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Let (S°, c) be the standard 3-sphere, i.e., the 3-sphere equipped with the
standard metric. Let K be a C? positive function on S°. The Kazdan—
Warner problem [1] is the problem of finding suitable conditions on
K such that K is the scalar curvature for a metric g on §* conformally
equivalent to ¢. The metric g then reads

g=u'c

and u is a positive function on S~ satisfying the partial differential equation

—8 Au+ 6u=K(x)u’
(1)

u>0.

Let L = —8 Au + 6u be the conformal Laplacian. The same problem can be
formulated for any compact Riemannian manifold (M", g). Since this
problem has been formulated, there have been some partial answers (see
[3-7, 18]). Obstructions have also been pointed out [1, 2]. The main
difficulty, arising when one tries to solve equations of type (4), consists of
the failure of the Palais—Smale condition. We show, in this paper, how this
difficulty may be overcome in the case Eq.(1). Our method consists of
studying the critical points at infinity of the variational problem, in
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SCALAR-CURVATURE PROBLEM 107

computing their total index (as singularities for the gradient flow), and
comparing this total index to the Euler-Poincaré characteristic of the space
of variations. The equality of both numbers is not automatically satisfied
for n=3. The conceptual and analytical framework of this paper originates
in [8-107. Observe, in particular, in this paper the use of the gradient flow,
to overcome the noncompactness. This is extensively used in [10] and has
displayed the role of Green’s function in equations of type (1). See [10] for
further details. We state now the theorem that we will prove here.

Assume K is C? and has only nondegenerate critical
points x,, ..., X,, such that — LK(x;)#0 Vi=1, .., m. Each
x, is assumed to be of index £;. (H1)

THEOREM 1. If 3, o that— rxien»o0 (— 1) # —1, then (1) has a solution.

Remark 1. For a corresponding result on (S*, ¢), the reader is referred
to the end of this paper, Appendix C.

Problem (1) has a variational structure, the functional being

1
(55 K(x) u® dv)'/?’

1
Jwy=3 @)

where dv is the volume element of (53, ¢) and where u belongs to the space
Z+={ueH1(S3); 40 s.t.j (—Luu)dv=1}. 3)
s3

We will denote

1

2 — . —_
lul =, = L; Luw; Mu)_jK(x)uﬁdv'

4)

The functional J is known not to satisfy the Palais—-Smale condition, which
leads to the failure of classical existence mechanisms. Although J is lower
bounded, the minimum does not need to be achieved, and in fact is not
achieved if K is nonconstant. The failure of the Palais—~Smale condition has
been analyzed throughout the work of [13-17, 19]. The analysis carried
out in [11], and [12], in particular, comes out here virtually without any
change. Introducing

i 172
3 — 5
for aeS? A>0, (a, 2) c°<,12+1+(,12—1)cosd(a,x)> , (5)

580/95/1-8



108 BAHRI AND CORON

where d(x, y) is the geodesic distance on (S°, ¢). 8(a, 4) is a solution of the
Yamabe problem on S? and therefore satisfies

—Lé(a, A)=6(a, )’ (6)

and for pe N*, >0,

W(p, tt):{ueE+ st 3oy, .y @,>0; 3ay, .., a,€8°,

1
= S A; > Vi with

* p,

<e [0 K(x,) Au)*— 1] <e Vi

y 1
g;2=£—+ +,t,1d(a a) >—Vi¢j}, (7)
2V £

i

where 8,=06(a;, 4,), &;=(A/A;+ A/A;+ A, Ad(a, a)?)~ " will be exten-
sively used later.
The failure of the Palais—Smale condition is characterized as follows: Let

0J(u) be the gradient of J. (8)

PROPOSITION 1. Assume (1) has no solution. Let (u,)e X+ be a sequence
such that 8J(u,)—0 and J(u.)). is bounded. Then there exists then an
integer pe N*, a sequence ¢, >0, ¢, — 0, and an extracted subsequence of
the u,’s, again denoted (u,) such that u, € W(p, &). (J(u,)) converges then

to a limit | such that 1< px(f 6°3 \/r;) where m is a lower bound for K
on S°.

The proof of Proposition 1 is by now classical (see [15, 16, 10, 11] for
instance).

Following a method introduced in [10] and used in [11], we optimize,
for ue W(p, ¢), ¢ small enough, the approximation of u by u=3%7%_, a,4,,
i.e., we introduce the minimization problem

ue W(p, &) Min |u— i a;0(a;, 4)] . 9)

i=1 —L

The following proposition 1s also, as in [10, 11], available in this
framework and its proof, which we omit here, requires only minor
modifications.
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PROPOSITION 2. For any pe N*, there exists £,>0, y(p), 6(p) >0 such
that for any u in W(p,¢,), the problem of minimization (9) has a unique

solution (a;, a;, A;), up to permutations. Denoting v=u—u=3"_, €;0;, v
satisfies

(v,6)_,=0
06,
, — =0 Yi=1, .., p.
(” aa,»)_L : P (Vo)

8,
(”’ 67,,);0

s(p)<o;<y(p)  Vi=1,.,p

o, satisfies

In the sequel, we will often split u, a function W(p,¢), under the form
u=Y"_, a;6;+v, after solving problem (9). We will refer to this splitting
by stating that u is in W(p, &) and v satisfies (Vo).

Note that

aJ(u)=Mu)u+ Au)’ L7'K(x)u®  VueZX™, (10)

where A(u) has been defined in (5). 6J(u) is the gradient of J with respect
tot the ( )_, scalar product. A(u) is a Lagrange multiplier which is equal
to (3J(u))? and we have the following lemma:

LemMa 1. 1. There exists Ay>0 such that AMu) = A, Yue Z™.

2. For any be R**, there exists C(b)>0 such that Yu, w such that
J(u), J(w)< b, we have

|A(u) = A(w)| < C(b) lu—w|_..

The proof of Lemma 1 is also very easy and we shall omit it here.

LEMMA 2. Let pe N* be given and ¢ >0 be small enough. There exists a
constant C(p) such that for any ue W(p,¢e), u=3"r_, a;6(x;, A;)+v, v
satisfying (Vo), the following estimate holds:

2 |DK(x; 1
ol <€) (E ogtogs; 1o+ s + 3 TN )

is#j i=1 i i
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Proof. We now compute dJ(u) - v.

J(u)-v=—4 f Lu-v—a(u)’ J K(x)u’v

P 5
fo(x)<z a,.a,.+u> v—iw) | Lo-v. (11)
i=1

Using (Vo), we derive

P

o) -v=— Au) f Lv-v—Au) K(x) ( Y cx,—5,~+v> v
S3

i=1
14

/l(u)SJ Y aSK(x;) 8% (12)

S =1
since § g3 —L 0= 67v=0. Then
oJ(u)-v= —/1(u)j Lv-u—sx(ufj Kx) S of 5%

53 53 = iYi

+ i)’ Z f S(K(x)— K(x,)) 650 + R

=—/1(u)j Lv-v—5A(u j ZK(x)a“a“

FA0° Y [ al(Kx)—K(x)) 8%

i=1
?
—S5Aw)?* Y | (K(x)—K(x) 502+ R (13)
i=1"S
where, using the fact that 6]57 <(676,+ 076;) and 676,86, < 6}(67 + 67),
IRI<C (z | e 5,|vl+fv1iL). (14)
ixj °S?

By Lemma A5, we have

5/6
J 5?5,-|‘v|<|v|_L(f 6?“/56,-6/5) < Ceylloge; ) o], (15)
s? s3
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By Proposition 1, we have

P

Vue W(p,e), u=Y a,+v, v satisfying (Vo), (16)
i=1

|A(u)* K(x,) &

where ¢ () satisfies lim, _,, ¢,(¢) =0 (¢,(¢) is independent of u in W (¢)).
Finally, by Lemma A6, we have the estimates

“‘b

— 1l <o),

5/6
<lvf_, <J |K(x)—K(xi)l6/5 5?)

<C<|D§(-x DI )I . (17)

i

\ [ (K(0) = K(x)) 650

C
SI v,

| (k)= Ky o202

Using (14)-(17), we derive from (13)

z(u)Q(u)<C<|aJ(u)|+ 2 eyloge; )" + IDEx) +l_) v,

i) A;
+C vl + Cpo,le) ]2, (18)
where
14
Q(U)=|v|iL—5f Y &t (19)
s3 -

By Lemma A2, we know that, if ¢ is small enough,

Q)yzag v,  YueW,(e)

(20)

o> 0.
Lastly, by Lemma 1,

’l(u) = /10>0 Yue Wp(s). (21)
Thus

DK
ol <C (101 + 3 o ogey 'y + PEEN L LY
i#j /l, '11‘

+C ol L+ Cpo,(e) 0] . (22)
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Choosing ¢ small enough, Lemma 2 follows from (22).

Lemma 2 is not actually the best estimate on |v|_,. The following
proposition provides us with the best estimate on |v| ,. The proof of
Proposition 3 is deferred to Appendix A.

