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1 Introduction

Quantum effects in AdS spacetimes are important in the AdS/CFT correspondence in

trying to go beyond the conventional tree level gravity description. The leading effects

come at one loop and capture, for instance, important information about the spectrum

of the theory. In the language of the boundary gauge theory these come from diagrams

which are suppressed by 1
N2 compared to the planar ones. For example, this genus one
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contribution to the free energy of the QFT captures all the quadratic fluctuations about

the bulk AdS background. From a worldsheet perspective, for the closed string theory in

the bulk, this is the torus contribution to the free energy.

The string theory sigma model with an AdS target space is as yet fairly intractable

at the quantum level. Thus some important clues about the worldsheet structure might

be gained from knowing the spectrum of the gauge theory and trying to reproduce the

one loop answer coming from the quadratic fluctuations of the dual fields. Typically the

quadratic terms involve Laplacians acting on arbitrary tensor fields. Evaluation of the

path integral at quadratic level then requires one to compute the determinants of such

general laplacians about an AdS background (more precisely a thermal quotient to define

a generating function). The best way to evaluate these is the heat kernel method. This, in

addition, has the virtue that the proper time that enters here has an interpretation in terms

of the modulus of the genus one worldsheet [1]. Essentially the heat kernel captures the

first quantised description of the particles which go into constituting the string spectrum.

Recall that given the normalised eigenfunctions ψ
(S)
n,a (x) of the Laplacian ∆(S) for a

spin-S field on a manifold Md+1, and the spectrum of eigenvalues E
(S)
n , we can define the

heat kernel between two points x and y as

K
(S)
ab (x, y; t) = 〈y, b|et∆(S) |x, a〉 =

∑

n

ψ(S)
n,a (x)ψ

(S)
n,b (y)∗ etE

(S)
n , (1.1)

where a and b are local Lorentz indices for the field. We can trace over the spin and

spacetime labels to define the traced heat kernel as

K(S) (t) ≡ Tret∆(S) =

∫

M

√
gdd+1x

∑

a

K(S)
aa (x, x; t) . (1.2)

The one-loop partition function is related to the trace of the heat kernel through

lnZ(S) = ln det
(

−∆(S)

)

= Tr ln
(

−∆(S)

)

= −
∫ ∞

0

dt

t
Tret∆(S) . (1.3)

For a general manifold, the computation of the heat kernel is a formidable task, even for

the scalar Laplacian. Typically one has asymptotic results. However, for symmetric spaces

such as spheres and hyperbolic spaces (Euclidean AdS) there are many simplifications.

This is because these spaces can be realised as cosets G/H and one can therefore use the

powerful methods of harmonic analysis on group manifolds. In [2] these techniques were

used to explicitly compute the heat kernel on thermal AdS3 for fields of arbitrary spin.

Though [2] exploited the group theory, it also used at several places the particular fact

that S3 (from which one continued to AdS3) itself is the group manifold SU(2). In fact,

many properties of SU(2) were used in intermediate steps and it was not completely obvious

how these generalise to higher dimensional spheres or AdS spacetimes.

In this paper, we will generalise the methods of [2] to compute the heat kernel for

the Laplacian for arbitrary spin tensor fields on thermal AdS spacetimes. This therefore
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includes the cases of AdS4, AdS5 and AdS7 which play a central role in the AdS/CFT

correspondence. Since we are primarily interested in evaluating the one-loop partition

function for a spin-S particle, we shall concentrate on the traced heat kernel though we

will see that the techniques are sufficiently general. One may, for instance, also adapt these

techniques to evaluate other objects of interest such as the (bulk to bulk) propagator.

We shall mostly focus on M = AdS2n+1/Γ where Γ is the thermal quotient. For

practical reasons we will obtain the answer for thermal AdS by analytic continuation of

the answer for an appropriate thermal quotient of the N -sphere.1 As explained in [2]

there are good reasons to believe that this analytic continuation of the harmonic analysis

works for odd dimensional spheres and hyperboloids (Euclidean AdS). For even dimensional

hyperboloids there are some additional discrete representations other than the continuous

ones one obtains by a straightforward analytic continuation. However, this additional set

of representations does not contribute for Laplacians over a wide class of tensor fields,

which in particular include the symmetric transverse traceless (STT) tensors. We provide

necessary details in appendix D.

We expect that the results here will have many applications. In the three dimensional

case the corresponding results have been used to clarify the quantum nature of topologically

massive gravity in AdS3 [3]. They were also used to show that the higher spin gauge theories

(with spins s = 2, 3 . . . N) realise WN symmetry at the quantum level [4] - generalising the

classical Brown-Henneaux like result for such theories [5, 6]. This was an important input

in formulating a duality between these higher spin theories (with additional scalar fields)

and WN minimal models [7].

In the higher dimensional cases of interest here one can apply our results to study the

Vasiliev higher spin theories. Such theories are conceivably related to a subsector of free

Yang-Mills theories and perhaps the higher spin theories are higgsed in an interesting way

in going away from the free theory. Evaluating the one loop fluctuations in the bulk can

help us in checking these conjectures with more precision.2

The plan of the paper is as follows. In the next section we briefly review the harmonic

analysis on homogeneous spaces that is the mainstay of these computations and illustrate

it with the case of S2n+1. In section 3, we describe how to generally consider quotients

of these symmetric spaces. Section 4 describes the analytic continuation of S2n+1 to the

Euclidean hyperboloids. We evaluate the coincident heat kernels for the general class of

symmetric tensor representations and check against existing results in the literature. In

section 5 we obtain the answer for the traced heat kernel on thermal AdS2n+1. Section 6

contains an application to the scalar one loop partition function. Finally section 7 has

some concluding remarks.

1The identification we make on the N-sphere is one that gets continued to the thermal quotient of AdS

under the analytic continuation. We shall therefore refer to it as the thermal quotient on the sphere.
2We observe here that while the full action of Vasiliev theories is not known in dimensions higher than

three, its quadratic part, which is all that is relevant for matching with the spectrum of the dual gauge

theory in the large N limit, is well understood [8, 9]. See [5] for a recent review.

– 3 –



J
H
E
P
1
1
(
2
0
1
1
)
0
1
0

2 The heat kernel on homogeneous spaces

The heat kernel of the spin-S Laplacian3 may be evaluated over the spacetime manifold

M by solving the appropriate heat equation. Alternatively, one may attempt a direct

evaluation by constructing the eigenvalues and eigenfunctions of the spin-S Laplacian and

carrying out the sum over n that appears in (1.1). Both these methods quickly become

forbidding when applied to an arbitrary spin-S field. However, if M is a homogeneous

space G/H, then the use of group-theoretic techniques greatly simplifies the evaluation.

