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(In)validity of the Constant Field and Constant Currents Assumptions in
Theories of lon Transport

Alexander Syganow and Eberhard von Kitzing
Abteilung Zellphysiologie, Max-Planck-Institut flir medizinische Forschung, D-69028 Heidelberg, Germany

ABSTRACT Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore,
it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge
density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate
the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental
current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant
electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-
independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approxima-
tions require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents
assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing
is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion
pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-
limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely
has an effect but does not dominate ion transport.

GLOSSARY approximation applies if the channel
length is small compared to the space-

The numbers in parentheses refer to the respective equation charge , > L or pairing length £, > L.

numbers where the term appears first.

€ Protonic charge (7)
x Position inside the ion channel along the R(x) Pairing intensity (10). The pairing
channel axis intensity often follows a simple reaction
c(x) Concentrations of ions (1) rate equation (11).
p(x), n(x) Concentrations of cations or anions, kas kp Ion association and dissociation rates,
respectively (11) respectively (11)
I, I, I, Electric currents of ions (1), cations, or Pos g Equilibrium cation and anion
anions (10) concentrations (11) inside the channel,
Z, Valencies of permeant ions (1) determined by the ionic chemical potential
D, D,, D, Diffusion coefficients of permeant ions difference between bulk solution and the
(1), cations, or anions (13) channel environment
S, L Channel cross section (1) and length (2) N Effective association radius (14)
vV External voltage (2) across the channel Ui on Bjerrum distance (13) and Debye length
length L (9 and 14), respectively
E(x) Mean electric field inside the channel (3) % Distance of closest approach between
X Average of X (4), e.g., mean charge pairing ions (13)
density {p)
U, Uy Space-charge (5) or pairing voltage (15).
The constant field or constant currents Greek symbols
approximation applies if the external ) ) )
voltage V' is much larger than U, << |V/] Me(x)  Excess chemical potential of ions (1)
or Uy, << |V], respectively. i divided by RT" . .
€,y The space-charge (6) or pairing length na(x) Excess eq.ul.hbrlum chemical potential of
(16). The constant field or currents ions (2) divided by RT at zero external
voltage
e(x) Specific chemical potential of ions (1)

divided by RT, representing the short-
range interactions with the channel protein
d(x) Total electric potential (1) times F/RT
Gsixs Pion Electric potential (2) of fixed and
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€ Effective dielectric constant inside the
channel (3)

Typical spatial distance or energy
difference between barrier energy
maximum and well energy minimum (8)
> Channel conductance (15)

Oy Apte

INTRODUCTION

An important class of theories describing ion permeation
through biological ion channels starts with the Nernst-
Planck equation (Buck, 1984; Cooper et al., 1985; Hille,
1992; Rubinstein, 1990). Charged amino acids lining the
pore and permeant ions generate an electric field that is
superimposed on the external electric field. Consequently,
Gauss’ law or the equivalent Poisson equation (Eisenberg,
1996; Jackson, 1962) must be satisfied. In addition, the
conservation of the number of ions is generally assumed,
leading to a respective number of continuity equations for
each ion species. If association and dissociation of oppo-
sitely charged ions occur, an ion pairing term is added to the
continuity equations (Buck, 1984). Gauss’ law and the
Nernst-Planck and continuity equations (PNPC; the first P
stands for Poisson’s equation, which is often used instead of
Gauss’ law) represent a general framework for explaining
ion transport in biological ion channels.

The Smoluchowski equation generalizes the Nernst-
Planck equation from purely electrostatic interactions to
arbitrary excess chemical potentials p (x):

de dp,c>

(1)

-1, = ZCFSDC<dx + c(x) &

where [, is the electric current of ions with a concentration
¢(x), a valence of Z_, and a diffusion constant of D,. x is the
coordinate along the channel axis, F is Faraday’s constant,
and S is the cross section of the channel. u (x) represents the
excess chemical potential divided by RT seen by a single
ion. In general, w. depends on the particular channel envi-
ronment, on the external ion concentrations, and on the
external voltage. The ion flux through the channel is often
approximated by the one-dimensional form of the Smolu-
chowski equation.

For practical calculation the excess chemical potential .
must be specified. It is useful to distinguish between the
specific chemical potential ug(x), which includes all short-
range interactions of a single ion species with the channel
environment, and the electrostatic potential ¢(x), which
interacts over long distances with any charge within the
system. The specific chemical potential ug(x) represents the
energy required to transfer an ion of a given species from
bulk water into the channel environment (Hille, 1992), such
as dielectric effects (Parsegian, 1969, 1975; von Kitzing and
Soumpasis, 1996), dehydration, or specific short-range in-
teractions of the ion with polar amino acid side chains inside
the channel. This part of the potential is very likely inde-
pendent of the ion concentrations and the external voltage.
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It can be estimated from force-field calculations (Dorman et
al., 1996; Furois-Corbin and Pullman, 1991; Pullman, 1987,
1991; Ranatunga et al., 1998; Roux, 1996; Roux et al.,
1995; Smith and Sansom, 1997; von Kitzing, 1995; von
Kitzing and Soumpasis, 1996).

The potential ¢(x) of the mean electric field E(x) is
defined by d¢/dx = —FE/RT. ¢ depends on all charges and
dipoles in the system, and on the external voltage } across
the membrane. Because electrostatic interactions occur over
a long range, charged amino acid side chains and permeant
ions in the pore vestibules may also contribute to the electric
potential ¢ within the pore. For simplicity, the charges of
the channel protein are assumed to be fixed and give rise to
the potential ¢4, (x). Furthermore, the channel contains per-
meant ions that contribute to the potential of the mean
electric field by ¢;,,(x). In general one should expect the
mean orientation and state of protonation of potentially
charged amino acid side chains to be concentration and
voltage dependent. We include this effect in ¢;,,(x).