PROPOSITION 3. Let pe N* be given. There exists &> 0 and C >0 such
that for any u=3"_, a,8,+ v in W(p, &), v satisfying (Vo), the following
estimate holds:

bo|_,<C <|5J(u)| +3 g, (log 8[;1)1/3))‘

Lemma 3. Let peN* be given and ¢>0 small enough. For any
u=3¥"_, a;8,+v, v satisfying (Vo), in W ,(¢), the following estimate holds:

(e0-o(rma))

DK(x
<C|v|{L+<|v|L <%———)—|+/L + Y g;(loge; )1/3)>.
i i J#i

Proof. We denote
20109, 4
w=———-’——; wi =y o0, (23)
’Zi=1 a,/ 1 —L i=1 ’
Since |u| _, =1 and since |v| _, tends to zero when ¢ tends to zero, we have

lu—wi_p<clol_ps w0 =Cll_)<wl_o<lw | _(1+Clol_,)
(24)

for a suitable constant C. Hence, given ¢, >0, ¢, > ¢, we may choose ¢ such
that we W(p, e,). If g, is small enough, J is bounded on W(p,e¢,) by
Proposition 1. Thus, by Lemma 1,

[(Aw) — 2w <K lu—w| <K o],
AMu) < B(p) (25)
Aw) < B(p).

Let us compute now

A=(0J(u)—0J(w))-A i %,

o (26)
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A splits in
A=A+ Ay + da, (27)
where
99, A5(u) — 25(w) 2,
-0 (w2 ) -G [ g o9
a5
Ay = A(w) (u—w,, ax) L—z(w)ﬁ L} K 5)/1,6 (29)
Ay = Aw) (wl—w, A, %%)L—A(W)S Jsl K(ws —w') 4, ‘—2?— (30)

Clearly, using Lemma A3,

83, A , 9, ,
(wr57) =(m2g) L (a00a5) o (Ze) o0

w, —w is parallel to w,, with a coefficient @ satisfying, by (24),
—w="0w,, 0l <Clvf_,.. (32)

Therefore, if ¢ is small enough, we also have

(mmseo(o(ze))

Using (25), (31), and (33), we therefore have
0é,;
(smn52)

](z(u)—/l(w)) (u, 2 %>,L
A(w) (w —w, ;,Zj)% =O<|v|_L (Ei e,.j)) (34)

We estimate now

+ 14(w)]

+

09; ile}
5 5
[ Kow? higy = = [ k(@) bt R (35)
where R is upper bounded by
00
< H 36
IR| CZJMlaﬂl (36)

J#EI
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Observe that we have

L= < C3,.
M SO
Therefore by Lemma A3
IRl<C Y ¢.
=3 = i S
j#i
On the other hand,
06,
[ o1, = =0

Thus, using (37) and (39)

H K(0,8,)° 1, ‘;‘; U (K(x)— K(x,)) a5852, gj(
C j |K(x) — K(x,)| 8.

By Lemma A6, we have

i - ke a s ¢ (P ),
Combining (38), (40), and (41), we derive

J. Kwis, 5,1__0 (LQKT(I_M“FII?“"Z#[ 8u>
Let us estimate now

jKu —wi) A, ——5 j Kwia, ‘;‘; v+ Ry,

where, using in particular (37),
IR, | <C |,
We have

85,
4
j kwiti g 7}

u_K(x)iju % v+j (K(x)— K(x,-))l,-%%vw

(38)

(39)

(40)

(41)

(42)

(43)

(45)
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Observe that by (37)

3,
[ (koo K 2,5 ont

C [ 1K) = K(e))l 6,1 1ol

/ N y 1 6/5

¥4
<C o] X ‘Z K K(x)— K(x;)|*
=1

<Clol_, ((j IK(x) — K (x| 6?)5/6 (Z 66’562“/5)5/6). (46)

By Lemma A6, we therefore have

|j| (x)— K(x))u.m owi

1\ /|DK(x)| 1
<Clvl_, (Z €; <log E—) +<I~T(2|—+F>) (47)
isj I i i

Next we have

Jr wii, % v=Jr aldia, Z—j v+ R,, (48)

where

IR <C [ ¥ 626, 10l <Clol_, (j 5?/55}4/5>5/6
it -

<Clv_, <i§j &y (log '9_u> ) (49)

Since
—L %%—55? gj 0 (50)

we have

f541,67u——— fL =%(gj ) —o0. (51)

Relations (49) and (51) yield

U wik; %i—v

1 1/3
C (Jjv] _ ., (Z &y <log —) > (52)
ij &y
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Thus, by (43), (44), (45), and (47),

'jKu—n A Oi

coutt v (3o fond) H 2L, 1)

g A )

i i

Combining (25), (32), (42), and (53), we derive

‘(/l(u)s—}t(w)5) f Ku'l, Z—i
+ A(w)® L} K(u5—wf)iiz—?~+l(w)5 L3 K(w3 —w) 1, %
1/3
S R e I (0 B ETY
! i#j 7]

Relations (34) and (54) provide the desired upper bound on 4. The proof
of Lemma 3 is thereby complete.

LEMMA 4. Let pe N* be given and ¢>0 be small enough. For any u in
Wip,e), u=2"_, a;0;+v, v satisfying (Vo), the following estimate holds:

85, A oy 1
8 » i M
J0w)-4; oA, Z CK(x,)" ax ¢ <,12) o <Z ‘Sk')’

k#r

where w=37_| w;0,/12F_ %0,/ ., and where 0,(X,., &) 2y 4, Ear
tends to zero when ¢ tends to zero; c is a suitable constant.

Proof. By Proposition 1, we know that

A*(u) K(x;) af — 1. (55)
By (25), we know that
(M) = AwW) < C [o| ., ——5> 0. (56)
Then
Hw) K(x,) o ——> 1. (57)



SCALAR-CURVATURE PROBLEM 117
Let us compute —dJ(w) - A,(86,/04,).

09,

—aJ(w)- A 7

88 08,
91— Mw )(w A a;> L+,1(w)5 j Kw'l, a_xf (58)

As in the previous lemma, we denote w, by the function 3°/_, «;6, and we
have

w=(1-0)w:  101<C lol_,—=5>0. (59)

Clearly, by Lemmas A3 and A4, (37), and (55),

00
( %idin & az,>~f°
09,

A(w) <a,5,,/1 65) — A(w)a jm b

1 35, o
=X [ 22, 5L o) fori# ) (60)

Next, we estimate A(w)® | Kw’4,(86,/04,).

J(w)’ f Kw'i, Z—j

=/1(w)5{JK<i 5) +52j1<aa454/1 %5}“{
et '('3/1 fhat i} lal 3

R
(61)
where
00
4
Ri<C S [ stoun |5 (©2)
J#Ek
i#i
Observe that 5767 <670, + 939;; hence, by (37)
RI<C Y | 6260, (63)
jk
J#EI
Then, by Lemma AS,
IRs| =0 ( Y 8kr>' (64)
k#r
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We consider now

P 55 0
/”;JK(Z ozféf) 3= {j CRRIES) Jfofo//,i—)}
1

i= i i J#

= 2% [ (K(x) = K(x.)) 32, jj

+25 Y o [ (K- K(x,)) 632, %,

e a)i
55, 00
+# Y 4 K(x) | 674, 5 (65)
F#i 5
We have, using Lemma A6
00 C
5.5 5
o [ (K(0)— KU 034, 5 <55 (66)

T3l
B Y [ (K=K 554, 5 < T 0 [ 1keo—Kes a5,

J#i J#i

<o (Z a,.j). (67)

Using (55), we derive

Relations (66), (67), and (68) imply

3 89, _ 1 33, 1
A K 55 - sy Y0 b )
f <-21 ) L R O <1?> +o(2 £>

j#l

J= J#Ei 7 j#0
(69)
Finally, we estimate
5 4. 99;
5A(w) m j Koo, 642, 2 a/l ¥}
=5iw)° ¥ "K(x)f 54, 2 ¥}
=, "9,
.. 85,
+54w)* Y e f(K(x)—K(x Noihi 5 o (70)

J#EI
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Using (55), we derive

5 4 4 09,
54(w) E.— 2 K(x .)j ik 8,
1 00,
=5]§'W~[5 ’ﬁé +0<Z ) (71)

Using Lemma A6 and (37), we derive

siw)* Y ot | [ K(x) — K(x0) 554, %‘% 5,
<C Y [ 1K) - Kx)| 38,<0 (2 .s,> (72)

Combining (71) and (72) yields

09,
5A(w)? Kota, 840, —
(w) ,Z:i'[ afo 074, 2, 5;

1 26
=5 % %o )1/4j64/1,575 +o (Z ) (73)

Jj#i
Observe now that, by Lemma A4 and (50)

26 36, de,
4 — 5 —_— = —-‘] .
jm,aia J‘”az ok g+ oley) (74)

Combining (58), (60), (61), (64), (69), (71), (74), and the fact that 6 = o(1)
(see (59)), see we derive

A oy 1
—8J(w)- 4, a/l_c Z X ai +0< )+o(z gk,>. (75)

k#*r

The proof of Lemma 4 is thereby complete.

LEMMA 5. Let p>2 be given and e,> 0 be given small enough. Then, for
any solution u(s, u,) of the differential equation

% _osu)
Js
520 (E1)

u(o’ uO) =Ug
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starting at uy in W(p, ey), there exists s, >0 such that u(s, uy) ¢ W(p, ¢o.1)
forany s=5,.

