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Recently, Masanobu Kaneko introduced a conjecture on an exten-
sion of the derivation relation for multiple zeta values. The goal of
the present paper is to present a proof of the conjecture by re-
ducing it to a class of relations for multiple zeta values studied
by Kawashima. In addition, some algebraic aspects of the quasi-
derivation operator ∂

(c)
n on Q〈x, y〉, which was defined by modeling

a Hopf algebra developed by Connes and Moscovici, will be pre-
sented.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction/main theorem

Let n � 1 be an integer. For each index set (k1,k2, . . . ,kn) of positive integers with k1 > 1, the
multiple zeta value (MZV for short) is a real number defined by the convergent series

ζ(k1,k2, . . . ,kn) =
∑

m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

.

We call the number k1 + · · · + kn its weight and n its depth.
Through this paper, we employ the algebraic setup introduced by Hoffman [4] to study the quasi-

derivation relation for MZV’s. Let H = Q〈x, y〉 denote the non-commutative polynomial algebra over
the rational numbers in two indeterminates x and y, and let H1 and H0 denote the subalgebras
Q + Hy and Q + xHy, respectively. The Q-linear map Z : H0 → R is defined by Z(1) = 1 and

Z
(
xk1−1 yxk2−1 y · · · xkn−1 y

) = ζ(k1,k2, . . . ,kn).
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The degree (resp. degree with respect to y) of a word is the weight (resp. the depth) of the corre-
sponding MZV.

In Zagier’s paper [11], it is conjectured that the dimension of the Q-vector space generated by
MZV’s of weight k is dk , the number determined by the recursion d0 = 1, d1 = 0, d2 = 1 and dk =
dk−2 + dk−3 for k � 3. Goncharov [3] and Terasoma [10] proved that the number dk gives the upper
bound of the dimension of the Q-vector space generated by MZV’s of weight k. The number dk is far
smaller than the total number 2k−2 of indices of weight k, hence there should be several relations
among MZV’s. In the present setup, finding a linear relation among MZV’s corresponds to find an
element in ker Z .

Before stating the main theorem, the derivation relation for MZV’s, which appeared in Ihara,
Kaneko, and Zagier [5], is introduced. A derivation ∂ on H is a Q-linear endomorphism of H sat-
isfying the Leibniz rule ∂(w w ′) = ∂(w)w ′ + w∂(w ′). Such a derivation is uniquely determined by its
images of generators x and y. Let z = x + y. For each n � 1, the derivation ∂n : H → H is defined by
∂n(x) = xzn−1 y and ∂n(y) = −xzn−1 y. It follows immediately that ∂n(H) ⊂ H0.

Fact 1 (Derivation relation). (See [5].) For any n � 1, we have ∂n(H0) ⊂ ker Z .

The following extension of the operator ∂n was first defined by Kaneko [6]. He modified the for-
mula

∂n = 1

(n − 1)! ad(θ)n−1(∂1)

in [5], where θ stands for the derivation on H defined by θ(x) = 1
2 (xz + zx) and θ(y) = 1

2 (yz + zy),
and ad(θ)(∂) = [θ, ∂] := θ∂ − ∂θ .

Definition 2. Let c ∈ Q and H the derivation on H defined by H(w) = deg(w)w for any words w ∈ H.
For each integer n � 1, the Q-linear map ∂

(c)
n : H → H, which we call the quasi-derivation (with

respect to n and θ(c) for the given c ∈ Q) in the present paper, is defined by

∂
(c)
n = 1

(n − 1)! ad
(
θ(c))n−1

(∂1),

where θ(c) : H → H is the Q-linear map defined by θ(c)(x) = θ(x), θ(c)(y) = θ(y) and the rule

θ(c)(w w ′) = θ(c)(w)w ′ + wθ(c)(w ′) + c∂1(w)H(w ′) (1)

for any w, w ′ ∈ H.

If c = 0, the quasi-derivation ∂
(c)
n is reduced to the ordinary derivation ∂n . If c �= 0 and n � 2, the

operator ∂
(c)
n is no longer a derivation. Although the inclusion ∂

(c)
n (H) ⊂ H0 does not hold in general,

we have ∂
(c)
n (H0) ⊂ H0 as will be shown in Proposition 11. Then, the main result of the present paper,

which we call the class of the quasi-derivation relation, is stated.

Theorem 3. For any n � 1 and any c ∈ Q, we have ∂
(c)
n (H0) ⊂ ker Z .

When c is viewed as a variable, ∂
(c)
n (w) (w ∈ H0) is a polynomial in c of degree n − 1. Then,

