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Abstract. It is demonstrated by molecular dynamics simulations that liquids interacting via the
Buckingham potential are strongly correlating, i.e., have regions of their phase diagram where constant-
volume equilibrium fluctuations in the virial and potential energy are strongly correlated. A binary
Buckingham liquid is cooled to a viscous phase and shown to have isomorphs, which are curves in the
phase diagram along which structure and dynamics in appropriate units are invariant to a good approxi-
mation. To test this, the radial distribution function, and both the incoherent and coherent intermediate
scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its
exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear
term in the region of the first peak of the radial distribution function. As a consequence the dynamics of
the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-
law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids,
demonstrating that the existence of strong correlations and isomorphs does not depend critically on the
mathematical form of the repulsion being an inverse power law.

1 Introduction

Recently a series of papers has been published concern-
ing so-called strongly correlating liquids and their phys-
ical properties [1–6]. Liquids that exhibit these strong
correlations have simpler thermodynamic, structural, and
dynamical properties than liquids in general. A strongly
correlating liquid is identified by looking at the correla-
tion coefficient of the equilibrium fluctuations of the po-
tential energy U(r1, . . . , rN ) and virial W (r1, . . . , rN ) ≡
−1/3

∑
i ri · ∇riU(r1, . . . , rN ) [7] at constant volume:

R =
〈ΔWΔU〉

√〈(ΔW )2〉 〈(ΔU)2〉 . (1)

Here brackets denote averages in the NVT ensemble (fixed
particle number, volume, and temperature), Δ denotes the
difference from the average. The virial W gives the con-
figurational part of the pressure [7],

pV = NkBT (p1, . . . ,pN ) + W (r1, . . . , rN ). (2)

Strongly correlating liquids are defined [1] as liquids that
have R ≥ 0.9.

The origin of strong WU correlations was investigated
in detail in references [3,4] for systems interacting via the
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Lennard-Jones (LJ) potential:

υ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

. (3)

The fluctuations of W and U are dominated by fluctu-
ations of pair distances within the first neighbor shell,
where the LJ potential is well approximated by an ex-
tended inverse power law (eIPL), defined as an inverse
power law (IPL) plus a linear term [3]:

υeIPL(r) = Ar−n + B + Cr. (4)

The IPL term gives perfect UW correlations, whereas
the linear term contributes little to the fluctuations at
constant volume: when one pair distance increases, oth-
ers decrease, keeping the contributions from the linear
term almost constant (this cancellation is exact in one
dimension). The consequence is that LJ systems inherit
some of the scaling properties of the IPL potential – they
have a “hidden scale invariance” [4,8]. Prominent among
the properties of strongly correlating liquids is that they
have “isomorphs”, i.e., curves in the phase diagram along
which structure, dynamics, and some thermodynamical
properties are invariant in appropriate units [5,6]. The
physics of strongly correlating liquids was briefly reviewed
recently in reference [9].

Since the LJ system consists of two IPL terms, it is
perhaps tempting to assume that a repulsive (inverse)
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power law is necessary for the hidden scale invariance de-
scribed above. In the present paper we use the modified
Buckingham (exp-six) pair potential to show that this is
not the case. The Buckingham potential was first derived
by Slater from first-principle calculations of the force be-
tween helium atoms [10]. Buckingham later used this form
of the potential to calculate the equation of state for dif-
ferent noble gases [11]. The Buckingham potential has an
exponential repulsive term, while the attractive part is
given by a power law [12,13]:

υ(r) = ε

(
6

α − 6
exp

[

α

(

1 − r

rm

)]

− α

α − 6

(rm

r

)6
)

.

(5)
Here ε is the depth of the potential well and rm speci-
fies the position of the potential minimum. The param-
eter α determines the shape of the potential well. The
Buckingham potential is better able to reproduce experi-
mental data of inert gasses than the LJ potential [14–16],
but is also computationally more expensive (unless look-
up tables are utilized [7]).

All simulation data in this paper were obtained from
molecular dynamics in the NVT ensemble. The samples
contained 1000 particles. The simulations were set up
by instant cooling from a high temperature state point
followed by an equilibration period, to ensure the sim-
ulations were independent from each other. The simula-
tions were performed with the RUMD molecular dynamics
package [17], which is optimized for doing computations
on state-of-the-art GPU hardware.