Remark 2. As states in [9, 10], the Palais-Smale condition is satisfied
on the flow-lines of the gradient for p>2. See [9, 10] for further preci-
sions, results, and conjectures.

Remark 3. The fact that along the gradient flow u cannot “concentrate”
at several points is due to an “interaction” between the J/’s: any 4, leads J,
with j#i to deconcentrate (see, e.g., (102)). This interaction is strong
enough on (S? ¢). It is no longer the case for S”, with n>4; but still, in
that case, the analysis of the gradient lines can be carried out (see
Appendix C for n=4; also [10]).

Remark 4. 1n Siu and Yau [21] and Taubes [17], interaction between
two “bubbles” has been used, in a very different way, in order to establish
the existence of harmonic maps [21] and for the Yang-Mills equations
[17]. The result of Lemma 5, involving direct computations on gradient
lines, with no restriction on the number of “bubbles,” is of a new type.

Proof. Let us consider a solution of

%= —0J(u)
u(s)=u,.
We first claim that
jom I < +o0; Tim ()| =0, (76)

Relation (76) is proven in Appendix A in Lemma Al. Taking ¢, small
enough, let us suppose that u(s,, uy) € W(p, &,/2). Let s, be the largest time
larger than s, such that u(s, uy) € W(p, ¢,), for s€ [s,, s,). Since ¢, is small,
we may solve problem (9) for u(s, u,) and write

r

u(s, ug) = Y. a,(s) 8(x,(s), 4;(5)) + v(s), (77)

i=1

where v satisfies (Vo). The uniqueness of (a;, x,, 4;) as solutions of (9)
implies that a;(s), x,(s), 4;(s), and also v(s) are differentiable functions of
s. We now successively complete the scalar product of Eq. (E1) with §,(s),
A:(86,/04,)(s), (1/4,)(68,/0x,)(s). We then derive
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(ai <i aj5j+ U)’ 5’) = —(0J(u), 6;) .. (78)

N

o (& 185\ 1 85,
(—a—s(z “/‘Sf*”) Ifa—x,-):‘(a*’(“) T, ox ) , P

o (2 86, 85
(5 (21 ajéj+u>, A, 37,) <8J(u) A a;) g (80)

i=

Differentiating (Vo), we obtain

8 o 05, 85,
_ = — — : =Q0,;,, —, —. 1
(as v, ¢>-L (v, as)_L, p=90, 3%, 3L, (81)

Thus, Eqs. (78)-(80) may be rewritten as

P
Z @;(6;,0,) .+ Z < 4 (x,), )
i=1 —L

2 ; ; 09, 0d,; ;

=, 5, A—lv, — (%))—{v, = 4,
tL “f(az,- ) f ( ox, (x'> (" 4, i)
=(—0J(u), ;) _,, (82)

and the analogs of (82) with 4, replaced by 85,/dx; and 35,/84,. Observe
that

(i‘?_(w) ) =0  VweT.(S) (83)
ax —L '

(T.(S?) is the tangent space to S* at x,).

39, _
<a/1 5> =0 (84)

since (J;, §;)_, is independent of x; and 4,. Observe also that

(0:,0;) L=Co>0 (85)
?—(Z% =C,A%; C,>0 (86)
ox; 0x;) _,
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_Q’;; :Cz/),?; C,>0

for i#j

<§% 6’) ) L< Chiey for i#j
(?{’ 5’) WLSC%'M,- for i#j
](g_xl,’ S_fé)% <Clhe; for i#j
l(g%,’ Z_ij,\) . SC% ] for i#j
25.
‘aig;i ¥L=C5,

(87)

(91)

(92)

(93)

(94)

(95)

Relation (82) and the corresponding formulas for 86/04, and 86,/0x; may

therefore be rewritten as

. . A
z <aj0(s,-j) +o;A4;%;- O(ey) + oy —’ O(s,.j)>
]

J#i

S

[

+ Coa;i+ O(lv] _p)- 4%+ O(lv| _)-

>

1

) A
2 <o'tj0(£,-j) +a;4,%;- O(ey) + o I’ O(Sij))
J

J#i

A 1 86,
+(Cia;+O(lv] ) Ak + Ol _p) = — | 0J(u), - =—
A; A; Ox;

i
Y <o'cj0(£,-j) +o,d% - Oey) + o —Al O(Sij))
7

j#i

+O(Io) A%, + (Caas+ O] 1) j—"_=(—aJ(u), 5, 2

= —(0J(u),0;) .

(96)

) 97)
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These three equations may be rewritten in a 3p x 3p matrical form

li i+p i+2p
c | S
il o) - —-odel ey -0l +ey)
C | | i,
|y + O(]) |
j4p |- e N0 - ool L +e) | | 2%
| Cia,+ O(Iv])) |
| Caloy +O(l)) |
j¥2p |- f~»0(|u|__L“+a,.j)i\—\—\———ol(zij)v——-— ;
i | S 2,
i | | ce o)) | 7]
T (@), 8) ]
1 06,
- _<aj(”)’za_»ci>_L . (99)
29,
i (—6J(u), A; 5_/1,->,L

Remark. The term O(jv| _, +¢&;) is O(g;) at row (i, j) for j—i # o(p).
It is O(|v] _,) at row (i, j) for j—i=O(p).

Observe that [(8J(u), 8;)_ .|, [(8J(u), (1/2,)(08,/0x;))_.|, and [(9](u),
A{08,/64,)) _ | are upper bounded by C [8J(u)| with a suitable constant C.
Thus

4=~ (U(,3)_,+O <I01(u)| ( T e+ 10l ))

k#r

Ax= —C—I— <6J(u), A %>7L+ O <|6J(u)| < Y et 0 L)) (100)

1%; k#r

i 1 86,
e <6J(u), A; a_/l,)fr 0 (|5J(u)| <k§ &+ 0] L))

Relation (100) holds for se [s,, 5,). In view of the statement of Lemma 5,
we may choose s; as large as we wish. Therefore, by (76), the terms
O(18J(W)| (i z» €x,)) may be considered 0,(3, ., &), where o0,( ), here,
refers to s, tending to + 0.

580/95/1-9
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Using Lemmas 3 and 4, the third equation in (100) yields

A 1 A %y 1
I: Czcx Z (x()l/A _a—j'—j+0<ﬁ>+01<z 8kr>+02(z 8kr>
! J Vi

oy K=r krr
+0<|v|2L+|v|L ('Dlj_x ) )2+ Y & logs")'/3>+]6J(u) )
| . (101)
Thus, using Proposition 3, we derive
| ‘
%’f e &, (Z')““ fu”* (Z 6“)*"2 (kz 8"’)
+0<;2>+0(k§r ex(loge; )7 +10J(u)? ) (102)

By (55), ati(u)* K(x,) tends to 1 when g, tends to zero. Observe that
Ai(0ey/04;) = O(e;). Thus

i K(x)" i@

- = Ly i 2
2 Caiw) fgz KCo)™ 33, <k§ ek’) o (ﬁ) o) )(.103)

In this last formula, o(3, ., &,) means that, when g, is small and s, is
large, o(3X; ., &)/ (X« «, &) is small. We observe now the following facts:
de e Aidd(x,, x;)?

y "y
T a T T I At ki X))

<0.  (104)

Assuming A;/4;> 1 and &, is small enough, then
de; 1

— 512>_ (105)

(e5 <&, here; thus 2,/4; or A,4,d(x;, x,)* is very large, if ¢, is small). Con-
s1der1ng the functions 4,(s), .., 4,(s), we may order them in an increasing
order at each time s:

A
Let m and M be such that

1

We introduce the function

S——<4,(9). (106)

p—2
#(s)=1log 4,(s)+ %4 log A,(s)+——+ (%l) log lip(s). (108)
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¢ is a continuous function, which may be not differentiable at times s s.t.
A, (s)= 4, (s) for a certain index k. However, at those points, ¢ has at
most a finite number of derivatives, ie.;

i BER) = 4(s)
ho0 h

(109)
takes at most a finite number of values. We compute one of these values:

2o2M\IT2 :
o)1= ¥ (5 a0 i) (110)
2

j:

if (105) holds. Observe that, for any x,, x,, x|, x,€ 83, (M/m)(K(x;)"*
K(x,)Y*) = K(x3)"*/K(x,)"*. Using (103) and (107), we derive

1 O\ (2M\ 2
N PACE ) o

ji=z2
K(x, )4 Oe,,; oe,;
> —(2—)‘*‘(1{2#”’? af)
]::,:z K(xfj) i i
j#i

2M K(xi2)1/4 (A 68,-3,-/ i %)

+— Y m\ ot
m = K(x;) T
j#i
J# i

M 0€ iy M2 M 04,
Tttt +[((7) ‘;;;> bt
2M k=2 2M k=3 M /1 asikik_l

m) % 0A,

0y s ; (1, T, ]
m & Ky \ "o, T,

2M\P 2 Oy,

m ) _E> Yo, ¥
MY ( T, By
m m Hy 04,
W -G 3M> ol
m o
roZ w)ro(S

&g,
k#r j=2'{

+

+

+

(&
&
I
u
l

>+0(I51( )1%). (111)

ij
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Using then (111), (104), and (105), we derive
r 1
H<-C Y 8,-,+0<Z >+0( Y ( 2>>-+—0(|6J(u)| 5 (112)
LN i#] ;L
where C is suitable positive constant. Observe now that

1
F=o(sil,}) for j=2. (113)
Thus, if &, is small enough and s, is large enough

(s) < =C Y g;+ 0(10J(u))?). (114)

i#j

From (109), (110), and (114), we derive

B <P+ C [ 10J)% (115)

(115) holds if se [s,, 5,). We claim that
5, < +00. (116)

Indeed, if s, is equal to + oo, then by (76) and Proposition 1, ¢(s) tends to
+ o0 when s — 400, since u(s)e W(p, ¢,) for s= s, (g, small enough); this
contradicts (115).

