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1. Introduction

Let B, be the unit ball of C". For « > 0, let dvy_1(z) = ca—1(1 — |212)*~1dv(z), where dv is the normalized Lebesgue

volume measure on B, and cy_1 = l:lf'llg)‘)) so that vy_1(B;) = 1. For « > 0 and 0 < p < oo, the weighted Bergman space

Ag_l(Bn) consists of all holomorphic functions f on B, such that

p
L — f [f@)]" dva-1(2) < 0.
B
When the weight @ = 1, we simply write AP (B,,) for Ag(IB%n). In the special case when p =2, A§_1(IB3,1) is a Hilbert space.

It is well known that the Bergman kernel of Afxil (Bp) is given by

1

a—1 _
e e

where z, w € B,. The Bergman projection P,_1 is the orthogonal projection from L?(B,, dvy_1) onto A§_1(]B%n) defined by

Pa—]f(Z)Z/Ka_l(Z, w) f(w)dvg_1(w),  f € L*([Bn, dvg_1).
Bn

The projection P,_1 naturally extends to an integral operator on L' (B, dve_1).
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For o > 0 and a complex measure u, define a Toeplitz operator as follows:

2ya—1
Tpaf(2) =Coot /f(w)(l WO g w),

(1= (z, w))nta

where ze€ B, and f € Ll(Bn, (1—1z]»*"1dw). We also denote Ty, (1) = Py_1(u). Toeplitz operators have been studied
extensively on the Bergman spaces, see [1] and [2]. Recently, in [3], general Toeplitz operators T,  on the a-Bloch spaces
have been investigated. Under a prerequisite condition, the authors characterized complex measure p on the unit disk D
for which T « is bounded or compact on Bloch-type space B%(D) for 0 < o < oo. In the present paper, we will extend the
Toeplitz operator T, o to B*(By) in the unit ball of C" and completely characterize the positive Borel measure p such that
Ty« is bounded or compact on B*(B,) with 1 < o < 2. The extension requires some different techniques from those used
in [3].
For o > 0, BY(B,) is the space of holomorphic functions f on B, such that

I f Nl B By = sup(l —12%)*|Vf(@)| < o0,

zeBy

where V f(z) = (%(z), A az (z)) It is easy to show that B*(B,) is a Banach space when equipped with the norm

1 £ ll2 @, = | £ (O] + sup (1 - |21*)¥|Vf (2)].
zeBy,
It is well known that the norm || - || g«(,) is equivalent to

|£(0)] + sup (1 —|z1*)*
zeBy

where Rf(2) =Y p_; zk%(z). Note that when o =1, B!(B,) is the classical Bloch space B(By). Let B§ (B,) denote little

«-Bloch space which is the closure of the set of polynomials in B%(By). It consists exactly of holomorphic functions f on
B, such that

lim (1-1z%)%|Vf@)|=0

|z -1~

The logarithmic Bloch space £LB(B,) is the space of holomorphic functions f such that

2
sup (1 — |z|*) log P |Vf(2)| < oo.

zeBy,

Correspondingly, the little logarithmic Bloch space £By(B;) consists of all holomorphic functions f on B, such that

. 2
lim (1-z/?)log P Vf(@@)|=0

|zZ|>1~

In [3], the authors have obtained following necessary and sufficient conditions under some restricted conditions for T
to be bounded or compact on B% (D).

Theorem 1.1. Let i be a complex measure on D. Suppose 1 satisfies the condition that

(1= z»H*!

(z—w)(1 —wz)x+t1

Ra(m)(w) = (1 - |w|2)f [1(2) € L (D).

Then we have:

(i) If0 <a <1, then T, « is bounded on B*(D) if and only if Py_1 (1) € B* (D).
(ii) Ifa =1, then T, « is bounded on B*(D) if and only if Py—1 (1) € LB(D).
(iii) Ifo > 1, then T, o is bounded on B* (D) if and only if Po_1(1) € B(D).

Theorem 1.2. Let 1 be a complex measure on . Suppose (u satisfies the condition that lim,,y|—.1 Ry (1) (W) = 0. Then we have:
(i) If0 <a <1, then Ty, o is compact on B* (D) if and only if Pe—1 (1) € B* (D).

(ii) Ifa =1, then T, o is compact on B(D) if and only if Py_1 () € LBo (D).

(iii) Ifa > 1, then Ty o is compact on B* (D) if and only if Py_1 () € Bo(D).