Several authors assume (Hille, 1992; Levitt, 1986;
McGill and Schumaker, 1996; Roux and Woolf, 1997) that
the external voltage V' drops linearly across the channel and
represents the only considerable voltage-dependent con-
tribution to the total electric potential p(x) = g (x) +
bion(¥) + (FVX)/(LRT), where L is the effective length of the
channel. Such a constant field assumption requires that the
charge density of the permeant ions and consequently
b;on(x) are virtually voltage independent. In this case the
excess chemical potential . (x) can be uniquely decom-
posed into an external contribution (FVx)/(LRT) and a volt-
age-independent equilibrium excess chemical potential w:

pe(x) = pix) + Z(FVx)/(LRT)

with ui = u¢ + Z(dgx + bion)

Throughout this article, the idea of ¢;,,(x) being either
negligible or voltage independent is referred to as the con-
stant field assumption. ¢,,, is generally concentration de-
pendent. As a result, the equilibrium excess chemical po-
tential w’(x) also depends on external ion concentrations.
Because the electrostatic interaction is strong and occurs
over a long range, the coupling between the mean electric
field, the ion concentrations, and the external potential
difference is highly nonlinear (Eisenberg, 1996). We have
shown previously (Syganow and von Kitzing, 1995) that the
solutions of the Nernst-Planck equation split into three
domains: 1) the equilibrium, 2) the drift, and 3) the diffusion
domain. Within different regions along the channel axis,
different domains dominate. Solutions in the equilibrium
domain are characterized by a balance between strong con-
centration gradients and forces accompanied by small elec-
tric currents. In this domain forces and concentrations re-
main close to their equilibrium values, and linear
perturbation methods apply to include the effect of small
external voltages. Close to minima or maxima of the con-
centration, however, the concentration gradients are neces-
sarily small. Here, the electric current becomes proportional

2)
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to the driving force, and the concentration profile generally
deviates from its form at equilibrium. At voltages above
RT/F, these drift domains “destroy” the simple linear rela-
tion between the excess chemical potential and the external
potential difference assumed in Eq. 2. This was explicitly
shown for a model of a synthetic ion channel (Chen et al.,
1997) using the Poisson-Nernst-Planck theory. The electric
potential along the channel axis could not be decomposed
into a linear voltage-dependent part and a voltage-indepen-
dent part. In the diffusion domain the influence of the excess
chemical potential becomes small and the current is deter-
mined by strong concentration gradients. This solution also
deviates considerably from the equilibrium solutions.

The Smoluchowski equation (Eq. 1), together with the
Poisson and the continuity equations, represents a set of
coupled, nonlinear differential equations for which a gen-
eral analytic solution is not available. Consequently, various
approximate solutions of the PNPC equations were devel-
oped. Those theories differ in the terms neglected in the
excess chemical potential w.. Goldman, Hodgkin, and Katz
(Goldman, 1943; Hille, 1992; Hodgkin and Katz, 1949)
assumed a constant electric field and constant ionic currents
(GHK theory). The specific chemical potential u; and the
electric field originating form permanent charges ¢y, are
neglected, and ¢,,,, is assumed to be small. Thus within the
GHK theory the external voltage drops linearly across the
channel only if the total charge density inside the channel is
small. Today GHK theory is largely discarded as a method
for describing ion channels, because the predicted linear
conduction-concentration relation is often not found in
experiments.

If the excess chemical potential w_ consists of a few large
barriers separated by binding sites, Eq. 1 can be reformu-
lated as a barrier model considered by Kramers (Cooper et
al., 1985; Kramers, 1940; Weiss, 1986). In the formally
similar absolute rate theory of Eyring (Eyring et al., 1949;
Hille, 1992; Laidler and King, 1983), the rate of overcoming
barriers applies to ballistic motion of particles in dilute
gases and not to diffusion in dense media. A major differ-
ence between the Smoluchowski equation and barrier mod-
els is that the latter automatically takes care of volume
exclusion effects and single filing. Each site can maximally
contain a single ion. Incoming ions can enter only unoccu-
pied sites. Barrier models are based on three important
characteristics: 1) the external electric field is constant, 2)
incoming ions cannot replace or pass resident ions occupy-
ing a site, and 3) the free energy profile is independent of
the external ion concentrations. These assumptions imply
that the chemical forces du;/dx are large compared to the
electric forces due to permeant and fixed charges. Cooper
(Cooper et al., 1985) concluded from the literature that the
barrier height should be at least 5 RT/F.

In the Poisson-Nernst-Planck (PNP) theory (Eisenberg,
1996) the specific chemical potential wi(x) is mostly ne-
glected with few exceptions (Chen, 1997; Nonner et al.,
1998). The excess chemical potential w (x) is assumed to be
dominated by electrostatic forces. Chen et al. (1997) have
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shown that for a particular channel model, the ion distribu-
tion and consequently ¢;,,, become voltage dependent. Thus
the constant field assumption generally does not apply to
PNP theories.

The Nernst-Planck and Smoluchowski equations repre-
sent mean field theories, often also designated “continuum
theories.” Modern statistical mechanics (Keizer, 1987; Mc-
Quarrie, 1976) show that those continuum theories can be
strictly derived from many-particle systems. The first elec-
trolyte theory that accounts for the strong, long-range elec-
trostatic interactions was proposed by Gouy (1910) for
one-dimensional systems. Debye and Hiickel (1923) ex-
tended it to three-dimensional systems. The potential of
mean force is replaced by the mean potential (Kirkwood,
1934; Kirkwood and Poirier, 1954; McQuarrie, 1976). This
approximation is often referred to as the Poisson-Boltzmann
theory. In the limit of strong electric fields, e.g., close to a
charged wall (Henderson et al., 1979), electrolytes behave
as predicted by the Poisson-Boltzmann theory. Recently,
this approximation was used to predict the equilibrium ion
distribution within atomic models of ion channels (Cheng et
al., 1998; Sansom et al., 1997; Weetman et al., 1997). Until
today, complex theories have been developed describing
experimental equilibrium properties of electrolytes to a high
degree of accuracy (McQuarrie, 1976).

Unfortunately, charge transport theories for inhomoge-
neous steady-state systems are still on a much less sophis-
ticated level compared to equilibrium electrolyte theories.
Vlasov (1938) first proposed replacing the electric field
seen by a single ion with the mean field produced by all ions
within the system. This idea represents the generalization of
the Poisson-Boltzmann principle to nonequilibrium systems
(Balescu, 1975). This approximation neglects the fact that
the concentrations of co- and counterions around a cation at
r differs from the mean concentrations at r as well as from
the concentrations around an anion at r. Consequently, the
local electric field at a specific ion generally differs from the
mean electric field at that position. For homogeneous elec-
trolytes the conductivity generally increases sublinearly
with increasing ion concentrations. Onsager (1926, 1927)
explained this effect by a deformation of the counterion
cloud due to the external electric field. The MSA theory
(Blum, 1980) accurately describes the conductivities for
homogeneous electrolytes up to high concentrations (Ber-
nard et al., 1992; Durand-Vidal et al., 1996).

For inhomogeneous systems, not only does the deforma-
tion of the co- and counterion cloud become important, but
the interaction of the ion with its own counterion cloud does
as well. This “solvation energy” due to the other ions
depends on the environment, e.g., the ionic strength, and
leads to activity factors differing from unity. When the ion
leaves bulk solution to enter the channel, this “self-energy”
of the ion changes and leads to different activities in bulk
solution and inside the channel. Usually, this effect is ne-
glected in commonly used mean-field theories describing
ion permeation. Nonner (Nonner et al., 1998; Nonner and
Eisenberg, 1998) introduces chemical potentials into PNP
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theory. Levitt (Levitt, 1987) considered two ions within a
single channel; however, he neglected the screening of the
interaction of those two ions inside the channel due to all
other ions in the system. Lehmani (Lehmani et al., 1997)
includes the effect of the ion cloud deformation for the
diffusion of ions through pores with a diameter large com-
pared to the Debye length.

