2. Theorem 1 is a direct result of Theorem 2. For more specific, please refer to the
standard proof of [12].
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4. Measure estimates
4.1. Measure estimates in the first step

For simplicity, in this section we will denote
2 2
Ao = (n}.n3).

2p—2k 2k
Zcp Ch) Chil’ 8

k+1 2p—2k o2k
(Cp+1) Ck+]'§>: - é

>
I
M“

~
Il
=}

2p—2k

ep(Choy)*(Ch) e 63k,

I M'u

At the first KAM step, we have to exclude the following resonant set

R =RHU(RY  URY,) URY,

where
fiTO
Ro= U {g €O: |k, w(®)] < kPP } 4.1
0<[k|< Ko
%0
~ €
7?’11_ U {EEO: ’<k,w(§)>+9n|<m}, 4.2)
2%,
/370
€
= : T 4,
R,= U {EEO |gl|<max{1,|k|4i’f}}’ 4.3)
teT, k|<Kp
=detM],
and
M/=<k1f1+k2f2+f3 a )
: ar kifi+kofo+ fs+(p@—-0A
o
5 = €4 (|ln] —|ml|+1)
Raoa= U {5 € O: [k o®)+ 0+ 2l < 0 }; @9
n,mg¢N ’
[kI< Ko
ﬂTO
€
R202— U {560: |gzl<m}, 4.5)

teT
[kI< Ko
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where
g2 =det M),
and
M/:<k1f1+k2f2+2f3 a )
2 a kifi+kafo+2fs+(p—-1A)°
Bo
€
RY » = € O: _ 1,
S {g 1 Tt |k|8ﬂf}}
t1,0€T, |k|<Ko
(kylo>+i,21 +i,22:0
where
g3=detMé, As=kifi+kfo+2f3,
and
Ag ar, ar, 0
M/ — dg, A4 + (17 - IZ)A 0 ay .
3 ar 0 Ag+(p—1)A ar, ’
0 ar, ar, Ay + (2p—tr—1)A
Bo
~ ~ €4 (||ln| — |ml| +1)
R4 = U {geO: (k. (&) + 24 — 2| <
s 2pt ’
|+ ] [5£0 max{L, [|77)
nmgN', |k|<Ko
Po
RO — U EcO: | |<L
20,5~ + 164 max{1, |k|4P7} |’
teT k
where
84 :deth‘
and
M= <k1f1 + ko f2 —a; )
4 —a; kifitkofo—(p—t)A )’
Bo
€
R0.6 = U {SGOI |85|<7}
) 8pT1 |’
lkl-+ — 2120, [K1< Ko max{l, [k>Pe)
(k,Ao)+i,21 —i,22 =0,11,neT
where

g5 = det M5, As =k fi + k2 fa,

2213

(4.6)

4.7)

(4.8)

4.9)
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and
AS —day, ag 0
M. = | "% As—(p—n)A 0 a,
R 0 As+(p—1)A —ay,
0 ar, —a, As+ (tp —1)A

The following lemma is used many times in this section. We will not point out it clearly.

Lemma 4.1. Suppose that g(x) is an mth differentiable function on the closure I of I, where
I C R is an interval. Let I, = {x | |g(x)| < h}, h > 0. If for some constant d > 0, |g" (x)| > d

for any x € I, then |I| < ch%, where |Ij,| denotes the Lebesgue measure of I, and ¢ = 2(2 +
34 4+m+d").
For the proof see [16]. The similar method can be found in [17].

Since the proofs for the next nine lemmas are similar, we only give one of them and omit the
others.

0}

Lemmad.2.If 1 > 2, |[R)| < -€57.

0 fo
Lemma4.3.[ft > 3, |R1,1| < efr,

0 fo
Lemmad.4. [ft > 2, |R1’2| <-ebr,

0 o
Lemmad.5. [ft > 5, |’R20’]| < -€8p,

0 fo
Lemma 4.6. If 7 > 2, [R5, ,| < -€%7.

Ao
Lemma4.7. If T > 2, [RY, ;] < -€%.

