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a b s t r a c t

Wepropose a parallel implementation of the Preconditioned Conjugate Gradient algorithm
on a GPU platform. The preconditioning matrix is an approximate inverse derived from
the SSOR preconditioner. Used through sparse matrix–vector multiplication, the proposed
preconditioner is well suited for the massively parallel GPU architecture. As compared
to CPU implementation of the conjugate gradient algorithm, our GPU preconditioned
conjugate gradient implementation is up to 10 times faster (8 times faster at worst).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, Graphics Processing Units (GPU) have evolved into a very flexible and powerful many-core processor.
Indeed, the modern GPUs are specialized for compute-intensive, massively parallel computation, e.g., rendering real-time
realistic 3D environment. The fast-growing video game industry exerts strong economic pressure that forces constant
innovation. The massively parallel architecture offers tremendous performance in many high-performance computing
applications. Numerical algorithms can be significantly accelerated if the algorithms map well to the characteristic of the
GPU.

In this paper,we focus on the numerical solution of the generalized Poisson equation. The Poisson equation arises inmany
applications in computational fluid dynamics, electrostatics, magnetostatics, image processing, etc. Numerical solution of
the Poisson equation, through finite element or finite difference discretization, leads to large sparse linear systems usually
solved by iterative methods instead of direct methods (Gaussian elimination or Cholesky factorization).

The conjugate gradient (CG) algorithm is one of the best known iterative methods for solving linear systems with
symmetric, positive definite matrix. The method is easy to implement and, for the Poisson equation, can handle complex
domains and boundary conditions. The CG method can be easily adapted for linear systems with symmetric, semi-
definite positive matrix (see, e.g., [1]). With a suitable preconditioner, the performance can be dramatically increased. The
preconditioned conjugate gradient (PCG) has proven its efficiency and robustness in a wide range of applications.

Preconditioning consists of replacing the original linear system by one which as the same solution, but which is likely
to be easier to solve with an iterative solver. Our goal is to develop a suitable and flexible PCG algorithm for the GPU
architecture. Standard preconditioning techniques like incomplete factorizations or Symmetric Successive Over-Relaxation
(SSOR) are hard to parallelize because of their strongly serial processing due to the forward/backward substitutions. Simple
preconditioners like Jacobi has a limited impact on the efficiency and robustness of the method. The approximate inverse
preconditioners have attractive features for GPU. First, the columns or rows of the approximate inverse matrix can be
generated in parallel. Second, the preconditioner matrix is used in PCG through matrix–vector multiplications, easier to
parallelize than forward/backward substitutions. But the approximate inverse techniques suffer from lack of robustness. The
fully parallel technique does not guarantee that the resulting approximate inverse is neither symmetric nor positive definite.
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The efficient preconditioning has been largely ignored in previouswork, except in [2]where a heuristic approximate inverse,
based on SSOR preconditioner, is proposed as preconditioner for the PCG algorithm. The approximate inverse is derived on a
rectangular domainwith a regular grid (finite differencemethod). Our approximate SSOR inverse is derived rigorously using
a first order approximation and is independent of the discretizationmethod (finite element or finite differencemethod). The
PCG algorithm presented in this paper can then be used for any linear system with positive definite matrix (not necessarily
arisen from discretization of the Poisson equation).

The paper is organized as follows. In Section 2, we present the Preconditioned Conjugate Gradient algorithm. The
derivation of the SSOR approximate inverse preconditioner is described in Section 3. The implementation of the algorithm
on GPU is presented in Section 4, followed by numerical experiments in Section 5.

2. Conjugate gradient algorithm

2.1. Motivation

Let Ω be a bounded, open domain in Rd, d = 2, 3. The generalized Poisson equation is

αu − ν1u = f , in Ω, (2.1)

where α ≥ 0 and ν > 0. A solution u of (2.1) must satisfy boundary conditions (Dirichlet, Neumann or Cauchy). Eq. (2.1)
arises in a wide range of physical problems (computational fluid dynamics, magnetostatics, electrostatics, electronic device
simulation, etc.).