Another important approximation in most mean-field the-
ories is that the ions can pass each other without interfer-
ence. This is certainly a good approximation for highly
dilute solutions. Hydrodynamic effects in homogeneous
electrolytes were introduced some time ago (Fuoss and
Onsager, 1964). This generally leads to diffusion constants
being functions of the ion concentrations (Hubbard, 1987).
The flux coupling between different ions and ions and the
solvent was described for ion exchange membranes (Conti
and Eisenman, 1966).

There are several articles showing that the electric field
within ion channels often is not constant (Eisenberg, 1996;
MacGillivray and Hare, 1969); we do not know any article
in the field of ion permeation that studies the constant
currents assumption. Generally the concentration of ion
pairs in water and probably in the channel environment is
small (Bockris and Reddy, 1970; Buck, 1984). Conse-
quently, ion pairing is neglected in theories of ion perme-
ation. This argument is based on equilibrium considerations.
It relies on the small value of the association equilibrium
constant determining the relative concentrations of free ions
and ion pairs. As shown in this work, the influence of ion
pairing on ion transport is determined by the ion association
rate constant k, and not by the equilibrium constant. Ac-
cording to modern diffusion-controlled reaction rate theo-
ries (Calef and Deutch, 1983) and respective Brownian
dynamics studies (Sridharan et al., 1989), the association
rate constant of oppositely charged ions is not small. Con-
sequently, the constant currents assumption often does not
hold, and ion pairing has to be included in theories of ion
permeation.

Because the constant field and currents assumptions are
widely used in theories of ion transport, it is important to
understand the range of their validity. In the present work,
we derive analytical constant field and currents conditions.
In the Results, we apply these relations to simple practical
examples. Finally, we discuss the limitations of those rela-
tions and the extent to which our conclusions suffer from
the neglect of the ion-cloud self-energy and single filing.

THEORETICAL METHODS

The constant field and constant currents assumptions are
widely used in theories of ion permeation. Here we derive
the necessary conditions for the applicability of those two
assumptions. We further analyze the fundamental supposi-
tions for barrier models and present relations indicating
their validity.
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Constant field assumption

In general the constant field assumption implies that the
electric field originating from permeant ions —dd¢;,,/dx is
either negligible or only weakly voltage dependent. We
show that this is often not the case because electrostatic
interactions are strong and occur over a long range. Within
this work we particularly analyze the GHK theory and
barrier models. PNPC theories with negligible ion pairing
have been extensively studied by others (Eisenberg, 1996).

GHK constant field condition

In the GHK theory, the total electric field E is assumed to be
constant across the channel and is determined exclusively
by the external voltage difference V: E = V/L. Thus the
electric field created by permeant ions and fixed charges
inside the channel must be small compared to this external
field. We start our analysis of this constant field approxi-
mation with the one-dimensional, differential form of
Gauss’ law (Jackson, 1962):

dE

T G

dx  e€ec
where p(x) is the charge density, €, is the vacuum permit-
tivity, and € is the dielectric constant inside the channel.
The electric field created by the charge density inside the
channel is obtained by integrating Gauss’ law (Eq. 3) along
the channel’s axis:

) L) Ry
EO—Ei—f adx—a Wlth<p>—z p(x)dx

Xi Xi

4
where (p) is the average charge density. E, and E, are the
electric fields at the external and internal entries of the
channel at x, and x;, respectively, with L = x, — x;. As long
as the field difference is small compared to the external field
[V/L > |E, — E|, the constant field assumption applies:

L¥p)

€)€c

V| > |U,| withU,= (5)
where the space-charge voltage U, indicates nonzero space-
charge inside the channel. At sufficiently large external
voltages, according to Eq. 5, the electric field becomes
practically constant, and the GHK theory applies.

We replace the external voltage V' in Eq. 5 with the
thermal voltage R7/F ~ 25 mV and define a space-charge
length €, which has a form similar to that of the Debye
length €1y, To apply the constant field approximation, €,
must be large compared to the channel length:

Teyec
Fip)

Ion channels, for which Eq. 6 holds, are designated as short.
In general, the space-charge voltage and length are not

(6)

L<{,=
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directly accessible by experiment, because they depend on
the charge density inside the channel. If one starts to design
channel models to explain one’s data, however, relations 5
and 6 immediately indicate important physical properties of
those channel models and in this way guide the process of
model building.

PNPC constant field condition

In PNPC theories, no restrictions are assumed for the charge
density inside the channel. The specific chemical forces are
either neglected (Eisenberg, 1996) or are assumed not to
dominate electrostatic interactions (Chen, 1997; Nonner et
al., 1998). If the channel contains permanent charges, the
strong electrostatic interaction attracts a corresponding
number of counter ions. In this sense, Eq. 6 also applies here
because the space-charge length equals or is above the
Debye length: €, = €py;. The Debye length determines the
“flexibility” of the distribution of permeant ions. Thus, if
€y is long compared to the channel length L << €5y, the
permeant ion distribution cannot follow the external field,
resulting in a constant field. If, however, the channel is long
(L > {py), the permeant ion distribution adjusts to the
external field and consequently becomes voltage dependent.
In this case the constant field approximation generally does
not apply. In a numerical PNP model of a synthetic ion
channel it was explicitly shown (Chen et al., 1997, Fig. 11)
that the constant field assumption does not work in this
particular case.

Barrier model constant field condition

In this section, we study fundamental suppositions of barrier
models. Because of the strong electrostatic interactions
among permeant ions, the short-range forces dug/dx must be
rather large to dominate the electric forces. If, however, the
chemical forces are not dominant, then the basic barrier
model assumptions are violated and ion transport must be
described by a more general theory.

In barrier models ions are located at specific sites inside
the channel. Ions bound to charged amino acid side chains
possess a considerable flexibility with respect to their posi-
tion and orientation (von Kitzing, 1995). If the local electric
field £, created by those dipoles is large compared to the
external field, only minor adjustments of the mean orienta-
tion of the dipoles will compensate the external field. As a
result, the electric potential ¢,,,, becomes voltage depen-
dent. This leads to a constant field condition for barrier
models in which the resident permeant ions are not tightly
fixed:

Leo

V| > LIEA| = (7)

€S
The mean orientation and position of bound ions depend on
the degree of flexibility, thermal motion, and the external
voltage. Thus the electric field of the bound permeant ions
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becomes voltage dependent; it changes in the same order as
the external field, and consequently, the constant field ap-
proximation is violated.