The main simplifications arise from the following facts which we will review below and then

heavily utilise:

1. The eigenvalues E
(S)
n of the Laplacian ∆(S) are determined in terms of the quadratic

Casimirs of the symmetry group G and the isotropy subgroup H. There is thus a

large degeneracy of eigenvalues.

2. The eigenfunctions ψ
(S)
n,a(x) are matrix elements of unitary representation matri-

ces of G.

3. This enables one to carry out the sum over degenerate eigenstates using the group

multiplication properties of the matrix elements. Thus a large part of the sum in (1.1)

can be explicitly carried out.

We begin with a brief recollection of some basic facts about harmonic analysis on coset

spaces. This will collate the necessary tools with which we evaluate (1.1) and (1.2), and

will set up our notation. The interested reader is referred to [10–12] for introduction and

details and to [2] for explicit examples of these constructions. Given compact Lie groups

G and H, where H is a subgroup of G, the coset space G/H is constructed through the

right action of H on elements of G

G/H = {gH}. (2.1)

(We will also need to consider left cosets, Γ\G, where Γ will act on elements of G from

the left.)

We recall that G is the principal bundle over G/H with fibre isomorphic to H. Let π

be the projection map from G to G/H, i.e.

π (g) = gH ∀g ∈ G. (2.2)

Then a section σ (x) in the principal bundle is a map

σ : G/H 7→ G, such that π ◦ σ = e, (2.3)

3By spin-S we refer to the representation under which the field transforms under tangent space rotations.

In the case of S2n+1 or (euclidean) AdS2n+1, this will be a representation of SO(2n + 1). The Laplacian is

that of a tensor field transforming in this representation. In the case of spheres and hyberboloids we will

consider the Laplacian with the Christoffel connection.
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where e is the identity element in G, and x are coordinates in G/H. A class of sections

which will be useful later is of the form

σ (gH) = g◦, (2.4)

where g◦ is an element of the coset gH, which is chosen by some well-defined prescription.

The so called ‘thermal section’ that we choose in section 3.1 is precisely of this form. Let

us label representations of G by R and representations of H by S. We will sometimes refer

to representations S of H as spin-S representations.4 The vector space which carries the

representation R is called VR, and has dimension dR, while the corresponding vector space

for the representation S is VS of dimension dS .

Eigenfunctions of the spin-S Laplacian are then given by the matrix elements

ψ(S)I
a (x) = U (R)

(

σ (x)−1
)

a

I
, (2.5)

where S is the unitary irreducible representation of H under which our field transforms,

and R is any representation of G that contains S when restricted to H. a is an index

in the subspace VS of VR, while I is an index in the full vector space VR. Generally, a

given representation S can appear more than once in R. However, we shall be interested in

the coset spaces SO (N + 1) /SO (N) and SO (N, 1) /SO (N), for which a representation S

appears at most once [13, 14]. We have therefore dropped a degeneracy factor associated

with the index a, which appears in the more complete formulae given in [14].

The corresponding eigenvalues are given by

− E
(S)
R,I = C2 (R) − C2 (S) . (2.6)

The index n for the eigenvalues of the spin-S Laplacian that appeared in (1.1) is therefore

a pair of labels, viz. (R, I),5 where the eigenfunctions that have the same label R but a

different I are necessarily degenerate. We will therefore drop the subscript I for E(S).

The expression (1.1) for the heat kernel then reduces to

K
(S)
ab (x, y; t) =

∑

R,I

a
(S)
R ψ

(S)
(R,I),a (x)ψ

(S)
(R,I),b (y)∗ etE

(S)
R , (2.7)

where a
(S)
R = dR

dS

1
VG/H

is a normalisation constant (see appendix A). This can be further

simplified by putting in the expression (2.5) for the eigenfunctions.

K
(S)
ab (x, y; t) =

∑

R

dR
∑

I=1

a
(S)
R U (R)

(

σ (x)−1
)

a

I
[

U (R)
(

σ (y)−1
)

b

I
]∗
etE

(S)
R

=
∑

R

a
(S)
R U (R)

(

σ (x)−1 σ (y)
)

a

b
etE

(S)
R , (2.8)

4In the case of sphere and hyperboloids, H is isomorphic to the group of tangent space rotations for the

manifold G/H . See footnote 1.
5Note that a labels the components of the eigenfunction and is not a part of the index n.
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where we have used the fact that the U (R) furnish a unitary representation ofG. As an aside,

we note that this matrix representation of the group composition law is the generalisation

of the addition theorem for spherical harmonics on S2 to arbitrary homogeneous vector

bundles on coset spaces.

To establish notation for later use, we define the heat kernel with traced spin indices

K(S) (x, y; t) ≡
dS
∑

a=1

K(S)
aa (x, y; t) =

∑

R

a
(S)
R TrS

(

U (R)
(

σ (x)−1 σ (y)
))

etE
(S)
R , (2.9)

where the symbol

TrS (U) ≡
dS
∑

a=1

〈a, S|U|a, S〉, (2.10)

and can be thought of as a trace over the subspace VS of VR. Note that this restricted

trace is invariant under a unitary change of basis of VS and not invariant under the most

general unitary change of basis in VR.

2.1 The heat kernel on S2n+1

As a prelude to evaluating the traced heat kernel on the thermal quotient of the odd-

dimensional sphere, let us evaluate (2.8) for the case without any quotient. That is, we

focus first on S2n+1 ≃ SO(2n + 2)/SO(2n + 1). We will describe the eigenfunctions (2.5)

and define the sum over R explicitly. This will be useful when we analytically continue our

results to the corresponding hyberbolic space. We begin by recalling some facts from the

representation theory of special orthogonal groups.

Unitary irreducible representations of SO(2n+2) are characterised by a highest weight,

which can be expressed in the orthogonal basis as the array

R = (m1,m2, . . . ,mn,mn+1) , m1 ≥ m2 ≥ . . . ≥ mn ≥ |mn+1| ≥ 0 (2.11)

where the m1 . . .mn+1 are all (half-)integers. Similarly, unitary irreducible representations

of SO (2n+ 1) are characterised by the array

S = (s1, s2, . . . , sn) , s1 ≥ s2 ≥ . . . ≥ sn ≥ 0, (2.12)

where the s1 . . . sn are all (half-)integers.