A discretization of (2.1) (using finite element or finite difference) leads to the linear system

Ax = b, (2.2)

where A is real, symmetric and positive definite. Many solution methods exist:

• direct methods (Gaussian elimination, Cholesky decomposition), [3–5]
• iterative methods (Jacobi, conjugate gradient, etc.), [3,6,7,5,8].

In general, the matrix A is large and sparse so that the direct methods become impracticable.

2.2. Conjugate gradient

The conjugate gradient (CG) is one of the best known iterative methods for solving sparse symmetric positive definite
linear systems. The method is flexible, easy to implement and converges (theoretically) in a finite number of steps.
Furthermore, its implementation requires only matrix–vector multiplications. The conjugate gradient algorithm is as
follows.
Conjugate Gradient (CG)

k = 0: Initialization: x0, p0 = r0 = b − Ax0
k ≥ 0: while ∥rk∥/∥r0∥ > ε

1. qk = Apk, αk =
∥rk∥2

pTk qk
2. xk+1 = xk + αkpk, rk+1 = rk − αkqk
3. βk =

∥rk+1∥
2

∥rk∥2
, pk+1 = rk+1 + βkpk.

Each iteration requires one matrix–vector product and two inner products. All the necessary operations can be found in
a standard library (e.g. BLAS). In addition to the matrix A and the approximate solution x, we have to store three auxiliary
vectors (r, p and q).

Define the A-inner product by

(x, y)A = xTAy

and the corresponding A-norm

∥x∥A =

√

xTAx.

A speed of convergence can be given in terms of A-norm and condition number κ = κ2(A) = λmax/λmin, whereλmax andλmin
are the greatest and the lowest eigenvalue of A, respectively. If x∗ is the solution of (2.2), then the sequence {xk} generated
by Algorithm CG is such that (see, e.g., [7,8])

∥x∗
− xk∥A ≤ 2∥x∗

− x0∥A

√
κ − 1

√
κ + 1

k

.
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A simple heuristic rule for the fast convergence of the conjugate gradient algorithm is κ2(A) ≈ 1. But in industrial
applications, like computational fluid dynamics or electronic device simulation, the matrix A can have a large condition
number, i.e. κ2(A) ≫ 1. The efficiency of the CG algorithm can be significantly improved by preconditioning.

The idea behind preconditioning is to replace (2.2) by

M−1Ax = M−1b (2.3)

or

AM−1y = b, x = M−1y, (2.4)

where M is also symmetric positive definite. Eq. (2.3) corresponds to a left preconditioner whereas (2.4) corresponds to a
right preconditioner. The matrix M must be such that κ2(M−1A) ≪ κ2(A) or κ2(AM−1) ≪ κ2(A), and Mz = r is inexpensive
to solve. The preconditioned version of Algorithm CG is as follows.
Preconditioned Conjugate Gradient (PCG)

k = 0: Initialization: x0, r0 = b − Ax0,Mz0 = r0, p0 = z0
k ≥ 0: while ∥rk∥/∥r0∥ > ε

1. qk = Apk, αk =
zTk rk
pTk qk

2. xk+1 = xk + αkpk, rk+1 = rk − αkqk
3. Mzk+1 = rk+1

4. βk =
zTk+1rk+1

zTk rk
, pk+1 = rk+1 + βkpk.

The additional cost is one linear system per iteration (to compute zk+1). This sequence of computations is valid for both
right and left preconditioners. The left preconditioned CG algorithm withM-inner product is mathematically equivalent to
the right preconditioned CG algorithm withM−1-inner product.

3. SSOR preconditioner

For the left preconditioner (2.4), one of the simplest ways is to perform an incomplete (LU or Cholesky) factorization.
This incomplete factorization is rather easy and inexpensive to implement. The linear system in Step 3 of Algorithm PCG
then reduces to forward/backward substitutions. But this leads to strongly serial loops, not suitable for modern GPUs.