Theorem 3 implies that each coefficient (which is in H0) with respect to c of ∂
(c)
n (w), n � 1, w ∈ H0,

gives a relation among MZV’s. We find that the derivation relation is the constant term of the quasi-
derivation relation as a polynomial in c. Hence, we have V ∂ ⊂ V ∂(•) , where V ∂ = 〈∂n(w) | n � 1,
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Table 1

weight k 3 4 5 6 7 8 9 10 11 12 13 14

2k−2 2 4 8 16 32 64 128 256 512 1024 2048 4096
dk 1 1 2 2 3 4 5 7 9 12 16 21
dimQ(V ∂ )k 1 2 5 10 22 44 90 181 363 727 1456 2912
dimQ(V ∂(•) )k 1 2 5 10 23 46 98 200 410 830 1679 · · ·
dimQ(V O )k 1 2 5 10 23 46 98 199 411 830 1691 · · ·
dimQ(V K 0 )k 1 2 5 10 23 46 98 200 413 838 1713 · · ·
dimQ(V K∗ )k 1 2 5 12 25 55 113 235 480 977 · · · · · ·
dimQ(V KШ )k 1 3 6 14 29 60 123 249 503 1012 · · · · · ·

w ∈ H0〉Q and V ∂(•) = 〈∂(c)
n (w) | n � 1, w ∈ H0, c ∈ Q〉Q , and the derivation relation is again shown

to be a class of relations among MZV’s.
Let V O and V K 0 denote the Q-vector spaces generated by Ohno’s relation [8] and by the linear

part of Kawashima’s relation [7], respectively. We also denote the Q-vector space generated by the
union of the linear part and the degree-1 part of Kawashima’s relation with the products of MZV’s
expanded linearly according to the harmonic product rule (resp. the iterated integral shuffle product
rule) by V K∗ (resp. V KШ ). For the statement of the degree-1 (or the algebraic) part of Kawashima’s
relation, see [7, Corollary 5.4]. The harmonic product rule is given in [4] or in the next section of this
paper for example. The iterated integral shuffle product rule is introduced in [9] for example. Table 1
gives the dimension of weight-k part of each Q-vector spaces in the left-hand column, together with
the numbers dk , the conjectural dimension of the space generated by MZV’s of weight k, and 2k−2, the
total number of indices of weight k. Computations were performed using Risa/Asir, an open source
general computer algebra system.

In Table 1, (W )k denotes the weight k part of the vector space W . We see that the sequence of
the column ‘dimQ(V KШ )k ’ equals to 2k−2 − dk , which suggests that the whole set (or, more precisely,
the union of the linear part and the degree-1 part) of Kawashima’s relation is enough to reduce the
dimensions of the space generated by MZV’s to the conjectural ones.

Further experiments using Risa/Asir enable us to find some facts or expectations. For example, the
sequence of the column ‘V K 0 ’ appears again as the sequence of following three spaces, V ∂(•) + V O ,
V ∂(•) + V K 0 , and V O + V K 0 , up to weight 13. Hence, Table 1 implies that three spaces V ∂(•) , V O and
V K 0 coincide up to weight 9. In addition, from weight 10 to 13 (and probably for higher weights),
V ∂(•) and V O are different spaces but both are contained in V K 0 properly.

The Q-vector space V O is known to be equivalent to V ∂ + Vτ , where Vτ denotes the Q-vector
space generated by the well-known duality formula, which is stated in Section 2. A proof of this
equivalence was given in [1] and is reviewed in Appendix B. Kawashima showed in [7] that Vτ ⊂ V K 0 .
We also have V ∂(•) ⊂ V K 0 , which is shown in the present paper. Although Table 1 and further exper-
iments stated above suggest that two spaces V ∂(•) + Vτ and V K 0 are equivalent, we can only show
one side inclusion, V ∂(•) + Vτ ⊂ V K 0 , herein.

2. Proof of main result

The main theorem (Theorem 3) is proven by reducing the theorem to the following Kawashima’s
relation.

Let zk = xk−1 y for k � 1. The harmonic product ∗ : H1 × H1 → H1 is a Q-bilinear map defined by
the following rules:

(i) For any w ∈ H1, 1 ∗ w = w ∗ 1 = w .
(ii) For any w, w ′ ∈ H1 and any k, l � 1,

zk w ∗ zl w
′ = zk(w ∗ zl w

′) + zl(zk w ∗ w ′) + zk+l(w ∗ w ′).

This is, as shown in [4], an associative and commutative product on H1.
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Denote by ε the automorphism of H defined by ε(x) = x+ y and ε(y) = −y. For any w ∈ H, define
the operator Lw on H by Lw(w ′) = w w ′ (w ′ ∈ H). Next, the linear part of Kawashima’s relation [7,
Corollary 4.9] is stated using the notation of the present paper.

Fact 4 (Kawashima’s relation). Lxε(Hy ∗ Hy) ⊂ ker Z .

Let τ be the anti-automorphism of H defined by τ (x) = y and τ (y) = x. The duality formula states
that (1 − τ )(H0) ⊂ ker Z . To prove Theorem 3, the inclusion

∂
(c)
n

(
H0) ⊂ τ Lxε(Hy ∗ Hy) (2)

is shown. In [7], Kawashima proved that Kawashima’s relation contains the duality formula:

(1 − τ )
(
H0) ⊂ Lxε(Hy ∗ Hy),

and hence,

RHS of (2) = (
1 − (1 − τ )

)
Lxε(Hy ∗ Hy) ⊂ Lxε(Hy ∗ Hy).

Therefore, based on Kawashima’s relation, the inclusion (2) gives Theorem 3.
To prove (2), the following key identity, which involves several operators, is established. For any

w ∈ H, let R w be the operator defined by R w(w ′) = w ′w (w ′ ∈ H). The operator H w on H1 for any
w ∈ H1 given by H w(w ′) = w ∗ w ′ (w ′ ∈ H1) is also introduced. Put χx = τ Lxε.