Proof. The difficult point in this proof lies in whether there exist nonzero coefficients in g3 for
any k, 11,1, € T and (k, 2o) + if +i2 = 0. We will show this in the following. Write & =
ki+(a+2)(p+ 1), Ex=ki(p+D+k+2, E3=ki+(a+25, Ea=k1 5+ (ka+2). It
is easy to check that

e =cE1{E} - pdp — 20 — 210 5}
+p[(p—2)Bp =201 =)+ (p —1)2p — 11 — )] E}
—pP(p—1)(p—0)2p—t —n)}, (4.10)

g U =cE |85 + pdp -2t —20)E
+p[(p—0)Bp =201 — 1)+ (p—11)2p — 11 — 12) ]| En
+p(p—t)(p—1)2p—t — 1)}, @.11)



Z. Liang / J. Differential Equations 244 (2008) 2185-2225 2215

8p—2,2 —~3 = =2 = 1 o
g3p :c{4a13.:93 — 3p:,12:,3(4p —2t1 —2t)+ @p —2H — 2t2)<1 — Ep).:yf
20 P\
+[(p—tDQ@p—t1 =)+ (p —12)(3p — 21 —tz)](21? E1E3 —217(1 - 5)%)
2 P\ 3o
+(p—t)p—0)2p—n-— tz)[3p (1 - 5)61 —-p d3“, (4.12)
2,8p—2 —~3 = =2 = 1 =3
83 =c14E85E4+3pEyE4(4p —2t1 —21) — (4p —2t1 = 210)| 1 — Ep E

+[(p—t)@p—t1 —02) + (p —12)Bp — 211 — tz)]<2P25254 - 2P<1 - §>522>

+(p—1)(p—10)2p—1 —1n) [3p2(§ —~ 1) B+ p%} } (4.13)

If ggp’o =0and g;),gp =0 for some k, t1, 1, € 7 and (k, Ag) + il‘z1 + itz2 =0, one has 16 cases.

E1 =0, ki=0, . .
Case 1. { 2 =0. One has {kz __5 in this case.

El:Oa klz_p_lv
Case 2. { Sy =—pQ2p—t1 —1). One has ky ¢ Z or {k2 — 1

Cases 3, 4. { :1
1S5

It is easy.
=—p(p—11) or —p(p — ). Y

kl = _15

CaseS.{ ko=p—1.

=1 25(2])_11 — ), One has k| ¢Zor{
g, =

Case 6. {ilzp(zl)_ll_lz)’ ki=t+0=2p, Note ny > ,/pny, this

One has
2=—pQ2p—n—n). {k2=—2—t1—t2+2p.
leads to (k, o) + i,z1 + i,z2 # 0. It is a contradiction.

Cases 7-10. 1=p2p—h =h), or { S1=p@p—h =), or {Lil Zg(p — 1),

2=—p(p—1) Ery=—p(p—n)

It is easy to get k1 ¢ Z.
2).

Cases 11-14. {T:P(P_’l)’ or {m:P(ZP—tl—tz), or {a1=p(p—tz),
o))

=—p(p—1) Ey=—p(p—1) Ey=—p(p—1)
il =plp—n) The four cases are similar as Case 6.
Ey=—p(p—n).
Cases 15, 16. ,,1 pp It is easy.
{ag:OOr—p(Zp—h—tz). y

The above proof shows that except the following 3 cases we have

(637°)° + (85°7)* #0.
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which are

’ ki1 =0, ’ ki =-1-p, ’ ki =—1,
1 {k2:—2, @ {k2=—1, ) {kzzp—l.

Checking directly, it is easy to know for Cases (2') and (3'), we have
8p—2,2\2 2,8p—212
(&5"77) + (&7 )" #0.

.. . | k1 =0, . .
The only remaining case is { In this case, it is clear

1
ky = —2.
g3(E)=(ay —ap) — (p—1)2p—11 —)Aa,.
In fact, it is easy to check that

6p+2t7,2p—21
83 #0. |

Ao

Lemma 4.8.If 7 > 5, [R)) 4| < -€%.
0 ko

Lemma4.9. [ft > 2, |R20 5| < €8,

J20)
Lemma 4.10. If T > 2, |R, (| < -€57.

Combined with above lemmas, we have the following lemma.

A
Lemma 4.11. [f 7 > 5, |R°| < -5
In the following, we will give a description lemma about the remaining set Oy = O \ R°.