Thus, for any s, large enough such that

u(sl’ uO)E W(pa 80/2)’ (117)

there exists s, < +oo such that u(s,, uy) ¢ W(p, €,). Any flow-line entering
W(p, &,,) must therefore leave W(p,¢,) at a later time. For se [s,, 5,],
u(s)e Wip, )\ W(p, &y,,). By Proposition 1,

Jo > 0 such that |0J(u)| >« Yue W(p, e,)\ W(p, g5)-  (118)
Moreover, there exists §> 0 such that
B<d(W(p, &), W(p, eop)). (119)
Thus
j” |0J(w)|* = o f |8J(u)| = 2B > 0. (120)

51 51

Relation (120) implies that there are only finitely many of these intervals
[s,,s,). Lemma 5 follows.
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LEMMA 6. Let £>0 be small enough. For any uy= o6, + v, v satisfying
(Vo), in W(L, ¢), the following estimates hold:

2 0)= — i1 +o(1)) o)

Ay lzK(x >4
DK(x, 1
(lﬁJ( o2+ L;—f)|—>+o(P> (121)
. _ DK(x,) [8J(u0)|2 i
%(0)= —62(1+0(1))W+0<T+H>’ (122)

where ¢, and ¢, are positive constants and where o(1) tends to zero when ¢
tends to zero.

Proof. We apply (100) with a single function é,. We obtain

1
dy =" (0J(uo), 01) - + O(lv] - 18] (uo)])
0

1 12,
b= = (W T 522) Ol 1)) (123)
i

00,
e (o 45 0t L st

Since (51’551/63‘1)—1_:(51,551/3/11)#4:(U,aél/axx)-L=(U,a(51/a'11)_L
=0, we have

5
= 20 {8+ - Pt (IvLL Wi”"”)

xl Clilal l a l (124)
j.l_;\.(uo)s s 65
1" Coa, JK(X)(OH(SI-J-U) A — o, L+ O(v] _, 10J(ug)))-
Expanding, we obtain

,15(u0 ;1 551 5A()° )

vy JK Do e
1 09, 2 [0J(ug)|
jK( )5 R 1v+/1 o(lv|% )+ <|U|—L ¥ )

A Mug)s o8 35, SA(u,)’ (125)
e Sp Lol 4
5 O fK( )60 = o

| K0 832, 5204 0l 1)+ 0G0l 1oJtu)
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Observe that

jaf%%‘l ja A,g(jll ja“ig‘s—‘u

L, 0x, P2, 0x,
06
_ 4. 271
_Ja,z, 7 0. (126)
Setting
1 aa‘ .98,
_ 1 doy - @ 127

we are led to estimate, in both cases,
[ K(x) 830 = [ (K(x)— K(x)) 810 (128)
[ Kx) 8300 = | (K(x) ~ K(x1)) 8}ve. (129)
In both cases ¢ is upper bounded by C§,. Thus, by Lemma A6,

lj K(x)djve|<C

[ 1K)~ Kx1) 187 1

5/6
<clol o ([ K- K1)

(130)

<Clol_, (DK(X1)+%).
1

Ay
This, together with Lemma 2, yields

| DK(x,)|

Mug)® o} 70) <C(|0J( o>+ —~—22——+/{4>. (131)
1

Expanding K around x,, we obtain (see Lemma A7)

S 198,
V7L O

1 3,
A 6x1

_ DK(x), (1
== +0<,13) (132)

| k() = [ (K(x) - K(x,)) 67

for a suitable constant ¢ > 0.
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We also obtain, using the symmetry of 8d,/04, around x, and its sym-
metry with respect to the permutation of coordinates (see Lemma A7)

06 00
[ Ky 8321 33 = [ (K0~ Kx) 3, 53
AK(x, 1
- —c /1(;‘ )+o(E). (133)

Observe lastly that, by (55),

o) oS = (L4 0(1); o

e o (1+0(1)). (134)

1
DR

Relations (125), (131), (132), (133), (134), and Lemma 2 imply then
Lemma 6.

LEMMA 7. There exists £,>0 such that for any u(s, ug)=0o,(s)0,+v
satisfying
ou

5= —0(w)

u(0, ug) =upe W(l, &); u(s, ug)e W(l, gy) ¥s20
(v satisfying (Vo)), we have:

(1) x,(s) converges to a critical point y; of K s.t. AK(y;) <0
(2)  Mu)a,(s) — /K(y)'"™; J(u)(s) > [ 6°1%/K())
(3) ()~ v €33/~ 4K(3)) /53 ¢3>0.

Proof. As a consequence of Lemma 6, the expansions provided in (121)
and (122) hold if ¢, is chosen small enough, for any 5= 0. Thus

DK(x,) |aJ(u)® | 1
ey ()

A A3
i AK(x,) 1
2 0= =+t g ()

X, (s)= —cy(1+0(1))

(135)

(136)

2
+0 (|aJ(u)|2 4 1DK(x)E )

A

Observe that, as already pointed out (see (76) in particular),

jm ()] < +o0. (137)
0
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Relation (136) then implies the existence of a constant C such that
AT C(s+1). (138)

Indeed, we have 24,4, +420(|dJ(u)|*)| < C,, where C, is a suitable
constant. Thus

A2ef0Uan < € 5+ A2(0). (139)

Using (137), (138) follows. Relation (138) implies that
2 1
j —>clogs—1 (140)
0 /{1

for a suitable ¢ > 0.

Assuming (1), (3) follows then immediately, since AK(y,)<0 and
§* (0J(u)|? < +oo. Part(2) also foliows immediately from (1) and
Proposition 1.

We prove now (1). Let s, be a large positive time. Considering the
O(|0J(u)\?*/4,) in (135), we set, after completing a suitable stereographic
projection, in order to be able to work linearly,

xi(9)=x(s) - [ 0('5Ji”)'2>. (141)
50 1

Then x satisfies using the mean value theorem

, DK(x}) 1 s |ad(w)|? 1)
' = — —_—_— - = 1. 14
X(x) cy(1 +0(1)) TR <lf Lo s +/ﬁ (142)
Let
1 s ]
di=pds @ L B (143)

Relation (140) implies that 7 runs from zero to + oo when s runs from zero
to +oo. We complete this change of variables in (135). This yields

xy(1)= ~Cz(1+o(1))9_12(x_'ll+0 (rm 10J(w)? —1_>

A U i wes ) Bl

1€ (0, + 0).

Clearly, for any p>0, we may find, using the fact that
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o © (10J(w)*/A,) < +o0, an so(p), N,(¥1), N,(y.), p-neighbourhoods
of the y/s, and y(p)> 0 such that

d , —¢; | DK(x}))?
-5 < ~= T =
o K(x/(r)) 7 Kx)* y(p) for any t such that s(t) >i(;2;;))

and such that

X{D)EN(y) V=1 .,m

We claim now that, for ¢ large enough, x)(7) stabilizes in one of the
N,(y;)’s. This statement implies the convergence of x}(7) to one of the y/s,
after considering a sequence p, — 0. Taking s¢(p,) s.t. so(pg) = +00, (141)
implies that x,(r) converges to the same y,.

Since u(s, uy) remains in W(l, ¢,) V520, 4,(s) remains large (depending
on ¢, small). This, together with (136) and (138), implies that —AK(y;) >0
as stated. Thus, the proof of (1) relies on the proof of our claim, which we
establish now. Relation (145) implies that, for any 7,, there exists 1, > 1,
such that xi(t,) belongs to one of the N,(y;)’s. Let us assume now that
during the time [1,, 7,], x{(t) travels from one N,(y;) to another N,(y,).
If p is chosen small enough, then, with a suitable constant C,

T 1
C(T1—Tz)>f 1%1(7)l df?'z_d(yk’ y;))>0. (146)
7

We then have

2 d
K(x,(02) — K, () = | = K((0) < (o) (e, — 1)

o dr

< _zyép) d(y;, yi) < —v1(p)

_ —ylp)
T 2c

inf d(y,, y;) <0. (147)
j*k

Therefore
K(y)— K(y;) < Cp®. (148)
Taking p small enough, (148) implies
K(y.) < K(y)). (149)

Since y, is distinct from y;, should K(y,) be equal to K(y;), there would
be no trajectory of —DK(x) from y, to y,. Thus, for p small enough and
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so(p) large enough, there would be no trajectory of (144) from N ,(y;} to
N,(y¢). Thus

K(yo) < K(y)) (150)

Clearly, x/(t), because of (150), can travel between the N, (y;)’s only a
finite number of times. This proves our claim and (1). The proof of
Lemma 7 is thereby complete.