Then the quadratic Casimirs for the unitary irreducible representations for an orthog-

onal group of rank n+ 1 can be expressed as (see e.g. [13, 15]).

C2 (m1, . . . ,mn+1) = m2 + 2r ·m. (2.13)

Here the dot product is the usual euclidean one, and the Weyl vector r is given by

ri =

{

n− i+ 1 if G = SO(2n + 2) ,
(

n+ 1
2

)

− i if G = SO(2n + 1) ,

}

(2.14)

where i runs from 1 to n+ 1.
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Let us now consider the expression (2.8) for the spin-S Laplacian on S2n+1. The

eigenvalues E
(S)
R are given by (2.6) and (2.13) and may be written down compactly as

− E
(S)
R = m2 + 2rSO(2n+2) ·m− s2 − 2rSO(2n+1) · s. (2.15)

The corresponding eigenfunctions are given by (2.5) where we have to specify which are

the representations R of SO (2n + 2) that contain a given representation S of SO (2n+ 1).

This is determined by the branching rules, which for our case state that a representation

R given by (2.11) contains the representation S if

m1 ≥ s1 ≥ m2 ≥ s2 ≥ . . . ≥ mn ≥ sn ≥ |mn+1|, (mi − si) ∈ Z. (2.16)

Using these branching rules, one can show that the expression that appears on the right

of (2.15) is indeed positive definite, so that the eigenvalue itself is negative definite as per

our conventions.

These rules further simplify if we restrict ourselves to symmetric transverse traceless

(STT) representations of H. These tensors of rank s correspond to the highest weight

(s, 0, . . . , 0). In this case, some of these inequalities get saturated, and one obtains the

branching rule

m1 ≥ s = m2 ≥ 0, (2.17)

with all other mi, si zero,6 and the equality follows from requiring that R contain S in

the maximal possible way. Essentially, this is equivalent to the transversality condition.

The sum over R that appears in (2.8) is now a sum over the admissible values of m1 in

the above inequality. Thus if we restrict ourselves to evaluating the heat kernel for STT

tensors, then we will be left with a sum over m1 only.

The expression (2.15) for the eigenvalue also simplifies in this case. With the benefit

of hindsight, we will write this in a form that is suitable for analytic continuation to AdS

− E
(S)
R = (m1 + n)2 − s− n2. (2.18)

Using these tools, one can write down a formal expression for the heat kernel for a spin-S

particle between an arbitrary pair of points x and y on S2n+1 using (2.8). This is given by

KS
ab (x, y; t) =

∑

mi

n!

2πn+1

dR
dS

U (R)
(

σ (x)−1 σ (y)
)

a

b
etE

(S)
R , (2.19)

where we have simply expanded out the sum over R into a sum over the permissible values

of mi determined by (2.16), and inserted the expression for the volume of the (2n+ 1)-

sphere. Expressions for the dimensions dR and dS are well known (see for example [13, 15]).

We list them here for the reader’s convenience.

dR =
n+1
∏

i<j=1

l2i − l2j
µ2
i − µ2

j

, dS =
n
∏

i<j=1

l̃2i − l̃2j
µ̃2
i − µ̃2

j

n
∏

i=1

l̃i
µ̃i
, (2.20)

6For the special case of n = 1, i.e. S3, the branching rule is m1 ≥ s = |m2| ≥ 0.
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where li = mi + (n+ 1) − i, µi = (n+ 1) − i, l̃i = si + n − i+ 1
2 , and µ̃i = n − i + 1

2 . As

explained above, this expression further simplifies for the STT tensors, and we obtain

KS
ab (x, y; t) =

∑

m1

n!

2πn+1

d(m1,s)

ds
U (m1,s)

(

σ (x)−1 σ (y)
)

a

b
etE

(S)
R , (2.21)

where the labels (m1, s) and s that appear on the r.h.s. are shorthand for R =

(m1, s, 0 . . . , 0) and S = (s, 0 . . . , 0) respectively. This expression should be compared

with the equation (3.9) obtained in [2] for the case of 3 dimensions. The traced heat kernel

for the STT tensors is then given by

KS (x, y; t) =
∑

m1

n!

2πn+1

d(m1,s)

ds
TrS

(

U (m1,s)
(

σ (x)−1 σ (y)
))

etE
(S)
R . (2.22)

As mentioned earlier, we can in principle use these formulae to construct explicit ex-

pressions for the heat kernel between two points à la [2], and thus for the bulk to bulk

propagator. This would, however also require using explicit matrix elements of SO (2n+ 2)

representations, and we shall not pursue this direction further here.

3 The heat kernel on quotients of symmetric spaces

We consider the heat kernel on the quotient spaces Γ\G/H where Γ is a discrete group

which can be embedded in G. Though it is not essential to our analysis, we will assume

that Γ is of finite order and is generated by a single element. This is indeed true for the

quotients (3.3) we consider here. In particular, for the thermal quotient on the N -sphere,

Γ is isomorphic to ZN . To evaluate the heat kernel (1.1) on this space, a choice of section

that is compatible with the quotienting by Γ is useful. By this we mean that if γ ∈ Γ acts

on points x = gH ∈ G/H by γ : gH 7→ γ ·gH, then a section σ (x) is said to be compatible

with the quotienting Γ iff

σ (γ (x)) = γ · σ (x) . (3.1)

The utility of this choice of section will become clear when we explicitly evaluate the traced

heat kernel (1.2) for such geometries.

3.1 The thermal quotient of S5

As an example, we consider the thermal quotient of S5. This will serve as a useful prototype

to keep in mind. We shall also see that we can extrapolate the analysis to the general

odd-dimensional sphere. To begin with, let us express the thermal quotient in terms of

“triple-polar” coordinates on S5, which are complex numbers (z1, z2, z3) such that

|z1|2 + |z2|2 + |z3|2 = 1. (3.2)

We consider the quotient

γ : {φi} 7→ {φi + αi}. (3.3)
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Here φ1, φ2, φ3 are the phases of the z’s and niαi = 2π for some ni ∈ Z and not all nis are

simultaneously zero.7 However, to embed Γ in SO (6), it is more useful to decompose these

complex numbers into 6 real coordinates that embed the S5 into R
6,

x1 = cos θ cosφ1 x2 = cos θ sinφ1,

x3 = sin θ cosψ cosφ2 x4 = sin θ cosψ sinφ2,

x5 = sin θ sinψ cosφ3 x6 = sin θ sinψ sinφ3. (3.4)

Now, we construct a coset representative in SO (6) for this point x with coordinates as

in (3.4). To do so, we start with the point (1, 0, 0, 0, 0, 0) in R6, and construct a matrix

g (x) that rotates this point, the north pole, to the generic point x. By construction,

g (x) ∈ SO (6), and there is a one-to-one correspondence between the points x on S5 and

matrices g (x), upto a right multiplication by an element of the SO (5) which leaves the

north pole invariant. Such a representative matrix g (x) can be taken to be

g (x) = eiφ1Q12eiφ2Q34eiφ3Q56eiψQ35eiθQ13 , (3.5)

where Q’s are the generators of SO (6). This is clearly an instance of a section in G

over G/H.