Lemma 4.12. For |k| < Ko and all the parameters & € O, which belong to the set Oy = O \ RY,
satisfy* the following conditions

k|77
/3_0 )
€ 4
cmax{|k[*PT+2 1}

/3_0 )
€2

[(k, )7 < k#0,

((k, )+ 2,) 7| < n¢gN,

4 The tensor product (or direct product) of two m x n, k x [ matrices A = (a; 7). B is an (mk) x (nl) matrix defined by

apB - aB
A®B=(q;B)=| - - - |].

amB -+ amnB

|l - || for matrix denotes the operator norm, i.e., | M| = SUP|y|=1 [My]|.
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4pr+2
(e )1y + a;) 7" < SRS (4.14)

€ 2
¢ max{|k|3P710, 1}
ebo(lln] — |m|| + 1)’
cmax{|k|3P7+0 1}
ebo(llig | — Inl| + 1)’

|((k, @) + 20+ 20) '] < nomgN,

| (k. 0) + 20) 1+ A;) 7| <

(4.15)

where |kiny + kana| = |n+i;| or |kiny +kona| = n+ ji +(ny —n)(p—1), n g N, 1t €T,

cmax{|k|3P710 1}
ePo(llin | —linll + 1)’
cmax{|k|8P716 1}
ebo(lln| —m||+ 1)’

[(® (ko) + Ai)) + Ay, @ B) 7| < nneT, (4.16)

|((k9 w) + ‘Qn - ‘Qm)i1 | <

n.mgN, [kl +|ln| —|m|| #0,

where |kiny + kana| = |n — m|,

cmax{|k[3PT10 1}

-1
L (koybh—A; )+A;, ®@b) ' < , 4.17
[(22® (02 = i) + 41, ® B) | < Gam = @17
where t),tp €T, |k| + |t} — t2] #0,
8pt+6
[(((k, @) + 2:) 2 — A;) || < e max{Ik[ 7, 1) (4.18)

ePo(llis] = Inll + 1)

where |kiny +kona| = |n —i¢| or [kiny +kanz| = |n — jy — (my —n2)(p =), n ¢ N, t €T,
The proof is given in Appendix A.

Remark 4.1. We must point out that Lemma 4.12 omits one inequality of (3.6), which is

~ ~ C
|£2;, — £2;,| < - - , teT. 4.19)
' M ePo(llig] — 1l + 1)

But, from

1

V4ai +(p—1)2A2

it is easy to know that (4.19) holds naturally.

|~Qi,—9j,|:‘ <ec,

Remark 4.2. From (4.18) to the corresponding inequalities in (3.6), one inequality is needed. We
need the simple inequality as the following:

1 1
. S .
lliel = Inll+ 1 {lji] = Inll +1

(4.20)
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Remark 4.3. (3.6) is a direct result from Lemma 4.12 and above two remarks.
4.2. Measure estimates for remaining steps
From Lemma 3.5, we have to exclude the following resonant set

Rv+1

u+l v+1 v+1
R - 7?’20,1 U 7?’20,2

_ pv+l v+1 v+1 v+1
=Rpy URyg URy URy,
URS S

v+1 _ pv+l v+1 v+1 v+1
Rll _Rll,IUR11,2UR11,3UR11,4

(where v > 0) at remaining KAM steps. We have the following lemmas which give the corre-
sponding measure estimates. The proofs of the following lemmas are similar with [13] and we

omit them.

Ao

Lemma4.13. [ft > 1 and K, > ¢ IR”HI < ~6,,zil~
Ao

Lemma4.14. [ft > 1 and K, > % |R"+1| € Uz_"H

Lemma4.15.Ift >2and K, > E—(‘) |R;6f1| <67
i st

Lemma 4.16. If t > 2 and K, > ¢ |R;02| €k

Lemma 4.17. [ > 2 and K, > %, [Ry{3| < -€,7 .

Lemma4.18. Ift >2and K, > E—‘ |R‘l’ffl| < -evil.

Lemma 4.19.Ift > 2 and K, > £ |R‘1’1 l< €k
8 1 n

Lemma 4.20. If T > 2 and K, > %5, | ‘]’T3| evil.
. " fo

Lemma 4.21. If t > 2 and K, > ¢, |RY{ 4| < v+1'

Combining with all the lemmas above, we have

Lemma 4.22. If t > 2 and K, > ¥,

Note (3.16), this means Kq >

8¢

Cy

|Rv+1| <€

u+l (V

. Fix t > 5. Now we compute the total measure of the para-
meter sets R which be thrown in all the steps,
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J20) Ao
IRel < -€” + €, + -
Ao I
< '€Ozp — .egp(SpH) .
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Appendix A
A.1. Compact form and generalized compact form