To avoid solving linear systems, one possible way is to try to find a preconditioner that does not require solving a linear
system. This can be done by computingM as a direct approximation to the inverse of A (see, e.g., [9,10,8]). This problem can
be formulated as the following minimization problem

min
M

F(M) =
1
2
∥I − AM∥

2
F (3.1)

for the right-approximate inverse; see, e.g., [9,10]. The main disadvantage of the Frobenius norm minimization approach is
that it is difficult to predict whether the resulting approximate inverse is non-singular. Theoretically, it cannot be proved
that the approximate inverse M obtained by (3.1) is non-singular unless the approximation is accurate enough. But one of
the requirement, for a ‘‘good’’ preconditioner, is to keepM sparse.

An approximate (and sparse) inverse can be obtained easily using Symmetric Successive Over-Relaxation (SSOR). Assume
that the matrix A is decomposed as follows

A = L + D + LT ,

where D is the diagonal matrix of diagonal elements of A and L the lower triangular part of A. The SSOR preconditioner is
defined by

M = KK T , (3.2)

where

K =
1

√
2 − ω

(D̄ + L)D̄−1/2, (3.3)

where 0 < ω < 2 and D̄ = (1/ω)D. As noted in the previous section, the factorized form (3.2) is not suitable for GPU. In
contrast with the previous preconditioning techniques, we can compute an approximate inverse of K explicitly. The factor
K can be rewritten as

K =
1

√
2 − ω

D̄(I + D̄−1L)D̄−1/2
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such that

K−1
=

√
2 − ω D̄1/2(I + D̄−1L)−1D̄−1.

Define ρ(A), the spectral radius of a matrix A. Assuming that ρ(D̄−1L) < 1, then a Neumann series approximation of the
inverse of K is

K−1
≈

√
2 − ωD̄1/2 

I − D̄−1L + (D̄−1L)2 − (D̄−1L)3 + · · ·

D̄−1. (3.4)

A first order approximate inverse of K is given by

K−1
≈

√
2 − ωD̄1/2(I − D̄−1L)D̄−1

=
√
2 − ωD̄−1/2(I − LD̄−1) =: K̄ . (3.5)

K̄ can be computed easily by using A and reciprocal operations in each diagonal element of A. Moreover, K̄ has the same
sparsity pattern as A. Indeed,

K̄ij =
√
2 − ω


ω

aii

1/2 
δij − ω

aij
ajj


, j ≤ i.

The SSOR approximate inverse (SSOR-AI) preconditioner is therefore

M̄ = K̄ T K̄

and Step 3 in Algorithm PCG is replaced by zk+1 = M̄rk+1. Note that M̄ can be computed with a prescribed sparsity pattern
(e.g. the one of A) to reduce the computational cost.

In [2], Ament et al. [2] proposed the following approximate inverse preconditioner (obtained by using a heuristic
approach)

M̃ = (I − LD−1)(I − D−1L). (3.6)

They called it incomplete Poisson (IP) preconditioner. Note that for ω = 1, (3.5) is

K̄ = D−1/2(I − LD−1)

such that

M̃ = D1/2K̄ K̄ TD1/2.

4. GPU implementation

4.1. Matrix storage

To take advantage of the large number of zeros in matrices issue from the discretization of PDEs, special storage formats
are required. Themain idea is to keep only non-zero elements, while allowing commonmatrix operations. For our numerical
experiments, we adopt the Compressed Sparse Row (CSR) format (see e.g. [11,8]). In CSR format, an n × n sparse matrix A,
with nnz non-zero elements, is stored via three arrays:

AA (array of length nnz) contains the non-zero entries of A, stored row by row;
JA (array of length nnz) contains the column indices of the non-zero entries stored in AA;
IA (array of length n + 1) contains the pointers (indices) to the beginning of each row in the arrays AA and JA.

