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Abstract-A mathematical model is developed for the rate of healing of a circular wound in a 
spherical “skull”. The motivation for this model is based on experimental studies of the “critical size 
defect” (CSD) in animal models; this has been defined as the smallest intraosseous wound that does 
not heal by bone formation during the lifetime of the animal [l]. For practical purposes, this timescale 
can usually be taken as one year. In [2], the definition was further extended to a defect which has less 
than ten percent bony regeneration during the lifetime of the animal. CSDs can “heal” by fibrous 
connective tissue formation, but since this is not bone, it does not have the properties (strength, etc.) 
that a completely healed defect would. Earlier models of bone wound healing [3,4] have focused on the 
existence (or not) of a CSD based on a steady-state analysis, so the time development of the wound 
was not addressed. In this paper, the time development of a circular cylindrical wound is discussed 
from a general point of view. An integredifferential equation is derived for the radial contraction 
rate of the wound in terms of the wound radius and parameters related to the postulated healing 
mechanisms. This equation includes the effect of the curvature of the (spherical) skull, since it is 
clear from the experimental evidence that the size of the CSD increases monotonically with the size 
of the calvaria. Certain special cases for a planar wound are highlighted to illustrate the qualitative 
features of the model, in particular, the dependence of the wound healing time on the initial wound 
size and the thickness of the healing rim. @ 2001 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

The fields of bone regeneration and wound healing in general often rely on suitable animal models 

to test experimental bone and tissue repair materials. One accepted model for t,he former is the 

so-called critical size defect (CSD), which has been defined as the smallest intraosseous wound 

that does not heal by bone formation during the lifetime of the animal [l]. For practical purposes 

t,his timescale can usually be taken as one year. In [a], the definition was further extended to a 

defect which has less than ten percent bony regeneration during the lifetime of the animal. CSDs 

can ‘<heal” by fibrous connective tissue formation, but since this is not bone, it does not have 

the properties (strength, etc.) that a completely healed defect would. Some typical CSDs are, for 

rat, rabbit, dog, and monkey calvaria (skullcap), respectively, 8 mm, 15 mm, 20 mm, and 15 mm 

(details can be found in [l]). 
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Wound healing, when it occurs, does so by means of a combination of various processes. 

Chemotaxis (the movement of cells up a concentration gradient), neovascularization, synthesis of 

extracellular matrix proteins, and scar remodeling [5]. Growth factors are likely to play a very 

significant role in bone regeneration [6-g]. Such factors include transforming growth factor p 

(TGF-@), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), and in the 

case of skin, epidermal growth factor (EGF), [S,lO]. Furthermore, the supply of oxygen to a wound 

has much influence on the quality of healing [7], and hence, angiogenesis is of vital significance 

in bone and tissue regeneration. [11,12]. 

THE GROWTH EQUATION 

LVe consider first the expression for the area of a circular disk of radius ii on the surface of a 

sphere of radius a > R (note that the radius A is measured across the two-dimensional surface 

and R is its plane projection on the r-8 plane). It is readily seen that the area A(R) is given by 

the double integral 

A(R) = , 

which reduces to the the expected result A(R) = 7rR2 in the limit as R/u + 0. 

It follows that if a circular wound shrinks from an initial radius R(0) (i.e., at time t = 0) to 

radius R(t) at time t, then the magnitude of the change in area n is 

a=27r@~-J~). (2) 

TVe now consider the spherical skull to have a uniform relative thickness h (< a) and write 

down an appropriate form for the conservation of volume as the wound heals (in a symmetrical 

manner). The total volume of healing that occurs as the wound radius decreases from p(O) to p(t) 

in time t > 0 must equal the total volume of bone produced in time t > 0, i.e., from (1) and (2), 

(3) 

(cancelling a factor 27rah on both sides), where S(R( t), ) . r 1s a term representing the rate of new 

bone growth as a function of position in the bone exterior to the wound. It is often the case that 

a ‘collar” of bone is produced in wounds as they heal; this additional thickening of bone in the 

vicinity of the wound can be incorporated into the model should it be considered necessary. 

