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Abstract This article presents the analysis of the tem-

poral changes in water chemistry in a semi-confined

aquifer (Wielkopolska Buried Valley aquifer, Poland)

during one decade of water exploitation. It is shown that

the groundwater contamination, as documented in a pre-

vious work, still persists and has lead to steady ground-

water quality deterioration. The most intensive changes in

water chemistry due to contamination are observed in the

regions recognized earlier as the most vulnerable parts of

the aquifer. The influence of contamination is effective

despite implementation of groundwater protection activi-

ties. The travails of groundwater quality protection of the

confined or semi-confined aquifers were accented.

Keywords Groundwater quality deterioration �
Groundwater contamination � Confined aquifer protection �
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Introduction

The buried valleys are the most attractive sources of

groundwater in many parts of Poland. As a result of low

vulnerability (large thickness of the aquitard) these aquifers

usually accumulate unpolluted groundwater. However,

often increasingly, the symptoms of deterioration of water

quality are visible in these types of aquifers too (Gorski

1989). It is usually reflected by concentrated increase of

groundwater components that are most sensitive to

contamination. The additional factor that increases vul-

nerability to pollution is groundwater exploitation that

causes high downward gradient (Jeong 2001; Lawrence

et al. 2000). This gradient activates or intensifies the

migration of contaminants from land surface and shallow

(usually polluted) aquifers to deeper water systems.

The chemistry of the groundwater in the semi-confined

Wielkopolska Buried Valley aquifer (WBV), Poland, was

investigated in the year 2000. In spite of very small spatial

variations in the chemistry of the groundwater, the hyd-

rochemical zones were classified in order to identify the

flow pattern of the groundwater within the aquifer (Dragon

and Górski 2009). Furthermore, the zones of anthropogenic

groundwater contamination were identified despite the

occurrence of semi-confined conditions (Dragon 2008). For

identifying the temporal changes in groundwater chemis-

try, the wells of the WBV aquifer were tapped and

resampled in 2009.

The main objective of this paper is the identification of

the temporal variability of groundwater chemistry. Special

emphasis is placed on the hydrogeochemical processes

initiated or intensified by anthropogenic contamination.

Study area

Hydrogeological setting

The WBV aquifer is classified as one of the Major Ground

Water Basins (MGWB—144) in Poland (Kleczkowski

1990). It is an important aquifer that supplies drinking

water to many towns and villages of the Wielkopolska

region (Fig. 1).

The thickness of water-bearing sediments (mainly sand

and gravel) ranges from 20 to 50 m (Fig. 2). The confining
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layer has a thickness between 20 and 50 m and is com-

posed of glacial tills. A layer of Neogene clay occurs at

the aquifer bottom and isolates the WBV aquifer from the

Neogene aquifers. The main recharge area is located in the

region of the Lwowek-Rakoniewice Rampart from where

the groundwater flows east to the Warta River and west to

the Obra River (Fig. 1). The principal source of the

recharge is the percolation of groundwater through glacial

tills and upper-intertill aquifers (Fig. 2). There is also

recharge owing to the inflow from the intertill aquifers
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Fig. 1 The location of the study area on background of the land relief. 1 boundary of the aquifer, 2 surface water (lakes and rivers), 3 general

groundwater flow directions, 4 location of the sampling sites. WBV Wielkopolska Buried Valley aquifer
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Fig. 2 Schematic cross-section and conceptual model of the aquifer

recharge (after Dragon and Górski 2009, simplified) 1 and 2—

confining layers (1 clays, mud and silts; 2 glacial tills), 3 water-

bearing sediments (sands and gravels), 4 preferential flow through

glacial tills, 5 groundwater flow direction in the aquifer, 6 leakage of

contaminated water from surface and shallow aquifers, 7 upward flow

from deeper flow system, Q Quaternary, N Neogene
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located to the north of the WBV aquifer. It was docu-

mented with the use of hydrochemical data (Dragon and

Górski 2009).

Land use

The examined area is used for various purposes. The

eastern part of this region (to the east of Grodzisk

Wielkopolski and Opalenica) is dominated by agriculture,

whereas forested lands prevail in both the central (recharge

area of WBV aquifer) and the western parts. Besides, rural

and urban built-up areas occur. There are five towns

(5000–15000 inhabitants) located in the investigated

region.