We will give our main results in Sections 3 and 4. As usual, the letter C will denote a positive constant, possibly different
on each occurrence.
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2. Preliminaries

In this section, we give some characterization of Bloch-type space B*(B;) and useful lemmas, which play an important
role in the proof of our main results.

Lemma 2.1. If f € BY(By), then

21 f 8= By O<a<1;
[f@)] < Clogﬁllfllzs(man), a=1;
CA— 1z fllge@,. 1<a<oo.

Proof. Assume that f € BY(By). Then for z € B,

|f(2)— fO)|=

1
/Vf(tz) zdt
0

/|Vf(tz)||z|dt

1
(1= ltz)* |V f(t2)] 2]
(1 —|tz>)®

0
1

|z
< « ———dt
<l (Bn)/ a1z
0
The stated inequality follows. O

Lemma 2.2. (See [4].) Let 0 < o < 2. Let A be any real number satisfying the following properties: (1) 0 < A< a if0 <o < 1;
2Q)0<i<lifa=1; (3)a—1< A< 1if1 <a < 2. Then a holomorphic function f € B*(By) if and only if

a lf@—FWI

A
Si(fy= sup (1—1z*)"(1—|w[?) (2.1)
z,weB, |z —w]
zZ#wW
Moreover, for any o and A satisfying above conditions two seminorms sup,cp, (1 — 1ZI2)¥|V f ()| and S,.(f) are equivalent.
Lemma 2.3. [fa > 5, then f € B¥(By) if and only if the function
-1~
(=122 |Vf@)
is bounded in B,,, where ﬁf(z) is the Mobius invariant complex gradient of f at z.
Proof. See Theorem 7.2 of [5]. O
For every point a € By, the Mobius transformation ¢, : B, — B, is defined by
a— Pq(2) —5aQa(2)
z) = , z€By,
(pa( ) 1 _ (Z, a) n
where sq =+/1—al?, Pa(2) = %a, Po(z) =0, Qg =1 — P4. The map ¢, has the following properties that
ga0)=0a, @u@=0, @=g¢;'
and
(1—la®)(1 —(z, w))
1—(@a(2), a(W)) = .
(1 —(z,a))(1 —{a, w))
where z and w are arbitrary points in B,. In particular,
2 (1—a»H(1 -z
1 |ga(2)] : (2.2)

11— (z,a)
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Proposition 2.4. Suppose f € BY(By,) and 1 < o < 2. Let A be any real number satisfying: (1)0 <A <1lifa=1; 2Q)a—1<Ar <1
if1 <a < 2. Then

(1— (221 A — [w ) f(2) — f(w)]
sup

zweB, |1—(z, w)|2¢=2=11z— P,(w) —5,Qz(W)|
Z#W

<CIfllBe @y -

Proof. In (2.1) of Lemma 2.2, let z=0. Then we have
_ 0)— f(w
[w|
Now, replacing f by f o ¢,, we get
_ 0) —
(1 = jup)e 2 9=@ = fopetw)]
|ul
By Lemma 2.3 and (2.2), we find that

< ClfllsBem,y, weBn\ {0}

<CIf o @zlls,Be @y, U €By\ {0}

1f o @2llese@n ~ sup (1— W) |V o gr(w)]

weB,

_ (1 — W) 1A = o (w) 221V f (@2 (W)]
= sup
weB, a- |§02(W)|2)a_]
Cllfll BBy
s (1—[z[2)x-1
Taking u = ¢,(w) and z # w we have
|f(2) = f(w)] < CllflIB= B,
loz (W)l (1= @z (w)|)2 (1 — [z2)2—1
11— (z, W) [** M| f || 3 B
(1= [w)e=r(1 = [z2)2a—+T

~

Consequently,
(1= 2% 1A = wH* f(2) — f(w)|
11— (z, w)[22=22=1|z — P;(w) — 5,Qz(W)|

This completes the proof of Proposition 2.4. O

< Cl fllBe@n)- (2.3)

Let B(-,-) be the Bergman metric on B,. Denote the Bergman metric ball at a, D(a,r) = {z € B,: B(a, z) < r}, where
aeB, and r > 0.

Lemma 2.5. (See [1,5].) For fixed r > O, there is a sequence {w j} in By, such that

(1) U3y D(wj. 1) =By;
(2) there is a positive integer N such that each z € By, is contained in at most N of the sets D(w, 2r).