The action of the thermal quotient (3.3) on the coset representative g (x) is

γ : g (x) 7→ g (γ (x)) = eiα1Q12eiα2Q34eiα3Q56 · x = γ · g (x) , (3.6)

where the composition ‘·’ is the usual matrix multiplication.8 This section has the prop-

erty (3.1) that we demand from a thermal section. Hence, we choose the thermal section

to be

σth (x) = g (x) . (3.7)

This analysis can be repeated for any odd-dimensional sphere to find the same expression

for the thermal section. Essentially the only difference is that for a (2n + 1)-dimensional

sphere, we need to consider (n+ 1) complex numbers zi and proceed exactly as above. We

find that the thermal section can always be chosen to be (3.7).

3.2 The method of images

Since the heat kernel obeys a linear differential equation- the heat equation- we can use

the method of images to construct the heat kernel on Γ\G/H from that on G/H (see, for

example [16]). The relation between the two heat kernels is

K
(S)
Γ (x, y; t) =

∑

γ∈Γ

K(S) (x, γ (y) ; t) , (3.8)

where K
(S)
Γ is the heat kernel between two points x and y on Γ\G/H, K(S) is the heat

kernel on G/H and the spin indices have been suppressed. We shall use this relation to

determine the traced heat kernel on the thermal quotient of S2n+1.

7Note that this is a more general identification than the thermal quotient we will need, where one can

take αi = 0 (∀i 6= 1).
8This gives the embedding of Γ in SO (6).
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3.3 The traced heat kernel on thermal S2n+1

We use the formalism developed above to evaluate the traced heat kernel for the thermal

quotient of the odd-dimensional sphere. Using the method of images, the quantity of

interest is

K
(S)
Γ (t) =

∑

k∈ZN

∫

Γ\G/H
dµ (x)

∑

a

K(S)
aa

(

x, γk (x) ; t
)

, (3.9)

where dµ(x) is the measure on Γ\G/H obtained from the Haar measure on G, and x labels

points in Γ\G/H. We have also used the fact that Γ ≃ ZN , and since the sum over m is a

finite sum, the integral has also been taken through the sum. Further, since
∑

a

K(S)
aa

(

γx, γk (γx) ; t
)

=
∑

a

K(S)
aa

(

x, γk (x) ; t
)

, (3.10)

the integral over Γ\G/H can be traded in for the integral over G/H. We therefore multiply

by an overall volume factor, and evaluate
∫

G/H
dµ (x)

∑

a

K(S)
aa

(

x, γk (x) ; t
)

, (3.11)

where dµ(x) is the left invariant measure on G/H obtained from the Haar measure on G,

and x now labels points in the full coset space G/H. Putting the expression (2.9) into this,

and choosing the section (3.7) we obtain
∫

G/H
dµ (x)

∑

a

K(S)
aa

(

x, γk (x) ; t
)

=

∫

G/H
dµ (x)

∑

R

a
(S)
R TrS

(

g−1
x γkgx

)(R)
etE

(S)
R , (3.12)

where
(

g−1
x γkgx

)(R)
is an abbreviation for U (R)

(

g (x)−1 γkg (x)
)

. As this expression

stands, the trace is only over some subspace VS ⊂ VR so the cyclic property of the trace

cannot be used to annihilate the g−1
x with the gx. To proceed further, we move the integral

into the summation to obtain
∫

G/H
dµ (x)

∑

a

K(S)
aa

(

x, γk (x) ; t
)

=
∑

R

a
(S)
R

∫

G/H
dµ (x) TrS

(

g−1
x γkgx

)(R)
etE

(S)
R . (3.13)

Since G and H are compact, we may use the property that [17]
∫

G
dgf (g) =

∫

G/H
dµ(x̃)

[
∫

H
dhf (x̃h)

]

, (3.14)

where dg is the Haar measure on G, dµ and dh are the invariant measures on G/H and H

respectively. x̃ is an arbitrary choice of coset representatives that we make to label points

in G/H. In what follows we shall choose the coset representative to be gx. Let us consider

the function

f (g) = TrS

(

g−1γkg
)(R)

. (3.15)

This function has the property that f (gxh) = f (gx). Putting this in (3.14), we see that

the integral over H becomes trivial, and we get
∫

G/H
dµ (x) TrS

(

g−1
x γkgx

)(R)
=

1

VH

∫

G
dgTrS

(

g−1γkg
)(R)

. (3.16)
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Now, as in [2], we note that the integral IG =
∫

G dg
(

g−1γkg
)

commutes with all group

elements g̃ ∈ G because

IG · g̃ =

∫

G
dg
(

g−1γkg
)

· g̃ = g̃ ·
∫

G
d (gg̃)

(

(gg̃)−1 γk (gg̃)
)

= g̃ · IG, (3.17)

where we have used the right invariance of the measure, viz. dg = d (gg̃). We therefore

have, from Schur’s lemma, that

IG =

∫

G
dg
(

g−1γkg
)

∝ I, (3.18)

from which we obtain that
∫

G
dgTrS

(

g−1γkg
)(R)

=
dS
dR

∫

G
dgTrR

(

g−1γkg
)(R)

=
dS
dR
VGTrR

(

γk
)

. (3.19)

The quotient γ is just the exponential of the Cartan generators of SO (2n+ 2) (see, for

example (3.6) for the S5). This trace, therefore is just the SO (2n+ 2) character χR in the

representation R. Putting this result in (3.16), we find that
∫

G/H
dµ (x)TrS

(

g−1
x γkgx

)(R)
= VG/H

dS
dR
χR

(

γk
)

, (3.20)

where we have normalised volumes so that VG = VG/HVH . Therefore,

∑

k∈ZN

∫

G/H
dµ (x)K(S)

(

x, γk (x) ; t
)

=
∑

k∈ZN

∑

R

χR

(

γk
)

etE
(S)
R , (3.21)

where we have inserted the value of the normalisation constant a
(S)
R from (A.3). Now for

the thermal quotient, we have γ such that

α1 6= 0, αi = 0, ∀ i = 2, . . . , n+ 1. (3.22)

The volume factor for this quotient is just α1
2π . This gives us the traced heat kernel on the

thermal S2n+1

K
(S)
Γ (t) =

α1

2π

∑

k∈ZN

∑

R

χR

(

γk
)

etE
(S)
R . (3.23)

We find that the answer assembles naturally into a sum of characters, in various represen-

tations of G, of elements of the quotient group Γ. Here the representations R of SO(2n+2)

are those which contain S when restricted to SO(2n+ 1). The reader should compare this

expression to the equation (4.20) obtained in [2].