Sources of pollution typical for the whole Wielkopolska

region are present in the studied area. The most significant

source of pollution is the untreated sewage from both rural

and urban lands: a long-standing problem that has not been

solved the since the centuries past. It should be underlined

that very long time of influence is characteristic for this

Table 1 Statistical characteristics of the hydrochemical parameters

Parameter (unit) Min. Max. Average Median Standard deviation Skewness

2000 sampling survey

Colour (mg Pt/l) 5 70 22 20 12.9 1.6

pH 6.98 7.85 7.44 7.40 0.20 0.32

Oxygen consumption (mg O2/l) 1.5 7.0 3.1 3.0 1.17 1.49

Electrical conductivity (lS/cm) 293 869 577 560 147 0.2

Total hardness (TH) (mval/l) 2.8 8.9 6.0 5.8 1.4 -0.1

Alkalinity (HCO3) (mval/l) 2.6 6.9 5.2 5.5 1.1 -0.5

TDS (mg/l) 205 573 394 385 94 0.04

Cl (mg/l) 8.0 70.0 22.9 18.0 16.7 1.4

SO4 (mg/l) 0.0 120.0 40.1 33.0 29.9 0.8

N-NO3 (mg/l) 0.0 6.0 0.16 0.0 0.94 6.3

N-NH4 (mg/l) 0.00 0.50 0.17 0.16 0.15 0.44

Fe (mg/l) 1.2 13.1 4.3 3.8 2.4 1.6

Mn (mg/l) 0.08 0.57 0.18 0.18 0.09 2.24

Ca (mg/l) 48.5 143.0 93.1 91.5 24.1 0.1

Mg (mg/l) 4.3 29.1 16.6 17.4 5.6 -0.1

Na (mg/l) 5.2 66.0 12.8 10.5 9.4 4.6

K (mg/l) 1.4 14.0 3.5 3.1 2.2 3.3

2009 sampling survey

Colour (mg Pt/l) 5 50 14 15 10.3 1.1

pH 7.18 7.84 7.40 7.38 0.16 0.52

Oxygen consumption (mg O2/l) 0.7 5.5 2.2 1.9 1.1 1.1

Electrical conductivity (lS/cm) 314 1315 527 599 196 1.1

Total hardness (TH) (mval/l) 3.2 14.9 6.7 6.3 2.1 1.4

Alkalinity (HCO3) (mval/l) 2.7 7.3 5.5 5.6 1.2 –0.5

TDS (mg/l) 130 922 396 353 152 0.99

Cl (mg/l) 8.3 140.0 29.0 19.8 26.1 2.5

SO4 (mg/l) 3.6 249.0 48.9 36.9 46.9 2.2

N-NO3 (mg/l) 0.0 7.5 0.28 0.01 1.2 5.6

N-NH4 (mg/l) 0.03 0.78 0.31 0.33 0.19 0.28

Fe (mg/l) 0.8 9.8 3.2 2.9 1.8 1.3

Mn (mg/l) 0.09 0.47 0.20 0.19 0.07 1.61

Ca (mg/l) 54.4 240.0 106.8 100.9 32.7 1.7

Mg (mg/l) 6.1 36.3 17.1 17.2 6.9 0.3

Na (mg/l) 5.5 26.7 12.9 12.4 5.8 0.7

K (mg/l) 1.0 9.7 3.4 3.5 1.8 1.8

Frequency n = 41
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type of contaminant sources, dating back to the beginning

of the settlement. Another most important source of con-

tamination, connected with agriculture are livestock farms.

Livestock manure is in most cases spread on the fields. The

main risk concerning a cultivated land is an excessive

usage of fertilisers.

Materials and methods

The study of temporary hydrogeochemical evolution of

groundwater accumulating within WBV aquifer has been

made based on a comparative analysis of data obtained in

two surveys performed in 2000 and in 2009. The sampling

survey performed in 2000 consists of 61 sampling sites

(Dragon 2006; 2008). In the 2009 sampling program, water

samples were taken from 41 wells from among 61 wells

sampled in 2000. Unfortunately, some of wells sampled in

2000 were closed down before 2009. The location of the

sampling sites is presented in Fig. 1.

Water samples were taken from productive and contin-

uously pumped wells. The water colour, alkalinity, elec-

trical conductivity, pH and temperature were measured

directly in the field. The list of parameters measured in the

laboratory with detection limit and precision (in brackets)

is listed below: oxygen consumption: 0.7 mgO2/L (5%),

N-NH4: 0.04 mg/L (10%), N-NO3: 0.1 mg/L (20%), Na

and K: 0.1 mg/L (5%), Cl and Mg: 5 mg/L (5%), SO4:

10 mg/L (5%), Fe: 0.001 mg/L (10%), Mn: 0.003 mg/L

(10%), Ca: 2 mg/L (5%), Total hardness (TH): 0.36 mval/

L (5%), TDS (determined by evaporating): 1 mg/L (5%).

The analyses were performed in the Adam Mickiewicz

University, Poznan, with use of an ionic chromatograph

Dionex DX-120 (anions) and an atomic absorption spec-

trometer Perkin Elmer Analyst 300 (cations). For quality

control measures the ionic error balance was calculated.