A positive Borel measure u on the unit ball By, is said to be a Carleson measure for the Bergman space AP (B,) if

[l @ w@ < iy, ¥ <A@,
Bn

It is well known that a positive Borel measure u is a Carleson measure for AP (B,) if and only if
n(D(wj, 1)) -

wjeBy, v(D(wj,1))
where {w}} is the sequence in Lemma 2.5. If u satisfies that

pOW;.m) _
j—oo V(D(Wj, )

3

then u is called vanishing Carleson measure for AP (By). See [1] and [5].
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3. Bounded Toeplitz operators
In this section, we will provide a complete characterization of bounded Toeplitz operator T, , on B%(B;) for 1<

a < 2. In order to have the operator T, , well defined, we will assume that the positive measure p is such that
fIBn log#du(z) < oo for T, 1 and an du(z) <oo for Ty o with 1 <o <2.

Theorem 3.1. Let i be a positive Borel measure on By,. Then we have

(1) ifa =1, then T, o is bounded on B(By,) if and only if Po—1(14) € LB(By) and w is a Carleson measure;
(2) if1 <o <2, then Ty, o is bounded on B* (By) if and only if Py_1(t) € B(By) and w is a Carleson measure.

Proof. It is well known that A'(B,)* = B*(B,) under the integral pairing

(h, &)a—1 = Ca—1 / h2g@(1— 122" dv(z), he A By, geBBy).
Bn

To prove the boundedness of T, 4, it suffices to show that
(. Tpw8a-1] < Clhl g1, lIEllB2 )

for all h € A'(By) and g € B*(By).
By Fubini’s Theorem we have

(h, Tpa8)a—1="Ca-1 fh(Z)Tu,ag(z)(l —12)*  dv(2)

By
=Ca-1 /h(Z)@(l — 122" dp (@)
By
—Cur / Pah®) @ (1 — 122" du(2) + camr / (I = P D)@ (1 — 122" du2)
By By
=1 + 1,
where
R p— h(w)gw)(1 —|w]*)*
(1= Pu)(H2) @) = h(@)(@) — o [ 2 v
By
/ E@ — gD (1 = [wP) |
(1 _ Z W))n+1+a .

From Proposition 2.4, we have

// (g(2) —gwW)Hh(w)(1 = [w>)*(1 = |z1»)*!

2] =ca—1Ca 1= (z, W)y

dv(w)du(z)

Bn Bn

2\a—1
/h(W) |W| /‘(g(z) Ol ) du(z)dv(w)’

= Ca—1Ca (1 — (z, w))ntli+e

(1= wP* (1 = 2> g2) — gw)

11— (z, w)[22=22=T|z — Pz (W) — 52 Qz(W)]

1z = Pz(w) —5:Q:(w)|(1 — [2])**
1= (z, w22

< ca_1ca/|h(W)|(1 —wp?)*

du(z)dv(w)

1— 2\A—a
€ [ Inom g (1 - 1wy E —((z V\|/Z)||n3rzx—a+1 dp () dv(w).

n
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Since u is a Carleson measure, taking A — a > —1, then by Proposition 1.4.10 of [6] we get

A (1— |z
(1—1wl?) / 11— (z, w)[i+2—a+ dpu(2)

n

x (1— |z
—IwP?) Z / 1= (z, w)[i+2—a+ dp(2)

Jj= ]D(zJ r)

-z
(Z W>|n+2)ﬁa+1

oo
A
<(1—1wp?) E wu(D(zj, 1)) sup
=1 zeD(zj,r) |1 -

o0

_ 2\A—«a
<c(1—wpy Y M) [ C - dv(2)
J

7 v(D(zj, 1) 11— (z, w)|rt2r—otl
- D(

Zj, r
2 1(D(zj,1)) / (1— |z
<C(l |W| ) z?lellgn v(D(z],r)) Z |1 _ Z W |n+2A —a+1 dv(z)

<C(1—|w| ) N sup

) _ A—o
u(D(ZM))/ (1= 1z dv(z) < C
zjeBy, \)(D(Z],r)) |1

(2, w)|nt2h—atT

Therefore

12| < Cllhll g1 ,,) 1811 B2 B,)-
Next consider I;. By Fubini’s Theorem it follows that

_ o 2\a—1
I = o 1CD[//h(W)g(W)(l lwH*(1 = |z|*) dv(w)dpu(2)

(1 _ Z W))n+1+a

By By

1—|z|2)x—1 o
= Ca- 1cafh(W)g(W)/(l(Ldu(z)(l — 1w} dv(w).

))n+1+ot
By

Let
—|z/H)*!

W du(2).