4 The heat kernel on AdS2n+1

We have so far obtained an expression for the heat kernel on a compact symmetric

space (2.8) and have extended our analysis to its left quotients. In particular, we have

shown how the traced heat kernel on (a class of) quotients of S2n+1 assembles into a sum

over characters of the orbifold group Γ. We now extend our analysis to the hyperbolic space

H2n+1. Following the analysis of [2], we will use the fact that the N -dimensional sphere

admits an analytic continuation to the corresponding euclidean AdS geometry. We now

give an account of how one can exploit this fact to determine the heat kernel on AdS2n+1

and its quotients.
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4.1 Preliminaries

Euclidean AdS is the N dimensional hyperbolic space H
+
N which is the coset space

HN ≃ SO(N, 1) /SO (N) , (4.1)

where the quotienting is done, as in the sphere, by the right action. As was done for the

three-dimensional case, we will view SO (N, 1) as an analytic continuation of SO (N + 1).

For explicit expressions, we shall employ the generalisation of the triple-polar coordi-

nates that we introduced in (3.4) to the general S2n+1. In these coordinates, the S2n+1

metric is

dθ2 + cos2θdφ2
1 + sin2θ dΩ2

2n−1. (4.2)

We perform the analytic continuation

θ 7→ −iρ, φ1 7→ it, (4.3)

where ρ and t take values in R, to obtain

ds2 = −
(

dρ2 + cosh2ρdt2 + sinh2ρ dΩ2
2n−1

)

. (4.4)

The reader will recognize this as the metric on global AdS2n+1, upto a sign.

Now, to construct eigenfunctions on HN , we need to write down a section in SO(N, 1).

The Lie algebra of SO(N, 1) is an analytic continuation of SO(N+1) where we choose a par-

ticular axis- say ‘1’- as the time direction and perform the analytic continuation Q1j → iQ1j

to obtain the so(N, 1) algebra from the so(N+1) algebra. This is equivalent to the analytic

continuation of the coordinates described above. Therefore, the section in SO(N, 1) can be

obtained from that in SO (N + 1) by analytically continuing the coordinates via (4.3).

4.2 Harmonic analysis on H2n+1

We have recollected basic results from harmonic analysis on coset spaces in section 2, which

we have exploited for compact groups G and H. In fact, all the basic ingredients that we

have employed in our analysis can be carried over to the case of non-compact groups as

well. The eigenvalues of the spin-S Laplacian are still given by (2.6), and the eigenfunctions

are still (2.5), i.e. they are determined by matrix elements of unitary representations of G.

These unitary representations are now infinite dimensional, given that G is non-compact.

However, for SO(N, 1), these representations have been classified [14, 18], and we shall use

these results to determine the traced heat kernel on AdS2n+1.

The only unitary representations of SO(N, 1) that are relevant to us are those that

contain unitary representations of SO(N). For odd-dimensional hyperboloids, where N =

2n + 1, these are just the so-called principal series representations of SO (2n+ 1, 1) which

are labelled by the array

R = (iλ,m2,m3, · · · ,mn+1) , λ ∈ R, m2 ≥ m3 ≥ · · · ≥ mn ≥ |mn+1|, (4.5)

where the m2, · · · ,mn and |mn+1| are non-negative (half-)integers. We shall usually denote

the array (m2,m3, . . . ,mn+1) by ~m. We also note that the principal series representations
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(iλ, ~m) that contain a representation S of SO (2n+ 1) are determined by the branching

rules [14, 19]

s1 ≥ m2 ≥ s2 ≥ . . . ≥ mn ≥ sn ≥ |mn+1|, (4.6)

which, for the STT tensors just reduce to m2 = s with all other mis and sis set to

zero (cf. (2.17)), except for the case of n = 1, where the branching rule is |m2| = s.

Comparing (4.5) to (2.11) suggests that the appropriate analytic continuation is

m1 7→ iλ− n, λ ∈ R+, (4.7)

which is indeed the analytic continuation used by [20]. Let us consider how the eigenvalues

E
(S)
R transform under this analytic continuation. It turns out that the eigenvalues (2.15)

get continued to

E
(S)
R,AdS2n+1

= −
(

λ2 + ζ
)

, ζ ≡ C2 (S) − C2 (~m) + n2, (4.8)

and that the eigenvalue for the STT tensors (2.18) gets continued to

E
(S)
R,AdS2n+1

= −
(

λ2 + s+ n2
)

. (4.9)

The eigenvalues on AdS have an extra minus sign apart from what is obtained by the

analytic continuation because the metric S2n+1 under the analytic continuation goes to

minus of the metric on AdS2n+1. This analytic continuation preserves the corresponding

energy eigenvalue as a negative definite real number, which it must, because the Laplacian

on Euclidean AdS is an elliptic operator, and its eigenvalues must be of definite sign.

4.3 The coincident heat kernel on AdS2n+1

In computing the heat kernel over AdS2n+1 by analytically continuing from S2n+1, the

sum over m1 that entered in (2.19), (2.21) and (2.22) is now continued to an integral over

λ. In general this integral over λ is hard to perform, but it simplifies significantly in the

coincident limit and is evaluated below for this case. The traced heat kernel for STT tensors

has previously been obtained directly in this limit by [20] and this calculation therefore

serves as a check of the prescription (4.3) of analytic continuation that we have employed.

We will also see that the normalisation constant aSR that appeared for the S2n+1 gets

continued to µSR, which is essentially the measure for this integral. This is a brief summary

of the calculation, the reader will find more details in appendix B.