Key Proposition 5. For any n � 1 and any c ∈ Q, there exists an element w = w(n, c) ∈ Hy such that
∂

(c)
n χx = χx H w on H1. In other words, the following commutative diagram holds:

H1
H w

χx

H1

χx

H0

∂
(c)
n

H0

The proof of this proposition is the technical core of the present paper and will be carried out in
the next two sections. In addition, various beneficial properties of operators, including the commuta-
tivity of ∂

(c)
n ’s, are proven.

Assuming Key Proposition 5, the proof of Theorem 3 proceeds as follows. First, note that it is
sufficient to prove the inclusion ∂

(c)
n (xHy) ⊂ χx(Hy ∗ Hy) instead of (2) because H0 = Q + xHy

and ∂
(c)
n (Q) = {0}. Take any w0 ∈ xHy. Since ε is an automorphism of H and ε(y) = −y, we have

χx(Hy) = xHy, and hence, there is an element w1 ∈ Hy such that w0 = χx(w1). By Key Proposi-
tion 5, there exists w2 ∈ Hy satisfying ∂

(c)
n χx = χx H w2 . Therefore, we have

∂
(c)
n (w0) = ∂

(c)
n χx(w1) = χx H w2(w1) = χx(w2 ∗ w1).

This proves (2) and Theorem 3 is established.
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3. Commutativity of ∂
(c)
n

To prove Key Proposition 5, several properties of various operators are needed, and that the differ-
ent ∂

(c)
n commute with each other must first be proven.

Proposition 6. Let c ∈ Q. For any n,m � 1, we have [∂(c)
n , ∂

(c)
m ] = 0.

As mentioned earlier, the operator ∂
(c)
n is no longer a derivation if c �= 0 and n � 2 and does not

satisfy the Leibniz rule, instead, satisfying the rules such as

∂
(c)
2 (w w ′) = ∂

(c)
2 (w)w ′ + w∂

(c)
2 (w ′) + c∂(c)

1 (w)∂
(c)
1 (w ′),

∂
(c)
3 (w w ′) = ∂

(c)
3 (w)w ′ + w∂

(c)
3 (w ′) + 1

2
c∂(c)

2 (w)∂
(c)
1 (w ′) + 3

2
c∂(c)

1 (w)∂
(c)
2 (w ′)

+ 1

2
c2∂

(c)
1

2
(w)∂

(c)
1 (w ′),

for any w, w ′ ∈ H, which can be checked using the definition of the operator ∂
(c)
n and Proposition 6.

The subalgebra A(c) of linear endomorphisms of H generated by ∂1, θ(c) and H (and hence, ∂
(c)
n ∈ A(c))

has the structure of Connes–Moscovici’s Hopf algebra introduced in [2], which is helpful to calculate
such rule of ∂

(c)
n .

To prove Proposition 6, the following several operators are needed. Recall the left and right multi-
plication operators are both additive as well as multiplicative (Lw w ′ = Lw Lw ′ ) and anti-multiplicative
(R w w ′ = R w ′ R w ), respectively.

Definition 7. Let c ∈ Q. The operators {φ(c)
n }∞n=0 are defined by φ

(c)
0 = idH and the recursive rule:

φ
(c)
n = 1

n

([
θ(c), φ

(c)
n−1

] + 1

2

(
Rzφ

(c)
n−1 + φ

(c)
n−1 Rz

) + c∂1φ
(c)
n−1

)
(3)

for n � 1.

Lemma 8. For n � 1, let ψ
(c)
n = R yφ

(c)
n−1 Rx. The operators {ψ(c)

n }∞n=1 satisfy ψ
(c)
1 = Rxy and the recursive rule

ψ
(c)
n = 1

n − 1

([
θ(c),ψ

(c)
n−1

] − 1

2

(
Rzψ

(c)
n−1 + ψ

(c)
n−1 Rz

) − cψ(c)
n−1∂1

)

for n � 2.

Proof. The lemma is proven by induction on n. The lemma holds for n = 1 because Rxy = R y Rx .
Assume that the lemma is proved for n. Because of the identities [θ(c), Ru] = Rθ(u) + cRu∂1 =
1
2 (Rz Ru + Ru Rz) + cRu∂1 for u = x or y, the recursive rule of φ

(c)
n and the induction hypothesis,

we have

[
θ(c),ψ

(c)
n−1

] = [
θ(c), R yφ

(c)
n−2 Rx

]
= R yφ

(c)
n−2

[
θ(c), Rx

] + R y
[
θ(c), φ

(c)
n−2

]
Rx + [

θ(c), R y
]
φ

(c)
n−2 Rx

= (n − 1)ψ
(c)
n + 1

2

(
Rzψ

(c)
n−1 + ψ

(c)
n−1 Rz

) + cψ(c)
n−1∂1.

Therefore, the lemma is proven. �
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In order to prove Proposition 6, the following general property of a Q-linear map on H is needed.

Lemma 9. A Q-linear map f : H → H satisfying [ f , Rx] = [ f , R y] = 0 and f (1) = 0 is necessarily the zero
map.

Proof. Since f is Q-linear, it is only necessary to show f (w) = 0 for any words w ∈ H. Write w =
u1u2 · · · un with u1, u2, . . . , un ∈ {x, y}. Since [ f , Rui ] = 0 for any 1 � i � n by assumption, we have

f (w) = f (u1u2 · · · un) = f (u1u2 · · · un−1)un = · · · = f (1)u1u2 · · · un = 0. �
Next, the commutativity property of ∂

(c)
n is given. Instead of Proposition 6, the following slightly

general statement is shown.