At high external concentrations ions frequently attempt to
enter an occupied site coming either from a neighboring site
or from the external solutions. Let us consider a cation
channel with an ion trying to enter an occupied site. If the
cation-cation interaction is dominated electrostatically, and
the short-range chemical forces keeping the resident ion in
place are strong compared to the electrostatic repulsion, the
resident ion prevents the incoming ion from entering or
passing the site. This mechanism defines one of the basic
characteristics of barrier models. Alternatively, if the short-
range chemical forces are weak compared to the electro-
static forces, there are two possible outcomes. In the first
case, the resident ion may repel the incoming ion, which
would also be a “barrier model solution” of this competi-
tion. In the second case, the ion, coming from one direction,
may push the resident ion in the other direction. This kind
of outcome of the competition is not considered in barrier
models. The omission of this mechanism is justified, if the
height of the barrier Ap is large compared to the repulsive
energy FV,/(RT) originating from electric interaction of two
ions at a typical distance of 3,. According to Eq. 5, this
potential difference is given by

RTALS 8¢

_ wto
F = V= €€S (®)

If this condition is violated, the assumption that a resident
ion prevents other ions from entering or passing the site is
no longer valid.

The frequent mutual electric interactions among incom-
ing and resident ions at high external concentrations lead to
a concentration- and voltage-dependent excess chemical
potential. The strength of the electrostatic interaction is
characterized by the Debye length €. If the gradient of the
short-range interaction dug/dx (u. is given in multiples of
RT) is large compared to the inverse Debye length, then the
channel is dominated by short-range interactions, and the
excess chemical potential u (x) becomes concentration in-
dependent:

S

dug . S,
eDH@ > 1 Au; > ton 9)

Constant currents assumption

The constant currents assumption is widely used in theories
of ion transport through ion exchange membranes (Buck,
1984) and ion channels (Barcilon et al., 1997; Cooper et al.,
1985; Eisenberg, 1996; Hille, 1992), where the Nernst-
Planck and often Gauss’ or Poisson’s law are solved, as-
suming that the flux of each ionic species is constant. The
constant currents assumption is also used in barrier models.
In contrast to the constant field condition, for the constant
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currents assumption the particular theories need not be
addressed specifically.

The constant currents assumption has not yet been tested
rigorously for any of those cases. It is therefore important to
derive constant currents conditions that indicate precisely
whether the constant currents assumption holds in a partic-
ular case. As shown in this section, modern theories of ion
association rate constants (Calef and Deutch, 1983) predict
that the dynamic effect of ion pairing often cannot be
neglected, even if the concentration of ion pairs is negligi-
ble. The question of ion pairing adds to the problems of
neglecting the effects of ion clouds and single filing.

Importance of ion pairing

In steady-state systems, ion pairing implies a change in the
ion fluxes and the respective electric currents / along the
channel axis. This effect is described by the ion pairing
intensity %R(x). For a binary monovalent electrolyte, ion
pairing leads to the continuity equation:

d,  di,
a: —a:FSQR(x) (10)

which is given in its one-dimensional form. /, and 7, are the
cation and anion electric currents, respectively. Of course,
the total charge is always conserved. A typical ion pairing
intensity R for a binary monovalent electrolyte has the form
of a simple reaction equation:

R = kapn — kpcp = kalpn — pong) (11)

where k, and kp, are the respective association and dissoci-
ation rate constants, p and n are the cation and anion
concentrations, and c¢p is the concentration of pairs. At
equilibrium ion pairing must disappear. Thus we define the
equilibrium concentrations po and ng. With kpcp =
kapghq, the pair concentration c¢p and the dissociation rate
constant k, are replaced with pg, and nq. These equilibrium
concentrations are defined by the difference in the chemical
potential between bulk solution and the channel environ-
ment. This replacement conveniently simplifies the calculus.

Analogously to the constant field condition, we integrate
the continuity equation (Eq. 10), considering only the cur-
rents on both sides of the channel:

Ino - Ini = Ipi - Ipo = FSL<Q{> = FSLkA((pn> - <anQ>)

with <97z>=% f " Pwdr and <pn>=% J " pn()dx

Xi Xi

(12)

where [, and I ; are the anion currents at the external and
internal channel mouths, and [, and /; are the respective
cation currents.

The form of Egs. 11 and 12 indicates that the influence of
ion pairing depends on the association rate constant k, and
not on the association equilibrium constant k,/kp. It is
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therefore important to obtain an estimate for k,. According
to diffusion-controlled reaction rate theory (Calef and Deutch,
1983), the association rate constant, in good agreement with
respective Brownian dynamics simulation (Sridharan et al.,
1989), has the form

k _Fsz+DnVA hec_ wg"P()\)d
ATRT e by VML T @
1 (13)
F2
and Ly = 41regecNART

where D, and D, are the cationic and anionic diffusion
constants, and r, is the effective association radius. N, is
Avogadro’s number, A = /€. is the actual distance between
the two ions scaled by the distance of closest approach €,
and ¢(A) is the Debye-Hiickel potential between the two
ions divided by RT. €g; is the Bjerrum distance of the two
ions, i.e., the distance where the interaction energy between
the two ions equals thermal energy R7T. Even if Eq. 13 is
only a crude approximation of the association rate inside the
channel, it should predict the correct order of magnitude.
The integral containing the ion-ion interaction term can
be solved analytically for two limiting situations:
(1/¢.

_ 0
for strong screening £ << €| 1 + €7c
L DH |

~{1 N 1
"l T et oy
for weak screening £y >> €| 1 + e
\ €DH_

(14

The classic association rate constant proposed by Smolu-
chowski (1917) with r, ~ £ is obtained in the limit of
strong screening. If the charges are only weakly screened,
the effective association radius becomes the Bjerrum length,
ra =~ Ug;.

Constant currents condition

Now we are in a position to formulate a constant currents
condition. The current-voltage curves for many ion chan-
nels are often close to linear. One can therefore use a typical
channel conductance ¥ to approximate these parts of the
current-voltage relation: / ~ XV for |V| >> RT/F. If the
effect of ion pairing is small, the difference in the ion
currents at both ends of the channel should be small com-
pared to the total current: |/, — I,;] << |I|. The difference in
currents is taken from the integrated form of the continuity
equation (Eq. 12) with the association rate constant k, from
Eq. 13. This leads to the global constant currents condition:

V1> |Us

. (15)
ith Uy = 0 Dot Dl o)

wit ® EofcRT E €BJ " QnQ
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This general constant currents condition has a form similar
to that of the general constant field condition in Eq. 5. The
pairing voltage Uy, defines a lower limit for the external
voltage, below which the constant currents condition is
violated.