On using (2.20) for the special case of R = (m, s, 0, . . . , 0), one can show that aSR gets

continued via (4.3) to µSR, where

µSR =
1

ds

[

λ2 +
(

s+ N−3
2

)2
]

∏

N−5
2

j=0

(

λ2 + j2
)

2N−1π
N
2 Γ
(

N
2

)

(2s+N − 3) (s+N − 4)!

s! (N − 3)!
, (4.10)

where N = 2n+ 1. A little algebra reveals this as the combination

µSR =
CNg (s)

dS

µ (λ)

ΩN−1
, (4.11)
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in the notation of [20], (see their expressions 2.7 to 2.13 and 2.108 or our appendix B). We

have omitted the overall sign (−1)
N−1

2 in writing the above. The quantity µ (λ) is known

as the Plancherel measure. We now consider the expression (2.22) on S2n+1, which in the

coincident limit, reduces to

KS (x, x; t) =
∑

m1

aSRdSe
tE

(S)
R . (4.12)

where aSRdS = n!
2πn+1 d(m1,s). We analytically continue this expression via our prescrip-

tion (4.3) to the coincident heat kernel on AdS2n+1.

KS (x, x; t) =

∫

dλµSR (λ) dSe
tE

(S)
R =

CN
ΩN−1

g (s)

∫

dλµ (λ) e−t(λ
2+s+n2), (4.13)

which is precisely the expression obtained by [20].

5 The heat kernel on thermal AdS2n+1

5.1 The thermal quotient of AdS

We are now in a position to calculate the traced heat kernel of an arbitrary tensor particle on

thermal AdS2n+1. This space is the hyperbolic space H2n+1 with a specific Z identification

(in the generalised polar coordinates)

t ∼ t+ β, β = iα1 (5.1)

which is just the analytic continuation by (4.3) of the identification (3.22) on the sphere.

Since t is the global time coordinate, β is to be interpreted as the inverse temperature.

5.2 The heat kernel

In section 4 we have discussed how the heat kernel on H2n+1 can be calculated by ana-

lytically continuing the harmonic analysis on S2n+1 to H2n+1. As discussed in section 6.2

of [2], we expect to be able to continue the expressions for the heat kernel on the thermal

sphere to thermal AdS, with the difference that now Γ ≃ Z, rather than ZN . Also, as

noted in [2], essentially the only difference that arises for the traced heat kernel is that the

character of SO(2n+ 2) that appears in (3.23) is now replaced by the Harish-Chandra (or

global) character for the non-compact group SO(2n+ 1, 1).

With these inputs, the traced heat kernel on thermal AdS2n+1 is given by

K(S) (γ, t) =
β

2π

∑

k∈Z

∑

~m

∫ ∞

0
dλχλ,~m

(

γk
)

etE
(S)
R , (5.2)

where χλ,~m is the Harish-Chandra character in the principal series of SO (2n+ 1, 1), which

has been evaluated [21] to be

χλ,~m(β, φ1, φ2, . . . , φn)=
e−iβλχSO(2n)

~m (φ1, φ2, . . . , φn)+ eiβλχ
SO(2n)

~̌m
(φ1, φ2, . . . , φn)

e−nβ
∏n
i=1 |eβ − eiφi |2 , (5.3)
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for the group element

γ = eiβQ12eiφ1Q23 . . . eiφnQ2n+1,2n+2 , (5.4)

where ~̌m is the conjugated representation, with the highest weight (m2, . . . ,−mn+1), and

χ
SO(2n)
~m is the character in the representation ~m of SO (2n). The sum over ~m that appears

in (5.2) is the sum over permissible values of m as determined by the branching rules (4.6).

We also recall that ‘1’ is the time-like direction.

For the thermal quotient, we have β 6= 0 and φi = 0 ∀ i. The character of SO (2n) that

appears in the character formula (5.3) above is then just the dimension of the corresponding

representation. Using the fact that the dimensions of this representation is equal to that

of its conjugate, we have for the character

χλ,~m (β, φ1, φ2, . . . , φn) =
cos (βλ)

22n−1 sinh2n β
2

d~m. (5.5)

We therefore obtain, for the traced heat kernel AdS2n+1 (5.2),

K(S) (β, t) =
β

22nπ

∑

k∈Z

∑

~m

d~m

∫ ∞

0
dλ

cos (kβλ)

sinh2n kβ
2

e−t(λ
2+ζ). (5.6)

The integral over λ is a Gaussian integral, which we can evaluate to obtain

K(S) (β, t) =
β

22n
√
πt

∑

k∈Z+

∑

~m

d~m
1

sinh2n kβ
2

e−
k2β2

4t
−tζ , (5.7)

where we have dropped the term with k = 0, which diverges. This divergence arises due

to the infinite volume of AdS, over which the coincident heat kernel on the full AdS2n+1

is integrated. It can be reabsorbed into a redefinition of parameters of the gravity theory

under study and is independent of β and is therefore not of interest to us.

This expression further simplifies for the case of the STT tensors. The branching rules

determine that ~m = (s, 0, . . . , 0) and therefore the sum over ~m gets frozen out and we

obtain

K(S) (β, t) =
β

22n
√
πt

∑

k∈Z+

d~m

sinh2n kβ
2

e−
k2β2

4t
−t(s+n2). (5.8)

The reader may compare this expression to the equation (3.9) obtained in [2] for the AdS3

case (where one would have to specialise to τ1 = 0, τ2 = β, and d~m ≡ 1, and further

include a factor of 2 that appears because the branching rule for AdS3 leads us to sum over

m2 = ±s rather than m2 = s for s > 0).

6 The one-loop partition function

As a consequence of the above, we can calculate the one-loop determinant of a spin-S

particle on AdS5. To do so, we need the result that

∫ ∞

0

dt

t
3
2

e−
α2

4t
−β2t =

2
√
π

α
e−αβ . (6.1)
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Then the one-loop determinants can be deduced from the heat kernel by using

− log det
(

−∆(S) +m2
S

)

=

∫ ∞

0

dt

t
K(S) (β, t) e−m

2
St, (6.2)

which we can simplify to obtain

− log det
(

−∆(S) +m2
S

)

=
∑

k∈Z+

∑

~m

d~m
2

e−nkβ (ekβ − 1)
2n

1

k
e−kβ

√
ζ+m2

S . (6.3)

This expression further simplifies for the case of STT tensors and one obtains

− log det
(

−∆(S) +m2
S

)

=
∑

k∈Z+

d~m
2

e−nkβ (ekβ − 1)
2n

1

k
e−kβ

√
s+n2+m2

S . (6.4)

6.1 The scalar on AdS5

Let us evaluate the above expression for scalars in AdS5, where s = 0. In units where the