Proposition 10. For any n,m � 1 and any c, c′ ∈ Q, we have [∂(c)
n , ∂

(c′)
m ] = 0.

Proof. In the following, (An) and (Bn) are shown inductively as (A1), (B1) ⇒ (A2) ⇒ (B2) ⇒ (A3) ⇒
(B3) ⇒ (A4) ⇒ ·· · .

Let sgn(x) = 1 and sgn(y) = −1.

(An) [∂(c)
n , Ru] = sgn(u)ψ

(c)
n for any c ∈ Q and any u ∈ {x, y};

(Bn) [∂(c)
n , ∂

(c′)
i ] = 0 for any 1 � i � n and any c, c′ ∈ Q.

Note that if (Bn)’s for any n � 1 can be shown, the proposition is shown.
Note the following three considerations. First, the statement (An) means that, for any w ∈ H and

any u ∈ {x, y},

∂
(c)
n (wu) = ∂

(c)
n (w)u + sgn(u)ψ

(c)
n (w)

and implies

(αn) [∂(c)
n , Rz] = 0 for any c ∈ Q,

where z = x + y.
Second, let

(Bn,i) [∂(c)
n , ∂

(c′)
i ] = 0 for a fixed 1 � i � n and any c, c′ ∈ Q.

Clearly, the statement (Bn) is equivalent to the union of (Bn,i)’s for 1 � i � n. Because of Lemma 9

and [∂(c)
n , ∂

(c′)
i ](1) = 0 by ∂

(c)
n (Q) = 0, each (Bn,i) is equivalent to the statement

(B′
n,i) [[∂(c)

n , ∂
(c′)
i ], Ru] = 0 for a fixed 1 � i � n, any c, c′ ∈ Q, and any u ∈ {x, y}.

Instead of (Bn+1), (B′
n+1,i)’s for 1 � i � n + 1 are shown by induction on i.

Third, note that we can consider Q[Rz, ∂
(c)
1 , . . . , ∂

(c)
n ] as a commutative polynomial ring if (Ai)

(hence (αi)) and (Bi) hold for all 1 � i � n. Let Q[Rz, ∂
(c)
1 , . . . , ∂

(c)
n ](i) denote the degree-i homogenous

part with deg(Rz) = 1 and deg(∂
(c)
d ) = d. These assumptions together with the recursive rule (3) give

us the fact

(βn) φ
(c)
n ∈ Q[Rz, ∂

(c)
1 , . . . , ∂

(c)
n ](n) for any c ∈ Q.
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Based on the above considerations, the proof of (An) and (Bn) is now given. Since [∂(c)
1 , Ru](w) =

∂
(c)
1 (wu) − ∂

(c)
1 (w)u = w∂

(c)
1 (u) = R

∂
(c)
1 (u)

(w) for w ∈ H and sgn(u)ψ
(c)
1 = sgn(u)Rxy = R

∂
(c)
1 (u)

for any

u ∈ {x, y}, the statement (A1) holds. The statement (B1) is trivial because ∂
(c)
1 = ∂

(c′)
1 = ∂1 for any

c, c′ ∈ Q.
Assume that (An) (hence (αn)) and (Bn) are proven. By the definition of ∂

(c)
n+1,

n
[
∂

(c)
n+1, Ru

] = [[
θ(c), ∂

(c)
n

]
, Ru

]
.

Using Jacobi’s identity, the right-hand side equals

−[[
∂

(c)
n , Ru

]
, θ(c)] − [[

Ru, θ(c)], ∂(c)
n

]
.

By (An) and [θ(c), Ru] = Rθ(u) + cRu∂1 for u ∈ {x, y}, this yields

− sgn(u)
[
ψ

(c)
n , θ(c)] + [

Rθ(u) + cRu∂1, ∂
(c)
n

]
.

Using Rθ(u) = 1
2 (Rz Ru + Ru Rz), (αn), and (Bn),

[
Rθ(u) + cRu∂1, ∂

(c)
n

] = 1

2

(
Rz

[
Ru, ∂

(c)
n

] + [
Ru, ∂

(c)
n

]
Rz

) + c
[

Ru, ∂
(c)
n

]
∂1.

Hence, using (An), we have

[
∂

(c)
n+1, Ru

] = sgn(u)

n

([
θ(c),ψ

(c)
n

] − 1

2

(
Rzψ

(c)
n + ψ

(c)
n Rz

) − cψ(c)
n ∂1

)
= sgn(u)ψ

(c)
n+1,

and therefore (An+1) (as well as (αn+1)) is proven.
In order to prove (Bn+1), assume that all (A j)’s (hence (α j)’s) for 1 � j � n + 1 and all (B j)’s

(hence (β j)’s) for 1 � j � n are proven. As mentioned above, (B′
n+1,i)’s for 1 � i � n + 1 are proven

instead of (Bn+1). Using Jacobi’s identity, we have

[[
∂

(c)
n+1, ∂

(c′)
i

]
, Ru

] = −[[
∂

(c′)
i , Ru

]
, ∂

(c)
n+1

] − [[
Ru, ∂

(c)
n+1

]
, ∂

(c′)
i

]
(4)

for every 1 � i � n + 1. By (Ai) and Lemma 8,

[
∂

(c)
i , Ru

] = sgn(u)ψ
(c)
i = sgn(u)R yφ

(c)
i−1 Rx

for any 1 � i � n + 1, any c ∈ Q, and any u ∈ {x, y}, and hence,

− sgn(u)
(
RHS of (4)

) = [
R yφ

(c′)
i−1 Rx, ∂

(c)
n+1

] − [
R yφ

(c)
n Rx, ∂

(c′)
i

]
.