Let
Y1, - Vs be the critical points of K such that 4K(y;)<0, (151)

y; has k; as Morse index.
We denote

1 1
Cj=§<f 56>/K(y,)”2<c,+1=3<f 56)/K(y,+1)‘/2. (152)

For the sake of simplicity in the presentation, we will assume in the
remainder of this paper that

i< e (153)

Our arguments adapt to the case where equalities occur with only minor
modifications. Let p >0 be a small number and let

w,: 8- [0,1] (154)
be a C* function such that
w,(x)=1 if x belongs a p/2-neighbourhood N, of y;
w,(x)=0 if x belongs to the complement

. (155)
of a p-neighbourhood N, of y;

o), (x)| < 4/p.
Let
0 < u <n be two small numbers such that u/y is small. (156)
Let
w:R* 5[0, u] be a C* function such that w(x)=pu if |x| <n/2;
w(x)=0if x=n  Jo'(x) <4u/n. (157)
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For ¢ small enough, the function
0, (x) o(|0J(W)*)=gu)  (u=a,0,+v) (158)

is well defined on W(l,¢). Choosing &¢>0 small enough such that
W(l,e)n W(p,e)=¢ Vp=2, we then choose n such that

0<n< inf |0J ()| (159)

ue W(l, )~ W(1,¢/2)
g may then be extended by zero to all of Z'*. Let
Fuy=J(u)—g(u). (160)
We have:
LEMMA 8. Let b>0 be given. There exists ¢ >0 such that if p, n, and ¢

are given small enough, n subject to (159), and if p<c inf(p?, p*/e, n) then
0F(u)-0J(u) >0 for any u such that J(u) <b.

Proof. 1In the proof of Lemma 8, we will consider functions u, u, in
W(l1, ¢), which can be split, by Proposition 2, as u=a,6; +v, J, being
d(x,, 4,), and v satisfying (Vo). For the sake of simplicity in the presenta-
tion, we will omit stating this splitting and we will refer directly to x,

and v.
Relations (122) and (123) imply

There exist constants ¢, C such that

A1 1%1(0)]
C

>CDK(X1)
A

Vuoe W(1, &), |0J(uo)| =

=

-C (|aJ(u(,)|2 +i2) (161)
Ay

1

Taking & small enough, we may upper bound C |8J(u,)|* by |6J(uy)|. Thus
(161) implies
IDK(x,)]  C'

Yue W(l, ¢), [oJ(u)| = ¢’ 3

(162)

Relations (121) and (123) imply

Yue W(l, ), [6J(u)| = c (ld_li(zﬂ)

DK(x,)|? 1
_c(IaJ(u)|2+lT(;“i+o(E>). (163)
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Using the fact that y; is nondegenerate, we derive the existence of a>0
such that, if p is small enough,

|DK(x,) Zap>0 Vx, such that 0 <w, (x,} <1 (ie, x;,e N,— N,;,).
(164)

Since 4K(y,) is nonzero, we derive the existence of >0 such that, if p is
small enough,

|4K(x,)| = >0 Vx, such that w,(x,)>0 (ie, x,eN,). (165)
Therefore, if p is small enough, we have by (163) and (165)

Vue W(1, ¢) such that x,e N, [0J(u)] = c3p/A3. (166)

Relations (162) and (166) imply

DK 1
Yue W(1, £) such that x, € N,, |8J(u)| > c, ('—%‘I—)HF) (167)
1 1

Relations (164) and (167) imply then

ca0p

Yue W(1, ¢) such that x,e N,— N, [0J(u)| = 7
1

(168)

under no other constraints than the smallness of ¢ and p. C, and « are
uniform when ¢ and p are small enough. Observe that, for any ue W(l, ¢),
we have, by (122) and (155),

. C
lw),(x1) - %] <= (
P

|DK(x))| |, [0Jw)|* | 1 ) (169)

Pk PR

where C; is uniform for ¢ small and is independent of p. We now impose
on u the two following constraints. Let y be such that

IDK(x))l<yp  Vx,€N,, (170)

uCs (yp 10J(w)* 1
<1f+ PR

|oJ(u)|>  VYue W(l,¢) such that x e N,—N,, (171)

and

|’ (10J ()] *)(|0J(u))?)'| < %16J(u)| Vu such that J(u) <b. (172)
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We assume puCs/p<1/4; 4,2 1. By (168), (171) will then be satisfied as
soon as

1\ u p’
— = . 173
(ream)i<e s ()
Since 4, > 1/e on W(l,¢), (173) will be satisfied if
u< C,inf(p?, ple); C, a uniform constant. (174)

In order to ensure (172), we observe that |(|J(x)|?)| is bounded by
C(b) |0J(u)| on the set of «’s such that J(u) < b. Hence, (172) is satisfied if

dpfn - C(b) 10J(u)] < 310 (u), (175)

ie.,

Ui
HST6C) (176)

Relations (174) and (176) provide the constraint on u as stated in
Lemma 8. Let us compute

OF(u) - 8J(u) = |8J(u))? — g'(u) - 8J (u). (177)
By (171) and (172),
1g'(u) - 8J(u)| < |@)y(xy) - X1 | @(|0J()1?) + [0J(u)] |@'(|J(u)|?)(18J ()] )|

Cs (yvp 10Jw)* 1
< —_ il —_
“p(ﬁ+ PR

1
)+ st <3 10700, (178)
4 4
Vue W(l, ¢) such that x,e N,—N,, and J(u)<b. Since3 w,=1 outside
N, and in N, ,, we also have by (172)
|g'(u) - 8J(u)| < |8J(u)| |o'(18J () *)(|0T(u)]?)']
< §10J(u))? (179)

VYue W(l,¢) st. x,¢ N,—N,, and J(u)<b. Lastly, if u¢ W(l,¢), then
g(u)=0 and g'(u)=0. This, together with (178) and (179), implies

8F(u)-0J(u) = § 18J(u)|* > 0. (180)

Lemmas 5 and 8 imply the following deformation lemma (here ¢ is given
small enough so that Lemma 8 applies):
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LEMMA 9. Let c;<b<c;,, be given. There exists 0y(e)>0, ¢ and ¢ >0
s.t. for any 0 < 0 < 0y(¢), the set J,={uec 2™ s.t. J(u)< b} retracts by defor-
mation onto J.,_,U A, where

4o {ue W, e), u=a,6,+0v such that |0J(u)| <c'9,}
X1 € Ny 3))
and where q)(x)z\/; if x=e% o(x)= \3/5 if x<¢
Proof. Consider the flow #(s, -} of the differential equation

M auu)

s (181)
w(0)=ug;  J(uo) <b.

Let # > 0 be subject to (159), ie.,
0 <n <nyyle). (182)
Let

. (183)

. C
inf(p’fe, p?)=n;  p= 3

Then pu satisfies the constraint of Lemma 8; n,(¢) may be chosen small
enough so that this lemma applies with such choices of ¢, p, u, 7.
Setting

0= Mole), (184)

any 6 less than 6, may be written as
08=u/2 (185)

with

C
p=31 0 <n <nole). (186)

We are then given F(u) with p=¢(n) for each 0 less than 6,. (¢ is the
converse function of ¢ ~!(x) =inf(x’/e, x?); x=0.)
Let uye J,. We introduce

s(up) = inf {s such that F(n(s, pto)) < ¢, — g} (187)
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We claim that s(u,) < +00. Indeed, by Lemma 5, (s, u;) remains outside
W(p,¢e), p=2, for s large. If n(s, u;) does not remain in W(l,¢) for
s large, then standard deformation arguments show that #(s, u,) has to
enter J,_ = {u such that J(u)<c,—3p/4}. Thus, s(ue)< +oo in this
case. If n(s, uy) remains in W(l,¢) for s large, then, by Lemma 7, u,(s)
converges to y;, J(n(s,u,)) converges to c;, while, by Lemma Al,
[0J(n(s, o)) =4~ 4o 0. Thus, w,(x,) @(|8J(n(s, ue))|*) converges to u and
F(n(s, up)) to ¢;— u<c;— p/2. Again, s(uy) < +00 and our claim is proved.
Due to Lemma 8, the function

uo = 5(t4o)
(188)
Jb - R +
is then continuous. The map
[0, 1]1xJ, > J,
(189)

(2, up) = n(ts(ug), uo)

retracts by deformation J, onto F,_,,={ueX* such that F(u)<
¢;~u/2}. If u belongs to F,_,, and does not belong to J,_ o= JCA,‘/z,
then g(u) is strictly positive. Therefore ue W(l,e), x,e N (y]) |0J(u)|2 is
less than n. By (185)-(186), n is equal to (4/c)6 and p is @(n); this
completes the proof of Lemma 9.

The last step in the proof of Theorem 1 is provided by the following
lemma, which provides an expansion of J, holding on functions which are
not necessarily positive.

LEMMA 10. Let 6,>0, py>0 be small, let (h,,h,, hy) being local
coordinates on S* around y,, representing x,. Let u=o,6,+v, with
| 0,(xy, A1)+ 2| _, =1, v satisfying (Vo). We make the following assump-
tions on v, Xy, p, &, A o] ;<& x eN,(y;) with p<pg;
loy —1/10] 1| <&o; 1/, <.