AdS radius is set to one,
√

m2
S + 4 = ∆ − 2, where ∆ is the conformal dimension of the

scalar. We therefore have

− log det
(

−∆(S) +m2
S

)

=
∑

k∈Z+

2

k (1 − e−kβ)4
e−kβ∆ (6.5)

We can evaluate the sum to find that the one-loop determinant is given by

− log det
(

−∆(S) +m2
S

)

= −2

∞
∑

n=0

(n+ 1) (n+ 2) (n+ 3)

6
log
(

1 − e−β(∆+n)
)

. (6.6)

Now since logZ(S) = −1
2 log det

(

−∆(S) +m2
S

)

, we have, for the one-loop partition function

of a scalar,

logZ(S) = −
∞
∑

n=0

(n+ 1) (n+ 2) (n+ 3)

6
log
(

1 − e−β(∆+n)
)

. (6.7)

This expression matches exactly with that which is obtained with the method of [22] (see

also, earlier work by [23, 24]).

Note: After version 1 of this paper appeared on the arXiv, we learned of [25] where

expressions for the one-loop partition function for general spin on thermal AdS were ob-

tained by means of a Hamiltonian computation.9 Our results agree with the expressions

obtained there.

7 Conclusions

We have computed the principal ingredients that go into the calculation of one loop effects

on odd dimensional thermal AdS spacetimes. As mentioned in the introduction, there are

many potential applications of these results. Specifically, in the context of investigating

higher spin gauge fields in these spacetimes. It would also be useful to complete the analysis

for the even dimensional AdS spacetimes as well. Finally, the ambitious goal, which was

the initial motivation for this work, is to obtain some clues about the one loop partition

function of the string theory on AdS. The heat kernel method is ideally suited for this

purpose and we expect our explicit results will be helpful in this regard.

9We thank Gary Gibbons for bringing this to our attention.
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A Normalising the heat kernel on G/H

We determine the normalisation factor a
(S)
R that arises in the expressions (2.7) onwards.

This is fixed by demanding that the integrated traced heat kernel obey
∫

G/H
dµ (x)K(S) (x, x; t) =

∑

R

dRe
tE

(S)
R . (A.1)

Using the expression (2.8) for the heat kernel on G/H, we have
∫

G/H
dµ (x)K(S) (x, x; t) =

∑

R

∫

G/H
dµ (x) a

(S)
R U (R)

(

σ (x)−1 σ (x)
)

a

a
etE

(S)
R

=
∑

R

a
(S)
R VG/HdSe

tE
(S)
R . (A.2)

On comparing (A.1) and (A.2), we obtain the required relation

a
(S)
R =

dR
VG/HdS

, (A.3)

which we use in the main text from (2.7) onwards.

B The plancherel measure for STT tensors on HN

We show how the normalisation constant aSR gets analytically continued to µSR, the measure

for the λ integration that appears in the AdS heat kernel. Let us consider the expression

for d(m,s) which we obtain from (2.20).

dm1,s =

n+1
∏

j=2

l21 − l2j
µ2

1 − µ2
j

n+1
∏

j=3

l22 − l2j
µ2

2 − µ2
j

. (B.1)

The first product in the numerator gets analytically continued via (4.3) to

n+1
∏

j=2

(

l21 − l2j
)

7→ (−1)n
[

λ2 + (s+ n− 1)2
]

n−2
∏

j=0

(

λ2 + j2
)

, (B.2)

while the second product evaluates to

n+1
∏

j=2

(

l22 − l2j
)

=
(s+ n− 1) (s+ 2n− 3)!

s!
. (B.3)
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The denominator
∏n+1
j=2

(

µ2
1 − µ2

j

)

∏n+1
j=3

(

µ2
1 − µ2

j

)

evaluates to

n+1
∏

j=2

(

µ2
1 − µ2

j

)

n+1
∏

j=3

(

µ2
1 − µ2

j

)

= (2n− 2)!
22n−2

√
π
n!Γ

(

n+
1

2

)

. (B.4)

The dimension d(m,s) then gets continued to

(−1)
N−1

2

[

λ2 +
(

s+ N−3
2

)2
]

∏

N−5
2

j=0

(

λ2 + j2
)

2N−2√
π

Γ
(

N
2

) (

N−1
2

)

!

(2s+N − 3) (s+N − 4)!

s! (N − 3)!
, (B.5)

where we have changed variables from n to N = 2n+ 1. We now use the fact that for odd

N

VSN =
(N + 1) π

N+1
2

Γ
(

N+3
2

) =
2π

N+1
2

Γ
(

N+1
2

) ,=
2π

N+1
2

(

N−1
2

)

!
(B.6)

and hence the combination
d(m,s)

VG/H
gets mapped to

(−1)
N−1

2

[

λ2 +
(

s+ N−3
2

)2
]

∏

N−5
2

j=0

(

λ2 + j2
)

2N−1π
N
2 Γ
(

N
2

)

(2s+N − 3) (s+N − 4)!

s! (N − 3)!
. (B.7)

Using the expressions from [20] quoted in the main text, i.e.

ΩN−1 =
2π

N
2

Γ
(

N
2

) , cN =
2N−2

π
, g(s) =

(2s +N − 3)(s +N − 4)!

(N − 3)!s!
(B.8)

and

µ(λ) =
π[λ2 + (s+ N−3

2 )2]
∏

N−5
2

j=0 (λ2 + j2)
[

2N−2Γ
(

N
2

)]2 , (B.9)

we see that the normalisation constant aSR gets mapped to

µSR =
CNg (s)

dS

µ (λ)

ΩN−1
, (B.10)

where we have omitted the overall sign that appears for some values of N as an artefact

of the analytic continuation, since the measure is always positive definite. The coincident

heat kernel is therefore

KS (x, x, t) =

∫

dλµSR (λ) dSe
tE

(S)
R =

CN
ΩN−1

g (s)

∫

dλµ (λ) e−t(λ
2+s+n2). (B.11)

Now, the coincident heat kernel may also be written down using 2.7 of [20] (in their

notation) as

KS (x, x, t) =
∑

u

∫ ∞

0
dλ ĥλu∗ · ĥλu (x) e−t(λ

2+s+n2). (B.12)

On choosing x to be the origin (which we can do for arbitrary x), and using their expression

2.10, we conclude that

KS (x, x, t) =
CN

ΩN−1
g (s)

∫

dλµ (λ) e−t(λ
2+s+n2), (B.13)

which is precisely the expression we have obtained via analytic continuation.
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C The dictionary for the S3 calculation

Let us consider the expressions derived for the S3 in the (SU (2) × SU (2)) /SU (2) language

adopted in [2]. We would like to show that they coincide with our expressions, when recast

in the SO (4) /SO (3) language. In particular we shall show that the choice for the thermal

section made previously for S3 is indeed σth (x) = g (x) as has been made here.