Given ny, ny € Z, n1 # ny. A real analytic function

F=F(x,y,2,0) =Y Fap(e®©2Zf
k,o,p

on D(r,s) ={(x,y,z,2): Imx| <s, |y| <r?, lzll, <7, llzllp <7} is said to admit a compact
form with respect to ny, ny, if

Frop #0 implies kiny + konp + Z(—an + Bu)n=0 foranyk,«, g,
n

where k = (k1, k) € Z? and o = G..,on,...),B=(C..,Bn,...),a,B € Ngo, with finitely many
non-vanishing components.

Lemma A.1. Given n,ny € Z and n| # ny, consider two real analytic functions

F(x,y,2,2), Gx,y,2,2)
on D(r,s). If both F and G have compact forms with respect to n1, na, so does {F, G}.
For the proof, refer to Lemma 2.4 in [11].

Given ny, ny and specially chosen subscripts set J = {jo, ..., jp—2} and j; ¢ {n1, n2},t € 7.
A real analytic function

F=F(x,y,2,2) = Z Frap(y)el®) 7078
k,a,B

on D(r, s) is said to admit a generalized compact form with respect to n1, n, and 7 if

Frap(y) #0

implies
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p—2
kini koo + Y (—ant Ban=(mi—n) Y (@i —Bi)(p—1  (Al)
neZ\{ny,n3} t=0

for any k, o, B, where k = (ky1, k) €7% and o = (cooyop,..), B=C..,Bn,..), o, B € NE°,
with finitely many non-vanishing components.
Similar as Lemma A.1, we have the following lemma.

Lemma A.2. Given ny,ny € Z and specially chosen subscripts set J = {jo, ..., jp—2} and
Ji & {n1, ny}, t € T. Consider two real analytic functions F(x, y, z,2), G(x,y,z,z) on D(r, s).
If both F and G have generalized compact forms with respect to n1,ny and J, so does {F, G}.

For the proof, refer to Lemma 2.4 in [11].
The following lemma is needed in Section 2.

Lemma A.3. P(;" satisfies a generalized compact form with respect to ny, ny and J.

Proof. Write

P = Pl P12t
= )

P21t P22t
where t € 7. As we know,

— Z Po’kaﬁ(y+)ei<k’ (H1¢Nw wﬂ’)(mlow +P120w;g) o
k.o,

S(p2rowiy + pow)™ - (P p2wf |, + prapawy )T
~(p21,p- 2w I 2w+ L) 2 (prio; + prooi] )ﬁ,O
(Paroiy +p22~0"_’/o)ﬁj° (P pa @]+ propa) )
(

P21, p— 2w L, T P2,y 2w+ 2)ﬁj”’2~ (A.2)

If Pokap(y") = Pokap(y) # 0, then

p—2
kini +kany + Y (—ai +B)i = (1 —n2) Y _(aj, — Bj)(p —1). (A.3)
i€Z t=0

We write every term of which its coefficient might be nonzero in (A.2). It is

. _ ; il k] k2 g2
Poskap ()€ (Mg (wi?) ™ (7)) (wig )0 (w070 ()0 (w0~ ..

g, ) )

(@) (@)~ () () o

o o
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N TN e ST T R
i ; ; 14,2 . 12
= Bukap (7)) (Tig () (7)) ) 55 08755

. (w?;,z)k}7_2+k;_2 (w;-piz )“ipfz tej, _k,l;—z_k,za—z
. (wit)léﬂg (U_);B)ﬁio +Bio~lo~lo e (wiifz)l'l"z‘”%‘z (11—11'+p,2)/6ip72 Bipa _l;’—2_112’—2,

where k, o, B satisfy (A.3) and

0<k! <a;,, O0<k*<aj, O0<I'<B,,  0<I><Bj, teT.
Then from (A.3), one gets
kiny + kany + Z i(Bi —ai)
igN
p—2
Y [0t 07 =k = &)+ i (Bi, + B — i, — oy — (I 17—k —K7))]
t=0
p—2
=kin +kang + Y (B —ai)+ Y _[is(=ai, + i) + ji(—atj, + Bj)]
igN =0
p—2
+ ) (=i (Bi, — ey + &} k=1 = 1)+ e (B, — i, + K+ =1 —17)]
t=0
p—2 p—2
= —n) Y (@, = Bi)(p =0+ Y _(Bi — i, +k + k] =1} —17) (i — i)
t=0 t=0
p—2 p—2
= (1 —n2) Y (@, = Bi)(p =0+ ) (Bi, — i, + &} +k — 1} —=I7) (2 —n1)(p—1)
t=0 =0
p—2
=Y i —nm)(p—0[(es, +aj =kl —k}) = (B, + 85, -1} =17)].  ©
=0

From the generalized compact form of P, we can prove that the coefficient of w,w_, is zero

unless n = 0 (see Section 3.1 for details).