2 Correlations in single-component
Buckingham liquids

To compare the simulations with experiments [18], ar-
gon parameters from reference [14] were used; α = 14.0,
rm = 0.3866 nm, ε/kB = 123.2 K. As can be seen in Fig-
ure 1a, the single-component Buckingham (SCB) liquid is
strongly correlating (R ≥ 0.9) in parts of the phase dia-
gram, particularly at high densities and/or temperatures.
The correlation coefficients (Eq. (1)) of the Buckingham
systems are very similar to those of argon and the LJ sys-
tem (dotted line in Fig. 1). This is a first indication that
the actual functional form of the repulsive part of the po-
tential does not have to be an inverse power law in order
for a system to exhibit strong WU correlations.

Another interesting property of the fluctuations is the
quantity γ defined [4,5] as

γ =
〈ΔWΔU〉
〈(ΔU)2〉 . (6)

When a system is strongly correlating (R is close to one),
ΔW ≈ γΔU . For IPL potentials γ is constant and equal
to n/3 and R = 1. For non-IPL potentials, however, R < 1
and γ may change with temperature and density as seen in
Figure 1b [1,19]. Especially for R < 0.9, we find γ changing
rapidly. The curves are similar for the 20.0 mol/L SCB and
SCLJ systems, except for a vertical offset.
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Fig. 1. (Color online) (a) The correlation coefficient, R, as
a function of temperature on isochores for single-component
Buckingham (SCB), single-component Lennard-Jones (SCLJ),
and argon. For SCB and SCLJ argon values were used for all
potential parameters [14], and R was calculated directly from
equation (1). For argon R was calculated from experimental
data [18] as described in references [1,3]. The correlations are
strongest for state points with both high density and high tem-
perature, and the difference between the Buckingham and the
LJ potential is small. The correlation coefficient R > 1 for
low-temperature 20.0 mol/L argon is of course unphysical and
either caused by an uncertainty in the experimental data or the
approximations applied in the calculation of R (see Refs. [3,20]
for details). (b) The value of γ (Eq. (6)) plotted versus temper-
ature for the same systems as in (a). For argon γ was calculated
from experimental data [18] using equation (7). γ decreases
slowly for increasing temperatures, except when the correla-
tion coefficient is low (R � 0.9).

Fluctuations in U and W are of course only directly
accessible in simulations. For experimental systems one
must revert to the use of thermodynamic quantities that
reflect the fluctuations in U and W . For instance, the
configurational part of the pressure coefficient βex

V =
(∂(W/V )/∂T )V and the configurational part of the iso-
choric specific heat per unit volume cex

V = (∂(U/V )/∂T )V

can be used to to calculate γ for argon as follows [1,3,5]:

γ =
βex

V

cex
V

. (7)

The values of γ for argon obtained in this way are plotted
in Figure 1b, and the agreement with the Buckingham sys-
tems is good. This confirms that the Buckingham poten-
tial produces more accurate predictions of experimental
argon data than the LJ potential.

Interestingly, low density argon has a higher correla-
tion coefficient than high density argon. This is the op-
posite of what is found for the Buckingham and the LJ
potentials. Furthermore, the buckingham data are in bet-
ter agreement with the argon data at low density than at
high density. At the present we do not have any explana-
tion for these observations.
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3 Isomorphs in binary Buckingham mixtures

Strongly correlating liquids are predicted to have iso-
morphs, which are curves in the phase diagram along
which structure, dynamics, and some thermodynamical
properties are invariant in appropriate reduced units [5,6].
Introducing reduced coordinates as r̃i = ρ1/3ri, two state
points (1) and (2) are defined to be isomorphic if pairs of
microscopic configurations with same reduced coordinates
(r̃(1)

i = r̃(2)
i ) have proportional configurational Boltzmann

weights:

e
−U

(
r
(1)
1 ,...,r

(1)
N

)
/kBT1 = C12e

−U
(
r
(2)
1 ,...,r

(2)
N

)
/kBT2 . (8)

Here the constant C12 depends only on the two state
points and equation (8) is required to hold to a good ap-
proximation for all physically relevant configurations [6].
An isomorph is a curve in the phase diagram for which
all points are isomorphic (an isomorph is a mathematical
equivalence class of isomorphic state points). The isomor-
phic invariance of structure, dynamics, and some thermo-
dynamical properties – all in reduced units – can be de-
rived directly from equation (8) [5]. Only IPL liquids have
exact isomorphs, but it has been shown that all strongly
correlating liquids have isomorphs to a good approxima-
tion (Appendix A of Ref. [5]).