The Lie algebra of SU (2)×SU (2) is spanned by (Ji,Ki), that are linear combinations

of the Q(ij)’s that span the lie algebra of SO (4).

J z =
1

2
(Q12 +Q34) Kz =

1

2
(Q12 −Q34)

J + =
1

2
(Q24 +Q31 + i (Q32 −Q14)) K+ =

1

2
(Q24 −Q31 − i (Q14 +Q32))

J − = J+† K− = K+†. (C.1)

We note that the relations between the two Cartans J z and Kz give us the following

dictionary between highest weights written in the SO (4) language and in the SU (2) ×
SU (2) language

(j1, j2)SU(2)×SU(2) ≡ (j1 + j2, j1 − j2)SO(4) . (C.2)

Let us now consider the coset representative in double polar coordinates in the SU (2)

representation. It is given by (see equation (2.7) of [2])

x ≡ g (ψ, η, φ) =

(

e−iη cosψ ieiφ sinψ

ie−iφ sinψ eiη cosψ

)

(C.3)

To translate the expressions of [2] to our form, it is useful to embed the S3 into R
4 via the

coordinates (x1, x2, x3, x4). The identification is through

x =

(

e−iη cosψ ieiφ sinψ

ie−iφ sinψ eiη cosψ

)

≡
(

x1 − ix2 ix3 − x4

ix3 + x4 x1 + ix2

)

, (C.4)

from which we read off the coordinates

x1 = cos η cosψ x2 = cos η sinψ,

x3 = cosφ sinψ x4 = sinφ sinψ. (C.5)

With this identification, the north pole x◦ of S3 is given by the matrix

x◦ = I. (C.6)

The thermal section in [2] was chosen to be the pair of matrices (gL (x) , gR (x)) given by

(see equations (2.30) and (2.31) of [2]),

gL (ψ, η, φ) =

(

ei(φ−η)/2 cos ψ2 iei(φ−η)/2 sin ψ
2

ie−i(φ−η)/2 sin ψ
2 e−i(φ−η)/2 cos ψ2

)

, (C.7)
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and,

gR (ψ, η, φ) =

(

ei(φ+η)/2 cos ψ2 −iei(φ+η)/2 sin ψ
2

−ie−i(φ+η)/2 sin ψ
2 e−i(φ+η)/2 cos ψ2

)

. (C.8)

An element (A,B) of G acts on cosets x ∈ G/H via

x 7→ AxB−1, (C.9)

and therefore the thermal section maps the north pole to the point

x◦ 7→ gL (x)x◦g
−1
R (x) = gL (x) g−1

R (x) = x. (C.10)

Therefore, in the language of SO (4) /SO (3), the thermal section is the matrix that rotates

the north pole to the point (C.5). This is precisely the choice (3.7) we would have made

for the thermal section using our geometric construction.

D An extension to even dimensions

We have so far considered the case of the odd-dimensional hyperboloids. This is mainly

because we have obtained the heat kernel answer by means of an analytic continuation from

the sphere which essentially captures the ‘principal series’ contribution to the heat kernel.

For the odd-dimensional case there is no other contribution. The case of even-dimensional

hyperboloids is however a bit more subtle. There can in principle be a contribution from

the discrete series also. However, as we outline below, this series does not contribute for a

wide class of tensor fields. In particular, this includes the case of the STT tensors which

have been of special interest to us.10 The answer for the heat kernel in such cases is again

captured by the usual analytic continuation, as was explicitly shown in [20].

We will now briefly sketch how the computation of the traced heat kernel would proceed

for the even-dimensional hyperboloids. We begin by observing that the expression (3.23)

is valid for cosets of compact Lie groups G and H, which therefore includes the case of the

even-dimensional spheres also. That a thermal section on such spheres may be defined is

apparent via the geometric construction outlined in the main text.11 The expression for

the heat kernel on S2n ≃ SO (2n+ 1) /SO (2n), n ≥ 2 is then a sum of characters of the

thermal quotient group Γ embedded in SO (2n+ 1).

The hyperboloid AdS2n is the quotient space SO (2n, 1) /SO(2n). The principal series

of unitary irreducible representations of SO (2n, 1) are labelled by an array

R = (iλ,m2,m3, · · · ,mn) , λ ∈ R, m2 ≥ m3 ≥ · · · ≥ mn, (D.1)

where the m2, · · · ,mn are non-negative (half-)integers. These contain a representation S

of SO (2n) if [14, 19]

s1 ≥ m2 ≥ s2 ≥ . . . ≥ mn ≥ |sn|. (D.2)

10These remarks are true for higher (than two)-dimensional hyperboloids. There is an additional discrete

series contribution in AdS2 even for the STT tensors. See [20] for details.
11As an example, we see that setting φ3 = 0 in (3.4) gives us a parametrisation of S4. The construction

of the thermal section is then exactly analogous.
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The analytic continuation from the unitary irreducible representations of SO (2n+ 1) to

the principal series of SO (2n, 1) may be deduced as in section 4.2. The answer is

m1 7→ iλ− 2n − 1

2
, λ ∈ R+, (D.3)

which is precisely the continuation obtained in [20]. There is in addition an additional

discrete series of representations which is not captured by this analytic continuation. How-

ever, this contains the representation S only if sn ≥ 1
2 , see [14] for details. Therefore, this

additional series never contributes for the STT tensors (for which sn equals zero). The

naive analytic continuation is therefore sufficient to give the full heat kernel answer.

The methods outlined in sections 4 and 5 may therefore be extended to even dimen-

sional hyperboloids as well. The expressions for the global characters of SO (2n, 1) are well

known [21]. We therefore have all the ingredients needed to compute the heat kernel on

thermal AdS2n.

For example, in this manner the one-loop partition function for a scalar on AdS4 may

be calculated. We find that

logZ(S) =
∑

k∈Z+

1

k (1 − e−kβ)3
e−kβ∆, (D.4)

where ∆ is determined in terms of the mass of the scalar via

∆ =

√

m2 +
9

4
+

3

2
. (D.5)

This matches, for instance, with the expressions obtained via the Hamiltonian analysis

done in [25].
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