Under these assumptions, the following expansions hold:

1 1

3 [fss K(x)(2,9, +v)6]“2

1 66 k; 2 3 N

iy

- (K(x)— K(x,)) 8 + 163 012, = 5 [ 8407
K(y;) ’s? fé

ro () +( 2 mr) )
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The quantity ~j53 (K(x)— K(x,)) 6% decreases for i, =z A,, A, uniform on
x, in N, (y;), and has the expansion

o_ . AK() 1
__L] (K(x)— K(x,)) 8¢ = ),(ﬁ} +0<E>.

Lemma 10 has the following corollary, which we prove now:

COROLLARY 1. Letc¢; ;<a<c;<b<c;, . For any coefficient group G,
H{(J,, J,)=0for q#3—k;; Hy_(Jy,J,)=0C.

Proof. We first derive, assuming the expansion of Lemma 10, the

homological conclusion. Let, for ¢, u, p, n given satisfying (159), (183),

{ue W(l, e)u=a,0,+v, v satisfying (Vo)} (190)

such that x, e N, (y;)

By Lemma 9, we know that the pair (J,,J,,_ ) retracts by deformation
onto (J,_,nVA, J,_.n) when 4 < B. Therefore

H(Jy, o yp)=H(ANB,J, 0 B). (191)

e —u/

Let u=u,9, + v, v satisfying (Vo), belong to 4 n B. Since F(u) is less than
or equal to ¢;— u/2 on A,

Ju)y=J(o,0,+v)<c,+p Vue An B (192)
while

J(u)=J(a, 0, +v)<c,—p/2 Vuel, 0B (193)
Using then the expansion of Lemma 10, we see that

k 3

: h|2_ |h|% < 2u/e, Yue AnB (194)
J

= kj+1

kj 3

Z B2 =Y Ihi*< —ple, Vued, 0B (195)

kit

since the remainder term in the expansion is strictly positive. We have
therefore defined a map

(AnB, J, u/zr\B)—r( , X _unh (196)
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where
X, = {x,€N,(y,;) such that (194) holds}. (197)
X_,»={x,€N,(y,) such that (195) holds}. (198)
Let

K 3
X_,p= {xleN,,(yj) such that Y |h)>— Y |h)*< —2u/cj}. (199)

i=1 ki1

We define
(X, X _,)—>(AnB, J, 4B
01(xy, A1(x,))
X, - )
[610xy, A(x Dl -

where A,(x,) is chosen continuously dependent of x, and subject to the two
following constraints:

(200)

01(xy, Ai(xy))
[84(xy, Ar(x )l
(hence 4,(x,) must be large enough).

Considering —c 4K(y;)/4,(x,)*>+ 0(1/4,(x,)?) from the expansion of
Lemma 10,

e W(l, ¢) (201)

AK()’j)

1
Vx,eX_,, —c +o<
' g A'l(xl)z il(xf)

Observe that r,0s, is the injection of (X,, X ,)in (X,, X ,,). Observe
also that, with N (y;) chosen to be disc of radius p around y,,

>< u/2c;. (202)

(rue sp)y

H*(Xu’Xfu) = H*(Xu’Xﬂl/Z)
~G if *=3—k
~0 if *#3—k,. (203)

Therefore H (ANB,J.,_,,0B) ~ H,(J,,J,_,,) =~ H,J,,J,) has
H,(X,, X_,) as a direct factor and contains thus G in dimension 3 —k;.
Conversely, let

ue W(1, ¢) such that u=a,d, + v, v satisfying (Vo),
B, = . (204)
_H
IaJ(u)lz <c 5: X1 e]V(p(u/Zc)(yj)

580/95/1-10
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By Lemma9, (J,,J,_,»,) retracts by deformation onto (J,_,,U A4,

J,—up2), when A < B,. Therefore
H(JpJ,_up) 2H(ANB T nD B,). (205)
Clearly
H*(Jb’ J('jfu/Z) s H*(Jb7 J[j,“/(;)- (206)
Therefore, the injection
i, (ANBL T a0 By) > (g T a) (207)
provides us with a homological isomorphism.
Let us consider the following homotopy of i,:
lay 0, + (1 —1)v]
U(t,o0,0,+v)= , te [0, 1]. (208)
P R
Setting
16¢cc’ AK(y;) c;
A =\/_7___.___Q’ (209)
' KK(y;)
Si(x1, 2= A +(—-1)4))
U(L“é(x,i +U)=
O A ) e @ A+ =D A L
for re[l,2]. (210)
We will denote
LM =Q-0i+(—-1)4, for te[1,2]. (211)

Clearly U(z,-) is continuous. U(0,-)=i,; U2, ,0,(x;, 4;)+0)=
8,(xy, A1)/10:(x;, A1) _ .. We will prove later that U(r-) is a homotopy of
i, is a map of pairs from (AN By, J.,_,,NB,)in (J,,J,_ ) Assuming
this, then (i,), from H (AN By, J_ >0 B,)into H,(J,, J,,_ ) is equal
to (s,), where

04(xy, Z1)
o , A = 212
@151, &) o) = oSBT (212)
To any u=a,d,(x,, A;)+ v in 4 n B,, we may associate
AnB—N,
(213)

o0, +v— (hy, hy, h3) local coordinates of x,.
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If 2,6, +veJ,_ N By, then the expansion of Lemma 10 implies

3 k;
=2 k24 Y A1+ O(AP) + Q(v) + O(Io]2 )

ki1 i=1
AK(y, 1
e (R)< o
Since v satisfies (Vo),
Q)= lv12,, >0

Therefore, if ¢ is small enough,

Q)+ 0(v]® ;) —c I?(—Ii;—)%+o(%%>>0.

On the other hand, if ¢ and p are small enough, with p = ¢(u/2c)
O(|h1?) = O(p*) = o(inf(p?, p*/e)) = o(u).

Relations (214), (216), and (217) imply

%, 3 u
Y IhP=Y k)< 3 Va6, +ved, ,,nB,.
i=1 i

Ky 7

Therefore, the map & maps

Z(ANBL I 0 B~ (N, X_ ).

—u/
Let
TN, -2+

5l(x1a ;[)

hy, hy, hy) > ———,
(s b, hs) = s e Il

141

(214)

(215)

(216)

(217)

(218)

(219)

(220)

where 1, is defined in (209). Using the expansion of Lemma 10, we see that

if &, u are small enough (hence p small, p = ¢(u/2c))

HT (hy, by h3)) < ¢ (1 +4p2+ﬁ> <b  V(hy, hy, h3)EN,.

J

(221)
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Furthermore,
HT (hy, by, k) <e, [ 1 =2+ 0(p%) +—= +o(u)>
17 / 4c; 16¢;
3u 7
<o fi- <o 1-£ 222
<C»'(1 16c,.+"(“)> C-’( sc_,.> (222)

if (hy, hy,h3)eX 4 and p is small enough. (Again O(p*) =

o(inf(p?, p*/c)) = o(n).)
Therefore

‘9—:(NstfuM)—‘)(JbaJC/fy/S)‘ (223)

Observe that

51(3(1, Z1) —
|51(x1,11)|

T o F(10,+0v)= ios (224)

me

where
i (Jst<'j‘;4/4)—’(Jb’ J(‘/-u/S) (225)

is the inclusion. i, is of course an isomorphism. Therefore (ios,), =
i,0(5,) 18 an isomorphism. Thus 7, - &, is an isomorphism; Z, is
therefore an injection. Observe that for y >0,

H/(N,, X_,)=0 if g#3—k; (226)
and

Hy_(N,,X_))=G if y/cj'<p2 @)
=0 otherwise.

We already know that H;_,(J,,J._,;) has Hy_,(X,,X_,)=G as a
direct factor. Therefore, u/4c; is less than p? and since Z, is injective,
Hy (Jo. I yp)=Hs_ (N, X_,4)=G. The injectivity of &, implies
also that H,(J,,J,_,,)=0 for g#3—k; since H,(N,, X_,4)=0.
Corollary 1 follows.