Among the thermodynamical properties that are iso-
morphic invariant is the excess entropy, Sex ≡ S − Sideal,
where Sideal is the entropy of an ideal gas at the same tem-
perature and density. In the following, isomorphic state
points were generated by utilizing that the quantity γ in
equation (6) can be used to change density and tempera-
ture while keeping the excess entropy constant [5,6]:

γ =
(

∂ ln T

∂ ln ρ

)

Sex

. (9)

By choosing the density of a new isomorphic state point
close to the density of the previous isomorphic state point,
the temperature of the new state point can be calcu-
lated from the fluctuations by combining equations (6)
and (9) [5]. In this way a set of isomorphic points can be
obtained from one initial state point.

The predicted isomorphic invariance of the dynamics
is most striking in viscous liquids, where the dynamics in
general depend strongly on temperature and density. To
demonstrate that systems interacting via the Buckingham
potential have isomorphs, we study what we term a Kob-
Andersen binary Buckingham (KABB) mixture with po-
tential parameters being the same as for the original Kob-
Andersen binary LJ (KABLJ) mixture [21]: εAA = 1.0,
rm, AA = 6

√
2, εAB = 1.5, rm, AB = 0.8 6

√
2, εBB = 0.5,

rm, BB = 0.88 6
√

2. A 4:1 mixture (A:B) was used with
α = 14.5. The potentials were truncated and shifted at
rcut
ij = 2.5rm, ij/

6
√

2.
One of the predicted invariants on an isomorph is the

structure of the system. To test this prediction, the ra-
dial distribution function in reduced coordinates g(r̃) =
g(ρ1/3r) was plotted for isomorphic state points (Fig. 2a).
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Fig. 2. (Color online) The radial distribution functions g(r̃)
for simulations of the KABB mixture. Both graphs are in re-
duced units where r̃ = ρ1/3r. (a) g(r̃) for isomorphic state
points and the three different particle combinations. The struc-
ture is invariant on the isomorph for the AA particle pairs,
but for the AB and BB pairs the structure is less invariant.
(b) g(r̃) for isothermal state points of smaller density varia-
tion. The structure is not invariant on the isotherm for any of
the particle pairs.

The structure is invariant for the large (A) particle pair
correlation function to a very good approximation. For the
AB and BB pairs the structure is less invariant. However,
when a comparison is made with Figure 2b, it is clear
that g(r̃) for the AB and BB pairs is still more invariant
on an isomorph than on an isotherm (note that the density
variation on the isomorph is larger than on the isotherm).
This situation is similar to what is found for the KABLJ
system [5].

To investigate the dynamics of the systems, the inco-
herent intermediate scattering function Fs(q, t) is plotted
in reduced units in Figures 3a and 3b. The presence of a
plateau in Fs shows that the system is in a viscous state,

http://www.epj.org


Page 4 of 7 Eur. Phys. J. B (2012) 85: 21

0.2

0.4

0.6

0.8

1.0

F
s(q

~ ,t~ )

ρ=1.164, T=0.4301
ρ=1.164, T=0.5000
ρ=1.200, T=0.5000
ρ=1.236, T=0.5000
ρ=1.236, T=0.5774
ρ=1.272, T=0.6620
ρ=1.308, T=0.7539

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t
~

0

0.2

0.4

0.6

0.8
B particles

A particles(a)

(b)

Fig. 3. (Color online) Incoherent intermediate scattering func-
tion for the A (a) and B (b) particles of the KABB system. The
time is given in reduced units (t̃ = ρ1/3T 1/2t) and the q-vector
is kept constant in reduced units: qA = 7.25(ρ/1.2)1/3 and
qB = 5.5(ρ/1.2)1/3 . The solid lines represent isomorphic state
points, while dashed lines show isothermal density changes for
comparison. The dynamics are to a good approximation invari-
ant on an isomorph when expressed in reduced units, especially
when compared to the isotherm. In contrast to g(r̃), this holds
for both the A and the B particles.

where the dynamics are highly state point dependent. The
large difference in Fs for the two isothermal state points
confirms this (dashed lines). For the isomorph all Fs data
collapse more or less onto the same curve, showing that
the dynamics are indeed invariant to a good approxima-
tion on an isomorph. In contrast to the radial distribu-
tion functions, the invariance holds well for both types of
particles.