Proof.
Case 1. —j, # jy,forany t,t' € T.

Subcase 1. n ¢ {£jo, ..., £jp—2}. Itis easy.
, Jjp—2}. From ny +ny # 0, one gets —2j; # (n1 — n2)(p —t). The

Subcase 2. n € {jo, ...
conclusion is easy.

Subcase 3. n € {— jo, ..., —jp—2}. This is similar as Subcase 2.
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Case 2. For some t,1' € T, we have n = j, # 0, —n = jp. In this case, since —j, + jy =
—2j; # 0, the conclusion is obvious.

Case3.Forsomet,t’ € T, wehaven = —j, = j # 0, —n = j;. This is similar as Case 2. O
A.2. Proof of Lemma 4.12
Proof. We will prove parts of the inequalities in Lemma 4.12. The unproved are similar as the

following or obvious.
First, we prove (4.15). Write

M= ((k,w)+ 2,) b+ A, t€T, n¢gN.
Obviously,
My =P M{P, = P/ (((k, 0) + 2,) b + A;,) P
In the following we will prove

cmax{|k[*P7t4 1}

-1
| () < —— (A4)
€2 ([lie] = |nl|+ 1)
For our convenience, write g1 =det(M {). We will discuss in two cases.
Case 1. (k, ho) +n> +i2 #0.
It is obvious that k # 0. Note the choose of K, one has
Ky < ! A5
Therefore,
(k, ko) +n* +i?
i S 2 >
‘ <60 +kifitkfrt+2f; Z o
(k, ko) +n® +i? ¢
——, thifitkL+2+(p-n)A| 2> .
€op €opP
It follows
-1
| (7)< e
Note |kiny + kona| = |n +i;| or |kyny + kano| = |n + j + (n1 —na)(p — t)|, we have
In| < clkl. (A.6)

Therefore
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4pT+2
C|k| pT >C|k|4pl’+1
i = Inll +1

Thus, it is easy to get (A.4).
Case 2. (k, ho) +n? +i?=0.

Note we have thrown all the parameters in R(z)o 5 this means

1| max{l, [k[*7)

g A
From
(M/)_lzi kifi+kafo+2f3+(p—1A —ay
! g! —a; kifi+kafa+2f3
and (A.6), it follows
4pt+3 4pt+4
” (Mi),ln < cmax{|k|ﬁo , 1} < cmax{|k| , 1} '

Ao = bk
€2 €2 (llig] = Inl| + 1)

Combined with above two cases, the conclusion is clear.
In the following we will prove (4.16). Write

My=1h® ((k,0) o + Ai,)) + Aj, ® L.
Note
My=DLo ((k. o)+ A;,) + A, @I

has the same eigenvalues as M> (see Lemma 5.3 in [19]), this means that there exists an orthog-
onal matrix P, ;, so that

PT

I,n

My Py, 1, = M.
Denote g% = det(Mé). (4.16) is clear from the equality

cmax{1, |k|8P7+6}
eﬁ()

|(m5)7"| < (A7)

We will obtain (A.7) in the following two cases.

Case 1. (k, ho) +i? +if, #0.
As before, we only need discuss it when cKg < E%p It is easy to get

[ (423) ™" < e

Case 2. {k, M) + it21 + itzz =0.
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Note we have thrown out all the parameters in ’R(Z)O 3 it follows that

|g2| > L (A.8)
~ max{l, [k|®7}
Let (M})* denote the adjoint matrix of M}
miy mji2 mi3 mi4
(Mé)* _ | m2ar ma ma3z mog
m3|p  m3y m33 Mm34
m4] M4y M43 M44
Obviously, we have
Imij| < clk|®. (A.9)
Therefore,
N1y _ cmax{l, [k[*PT 0}
)| < LD
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