The following matrix

A =


2 0 1 3 0
0 4 0 0 1
1 0 0 2 4
0 1 1 2 4
5 0 1 0 3


is stored in CSR format by

IA : 1 4 6 9 13 16

JA : 1 3 4 2 5 1 4 5 2 3 4 5 1 3 5

AA : 2 1 3 4 1 1 2 4 1 1 2 4 5 1 3
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Fig. 1. Condition numbers versus ω for a positive definite matrix of size n = 1105.

The CSR format is one of the most popular storage format for sparse general matrices. It is particularly suitable for
performing matrix–vector products.

4.2. CUDA

CUDA stands for Compute Unified Device Architecture and is a new hardware and software architecture for using NVIDIA
Graphics Processing Units (GPUs) as a data-parallel computing device. CUDA is a parallel programmingmodel [12,13] consists
of a sequential host program, running on CPU host, and a kernel program, running on parallel GPU device. The host program
sets up the data and transfers it to and from the GPU while the kernel program processes the data using a potentially large
number of parallel threads. The threads of a kernel are grouped into a grid of thread blocks. The threads of a given block
share a local store and may synchronize via barriers. Threads in different thread blocks cannot be synchronized. A modern
NVIDIA GPU is built around an array of shared memory multiprocessors. Each multiprocessor is equipped with 8 scalar
cores and 16 kB of high-bandwidth low-latency memory. The CUDA programming guide [13] provides tips for maximizing
performance.

The parallelization of update operations (for x, r and p) is straightforward. In our code, update operations represent about
15% of GPU time. The crucial problem in the parallelization of the CG and PCG algorithms, onGPU, concerns the inner product
and the matrix–vector multiplication.

The inner product seems inherently sequential but there is an efficient parallel algorithm even for GPU architecture: the
parallel prefix sum (scan). The GPU implementation of this algorithm is provided through Nvidia technical report [14].

Sparse matrix–vector operations represent the dominant cost in PCG algorithm (and in many iterative algorithm)
for solving large-scale linear systems. If dense matrix–vector operations are regular and often limited by floating point
throughput, sparse matrix–vector operations are much less regular in their access pattern and, consequently, are generally
limited by bandwidth. In [15], Bell and Garland proposed two implementations of sparse matrix–vector multiplication for
the CSR format: the first using one thread per row, and the second using 32-thread warp per matrix row. The latter gives
best performances with a fine tuning of the number of warp threads.

Another implementation of the sparse matrix–vector multiplication y = Ax is to split multiplication and addition
operations as follows

zij = Aijxj, ∀(i, j) (4.1)

yi =


j

zij, ∀i. (4.2)

5. Numerical experiments

We first investigate the behavior of our SSOR-AI preconditioner on a matrix arisen from a Poisson equation (2.1) (with
α = 0 and ν = 1) on a unit disk discretized by finite element method. The resultingmatrix A is symmetric, positive definite.
The SSOR-AI preconditioner computed with the sparsity pattern of A is denoted by M̄A. We use MATLAB to approximate the
condition number A, AD−1 (for Jacobi preconditioning), AM̄A and AM̄ .

The first finite element mesh consists of n = 1105 nodes, the size of the unknown vector x. Fig. 1 shows the condition
number against ω. We notice that the SSOR-AI preconditioner is significantly better than the Jacobi preconditioner [16].

We now compare our preconditioner with the IP preconditioner (3.6), proposed by [2]. The finite element mesh consists
of n = 8047 nodes. Fig. 2 shows that with a suitable parameter ω, our approach (M̄ and M̄A) has the best condition number.
Fig. 2 also shows that ω = 1 is not always the best choice for κ(AM̄A) or κ(AM̄). It can therefore be useful to adjust the
parameter ω to reduce the condition number of κ(AM̄A) or κ(AM̄), rather than using ω = 1.
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κ(AD−1) ≈ 6430 (Jacobi).