Qou(W) =cq-1

Thus

h=cu [ hONEW QW) (1 ~ (W) dvw).
By

By simple calculation, we have

Qo (W) =Co—1 / a (1|Zl )(:N 12()1)” +]<+a >)du(z)Jrco,_1 ((11__|f£?0;>_)1n<+vr;§> du(z)
=Cq-1 %du(zwca_léwk %du(@
=Cy_1 % W(z) + o 1Zn+aaka (1(1_15,'22);:0[ di(z)
n By
= Pac1 (W) + ——RPe 1 () (W). (31)

n+o
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It is easy to see that

(1) if =1 and Py_1(1) € LB(By), then Qg ()(W)(1 — [w|?)log ﬁ € L®By);
(2) if 1 <a <2 and Py_q1(p) € B(By), then Qq(u)(wW)(1 — |w|?) € L®(By).

This implies that |I1] < Cl|hl z1g,,) I8 B2 (B,)- Hence, T, o is a bounded operator on B*(B,) with 1 <a < 2.
Conversely, suppose that T, o is a bounded operator on 5%(By). Take

(- |wp)
a- (Z, W))n+1+t ’

for t > 0. It is clear that |hw]l 41,) < C. On the other hand, take

hw(2) =

(-1 _ |W|2)n+2+t—o{

1- (Z, W))n+l+t :

gw(2) =

We have || gw || g« ®,) < C. Therefore

y2r2e-a [ (1= 2% Tdu(2)
Cam1(1—wP)" “ / Tz W = |(hw. Tia8wla—1| < CITpalllihwll g1 g, | 8wllBe @, < C.

n

Thus

P24~ 1 —1z»* 1du(z)
(1 — 1wl ) f 11— (z, W)|2n+2+2t <G
D(w,r)

for every w € B,,. This implies that
u(D(w,r))
weB, V(D(w, 1))

Hence u is a Carleson measure on Bj,.
From the proof of the sufficient condition, we find that there exists a constant C such that

| =

ca/h(W)g(W)Qa(u)(W)(l — W) dv(w)| < Cllhll g1 g, 181 3 By -
By

This implies that

Hg(W) Qu (M)(W) HB"HI Br) < C”g”BD‘(Bn)'

As a =1, we have [g(w)Qq()(W)(1 — |w|?)| < CligllBm,)- Take gw(z) = log 1—(sz It is clear that [lgwllzm,) < C.
Taking z = w, then

2
J— 2 —
Qe (1~ 1wP)log -5 < €

Notice that Py_1((t) = Ty« (1) € B*(By). From (3.1) we have Py_1(u) € LB(By).
When 1 <« < 2, taking gw(2) = (1 — (z, w))1~%, we have lgwllB,®,) < C.From Lemma 2.1 we get

Qu(m(w)(1—|wl*) <,

for w € By. By (3.1) it is obvious that Py_1(1t) € B(By).
This completes the proof of Theorem 3.1. O

Remark. For n = 1, notice that |p,(w)| = If:;,'fvl <1 for ze B, and w € B,. Using Lemma 2.2 and the same method as
above, we can show that for 0 <« <1, Ty« is bounded on B¥(D) if and only if Py_1(u) € B*(D) and u is a Carleson
measure on D.

Since P(L*°(B,)) = B(B,), as a consequence of Theorem 3.1 we can know that not every f € L°°(B;) induced a bounded
Toeplitz operator on B(B;). When f € H*®, Toeplitz operator induced by f is multiplication operator on B(B;). In this case,

our results are correspondent with the multipliers on B(By) in [7]. These are the same as in the disk D presented in [3].
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4. Compact Toeplitz operators

For the proof of following theorem related to compact of T, , we need the following lemma.
Lemma 4.1. et 0 < o < oo and Ty« be a bounded linear operator from B* (B,) into B* (B,). When 0 < o < 1, T, o is compact if
and only if | Ty« (fj)ll B¢ ®,) — 0 as j — oo whenever { f;} is a bounded sequence in B*(B;) that converges to 0 uniformly on B,
When 1 < o < o0, Tfj is compact if and only if | Ty« (fj) | B ®,) — 0 as j — oo whenever {f;} is a bounded sequence in B%* (B,)
that converges to 0 uniformly on compact subset of B,.
Proof. This lemma can be proved by Montel Theorem and Lemma 2.1. O

Theorem 4.2. Let (4 be a positive Borel measure on B,. Then we have

(1) ifa =1, then T, o is compact on B(By) if and only if P, 1 (14) € LBo(By) and w is a vanishing Carleson measure;
(2) if1 < <2, then T, o is compact on B* (By) if and only if Po—1(14) € Bo(By) and p is a vanishing Carleson measure.