To investigate the invariance in dynamics further, the
coherent intermediate scattering function was calculated
(Fig. 4). The coherent intermediate scattering function
was calculated from the spatial transform of the number
density ρ(q) [7]. In order to obtain good results, it is nec-
essary to average over time scales that are 10–15 times
longer than what is usual for the intermediate scatter-
ing function. This is the reason that there are less state
points shown for the coherent-, than for the incoherent in-
termediate scattering function. The data confirm that the
dynamics are invariant on the isomorph, especially when
compared to the isothermal density change (dashed lines).
However, the invariance seems to hold slightly better for
the AB and BB parts, which is the opposite of what is
seen for the structural invariance.

For systems described by a generalized LJ potential
consisting of two IPL terms, the invariance of the structure
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Fig. 4. (Color online) Coherent intermediate scattering func-
tion for different particle pairs on an isomorph in reduced units
(t̃ = ρ1/3T 1/2t). The solid lines represent isomorphic state
points, while dotted lines show isothermal density changes
for comparison. Again, the q-vector is kept constant in re-
duced units: qAA = 7.34(ρ/1.2)1/3 , qAB = 8.01(ρ/1.2)1/3 and
qBB = 6.01(ρ/1.2)1/3 . Also F (q̃, t̃) is invariant on the iso-
morph. Contrary to what is seen for g(r̃), the invariance holds
better for the AB and BB parts.

leads to a prediction for the shape of an isomorph when
plotted in the U -W plane [6] (generalized LJ potentials
are a sum of inverse power laws). Since the repulsive term
in the Buckingham potential is described by an exponen-
tial function, it is not possible to derive an exact equation
that describes the isomorph in terms of U and W . Fig-
ure 5a shows that isomorphs for the KABB system agree
well with the prediction for the 12–6 LJ system if α = 14.5
(this value of α was chosen to demonstrate this feature).
For α = 13.0, there is a significant difference with the
predicted shape at higher density and temperature. Fig-
ure 5b shows the isomorphs for both values of α after
scaling U and W by the same isomorph-dependent factor,
demonstrating the existence of a master isomorph [6]. This
shows that master isomorphs exist not only in generalized
LJ systems where they can be justified from analytical
arguments [6].
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Fig. 5. (Color online) (a) Plot of the potential energy per
particle versus virial per particle for the KABB system. The
solid lines are the predictions of the isomorph shape for the 12–
6 LJ potential [6]. For these predictions the initial state points
with ρ = 1.2 were used as reference point. Since a new value
of γ was calculated for every state point, γ is not constant
on the isomorphs, but changes approximately 10% along the
isomorphs. The shape of the KABB isomorph agrees very well
with the predicted shape for the 12–6 LJ potential for α =
14.5. For α = 13.0, the shape is different. (b) The same data
now scaled with W ∗

0 defined as the virial at U = 0 [6]. The
isomorphs scale onto each other, forming a so called master
isomorph for each value of α.

4 The inverse-power-law (IPL) approximation

As mentioned in the introduction, a generic explana-
tion [3–5] for the existence of strong correlations and iso-
morphs in non-IPL systems, is the fact that some pair
potentials can be well approximated by an eIPL (Eq. (4))
as shown in Figure 6. Putting this explanation to the test,
it was recently demonstrated that structure and dynam-
ics of the KABLJ system can be reproduced by a purely
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r/σ
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Buckingham α = 14.5

IPL: 2.08 r
-14.71

IPL - Buckingham
g(r)
approximate linear term
eIPL: IPL -7.18 + 5.17r/σ

Fig. 6. (Color online) The figure shows how the Buckingham
potential (α = 14.5) can be approximated by an extended IPL
potential (eIPL). The red dotted line is the IPL approximation
obtained using the parameters obtained below in Figure 7. The
difference of the IPL approximation and the Buckingham po-
tential (dashed green line) is more or less linear in the first peak
of g(r). By subtracting this linear term from the IPL term the
eIPL approximation is found (dashed blue line).

repulsive IPL system even in the viscous phase [22]. In the
following we demonstrate that this procedure works also
for the KABB system, despite its non-IPL repulsion.

Following Pedersen et al. [22], we assume that the Kob-
Andersen IPL (KABIPL) system used to approximate the
KABB system has the form

υIPL(r) = Aεij

(
σij

rij

)n

(10)

where the parameters εij and σij are the Kob-Andersen
parameters for the different types of particles and the con-
stants A and n are independent of particle type.