Table 1
CG algorithm: CG-CPU vs. CG-GPU.

n CG-CPU Time (s) CG-GPU Time (s) Ratio CG-CPU/CG-GPU

265345 25.22 5.38 4.68
525849 64.53 10.80 5.97
755581 118.06 18.48 6.38

1063159 201.37 29.27 6.87
2105137 516.73 71.37 7.20

Table 2
Performances of the PCG algorithm, using 8-thread warp per row, and speed-up.

n 265345 525849 755581 1063159 2105137

GPU Time (s) 4.09 8.46 13.59 20.63 50.37
Speed-up CG-GPU 1.29 1.27 1.35 1.41 1.41
Speed-up CG-CPU 6.16 7.62 8.68 9.76 10.25

Table 3
Performances of the PCG algorithm, using (4.1)–(4.2), and speed-up.

n 265345 525849 755581 1063159 2105137

GPU Time (s) 2.86 7.79 13.90 22.57 62.05
Speed-up CG-GPU 1.88 1.38 1.32 1.29 1.15
Speed-up CG-CPU 8.81 8.28 8.49 8.92 8.32

In our numerical experiments, we use only M̄A as preconditioner (with ω = 1.1) to reduce the computational cost.
Indeed, performingmatrix–matrix multiplication is much less costly if the sparsity pattern of the resultingmatrix is known.
For the numerical experiments, we use the following processors:

CPU Intel Xeon Quad-Core 2.66 GHz, 12 GB RAM (using gFortran),
GPU NVIDIA Tesla T10, 240-core, 4 GB RAM (using CUDA).

The matrices are from discretization of the Poisson problem in unit disk with a finite element method. We use the sparse
matrix–vector multiplication proposed in [15] but with 8-thread warp per matrix row, because the matrices have around 8
non-zero values per row.

In all algorithms, we start with xk = 0 and we iterate until ∥rk∥ ∥r0∥−1 < 10−6.
In Table 1 we compare the CG algorithm implemented on GPU with its CPU counterpart. We can notice that without

preconditioning, the CG algorithm on GPU is about 6 times faster than its CPU implementation.
In Table 2, we report the performances of the PCG algorithm using the sparse matrix–vector multiplication proposed

in [15]. GPU Times include the computation of the SSOR-AI preconditioner (i.e. the sparse matrix–matrix multiplication).
We note that the computational time required for computing M̄A = K̄ T K̄ is not significant, even for large matrices. For
instance, for n = 2 105 137, the GPU time for performing M̄A is 0.169 s. We notice that the preconditioning with SSOR-AI
significantly improves the performance of the CG algorithm by about 30% in terms of computational time. The speed-up
obtained with the PCG on GPU, with respect to the CPU implementation of the CG algorithm, then increases. For the largest
problem, the PCG algorithm on GPU is 10 times faster than the CG algorithm on CPU.

In Table 3, we report the performances of the PCG algorithm using the sparse matrix–vector (4.1)–(4.2). We can notice
that this version of the PCG algorithm is faster only for n = 265 345 and n = 525 849, the smallest problems.



3590 R. Helfenstein, J. Koko / Journal of Computational and Applied Mathematics 236 (2012) 3584–3590

6. Conclusion

We have presented a parallel implementation, on GPU, of the preconditioned conjugate gradient algorithm for linear
systems with symmetric, positive definite matrix. Our preconditioner, derived from the standard SSOR, is an approximate
inverse and can therefore be used in the PCG algorithm through a sparse matrix–vector multiplication. Numerical
experiments show that the speed-up obtained with the PCG on GPU, with respect to the CPU implementation of the CG
algorithm, is between 8 and 10 (depending on the sparse matrix–vector multiplication used).

We plan to investigate another SSOR approximate inverses (e.g. using second order approximation in (3.4)) as well as
another sparse matrix storage format (e.g. Block Compressed Sparse Row). Our PCG algorithm is currently designed for 1-GPU
platform. A multi-GPU implementation is under study to improve scalability.
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