The right-hand side is equal to the sum

R yφ
(c′)
i−1

[
Rx, ∂

(c)
n+1

] + R y
[
φ

(c′)
i−1, ∂

(c)
n+1

]
Rx + [

R y, ∂
(c)
n+1

]
φ

(c′)
i−1 Rx

− R yφ
(c)
n

[
Rx, ∂

(c′)
i

] − R y
[
φ

(c)
n , ∂

(c′)
i

]
Rx − [

R y, ∂
(c′)
i

]
φ

(c)
n Rx. (5)

If i = 1, we have φ
(c′)
i−1 = φ

(c′)
0 = idH , and hence,

[
φ

(c′)
i−1, ∂

(c)
n+1

] = [
φ

(c′)
0 , ∂

(c)
n+1

] = 0.
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Thanks to (βn) and the identity ∂
(c′)
1 = ∂

(c)
1 (= ∂1), we also have

[
φ

(c)
n , ∂

(c′)
i

] = [
φ

(c)
n , ∂

(c′)
1

] = 0.

Thus, in this case, the entire expression (5) turns into

−R yψ
(c)
n+1 + ψ

(c)
n+1 Rx + R yφ

(c)
n ψ

(c′)
1 − ψ

(c′)
1 φ

(c)
n Rx (6)

by (A1) and (An+1). Using Lemma 8, ψ
(c′)
1 = R y Rx and Rz = Rx + R y , we obtain the expression (6)

equals −R y Rzφ
(c)
n Rx + R yφ

(c)
n Rz Rx . The right-hand side becomes zero because [Rz, φ

(c)
n ] = 0 by (βn).

Thus, (B′
n+1,1) (as well as (Bn+1,1)) is proven.

In order to conclude the expression (5) equals zero for i with 1 < i � n + 1, assume that (Bn+1,i−1)

(hence (B′
n+1,i−1)) is proven. We then obtain

[
φ

(c′)
i−1, ∂

(c)
n+1

] = 0

based on (βi−1), (Bn+1,i−1), and (αn+1). In addition, we obtain

[
φ

(c)
n , ∂

(c′)
i

] = 0 for 1 < i � n + 1,

by (βn), (Bn), and (αi) (when 1 < i < n + 1) or by (βn), (Bn+1,n), and (αn+1) (when i = n + 1). Thus,
in this case, the entire expression (5) turns into

−R yφ
(c′)
i−1ψ

(c)
n+1 + ψ

(c)
n+1φ

(c′)
i−1 Rx + R yφ

(c)
n ψ

(c′)
i − ψ

(c′)
i φ

(c)
n Rx (7)

by (Ai) and (An+1). Using Lemma 8 and Rz = Rx + R y , we obtain the expression (7) equals

−R yφ
(c′)
i−1 Rzφ

(c)
n Rx + R yφ

(c)
n Rzφ

(c′)
i−1 Rx . The right-hand side becomes zero because the operators φ

(c′)
i−1,

φ
(c)
n and Rz commute with one another. Thus, (B′

n+1,i) (as well as (Bn+1,i)) holds, and by induction,
we obtain (Bn+1). This concludes the proof of the proposition. �

According to (βn), φ
(c)
n commutes with Rz , and so the recursive rule (3) is simplified as

φ
(c)
n = 1

n

([
θ(c), φ

(c)
n−1

] + (Rz + c∂1)φ
(c)
n−1

)
. (8)

Masanobu Kaneko pointed out a formula for φ
(c)
n ,

Rzφ
(c)
n = 1

n! ad
(
θ(c))n

(Rz).

This is shown by using [θ(c), Rz] = Rθ(z) + cRz∂1 and the recursive formula (8).
Using Proposition 10, we also obtain:

Proposition 11. We have ∂
(c)
n (Q · x + Q · y + H0) ⊂ H0 for any integer n � 1 and any c ∈ Q.

Proof. By Lemma 8 and (An) in the proof of Proposition 10, we have

∂
(c)
n (wu) = ∂

(c)
n (w)u + sgn(u)φ

(c)
n−1(wx)y

(
w ∈ H, u ∈ {x, y}). (9)
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This implies

∂
(c)
n

(
Q · x + H1) ⊂ H1. (10)

Next, the proposition is shown by induction on n. The proposition holds for n = 1 because ∂
(c)
1 = ∂1.