For IPL liquids it is known that W = (n/3)U , so in
principle the value of n could be calculated from γ deter-
mined from the WU fluctuations (Eq. (9)). For non-IPL
liquids however, there is a slight state point dependence
of γ, so instead the slope of an isochore was used to de-
termine n (Fig. 7a) making use of the identity [5]

γ =
(

∂W

∂U

)

V

. (11)

For the Buckingham potential with α = 14.5 we obtained
γ = 4.904 and n = 14.71. This is lower than the γ = 5.16
which was found for the 12–6 LJ potential [22]. This is
also consistent with the data in Figure 1b where the SCB
system has a lower value of gamma than the SCLJ system.

From equation (10) it follows that the total internal
energy of the IPL system can be written as

U IPL = A
∑

i>j

εij

(
σij

rij

)n

. (12)
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Fig. 7. (Color online) Three isochoric state points were used
to obtain the parameters for the IPL potential. (a) The value
of n was determined by linear regression to the mean values of
the virial and the potential energy (marked by yellow crosses.
(b) The method used to find the value of A of equation (12).
UIPL =

∑
i>j εij(σij/rij)

n was calculated from configurations
drawn from the KABB simulations and plotted against the
energy obtained during the simulations; the value of A was then
obtained from the slope of the mean energies (again marked
by yellow crosses).

The scaling factor A was determined from the slope of the
mean values of the energies in a U , U IPL plot (Fig. 7b),
where U IPL is given by equation (12) evaluated on con-
figurations from simulations of the KABB mixture [22].
Using these parameters, simulations of the KABIPL sys-
tems were performed and the results were compared with
the results of the KABB system. In Figure 8 the incoher-
ent intermediate scattering function of the two systems
is plotted for comparison. The KABIPL reproduces the
dynamics of the KABB system very well. It should how-
ever be noted that in spite of the good reproduction of
the dynamics, the KABIPL had a stronger tendency to
crystallize than the KABB system at the two lowest tem-
peratures due to the absence of attractive forces. The good
agreement shown in Figure 8 only holds if both systems
are in the same (supercooled) state.

From the fluctuations in the potential energy one can
calculate the excess isochoric specific heat using [7]:

Cex
V = CV − 3

2
NkB =

〈
(ΔU)2

〉

kBT 2
. (13)

In Figure 9a Cex
V is plotted for different isochores calcu-

lated from KABB and KABIPL simulations. The heat
capacities for the two systems follow each other closely,
although there is a small and systematic difference increas-
ing with density. This is similar to what was found for the
KABLJ system [22], but the deviations are slightly larger
for the KABB mixture. Figure 9b shows that the excess
heat capacity to a good approximation obeys density scal-
ing, Cex

V /N = f(ργ/T ), and Rosenfeld-Tarazona scaling,
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Fig. 8. (Color online) The incoherent intermediate scattering
function Fs(q, t), (q = 7.25) of the KABB and KABIPL simu-
lations for isochoric state points with ρ = 1.2, T = 0.42, 0.44,
0.46, 0.50, 0.6, 1.0. The IPL potentials reproduce the dynam-
ics of the Buckingham potential over a significant temperature
range.
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Fig. 9. (Color online) (a) The configurational part of the in-
tensive isochoric specific heat Cex

V /N as a function of temper-
ature. Three isochores were simulated of the KABB and the
KABIPL systems. At low density the agreement between the
two systems is fairly good, but for higher densities the differ-
ences become larger. (b) The same data plotted versus T/ργ

where γ = 4.904. The data collapse on a single curve, which
shows that density scaling works. The function (1.42ργ/T )2/5

was fitted to the data (dashed line), showing that Rosenfeld-
Tarazona scaling is also obeyed.

Cex
V /N = g(ρ)T−2/5 [23] – again in good agreement with

results for the KABLJ system [22].

5 Conclusion

The Buckingham potential has been shown to be strongly
correlating like the Lennard-Jones potential. In spite of

http://www.epj.org
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its exponential repulsion, the Buckingham potential’s dy-
namics and heat capacity can be closely approximated by
a purely repulsive IPL system. In particular the system
has good isomorphs in the phase diagram. These findings
are very similar to those found for Lennard-Jones systems.
We conclude that the existence of strong correlations and
isomorphs is not dependent on the repulsion being an in-
verse power-law.

The centre for viscous liquid dynamics “Glass and Time”
is sponsored by the Danish National Research Foundation
(DNRF).
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