Similar to the space-charge length €, defined in Eq. 6, we
use Eq. 15 to define a pairing length €. At low external
voltages |V| = RT/F, the current for each ion species is
constant if the channel is short compared to the pairing
length:

Lty = e G > 16
* = FSD, + Dy ra lpn) — pang] 1
RESULTS

In the analytical part of this article, we derive constant field
conditions for the GHK approximation and barrier models.
We present constant currents conditions that are valid for all
theories. We now apply these rules to some simple, realistic
situations. We find that the constant field conditions equa-
tions (Egs. 5-7) in particular are difficult to fulfill and that
the basic conditions fundamental for barrier models are
often violated.

The validity of the constant field assumption

We formulate constant field conditions for the GHK ap-
proximation and barrier models given in Eqs. 5-7. For the
latter, conditions for the volume exclusion mechanism and
the independence of the energy profile from the external
concentrations are also given. To study the practical impli-
cations of these conditions, a simplified version of an ion
channel is considered. It is assumed to be cylindrical with a
length of L = 1 nm, a cross section of § = 1 nm?,
corresponding to a radius of 0.56 nm, and an internal
dielectric constant of e~ = 10. With these numbers the
electric field of a single charge becomes £, = 1.81 V/nm =
18.1 MV/cm. With a dielectric constant of 80, this field is
still 226 mV/nm = 2.26 MV/cm.

GHK approximations

Equation 5 defines the space-charge voltage U, at which the
electric field generated by the internal charge becomes
comparable to the external electric field. If this channel
contains a single monovalent ion, the space-charge voltage
U, as a lower limit for the external voltage becomes

V> |U|~=18V

Thus, only for external voltages considerably above 1.8 V
does the constant field assumption apply for a singly occu-
pied GHK channel. Alternatively, Eq. 6 defines a space-
charge length €, at which the external and internal electric
fields become comparable. The space-charge length €, of
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the studied channel model as an upper limit for the channel
length L amounts to

L<<{,~14X10"’nm 17)

This length is certainly too short to be relevant for realistic
biological ion channels. In an electrically neutral channel,
the occupation of the GHK channel should not exceed 1.4 X
103, which corresponds to a concentration of 2.3 mM for
the channel parameter given above. Even if the dielectric
constant is increased to 80, the space-charge voltage would
become 225 mV and the space-charge length 0.1 nm. Thus
the GHK approximation implies rather unrealistic assump-
tions about ion channels.

This extremely short space-charge length €, implies that
the constant field assumption does not apply for concentra-
tions above 5 mM and for low energy barriers. If the volume
contains a single permanent charge, the space-charge length
acts as the Debye length €. Of course, such a Debye
length is much too short for the Debye-Hiickel theory to be
relevant. MSA electrolyte theory (Blum, 1980; Klement et
al., 1990), however, which is valid up to much higher
concentrations, includes the effect of the ion size. For two
equal-sized ions with a distance of closest approach of 0.3
nm, the respective MSA lengths gives € ygo = 0.05 nm or
0.2 nm, using a dielectric constant of 10 or 80, respectively.
Thus the constant field assumption becomes invalid as long
as the forces inside the channel are not dominated by
short-range interactions and € = €ysa = L.

Barrier models

One central approximation in barrier models is the constant
field assumption. As shown in Eq. 7, this assumption re-
quires tightly fixed permeant ions. Flexible positions and
orientations of bound permeant ions lead to a voltage de-
pendence of the distribution of permeant ions inside the
channel, resulting in a breakdown of the constant field
assumption. The orientational constant field condition
becomes

M>18V

Thus the orientation of the resident ion becomes saturated
only by voltages above 1.8 V. Very similar results are
obtained if one considers a harmonic motion of the resident
ion. Interestingly, this result agrees with the constant field
condition for a GHK channel.

Another basic assumption of barrier models is that a
resident ion at a site prevents incoming ions from entering
or passing a site, neglecting concerted ion motions. A test
for this assumption is given in Eq. 8. If the channel has two
binding sites and a single barrier (or two barriers and a
single site), the typical distance between well and barrier
peak in our channel model is §,, = 0.25 nm. Thus according
to Eq. 8, the barrier height must exceed

|Aug| > 17
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that concerted motions of ions can be neglected. Even if a
dielectric constant of 80 is assumed, the barriers still must
be rather large |Aug| >> 2 to prevent a second ion from
entering an occupied site.

Finally, we analyze the concentration dependence of the
energy profile. According to Eq. 9 and a MSA-length of
€usa = 0.05 nm, the concentration independence of the
energy profile implies

[Api| =5

Thus, also for barrier models, the constant field condition
Eq. 7 is extremely difficult to fulfill. But the single occu-
pancy assumption (Eq. 8), as well as the neglect of the
concentration dependence of the energy profile (Eq. 9),
imposes severe restrictions on the applicability of barrier
models.

The validity of the constant currents assumption

What is the order of the effect of ion pairing in a simple
model? The precise number of the pairing voltage Uy,
depends on the particular system parameters. The particular
example given below represents a worst-case study. This
means we choose parameters that imply large pairing volt-
ages. The anionic diffusion coefficient D, in Eq. 15 is here
assumed to be small compared to that of the cations D,,.
With = ~ F2SD_p/(LRT), Eq. 15 for the pairing voltage Uy,
simplifies to

- LLZE |<Pn> - <anQ>| _ FLZP’;A
n €)€c €Bj p T &ec €Bj

The approximation [(pn) — (pono)l/p =~ p used in this
equation is not justified in general. Here this crude approx-
imation may suffice as a worst-case consideration. For an
effective ion radius of 0.5 nm (Ebeling and Scherwinski,
1983; Soumpasis, 1984), including hydration, an ionic con-
centration of 100 mM and a dielectric constant of 10, the
effective association radius, and the Bjerrum length are
given by v, = 1.1 nm and €g; = 5.7 nm. In this simple
approximation the pairing voltage U, distinguishes from
the space-charge voltage U, mainly by the factor r,/€g;. For
the given case the upper bound for the pairing voltage and
the lower bound for the pairing length approximately yield

Up<21mV and €z =12nm

Obviously, the implications of the constant currents condi-
tion in Eq. 15 are less severe than the constant field condi-
tion in Eq. 5. Because we made a worst-case analysis, for
most channels the pairing voltage is even smaller and the
pairing length larger. Nevertheless, for a typical channel
length of 1 nm, direct evidence is needed to discount ion
pairing.

DISCUSSION

In this work, we present the analytical relations in Egs. 5, 6,
15, and 16, which estimate the (in)validity of the constant
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field and currents approximations. In addition, we analyzed
conditions Eqgs. 7-9 for the basic assumptions used in bar-
rier models. Because GHK theory and barrier models are
frequently used to analyze experimental current-voltage
curves, reversal potentials, or blocker positions, it is impor-
tant to have simple relations to test their validity for prac-
tical models.