Assume that the proposition is proven for n − 1. Using Eq. (9), (βn−1), and ∂
(c)
n (1) = 0, by induction

on the degree of a word, we find that both ∂
(c)
n (x) and ∂

(c)
n (xwy) for any words w ∈ H begin with

the letter x (hence, using (10), ∂
(c)
n (x), ∂(c)

n (xwy) ∈ H0). In addition, because of (αn), we have ∂
(c)
n (z) =

∂
(c)
n Rz(1) = Rz∂

(c)
n (1) = 0 where z = x + y, and hence, we have ∂

(c)
n (y) = −∂

(c)
n (x) ∈ H0. Therefore, the

proposition is proven for n. �
4. Proof of Key Proposition

In this section, the proof of Key Proposition 5 is given.
Denote by H1

n the weight n homogenous part of H1. Recall that zk = xk−1 y for k � 1 as defined in
Section 2. Let W be the Q-vector space generated by {H w | w ∈ H1}, and Wn the vector subspace of
W generated by {H w | w ∈ H1

n}. Let W′ be the Q-vector space generated by {Lzk H w | k � 1, w ∈ H1},
and W′

n the vector subspace of W′ generated by {Lzk H w | 1 � k � n, w ∈ H1
n−k}. The Q-linear map

λ : W′ → W is defined by λ(Lzk H w) = Hzk w .

Remark 12. Here, we show the well-definedness of the map λ. Assume that

∑
(zk,w)

C(zk,w)Lzk H w = 0 (∈ W), (11)

where the sum is over different pairs of words (zk, w). Applying (11) to 1 ∈ H, we have

∑
(zk,w)

C(zk,w)zk w = 0.

Then, for each zk , we have

∑
w

C(zk,w)w = 0

where the sum is over different words w . Therefore, each coefficient C(zk,w) becomes zero, and hence,
Lzk H w ’s are linearly independent.

Recall that ε ∈ Aut(H) has been defined by ε(x) = x + y, ε(y) = −y, the anti-automorphism τ on
H by τ (x) = y, τ (y) = x, and χx = τ Lxε. Then, we have:

Proposition 13. Let n � 1. Then the following two statements, (Cn) and (Dn) hold:

(Cn) ετφ
(c)
n−1 Rxτε ∈ W′

n;

(Dn) χ−1
x ∂

(c)
n χx = −λ(ετφ

(c)
n−1 Rxτε) ∈ Wn on H1 .

By (10), the expression χ−1
x = ετ R−1

y in (Dn) has a well-defined meaning. According to (Dn), there
exists an element w ∈ Hy such that

χ−1
x ∂

(c)
n χx = H w , (12)
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which is equivalent to Key Proposition 5 in Section 2. Therefore, Proposition 13 is proven instead of
Key Proposition 5.

Remark 14. Note that w = w(n, c) in (12) can be determined as follows. Equation (12) holds on H1,
and hence on Q. Since ∂

(c)
n (y) ∈ H0 by Proposition 11, R−1

y ∂
(c)
n (y) ∈ xH. Hence,

χ−1
x ∂

(c)
n χx(1) = χ−1

x ∂
(c)
n (y) ∈ ετ (xH) = ε(Hy) = Hy.

Since H w(1) = w , we have w = χ−1
x ∂

(c)
n (y) (∈ Hy) by (12).

For the proof of Proposition 13, following lemmata are needed.

Lemma 15. For any X ∈ W′ and any l � 1, we have [λ(X), Lzl ] = X Lzl + Lxl X .

Proof. It is sufficient to show the case in which X = Lzk H w , which follows directly from

[Hzk w , Lzl ] = Lzk H w Lzl + Lzk+l H w , (13)

the harmonic product rule. �
Lemma 16. For any k, l � 1, we have (λ − 1)(W′

k)Lzl ⊂ W′
k+l .

Proof. The proof follows directly from (13). �
Lemma 17. We have (λ − 1)(W′

k) · (λ − 1)(W′
l) ⊂ (λ − 1)(W′

k+l) for any k, l � 1.

Proof. Let d and d′ be the weights of words w and w ′ , respectively. The assertion (λ − 1)(Lzk H w) ·
(λ − 1)(Lzl H w ′ ) ∈ (λ − 1)(W′

k+l+d+d′ ) is only necessary to show.

LHS = (Hzk w − Lzk H w)(Hzl w ′ − Lzl H w ′)

= Hzk w∗zl w ′ − Hzk w Lzl H w ′ − Lzk H w∗zl w ′ + Lzk H w Lzl H w ′

= Hzk(w∗zl w ′)+zl(zk w∗w ′)+zk+l(w∗w ′) − (Lzk H w Lzl + Lzl Hzk w + Lzk+l H w)H w ′

− Lzk H w∗zl w ′ + Lzk H w Lzl H w ′

= Hzk(w∗zl w ′) − Lzk H w∗zl w ′ + Hzl(zk w∗w ′) − Lzl Hzk w∗w ′ + Hzk+l(w∗w ′) − Lzk+l H w∗w ′

= (λ − 1)(Lzk H w∗zl w ′ + Lzl Hzk w∗w ′ + Lzk+l H w∗w ′).

∈ RHS.

Hence, the lemma is proven. �
Lemma 18. For any X ∈ W′ , we have λ(X)(1) = X(1).

Proof. (λ − 1)(Lzk H w)(1) = Hzk w(1) − Lzk H w(1) = zk w − zk w = 0. �
Lemma 19. Let X ∈ W. If X(1) = 0 and [X, Lzk ] = 0 for any k � 1, we have X = 0.
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Proof. If [X, Lzk ] = 0 for any k � 1,

X(zk1 · · · zkn ) = zk1 X(zk2 · · · zkn ) = · · · = zk1 · · · zkn X(1) = 0. �
Using their validity and various properties obtained in the proof of Proposition 10, Proposition 13

can be shown as follows.