Proof. For 1 <« <2, let {g;} be a sequence in B%(B,) such that | gjlge®, <1 and g; — 0 uniformly on compact of Bj.
Suppose h € A'(By). Then

(h, Tua&j)a—1 = Ca1 / h2)g;@ (1 — 122" du(z)

Bn

— ot / Po(hE)@)(1 — 1212)* " dpe(@) + o1 / (I = Pa)(hE)@ (1~ 1212)* " dp2)
By Bn

=l j+12;.

For fixed 0 < ¢ < 1, since p is vanishing measure, there exists 0 <7 < 1 such that

_ 2\A—«o
(1—wi?)’ / “_(: A dn@ <.

z, W) |n+2k o+1
Bn\nBn

where 1B, ={ze€B;: |z|] <n} and A — o > —1. Taking a constant § > 0 such that 1 — (¢(1 — n)”““)% <é <1, as in the
proof of Theorem 3.1, by Proposition 2.4 we have

_ o 2\a—1
11m 2, = llm Ca—1Cq [/ (g,(z) g](Wzih_(Vz’;(}N»l:’YlLl Sl dv(w)du(2)
B, By ’
e (8@ — g(w) (1 — |z12)*~!
= lim ca-rca [ hOW(1 = wP) / e du(z)dv(w)’
. x (1 —zH*
<timc [ onligglis, (1w / T e @ dvw)
Bi\3Bn
. |g,<z> giw|( —|zH*!
+jgngoca_1ca flh(W)| —w?) / T (2w du(2) dv(w)
8B
<c lh(w)|(1 = w[?) a—ph @ dv(w)
= 1 = (z, w)|n+2r—a+1 K
Bn\(s]En IBgn TI]Bn Bn
—4
<Ce / |h(w)|dv(w) +C / |h(w)|mdv(w)<C£|IhIIA1(Bn).
Bn\3Bn Bi\3Bn

For Iy j, we have

I j=ca /h(W)gj(W)Qa(M)(W)(l —wl?)* dv(w).
Bn
From (3.1) it is easy to see that
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(1) ifa =1 and Py_1() € LBo(By), then Qq()(w)(1 — |W|2)logﬁ —0as |w|—1;
(2) if 1 <a <2 and Py_1(1) € Bo(Bn), then Qq()(w)(1 — |w|?) — 0 as |w| — 1.
Combined with {g;} converges to 0 on compact of B,, we have lim;_, I1,; = 0. Therefore, [T, «&;llBe®, — 0 as

Jj — oo, which implies that T;, o is compact operator.
Next assume that T, o is compact on B%(B,). Take

1 —|w
(1 — (z, wprtit

for ¢ > 0. We know that ||hw | 41(m,) < C. Take

hw(2) =

(l _ |W|2)n+2+t7tx
(1 —(z, wyn+i+t

Then || gllge®,) < C and gyw — 0 uniformly on compact subsets of B, as |[w| — 1. From Lemma 4.1 we have

gw(2) =

pnt242e—a [ (1—12H* T du(z)
) 11— {(z, W>|2n+2+2t
Bn

= thw, Tu.a8wdat| < Cllhwll g1 s, I o &wll oy — 0, [w| — 1.

Ca—1 (1 —|w|

This implies that @ is a vanishing Carleson measure.

2\o
Next let hy (2) = % We have |lhw |l 415, < C. Let {g;} be a bounded sequence in B*(B),) that converges to 0
uniformly on compact subset of B,. By the compactness of T; «, we have

0= lim 11]
j—>oo

= lim ca/hw(Z)gJ(Z)Qa(u)(Z)(l —|2*)* dv(2)

o Cwye [ 8i@Qm@ (1 —[z)*
_jgngoca(l [w|?) / = (. wyita dv(2)
Bn
= lim (1— |w| ) giw)Qu () (w).

j—)

When « =1, taking gy (z) = (log ﬁ)*l(log 1—(sz)2 with |w| > % we have Py_1(u) € LBo(Br). When o > 1, taking

gw(z) = _Z‘—W‘Al))u then we have P, (u) € Bo(By). The proof of the theorem is completed. O

Remark. For n =1, we also can show that for 0 <o < 1, T, o is compact on B%(D) if and only if Py_1() € B*(D) and p
is a vanishing Carleson measure on .
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