In this work, we assume a cylindrical channel geometry
of a certain length L and cross section S. Such a model is
certainly only a caricature of a real ion channel. But the
necessary degree of “realism” depends on the kind of ques-
tions the model is assumed to answer. Because the electro-
static interaction occurs over a long range, many structural
details average out if one considers mean electric fields
within channels. Consequently, the cylindrical model of the
channel with a single dielectric constant €. is certainly
sufficient for a first guess of the validity of the constant field
and currents assumptions. Recently, Nonner and Eisenberg
(1998) have shown that homogeneous channel parameters
are sufficient to explain the competition between calcium
and sodium in the L-type calcium channel. Thus complex
forms of selectivity do not always require heterogeneous
channel environments. And if any of the conditions 5-9, 15,
or 16 is considerably violated for this simple cylindrical
model, one should expect the violation of the respective
condition in more sophisticated channel models.

Discussing the description of the L-type calcium channel
by means of the PNP approximation (Nonner and Eisen-
berg, 1998), Horn (1998) asks whether the PNP picture of
this channel “could produce another set of erroneous in-
sights.” A necessary step in avoiding “erroneous insights” is
to check the validity of an ion transport model. Fitting a
model to a reasonably large set of experimental data results
in a set of model parameters. If this model definitely fits the
data, one has to check whether fundamental assumptions
made to derive this particular ion transport model from first
principles are compatible with the found set of parameters.
For instance, if the experiments are well reproduced by a
barrier model with low barrier heights and high occupan-
cies, such a result must be discarded. As shown in the
Results, low barrier heights together with high occupancies
leads to a violation of all of the basic barrier model assump-
tions. In presenting conditions to test the constant field and
currents assumptions, this work helps to reduce the likeli-
hood of such “erroneous insights.”

The constant field and barrier assumptions

First we analyze the values and validity of the model pa-
rameters involved in Egs. 5-9. Later we discuss those
results, using the examples of the acetylcholine receptor
channel and the potassium channel.

lon channel parameters

The application of the constant field condition (Egs. 5 or 6)
and the basic assumption used to establish barrier models



776 Biophysical Journal

(Egs. 7-9) require estimates of the channel length L, the
channel’s cross section S, the dielectric constant €., and the
influence of the channel vestibules. For the recently re-
solved potassium channel (Doyle et al., 1998), the length of
the narrow pore is given by L = 1.2 nm. In the case of the
acetylcholine receptor channel (Unwin, 1995), the channel
appears to have no “natural boundaries” to define its length
precisely. A value of L = 1 nm is certainly the correct order
of magnitude. In the narrow part the cross section S of the
potassium channel is rather small, and the ions are directly
solvated by the backbone oxygens. According to classical
estimates using organic ions of different sizes (Adams et al.,
1980; Hille, 1992), the cross section of the acetylcholine
receptor channel is wider. Because the electric field may not
be confined only to very narrow pores, the effective “elec-
trostatic” cross section may be wider than the geometric
one, and we choose S ~ 1 nm>. Smaller cross sections
would make the application of constant field and barrier
assumptions even less likely, as presented in the Results.

For the simple channel models such as those used in this
article, the dielectric constant €~ can represent only an
effective screening constant. In realistic channels, one
should expect that the orientation of water molecules and
protein side chains results in a complex relation between the
three-dimensional electric displacement D and the respec-
tive electric field E (Jackson, 1962; Jordan et al., 1997;
Kornyshev, 1985; Kornyshev and Sutmann, 1996; Parten-
skii et al., 1994). If such an effect would determine ion
transport, the constant field assumption would break down,
even for empty neutral channels. Molecular dynamic simu-
lations generally indicate a reduced orientational mobility of
water molecules inside a channel (Sansom et al., 1997). This
would suggest an effective screening parameter below the
dielectric constant of bulk water. Jordan (Jordan et al.,
1997) proposes a dielectric screening parameter of 4 for the
gramicidin channel.

In deriving the constant field and currents conditions, we
assume that the external voltage drops completely across the
channel. Particularly at low external concentrations, a part
of the voltage drops within the channel mouths. This situ-
ation reduces the electric field inside the channel, making
the conditions defined in Eqs. 5 and 15 even more stringent.
Under most “physiological” conditions, however, this effect
should not dominate (Muller and Finkelstein, 1972).

Validity of model assumptions

As shown in the Results, the trivial constant field assump-
tion (Eq. 5) applies only at extremely low ion concentrations
inside the channel. But this result is based on the mean field
approximation, in which the local electric field is replaced
with the mean electric field. As long as only a single ion
resides inside the channel and all other ions are too distant
to interact with this ion, its presence would not lead to
nonlinearities in the external electric field. But to avoid any
ion-ion interactions, the lifetime of the ion inside the chan-
nel must be short, otherwise the co- and counterions in the
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channel mouths would reorganize to shield this extra charge
within the channel, or another ion from bulk solution would
try to enter the channel and interact with the resident ion
electrostatically. This interaction between incoming and
resident ions automatically leads to a violation of the con-
stant field assumption. Because short residence times are
equivalent to low concentrations, we obtain the same qual-
itative result as in Eq. 5.

A quantitative analysis of this kind would decrease the
stringency of Eq. 5, but not its major implications. The
Vlasov approximation could become critical only at low
internal concentrations with L =< €. In the crystal structure
of the potassium channel (Doyle et al., 1998), two partly
occupied sites for ions were found inside the narrow part of
the channel. For the acetylcholine receptor channel, the
number of potentially charged amino acids is large (Imoto et
al., 1988; Konno et al., 1991). These facts suggest a poten-
tially very large ionic strength inside this channel and, as a
result, rather short space-charge or Debye lengths. Conse-
quently, GHK theory does not apply to those channels.

Because of the low resolution of the crystal structure of
the potassium channel (Doyle et al., 1998), we cannot
estimate the flexibility of the positions of the two potassium
ions inside the narrow pore. The strong mutual interaction
between ions in the two sites makes it unlikely that their
occupation remains voltage independent, and thus the gen-
eralized constant field assumption does not hold. Because
both sites appear to be considerably occupied, one must
expect frequent “attempts” of one ion to enter the site of the
other one. If both ions are not tightly bound to their sites,
these “jumps” would result in a concerted motion of those
ions, explicitly excluded in the barrier model. For the de-
velopment of Eq. 8, the Vlasov approximation is not used.
Therefore, it does not suffer from the problem of applying
mean fields. On the contrary, the screening from all of the
other ions within the system is neglected for this relation. In
the crystal structure there is a line of three ions with an
approximate distance of 0.8 nm. If the electrostatic interac-
tion would be heavily screened by permeant counterions or
by flexible side chains, the right-hand side of Eq. 8 would
become smaller, but of course, the necessarily short Debye
lengths (only very short local Debye lengths could shield
those ions from each other) would imply a concentration-
dependent barrier height. Thus the basic assumptions used
in barrier models are very likely not fulfilled for this chan-
nel. But simple PNP theory also has problems, because it
generally predicts an Ussing ratio of unity. Particular terms
have to be introduced to obtain Ussing ratios differing from
unity (Chen and Eisenberg, 1993). The flux coupling terms
proposed by Conti (Conti and Eisenman, 1966) could ac-
count for this effect.