A more convenient form of this equation is obtained by differentiating with respect to time to 

give 
dR2 -=- 
dt 

aJa2-R2 
.i 

R(o) rS(R(t),r) dr 

R(t) m 

Note from equation (1) the interesting (dimensional) result that 

A2 
A-~R2=----- 

4xa2 ’ (5) 

i.e., the difference in area between the circular wound on the spherical surface and its circular 

projection on a plane is the square of the “curved” wound area divided by the area of the sphere 

(or spherical skull). 

Let us consider the special case of the limiting plane surface, i.e., as R/u and r/a become small. 

In this limit, the equation of conservation of volume (4) becomes 

dR2 J 
R(O) - zz -2 

dt 
rS( R(t), r) dr. 

R(t) 
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We choose expressions for S(R(t), r) that are expected to be reasonable qualitative descriptions 

of the healing process in wounds, namely attaining a maximum at the wound edge and decreasing 

away from that edge. Since no further healing is necessary once R(t) = 0, there is a restriction 

that S(0, r) = 0 (note that R(t) < r 5 R(0)). Analytical (where possible) and numerical results 

for the more general case governed by equation (4) will be presented elsewhere. 

MODEL I 

If the growth of new bone is confined to a ring of constant width d such that 

S(R,r) = 
%(I+?), RlrlRSd, 

0, otherwise, 
(7) 

where R = R(t) and Sa is a constant reference healing rate. Note that S(R, R) = &R/R(O), 

S(R, R+d) = 0, and S(0, r) = S(O,O) = 0. This last condition, for r = R = 0 is a very reasonable 

one because it is to be expected that the rate of new bone growth will decrease as the healing 

process draws to a close. Then from equation (6), 

dR2 -=___ 
dt 

1soRd(3R+d), 
3 R(0) 

whence 

R(t) = R(0) + $ e-S&2R(o) _ ;, 
[ 1 

from which the healing time th, defined by R(th) = 0, is 

(9) 

t 
h (10) 

Note that for given R(O), th is a monotone decreasin g function of d, and for given d, th is a 

monotone increasing function of R(0). 

MODEL II 

In this model, we consider a simpler functional form for S(R, r) but allow the active wound 

rim [R, R + d] to be variable, i.e., d = d(R). Specifically, 

S(R,r) = 
$$j, RIrIR+d(R), 

0, otherwise, 
(11) 

where 

d = LYR(O) + PR, Q>O, B>O, (12) 

which allows larger wounds to have larger healing rims. After some reduction based on equa- 

tion (6), it is found that 

dR SoP(P + 2) _=- 
dt 2R(O) [CR+ ;i:=;i)‘- (3(;:2))2]~ 

Again, after some reduction, this has solution 

R(t) = 

R(O)a/(P + 2) [(o + P + 2)/(o + ,B)e-asOt - 11 

[l - ((ck + P + 2)/(ck + P))(P/(P + 2))e-“So”] ’ 

(13) 

(14a) 
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from which it follows that 

(15a) 

Since d(R(0)) = (CE + ,@R(O), these last two equations may be written in a more biologically 
appealing way as 

R(t) = R(O)al(P + 2) [(I + WO)ld(O)) c--aSot - 11 

[I - (1 + WO)ld(O)) (P/W + 2)) c-crSotl 
(IJb) 

and 

t’1 = &d(O) 
J@ln(I+z), (15b) 

where d(0) is the thickness of the rim when R = 0 (not when t = 0). As in Model I, for given R(O), 

th is a monotone decreasing function of d(0) (th e minimum thickness of the healing rim which 

occurs when R = 0), and for given d(O), th is a monotone increasing function of R(0). It appears 

from these two models that the healing times are relatively insensitive to the detailed functional 
form of the growth rate function, but that the ratio of the initial wound size to the healing rim 

thickness is crucial to whether or not a CSD occurs. To see this, note that if R(O)/d(O) is large 

enough, then certainly th > T, where T is the lifetime of the animal. Certainly, some healing 

may occur in cases of CSDs (and this is observed in animal models), but not enough to close the 

wound in the time available. 
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