The calculated error does not exceed 3%. Moreover,

archival physico-chemical analyses from the period of

wells’ construction and performed during wells’ exploita-

tion were use.

Results and discussion

Basic statistics of the hydrogeochemical parameters mea-

sured during 2000 and 2009 sampling surveys are pre-

sented in Table 1. The results of chemical analysis show

relatively small water chemistry variation over time.
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Nonetheless, in the case of some parameters, increase of

concentrations over time is observed (Fig. 3a and 3b). The

most intensive increase is visible in cases of chloride and

sulphate (reflected by electrical conductivity); thus, the

parameters reflect water anthropogenic contamination

(Dragon 2008). Interestingly, some parameters (oxygen

consumption, iron and water colour) show decrease of

concentrations over time (Fig. 3c and 3d). It is connected

with intensification of the water circulation within the

aquifer owing to exploitation, which causes shorter water

residence time in the aquifer.

The typical changes in the groundwater chemistry in the

zones of anthropogenic input and in the remaining parts of

the aquifer are presented in Fig. 4. The most intensive

increase of water components concentrations is visible in

the zones documented earlier as the most vulnerable in the

aquifer (Dragon and Górski 2009). Figure 4a shows typical

groundwater chemistry changes in this zone. The increase

of concentrations of chloride, sulphate and total harness is

clearly visible, whereas in the remaining parts of the

aquifer, these concentrations are stable during wells’

exploitation (Fig. 4b). These groundwater components

were identified as the most sensitive indicators of anthro-

pogenic input (Dragon 2008). Their concentrations are

incomparably higher than those of the whole data set

(compare Fig. 3 and 5); moreover, the steady increase of its

concentrations over time was documented. It is clearly

visible in some wells. Figure 6 presents water chemistry

changes in the well located in Grodzisk Wielkopolski town

during the period of water extraction between 1960 (well

construction) and 2002 (well liquidation). During the per-

iod of well construction, all groundwater components

(include indicators of water pollution) were at the level of

the natural hydrogeochemical background. The systematic

increase of chloride (from the range of the natural

hydrogeochemical background—10 mg/L to more than

80 mg/L) and sulphate (increase to more than 175 mg/L)

as well as total hardness is visible during wells exploita-

tion. It should be underlined that before starting of water

exploitation the contamination was not observed and

appear with stable tendency later. This is characteristic also

for other wells tapping the WBV aquifer. It should be

suspected that the mechanism, which activates or increases

effective migration of contaminants from the surface, is

water exploitation that can create high downward gradient.

Water exploitation over a long period of time (like in case
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between 2000 and 2009. a example well located in zone of

anthropogenic input, b example well located in zone of lack of
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Table 2 Comparing of the

results of the factor analysis

(after varimax rotation)

performed for data sets from

2000 to 2009 sampling surveys

Factor loadings[0.7 are marked

by bold font

2000 sampling survey 2009 sampling survey

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Colour -0.17 0.00 0.87 -0.36 0.54 0.47

pH -0.38 20.82 -0.01 -0.42 20.74 -0.15

Oxygen consumption -0.12 0.40 0.55 -0.12 0.80 0.14

Total hardness (TH) 0.70 0.63 -0.07 0.91 0.35 0.07

Alkalinity (HCO3) 0.27 0.91 0.12 0.41 0.83 0.09

Cl 0.90 0.02 0.17 0.94 0.03 0.04

SO4 0.77 -0.13 -0.28 0.93 -0.20 0.04

N-NH4 0.07 0.77 0.18 0.17 0.79 -0.17

Fe -0.11 0.69 -0.14 0.12 0.66 0.10

Mn 0.55 0,16 -0.48 0.14 -0.01 0.88

Na 0.55 -0.07 0.67 0.73 0.41 0.15

K 0.65 0.36 -0.18 0.56 0.29 0.60

Total dissolved solids (TDS) 0.84 0.52 0.02 0.90 0.30 0.09

Percentage of variance 30 27 15 37 29 11
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of Grodzisk Wielkopolski town) can cause the shift of the

groundwater divide.

The influence of anthropogenic contamination on

groundwater chemistry confirms the results of the factor

analysis (FA). The analysis was performed using a method

presented in a previous work (Dragon 2006). The purpose

of FA is to reduce analytical data of each sample (initial

data set) to a smaller set of factors that are interpretable.