In the acetylcholine receptor channel, the flexible poten-
tially charged side chains close to the narrow part of the
pore reorient in the external field, resulting in a violation of
the constant field assumption. Because the charge of those
side chains must be screened by protons or permeant ions,
the strong charge-charge interactions imply a correlated
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motion (von Kitzing, 1995). Because of the larger pore
compared to the potassium channel, the energy profile very
likely is concentration dependent. Also here, the Vlasov
approximation influences the quantitative results, but not
the qualitative outcome. For a first estimate the unmodified
form of Egs. 7-9 is certainly sufficient. Only in question-
able cases, for which those relations are only slightly vio-
lated, a more careful analysis becomes necessary. At least
for those two channels, we should expect a violation of
basic assumptions for GHK theory and barrier models. For
both channels flux coupling between ions and solvent would
be necessary to account for the streaming potential.

Vlasov’s mean field approximation

The strong, long-range electrostatic interaction creates con-
siderable difficulties for mean field theories. Even the most
accurate equilibrium electrolyte theories contain certain ap-
proximations (McQuarrie, 1976). Cooper (Cooper et al.,
1985) addressed the problem of the mean field approxima-
tion by comparing mean field results with Brownian dy-
namics simulations. In that study an uncharged channel was
considered, and only cations were allowed to enter that
channel. Comparing PNP and Brownian dynamics (BD),
they found considerable differences. The PNP concentra-
tions were much lower, indicating a stronger repulsion
between the ions in the mean field theory.

Unfortunately, the electrostatic interactions in the PNP
and the BD channels were not equivalent. On the one hand,
a PNP theory with one-dimensional electrostatics was used,
i.e., the electric field of a single ion was assumed to focus
within the pore of the channel. On the other hand, the
electrostatic interactions in the BD simulations consisted of
three-dimensional Coulomb forces. Because one-dimen-
sional electrostatic repulsion at long distances is stronger
than the three-dimensional repulsion, qualitatively the dif-
ference found by Cooper should have been expected. There-
fore, at least a part of the differences in concentrations
should be attributed to the use of different electrostatic
interactions between permeant ions.

Another important aspect of that study is that the neglect
of the coion cloud should be particularly strong for a neutral
channel that only cations may enter. In contrast, most im-
portant biological ion channels contain permanent charges
(Imoto et al., 1988; Konno et al., 1991). In such cases, the
neglect of the counterion cloud can influence the ion con-
centrations to a lesser degree, because the neutralization of
these charges inside the channel dominates the behavior of
the ions. In addition, the electric field of the permanent
charges creates a “high field” situation for which the mean
field theory becomes nearly exact (Henderson et al., 1979).

Consequently, we should consider Vlasov’s mean field
approximation as a useful tool for analyzing ion permeation.
Its inherent limitations for inhomogeneous nonequilibrium
systems still remain to be analyzed. The recent increased
interest in formulating improved theories for such systems
(Bernard et al., 1992; Durand-Vidal et al., 1996; Lehmani et
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al., 1997; Turq et al., 1992) may rapidly improve our
understanding in this field. A preliminary way to account
for the neglected activity factors is to include different
chemical potentials for different ions (Nonner et al., 1998;
Nonner and Eisenberg, 1998; see also below).

lon pairing in biological ion channels

The validity of the constant field approximation has been
questioned in earlier publications. MacGillivray (MacGilli-
vray and Hare, 1969) provides a first-order correction for
GHK theory assuming a small electric field. Eisenberg
(1996) discusses the impact of the electric field in the
framework of PNP theory. We are not aware, however, of
studies on the validity of the constant currents assumption in
the field of biological ion channels.

The importance of ion pairing

The constant currents assumption states that ions are neither
destroyed nor created during ion transport. For steady state
this assumption means that the number of ions that enter a
certain volume element must equal the number of ions
leaving this volume element; otherwise the number of ions
inside the volume would change within time. As a conse-
quence, the flow of each ion species must be the same
through the channel cross section at any position inside the
channel. The situation changes if ions form pairs. Now two
ions of opposite charge may enter a volume element, form
a pair, and leave it as a pair. The number of free ions has
decreased and the number of pairs increased in the consid-
ered volume. Although the number of free ions inside a
volume element may change in cases of ion pairing, the total
charge does not change, and the total current is conserved.

In water and similar media with high dielectric constants
€c, the concentration of ion pairs is extremely low (Bockris
and Reddy, 1970). Consequently, the effect of ion pairing
on ion transport is generally assumed to be small in those
media (Buck, 1984). If, however, ions pass a boundary
where their excess chemical potential changes, close to the
boundary the balance between association or dissociation
does no longer hold, leading to d//dx = —d[,/dx # 0. As
shown in Eq. 12, this dynamic effect, in contrast to the
situation in homogeneous media, depends on the association
rate constant k,. Thus, even if the association equilibrium
constant is extremely small, ion pairing may become crucial
for the ion dynamics in heterogeneous nonequilibrium sit-
uations for sufficiently large association rate constants k,.
According to modern theories of diffusion-controlled reac-
tion rates (Calef and Deutch, 1983), the association rate
constant of oppositely charged ions is not small.

Fig. 1 gives a simple model of how substantial ion pairing
may determine ion transport. For instance, the acetylcholine
receptor channel contains a considerable number of poten-
tially charged side chains close to the narrow constriction of
the pore (Konno et al., 1991; Villarroel and Sakmann,
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FIGURE 1 Binding to flexible charged side chains may play an impor-
tant role in ion transport, for instance, in the acetylcholine receptor channel.
The electric field is assumed to drag a cation from the left to the right side.
(a) The incoming cation attracts a flexible anionic side chain. (b) The
cation binds to the side chain, and together they diffuse a short length. (c)
The cation is released and travels to the right-hand side, and the cationic
side chain follows the electric field and moves toward the left-hand side.
Because pairing occurs predominantly on the left-hand side and release on
the right-hand side, on average pairs diffuse from the left to the right.
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1992). A molecular mechanics model study (von Kitzing,
1995) indicates that the side chains are sufficiently flexible
to migrate a short length together with cations in the con-
striction of the channel.

lon channel parameters and pairing

To apply the constant currents conditions (Eq. 15 or 16), we
have to know the parameters required for the constant field
condition (see above). But furthermore, we need the channel
conductance X, the ion diffusion coefficients D, and D, the
effective association radius r,, the Bjerrum length €p;, and
the ion concentrations inside the channel p and » to calcu-
late (pn), and the equilibrium concentrations py and ng,.
How can we get reasonable estimates for all of these
parameters?