Proof. In the following, (Cn) and (Dn) are proven inductively as (C1) ⇒ (D1) ⇒ (C2) ⇒ (D2) ⇒
(C3) ⇒ ·· · .

Since ετφ
(c)
0 Rxτε = −L y ∈ W′

1, the claim (C1) holds.
Assume that (Cn) is proven. Note that we have the equality

R−1
y ∂

(c)
n R y = ∂

(c)
n − φ

(c)
n−1 Rx (14)

based on (An), Lemma 8, and Proposition 11. Then, we obtain

[
χ−1

x ∂
(c)
n χx, Lzk

] = χ−1
x ∂

(c)
n χxLzk − Lzkχ

−1
x ∂

(c)
n χx

= ετ∂
(c)
n τεLzk − ετφ

(c)
n−1 RxτεLzk − Lzkετ∂

(c)
n τε + Lzkετφ

(c)
n−1 Rxτε. (15)

Note that

εLx = Lzε, εL y = −L yε, τ Lx = R yτ , τ L y = Rxτ . (16)

Using (16), the first term of the expression (15) turns into −ετ∂
(c)
n Rzk−1 Rxτε. According to (An), (αn),

and Lemma 8,

−ετ∂
(c)
n Rzk−1 Rxτε = −ετ Rzk−1

(
Rx∂

(c)
n + R yφ

(c)
n−1 Rx

)
τε.

Again apply (16). Then, two terms cancel and two others combine to the second term on the right in
the statement below it.

[
χ−1

x ∂
(c)
n χx, Lzk

] = −ετφ
(c)
n−1 RxτεLzk − Lxkετφ

(c)
n−1 Rxτε.

This is equal to [λ(−ετφ
(c)
n−1 Rxτε), Lzk ] by Lemma 15 and (Cn). Moreover,

χ−1
x ∂

(c)
n χx(1) = ε

(
τ∂

(c)
n τ − τφ

(c)
n−1 Rxτ

)
ε(1) = −ετφ

(c)
n−1 Rxτε(1)

because of (14) and ∂
(c)
n (1) = 0. By Lemma 18, this equals −λ(ετφ

(c)
n−1 Rxτε)(1). Hence, by Lemma 19,

we have (Dn): χ−1
x ∂

(c)
n χx = −λ(ετφ

(c)
n−1 Rxτε) on H1.

Next, assume that (Dn) is proven. Using (14) and (Dn), we obtain

ετ∂
(c)
n τε = χ−1

x ∂
(c)
n χx + ετφ

(c)
n−1 Rxτε = (λ − 1)

(−ετφ
(c)
n−1 Rxτε

)
.

According to (Bn), we have the expression

φ
(c)
n =

n∑
f (c)

i Rzn−i

(
f (c)

i ∈ Q
[
∂

(c)
1 , . . . , ∂

(c)
i

]
(i)

)
.

i=0
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Hence,

ετφ
(c)
n Rxτε = ετ

n∑
i=0

f (c)
i Rzn−i Rxτε = −

n∑
i=0

ετ f (c)
i τεLzn+1−i .

By Lemma 17, this is an element of
∑n

i=0(λ − 1)(W′
i)Lzn+1−i . Then, by Lemma 16, this is a subset

of W′
n+1. Hence, (Cn+1) is proven. �

5. Alternative extension of ∂n

In this section, an alternative operator ∂̂
(c)
n is defined instead of ∂

(c)
n in Definition 2. Several proper-

ties of ∂̂
(c)
n ’s are discussed here. In particular, ∂

(c)
n and ∂̂

(c)
n give the same class of relations for MZV’s.

Definition 20. Let c ∈ Q and H the same operator as in Definition 2. For each integer n � 1, the
Q-linear map ∂̂

(c)
n : H → H is defined by

∂̂
(c)
n = 1

(n − 1)! ad
(
θ̂ (c))n−1

(∂1)

where θ̂ (c) is the Q-linear map defined by θ̂ (c)(x) = θ(x), θ̂ (c)(y) = θ(y) and the rule

θ̂ (c)(w w ′) = θ̂ (c)(w)w ′ + w θ̂ (c)(w ′) + cH(w)∂1(w ′) (17)

for any w, w ′ ∈ H.

The operator ∂̂
(c)
n gives another quasi-derivation operator (with respect to n and θ̂ (c) for the given

c ∈ Q). The only difference between θ(c) and θ̂ (c) is the order of H and ∂1 appearing in the right-hand
side of (1) and (17).

Lemma 21. For any c ∈ Q, we have θ̂ (c) = θ(−c) + c∂1(H − 1).

Proof. Calculate the recursive rules for both sides. �
Proposition 22. For any n � 1 and any c ∈ Q, we have ∂̂

(c)
n ∈ Q[∂(−c)

1 , . . . , ∂
(−c)
n ].

Proof. The proposition holds for n = 1 because ∂̂
(c)
1 = ∂

(−c)
1 = ∂1. Assume that the proposition is

proven for n. Using Lemma 21, we obtain

n∂̂
(c)
n+1 = [

θ̂ (c), ∂̂
(c)
n+1

] = [
θ(−c) + c∂1(H − 1), ∂̂

(c)
n

] = [
θ(−c), ∂̂

(c)
n

] + c(n − 1)∂1∂̂
(c)
n .