We prove now that U(s, -) takes its values in (J,, J. _ 4)-

We first observe that, if u=o,8, + ve B,, then

3 3/2
|v|iL+(z lh,-|2> = o(u). (228)

i=1

Indeed, by (167), |dJ(u)| is lower bounded by c,(|DK(x,)|/A,+ 1/43)
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for v in B;. By Lemma?2, |8J(u) is lower bounded by c|v|_,—
C(|DK(x,)|/A; + 1/4}). Therefore

|aJ(u)|2>c8<|DIiﬂ+%+|u12L> Vue B, (229)
I X
since
|aJ(u)|2<§2’i Vue B, (230)
and we have
lol7=0(); o>, =o0(p) VueB,. (231)

Next, we have, if ¢ is small enough,

3 32 ’u 3
(2 me) " <o (F)| = =otintte?, 10 =0 232)

Relations (231) and (232) imply (228). If furthermore, ue By nJ,,_ 5, then

3 3/2 1
o+ (T ) 4ot (233)
i=1 1

Indeed, using the expansion of Lemma 10, we see that

3
_c%m(%)sC(Z |h,~|+|v|2>. (234)

Relations (228) and (234) imply (233), since —c 4K(y,) is strictly positive.
Thus, if ¢ is small enough, we have

3 3/2 U
C<|u|3_L+(Z |hi|2> ) & YueB, (235)
i=1
3 372 1 U
C<1v|3_L+<Z|hi|2> +F)<§ VueB,AJ,_ (236)
i=1 1
where
C 3 /2 3 3/2
(o (T mrn )2lo(u (T me) ) @
i=1 i=1
C 3 3/2 1 3 3/2 1
5<|UI3L+<Z |h,-|2> +F>>.0<|UI3L+(Z |h,-|2) +?>, (2.38)
i=1 1 i=1 1
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the quantities O(-) being the ones provided by the expansion of Lemma 10.
For te[0, 1], we have

a8y + (1= 1)o]> =20, + (L =) Jo]2 =1+ (1= 1) = D) [o] %,

{239)
since v satisfies (Vo) and ja;0; +v]_, =1. Thus
2,0, +(1—1)v {a’lzal(1+0(|vlz_L))
—— =10, + vy 240
oyt (0ol -0 Ly —a— et +ogo ). P

Using the expansion of Lemma 10, we derive

< la 0, + (1 —1t)v|
loeydy + (1 —1)v|

>=J(a’161 +v,)

1 3 372
< J(a, 6, +U)+C(|”|3+p+(z |h,.|2> )
1 i=1
(241)

If ue An B, we have
Ju)=J(a,0,+v)<c;+p, (242)
hence, using (235) and the fact that 1/4, <¢
vie[0,1],  J(U(, a151+u))<cj+u+§+ Cd<b  (243)
if ¢ and M are small enough. Moreover if u=a,6,+veJ,_,,N B, then
by (236)

Vie[0,1],  J(U( 2,0, +v))<cj—g+§<cj—y/4. (244)
Therefore, for te [0, 1], by (243) and (244), U(1, -) is a homotopy of i, as
a map of pairs (AN By, J,_,,n By)into (J,, J. _ ) Let 1€ [1,2].

Observe that by the choice of 1, in (209) and by the fact that 1/4, <e
we have

1
Yu=a,0,(x,, 4)+v, ueB,, O (F(t)> <ce’ +o(u) (245)
1

and by (233)

Vu=a,8,(x), 4)+v, ued,_ o0 B 0< )<%+o(u). (246)

1
23(0)
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Using the expansions of Lemma 10 and the fact that — [ (K(x)—
K(x,)) 8¢ decreases with 4,

J( 01(x1, 44(1))

m> =J(U(t, 00,6,(xy, 4,) +v))

d1(x;, 4y) H 1 1
<"<|<51(x1, mu)+ﬁ+0 (7;)“’ <P—(z))
(247)

Therefore, using (241) with =1, (235), (245), (247), and the fact that
1/4, <&, we now derive

04(xy, 41(1))
J(“Sx(xl’}n(tml“)
1 32 1
<J(d (5 +U)+C<|U| +l3 (z |h|2) )+ +0<l3(l))

<cj+,u+%+2cs3<b Vu=0a,8,+veB,. (248)

If u belongs to BynJ_,,, then, from (236), (246), and (247), we derive

04(x1, 44(1)) u 3y
J<|5 (x5 A()] - L>< %5716 £t o(u) < ¢, — p/d (249)

for pu small enough. Relations (248) and (249) imply that U(s, -) is again
valued in (J,, J,_,4) for te[1,2]. The proof of Corollary 1 is thereby
complete.

Proof of Lemma 10. Rather than assuming that |o,8,+v|_, =1, we
will relax this last constraint and provide an expansion of the ratio

loty 6y + 0|8, _N. 1 <a 3
K(x)(,86,+v) D’ 308, . T8,
j()(lx |11L |1L (250)
[v] _, <é&g; Z<80

v satisfies (Vo). Therefore

N=(lo,6;+0|2 )P =(a]16,1% ,+1v]%,)°

=a?|51|iL<l+¥Li—';-)3. (251)
ay 047,
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Since [,(2, =[ 6%=( 6% N is also equal to

|v|? ’
N=6%=|6°(1 4+ —~t—
! jé < +°‘% l‘sxlva>

3 2
—af ([ 56) <1+Mi+0(v|{L). (252)

of 16,47,
We expand D:

D= (K(x))(@,3, +0)°
(253)

=a?fK(x)5f+6fK(x)(alal)svﬂsfK(x)afa‘;+u2+0(|u|3_L).

We have, by Lemma A8,

| K68 =K(x) [ 6°+ [ (K(x)— K(x,)) 69

:K(xl)J(36+c9 AK(x1)+0(1>

i3 i3
AK(y, 1

— K(x,) f 58+ co A(ny)+o<1—z>. (254)
1 1

Since x, € N,, we also have, by Lemma A6 and the fact that DK( y)=0,

“ K(x) 830 =U (K(x) = K(x,)) 550 <c<'ﬂm+—15> ol _,
PR
3 3/2 1
<o (T me) 4+ 5) (255)

[ Kx) 810 = Kixy) [ 6107+ | (Kx) — K(x1)) 102

= K(x,) f o4 + (———lqu)

1

=1<(x1)f5‘;u+0(1u;3_L+;—3>. (256)
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Thus,

N_ (J 852 (143 |v|% )/a} [ 5°+O(v] ) (257)
D~ [K(xl)[(l + o)/ K(x1) x (AK(y;)/A3 [ 6°)(15 [ 3v¥/ai | 66)]'

+O(vl2 L+ (X7 1hl*))2 +0(1/47)]

We may complete a Morse Lemma reduction for 1/K around y; in
(hy, hy, h3) local coordinates.
We then have

1 1 3 3
- 143 2= Y |, 2). (258
K(x,) K()’j)< 21: ka+:1| | )
Thus
N k 3 AK(y) 3
—=c,{1+Y |h]>— h|>—c L (v{ -5 5402>
pra(1e X X W oe st o (s [ o

3 32
+0<Z |h,-|2> >+0<115>. (259)

Observe that —c(dK(y,)/A3) + o(1/A3) = —c' [ (K(x) — K(x,)) 65 +
O(1/43}) since the term o(1/4}) comes from | (K(x) — K(x,)) 85 in (254), the
other estimates (255) and (256) providing O(1/i}). The behaviour of
— {53 (K(x)— K(x,)) 8, x,€N,(y,), is studied in Lemma A8. This com-
pletes the proof of Lemma 10.

Proof of Theorem 1. Let

ay<Min J(u)=c;<a,<c,;< - <¢;<a;, <€y < oo

ueZ*t
<a;<cg<dag_,. (260)

If X is a topological set, then y(X) is its Euler—Poincaré characteristic with
rational coefficients,

We know, by Lemmas 5 and 7, that X' * retracts by deformation on J
Therefore x(J,,_,)=1.

Since (1) has no solution, we have by Corollary 1

as—1°

H(J, .J.)=0 if q#3—k,

q r+1 q (261)
H37k,(Ja,+1’Ja,)=Q‘

Thus

1o, ) =2(Jg) +(=1)° 7% (262)
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Of course y(J,,)=x(¢)=0. Therefore

=Y (—1)* (263)
r=1
If (263) is violated, (1) has a solution. Q.E.D.
APPENDIX A
LEMMA Al. Let
0

a—“ = —aJ(u)
s 5§20 be a decreasing flow-line. (Al)

u(0)=u et

Then [§ |0J(u)|* dt < 400 and lim, _, , . |0J(u)| =

Proof of Lemma Al. Since J is bounded below on X+, {;* [0J(u)|? dt
has to be bounded on any flow-line. Therefore, we can find a sequence (s}),
sy tending to + oo, such that

lim  |8J(u)| (s})=0. (A2)

k— +
Let
b= J(ug). (A3)

Using the expansion of 6J(u) provided in (10) and Lemma 1, we derive,
since J(u(s))<b Vs=0,

3C, such that Vs >0,

(A4)
[0J(u(s)) — 0J(u(x))| < Cy |u(s) —u(r)| ., V=0

Let us assume, arguing by contradiction, that there exist a sequence
(t,) = +oo and a number ¢, >0 such that

|0J(u(ti))l Z &) (A5)
We may assume

SE<Te<Sk1<Tkyi (A6)
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and, by continuity of [dJ(u(s))|, we may find a sequence (s;) such that

&
Ia‘](u(sk))|=_: L < T < Sp 1 <Tp 1< v+

2
(A7)
18J(u(1))] ;le Vre (5., 7, Vk.
We then have
Tk ) £y [T
| 1er)? a2 [ arw) e (A8)
Sk 2 Sk
Since u(-) satisfies (A2), we also have
%
() — (sl < [ l0sw(o)) de. (A9)
Finally, by (AS), we have
() —uls )] > =2 (A10)
Tk u Sk = Cl " 2 .
Combining (A8), (A9), and (A10), we derive
Jrk aJ s L (BY All
. |0J(u)(7)| T/Cl %) (A11)

This contradicts the finiteness of j"()* * |0J(u)|? dr. The proof of Lemma Al
is thereby complete.