These factors can be associated with a specific source or

process (anthropogenic or geogenic) responsible for the

change in groundwater chemistry. The principal compo-

nent analysis was applied as the extraction technique. This

operation transforms original variables into a smaller set of

independent variables (factors). The factor loading matrix

was rotated on an orthogonal simple structure in accor-

dance with the Varimax rotation. Following this operation,

high factor loadings were obtained for the variables cor-

related with the factor (close to 1 or -1) and low factor

loadings (close to 0) for the remaining variables. In order to

establish the number of factors, the Kaiser criterion was

applied. Factors that best describe the variance of the

analysed data (eigenvalue [ 1) and which can be reason-

ably interpreted were accepted for further analysis (Drever

1997).

The results obtained are consistent with the previous

calculations performed for the WBV aquifer and moreover

shed new light on groundwater chemistry changes owing to

contamination. The comparison of the FA results for 2000

and 2009 sampling surveys is presented in Table 2. Three

factors were calculated for both data sets. The calculations

for 2000 and 2009 sampling surveys explain 72% and 77%

of variance, respectively. For both data sets, Factor 1 is

identified as ‘‘anthropogenic’’ because describing variation

of parameters identified as contamination indicators,

whereas Factor 2 is recognized as ‘‘geogenic’’ because it

reflects natural hydrogeochemical processes (Dragon

2006). The interpretation of factor 3 is difficult because it is

different in both data sets, but it has relative small

importance as compared to factors 1 and 2 (explains 15 and

11% of variance, respectively). The comparison of the

factor loadings of factor 1 indicates that the indicators of

pollution (Cl, SO4, TH and TDS) have significantly higher

factor loadings in the 2009 data set. Moreover, on the plot

(Fig. 7) shift of the TDS and TH in direction to ‘‘anthro-

pogenic’’ factor is visible (comparing years 2000 and

2009).

The role of chloride and sulphate as the principal

products of urbanization that alter groundwater chemistry

is well known (e.g. Eisen and Anderson 1979; Jeong 2001;

Cronin et al. 2003; Choi et al. 2005). They are generally

conservative species; therefore, they reach the aquifer first.

The interpretation of the influence of TH, reflecting both

Ca and Mg concentrations, is more problematic because

their concentration is controlled by both anthropogenic and

geogenic factors. However, in some cases it is possible to

distinguish between anthropogenic and geogenic sources

with use of statistical methods. The results of previous

work performed for the studied aquifer show that com-

paring the whole data to a data set representing natural

groundwater chemistry with use of the FA method can help

to distinguish between natural and anthropogenic sources

of TH (Dragon 2006). Moreover, it is characteristic for the

WBV aquifer that TH in natural (unpolluted) groundwater

is balanced with alkalinity (reflecting HCO3 concentra-

tion), whereas in contaminated groundwater, TH surplus

(relative to alkalinity) occurs (Dragon 2008). This rela-

tionship is presented in Fig. 8. It is characteristic for both

2000 and 2009 data sets that in the sampling sites falling
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substantially above the Ca ? Mg = HCO3 line, higher

concentrations of chloride and sulphate were detected.

Moreover, most of these sampling sites are located in the

area defined as zone of anthropogenic input. This obser-

vation may suggest the occurrence of non-carbonate

hardness balanced mainly by high sulphate concentrations.

Unpolluted water is located in the graphs close to the

Ca ? Mg = HCO3 line. These observations qualify to

treat TH as an indicator of groundwater contamination,

particularly if high TH is correlated with high chloride and

sulphate concentrations.

The enforcement of groundwater protection activities

(e.g. building of new sewage systems, rationalization of

fertilizer use, etc.) is very effective in Poland following

political democratic changes; however, the findings pre-

sented here indicate that the contamination identified in the

year 2000 still persists. These findings show the travails

connecting with groundwater quality protection of the

confined or semi-confined aquifers. It shows that for the

visible effects of the water quality protection activities in

case of confined and semi-confined aquifers we must wait

long period of time (Dragon 2010).

Conclusions

The research presented in the article shows that the influ-

ence of contamination on groundwater chemistry of the

Wielkopolska Buried Valley aquifer identified in a previ-

ous work is still effective. Groundwater contamination

leads to deterioration of water quality mainly in case of the

parameters identified as the most sensitive to anthropo-

genic impact (i.e. chloride, sulphate, total hardness and

TDS). The contamination is the most effective in the

regions identified in previous work as the most vulnerable

parts of the aquifer.

The observations presented confirm earlier findings that

the intensity of anthropogenic contamination of the WBV

aquifer is visible even though the semi-confined conditions

occur there. The nature of anthropogenic changes of water

chemistry indicates that these water are still at early stages

of chemistry transformations (the concentrations usually do

not exceed Polish national limits for drinking water and

WHO recommendations). However, a distinct and constant

increase of water components concentrations over time

creates serious hazard for groundwater quality deteriora-

tion and its utilities for use in the future. This fact should be

take into consideration if we thing about water resources

protection for the next generations. It is very important

particularly in case of confined or semi-confined aquifers.
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