Because the Bjerrum length is only a function of the
effective dielectric constant, it will be very similar in most
ion channels: €g; ~ 5 nm if the dielectric constant stays
around 10. Except for ion concentrations as low as 0.1 mM,
the Debye length €, generally is much smaller than this
Bjerrum radius. Thus, inside the channel we have the
strongly screened case, and the effective association radius
r, becomes the distance of closest approach € between the
ion pair. Estimates of the distance of closest approach €. for
hydrated alkali-halide ions from fitting thermodynamic
properties of these electrolytes using the MSA theory
(Blum, 1980) are in the range of 0.3—0.8 nm (Ebeling and
Scherwinski, 1983; Soumpasis, 1984; Triolo et al., 1976).
The radii proposed by Soumpasis (1984) for hydrated alkali
metal ions are in good agreement with the radii obtained for
the acetylcholine receptor channel projecting their perme-
ability ratio on the curve obtained from organic cations
where the hydration shell is assumed to be negligible (Ad-
ams et al., 1980, Fig. 4). Thus the order of magnitude of the
quotient becomes r,/€g; ~ 1/10 for hydrated ions and
ra/lg; =~ 1/50 for bare ions.

Because the channel conductance ¥ can be directly ob-
tained from measured current-voltage relations, this quan-
tity is easily accessible for experimental studies. For theo-
retical model studies, the channel’s conductance can be
approximated by the relation of X ~ F>S(Dypy + Dyng)/
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(LRT), were pg and ng are the cation and anion concentra-
tions close to the channel constriction. The estimate of the
diffusion coefficients D, and D, is certainly difficult. From
molecular dynamic simulations (Roux and Karplus, 1994)
and from experimental studies (Macias and Starzak, 1993,
1994) an ionic diffusion coefficient inside the gramicidin
channel is obtained, which is below the diffusion coefficient
of the respective ions in bulk solution by a factor of 10. In
cases, where the cation diffusion coefficient D, dominates
the other, this problem disappears, because in this case
FZS(Dp + D,)/(RTZ) =~ L/pg, but the cation concentration
pr close to the channel constriction still remains to be
estimated.

The influence of ion pairing is strongest where the actual
concentrations p and n deviate considerably from the re-
spective equilibrium concentrations. Thus one should ex-
pect the influence of ion pairing, when the product of the
internal equilibrium ion concentrations pyn, differs consid-
erably from that of the solution pgng. If this product remains
constant, ion pairing is negligible. Thus ion pairing requires
a considerable difference in the chemical potentials ., and
M, of the ions between bulk solution and the channel inte-
rior. Such excess chemical potential difference may origi-
nate from electrostatic repulsion due to the low membrane
dielectric constant (Parsegian, 1969, 1975; von Kitzing and
Soumpasis, 1996) or dehydration of the ions (Hille, 1992).

Implications of ion pairing

On the one hand, the fact that the space-charge or Debye
lengths are generally much smaller than the pairing lengths
{pu = €, << €y, indicates that the interaction inside such
channels is dominated by electrostatic interactions and not
by pairing. On the other hand, the pairing length is on the
order of the channel length L ~ €, This indicates that ion
pairing is not strong but is also not negligible, which would
require €4 >=> L. To make sure that one does not “produce
another set of erroneous insights” (Horn, 1998), the validity
of the constant currents assumption must be tested for
particular models of ion permeation.

The values of the equilibrium concentrations pq, and ng
are closely related to the respective chemical potentials. If
M, and p, are the differences in the chemical potential for
cations and anions, respectively, between bulk solution and
the channel interior (divided by RT), bulk and equilibrium
concentrations are related by po/ps = e ™ and ng/ng =
e M. If the external concentration of the dominant ion
species (e.g., cations) is larger than the internal concentra-
tion, the current-voltage curves become superlinear, partic-
ularly for voltages above R7/F, and sublinear in the opposite
case (Syganow, manuscript in preparation). The strongest
effects of ion pairing should occur for triionic solutions,
where two ions compete for binding partners or sites (Non-
ner et al., 1998). Because ion pairing adds to the complexity
of standard PNP theory, it is not yet clear which would be
the most obvious indication of ion pairing. We would expect
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clear effects from ion pairing for mixtures of mono- and
divalent ions.

CONCLUSIONS

In this article we present necessary conditions for the trivial
constant field approximation in Eq. 5, where the total elec-
tric field is assumed to remain close to the external field.
Using some typical ion channel parameters, this condition
implies that GHK theory works only at extremely low ion
concentrations inside the channel.

To analyze barrier models, a more elaborate constant
field assumption is required; the change in the electric field
of the permeant ions (and mobile permanent charged amino
acid side chains) must be small compared to the change of
the external field as a function of the external voltage. For
barrier models the constant field condition Eq. 7 requires
very immobile fixed charges, which is unlikely for ion
channels such as the potassium, as well as the acetylcholine
receptor channel. Another basic assumption of barrier mod-
els is that incoming permeant ions cannot replace or pass
resident permeant ions, i.e., the correlation of the motion of
permeant ions inside the channel is negligible. This requires
that the barrier height is large compared to the mutual
electrostatic interaction between permeant ions. According
to this condition (Eq. 8), the barrier height must be rather
large. Furthermore, the condition (Eq. 9) that the energy
profile is practically concentration independent requires
large barriers.

This analysis of the barrier model suggests that for most
biological ion channels one has to use PNPC theories that
include the electrostatic interactions self-consistently. This
result agrees with the consideration of electrodynamics of
macroscopic media (Pekar, 1941; Robinson, 1973). The
error made in Vlasov’s mean field approximation for the
strong long-range interaction between permeant ions has not
yet been systematically studied. For charged channels its
impact should be small, because of the “high field” situation
in which the mean field comes close to the local electric
field. The inclusion of single filing into PNPC theories is
important for predicting streaming potentials and Ussing
ratios deviating considerably from unity.

We also calculate a constant currents condition (see Eq.
15). If this condition holds, ion pairing becomes negligible.
In an inhomogeneous steady-state system, the dynamics of
ion permeation is determined by the association rate con-
stant k,, which is not small, according to theories of diffu-
sion-controlled reactions (Calef and Deutch, 1983). Clear
effects from pairing should be expected for solutions con-
taining mixtures of mono- and divalent ions.
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