Hence, by induction, the proposition holds for n + 1. �
Example 23. The polynomials in Proposition 22 can be constructed explicitly. For example,

∂̂
(c)
2 = ∂

(−c)
2 + c∂2

1 ,

∂̂
(c)
3 = ∂

(−c)
3 + 2c∂1∂

(−c)
2 + c2∂3

1 ,

∂̂
(c)
4 = ∂

(−c)
4 + 7

3
c∂1∂

(−c)
3 + 2

3
c∂(−c)

2

2 + 3c2∂2
1 ∂

(−c)
2 + c3∂4

1 .
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Corollary 24. For any rational numbers c, c′ , and any positive integers n,m, we have [∂(c)
n , ∂̂

(c′)
m ] = 0.

Proof. The proof follows immediately from Propositions 10 and 22. �
Lemma 25. For any rational number c, we have θ̂ (c) = τθ(−c)τ .

Proof. By direct calculations, each image of x and y of H coincides. Write w = w1 w2 where w1
and w2 are words of H with deg(wi) � 1, i = 1,2. Then,

τθ(−c)τ (w) = τθ(−c)(τ (w2)τ (w1)
)

= τ
(
θ(−c)τ (w2)τ (w1) + τ (w2)θ

(−c)τ (w1) − c∂1τ (w2)Hτ (w1)
)

= w1τθ(−c)τ (w2) + τθ(−c)τ (w1)w2 − cτ Hτ (w1)τ∂1τ (w2).

Use τ Hτ = H , τ∂1τ = −∂1 to complete the proof. �
Proposition 26. For any integer n � 1 and any rational number c, we have ∂̂

(c)
n = −τ∂

(−c)
n τ .

Proof. The proof is given by induction on n. The proposition holds for n = 1. Assume that the propo-
sition is proven for n. Using Lemma 25, we have

(n + 1)∂̂
(c)
n+1 = [

θ̂ (c), ∂̂
(c)
n

] = −[
τθ(−c)τ , τ ∂

(−c)
n τ

] = −τ
[
θ(−c), ∂

(−c)
n

]
τ = −nτ∂

(−c)
n+1 τ .

Thus, the proposition holds for n + 1. �
By Proposition 26, we have ∂̂

(c)
n (H0) ⊂ ker Z for any n � 1 and any c ∈ Q, which assigns the same

space to Theorem 3 because of Proposition 22.

Appendix A. A new proof of the derivation relation

In the case of c = 0 in Theorem 3, we have an alternative proof of the derivation relation for
MZV’s, reducing to Kawashima’s relation. For this, we introduce certain automorphisms on the algebra
Ĥ = Q〈〈x, y〉〉. (See [5] for details.) Let Φ be the automorphism on Ĥ defined by Φ(x) = x and Φ(z) =
z(1 + y)−1. The automorphism Φ satisfies

1

1 + y
∗ w = 1

1 + y
Φ(w)

for w ∈ H1 [5, Proposition 6]. Let � be exp(
∑

n�1
∂n
n ) which is the automorphism on Ĥ char-

acterized by �(x) = x(1 − y)−1 and �(z) = z. Then, we have Φ = ε�ε on Ĥ. This implies that
H 1

1+y
= εL−1

x �Lxε on Ĥ1, the completion of H1. Hence, (� − 1)(H0) ⊂ Lxε(Hy ∗ Hy). Expanding the

exponential map, each degree-i part of �−1 sends H0 to Lxε(Hy ∗Hy), and, therefore, the derivation
relation is shown again to be a class of relations of MZV’s according to Kawashima’s relation in Fact 4.

Appendix B. Ohno’s relation and the derivation relation

For n � 1, the derivation Dn on H is defined by Dn(x) = 0, Dn(y) = xn y. The map D̄n = τ Dnτ is
another derivation on H such that D̄n(x) = xyn , D̄n(y) = 0. Let

σ =
∞∑

σl = exp

( ∞∑ Dn

n

)
, σ̄ =

∞∑
σ̄l = exp

( ∞∑ D̄n

n

)
.

l=0 n=1 l=0 n=1
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The maps σ , σ̄ are automorphisms on H. Putting D = ∑∞
n=1

Dn
n , we find Dm(x) = 0, Dm(y) =

(− log(1 − x))m y for m � 1, and hence,

σ(x) = x, σ (y) = 1

1 − x
y.

Since the map σ is an automorphism,

σ
(
xk1−1 y · · · xkn−1 y

) = xk1−1 1

1 − x
y · · · xkn−1 1

1 − x
y

=
∞∑

l=0

∑
e1+···+en=l
e1,...,en�0

xk1+e1−1 y · · · xkn+en−1 y,

and hence,

σl
(
xk1−1 y · · · xkn−1 y

) =
∑

e1+···+en=l
e1,...,en�0

xk1+e1−1 y · · · xkn+en−1 y.

Thus, Ohno’s relation introduced in [8] can be stated as σl(1 − τ )(H0) ⊂ ker Z for any l � 0. If l = 0,
Ohno’s relation is reduced to the duality formula.

The automorphisms σ , σ̄ and �, which has been defined in Appendix A, have a property as
follows. (See [5, Theorem 4(ii)].)

Proposition 27. � = σ̄ σ−1 .

According to this proposition, we have σ − σ̄ = (1 −�)σ . Since σ̄l = τσlτ and the duality formula
is included in Ohno’s relation, this identity implies that Ohno’s relation is equivalent to the union of
the duality formula and the derivation relation.
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