LEMMA A2. Let pe N* be given. There exists e¢o( p) >0 and aq>0 such
that for any 6, =d(ay, 4,), .., 6,=d(a,, 4,), a;e S?, A,>0, satisfying

€ < &o(p) Vis#j (Al12)

the following estimate holds:

P
|v|2L—5<Z L} 4= ay |vI2L)
i=1
Jor any v satisfying (Vo).

Proof of Lemma A2. For the sake of simplicity in the presentation, we
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will work on R? rather than on S°> having completed a stereographic
projection. We thus have functions

. k
Sa, i)=c K ; !
([1, A) Co (1 +/~V2 lx_a|2)l/2 (A 3)
and we denote
n }\41 ;Lj 2 41'/2 1
&= )—+l—+iiij!x[—xj| . (A 4)
g i

The correspondence between i, §; and 9, ¢, is given through
stereographic projection. Details are available in [20].

The proof of Lemma A2 requires the following construction: For 5,
given, i=1, .., p, we introduce

Q:{xeﬂ@st |x — xl<8l M1n €' Ix— xl<8/1
for those j s.t. /1]-;/1,}. (A15)
By construction, 2, Q;=¢ for i#j. Let
Q. be the orthogonal projection on H (£2,) (A16)
and for ¢ in H= {@e L% Vope L}, let
=0Q,0. (A17)

We then have the estimate
1/2
[§t10-01<c VT & ([ ol ) . (A18)
i#j

Assuming that (A18) holds, we give the proof of Lemma A2. Let

v=0 (A19)
£ =span {3, 2 % z‘j} Ef = ()% (A20)

the orthogonal being taken in the sense of the scalar product { Vo Vi, for
Y and ¢ in H. a, is in the sequel a strictly positive fixed constant. On E,
we have

[ Vo5 [ 80?20, [ Vol VoeEr. (A21)
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On E;, we have

U Vo5 [ Si?|<C Vol ok, (A22)

We split v;:
v,=v7+v}; v €E ;v ekl (A23)

i i

We have

_ ¢ 5 a5, 26,/0x,
Vi =([ V""V‘S‘) I ng,ﬁ(f Vo¥ E) TGS AT

85, 88,/04,
* (j Vo,V az,) TIV@3 joi)™ (A24)

The notation (| VuiV(agi/axi))(ag,-/Bxi) should be understood as a summa-
tion on each component of x, in R>. We estimate | |Vv,|>. We have

jwivg,: —j 83(v;— v) (A25)

since | 63v=0 (v satisfies (Vo)).
Thus, by (A18)

Vv,-V £, ]Vv|2 1/2. (A26)
J907 V3 ([ e

By (Vo), we also have

3, , 36,
“ Vv,-Vé;i =UV(U,»—U)V5; =l—5f5iVaTC:(vi—v)

i

N 1/2
<Ci, | 83v,—v| S C'A e (| vo2) . (A27)
i y

i)
Similarly, we have
‘ " " 172
va,.V %\sc—JZ & ([ |Vu|2> : (A28)
22 I PR
Thus, combining (A26), (A27), we derive from (A24)

(J v ) <C VT & (J |Vu|2>m. (A29)

i#J
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Using then (A21) and (A22), we derive

j|Vuf|2—5j5;?v$>f |Vu,.+|2—5j5”;‘u,.+2—cf Vo |2

el ()

> [IW02=C( L 6,) [ wor

i#*j
1/2 1/2
—CU |Vv,.+|2) (j |Vv;|2) . (A30)
With a suitable constant M = M(«,, C), we have
12 172
—C<f IVv,-+|2> (f |Vu;|2> <oy, [ IV P+ M [ Vo 12 (A31)
Since the Qs are disjoint, we have

Zf Vol* <) fﬂ Vo, (A32)

1

On the other hand
1/6
Jotw—oti<(Jweore) (] 6 o=0)°)
172 24/25 1/25
sc(f |Vv|2> (j Sf|u—u,.|> (j |u—u,.|6) . (A33)

Thus, by (A18)

5/6

12/25
[ 80102 —v21<c [ 1902 (Z e,> : (A34)

i#j

Relations (A30), (A31), (A32), and (A34) imply

J Vo2 =5 Z f 5?v2>f( ]Vv|2+z Un.- (IVo}? — leilz):|

Uy

+%j |Vo,.|2—o(1)f|vu|2. (A35)
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By (A32), we have

zj (1V5]2 — [V, 7) + 2 zj\vu\bmf% ) Y[ 1w

i 2i
f Vo,|2. (A36)

Relations (A35) and (A36) imply
j|vu|2 sz j §4v? > inf(d,, )j Vol>—o(1) [ (Vol2.  (A37)

The proof of Lemma A2 will thus be complete once (A18) is established.
Since this proof is rather lengthy, we have delayed it until Appendix B.

LEMMA A3. Using the notations 8,=d(a;, A;); 0;=8(a;, A;), the following
estimates hold if ¢, is small enough:

(%’ %)_fcz/i?; 1(8,,8,) 1| < Ceys
(£ Je (201

Proof of Lemma A3. The three first equalities are straightforward com-
putations, using the inequalities

1 06,

— g .
'ii o, o7 (A38)
‘l, 67 v| < Cé; {A39)

and the equations

~L§,=8} {A40)

00, 4 09;
— =56% — A4l
Lo, dx; 0 o, O0x; ( )
- 65 — =56} 9, . (A42)

6/1,- i’y
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The four last inequalities of Lemma A3 are easily derived from
(6,.0;) L <Ce (A43)

In the next lemma, we give a much more precise expansion of
(6,.8,)_, =] 676, in function of ¢, which implies (A43) in particular.

LEMMA A4. The following estimates hold if ¢; is small enough: There
exists a constant ¢ such that

1
J 828,=7ce,+ O(e)); 5?5}"=0<£fjlog —>
s? s3 €

, 26
5j 5%-5—]53 s ,(M (5 '157,>_L

de,;
=cA; —67] + o(e;) = O(ey).

Proof of Lemma A4. The proof of the three estimates is roughly the
same. We refer the reader to [10] for the detailed computations. In [10],
the aim is different and the computations are therefore carried out in much
more detail. We give here the proof of the second estimate, as an example
illustrating how these estimates are established in the three cases. For the
sake of simplicity in the presentation, we will work here also on R* with
the functions

/i

b(a, 1) = ¢, 1+ 42 [x—a)7? (A44)
A Ai A -
&= (,1]+/1+“|“ 12) . (A45)
We consider
£ e Aid;
S=| §,63= i%y _
Jo 88 = | e e & (A
Let
a;= ’2 ;o zEx—— z, (A47)
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We have

d
S=c§ o

By symmetry, we may assume
A <A
Consider first the case
A lay|? = Ch, /A, C being a large constant.
Thus
Alagl*=C; Al lay? =

We upper bound then S as
1 C A
S<—5 —
(4:4,)7? {‘[Lz+a.j|<1//1; (1/22 + 1a,?)*? §

C, i3
+ d
Lm.-,.w, (/A2 + [a, )"

C,dz
+| d
I+ a5l > 17 (Iz+ay’ |z—ay?)?

|z +ayl = 1/4;

1
(4;4;)%2 ,[Ra (/27 + 1z 4+ a,l*)? (A7 + 1z — a, 1?7

155

(A48)

(A49)

(A50)

(AS1)

(A52)

where C; is a suitable constant. Indeed, if |z +a, <1/4,, then by (AS1),

lz+ayl <lay and thus [z —ayl > [a,.
|z—ayl <|a,| and thus |z +a,| > |a,|. Let us estimate

dz
[ . ;-
zrag =1, 12+ ay]” |z —ayl
|z + ail = 1/4;

We have, using the fact that |z + a,| <|a,| implies |z F a,| > |a,],

_[ dz
= ey = yn |24+ a1z —ay)’

If |z—a,| <1/, then by (AS1),

(A53)

(AS4)

|1.+a,j|>l/)1
dz dz
<j f ——
vih<iztag<iag 12+ agl? lal® Nyi<iz - ap<ian 12— ayl’ lay)
dz
+ 3-
=4 agl > lay 12+ @yl |z —ay

|z — ajl = layl

580/95/1-11
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Observe that

lz4+ayl =51z —ayl if |z4a,>a,.
Thus
dz dz 1
<4 J =X
3 3= 6 3 3
J|2+a.jl > Ia,j: [z + aij| lz— ai]" 12 + ayl 2 |ay |z + az_']'| 'aijl

|z —ayl = |ay

On the other hand

J s=log 4;la;
/4 < |z + ayl < layl |Z + aij'

=log 4, la,l.

| —=—
ki< lz—ag<layl |2 — @yl

Relations (AS52), (A54), (AS6), and (AS57) imply

1 1
<
§<6 {(}‘i/ij'i_ }-ilj lay|2)3/2 * (Aj/li'f‘ iiij |aij 2)3/2

1
T A a0
ity 18

Relation (A58) provides the desired estimate under (A50).
We assume now

Aidjlagl> < Ch,/A,

1e.,
Allag’<C.
Let
z=2;(x—x;).
Then

A\ dz
S_</1_.-> fw(1+IZIZ)m(1+l(ij/li)z—zaﬂjlz)m'

We split S into two parts,
S=8,+79,,

(ASS)

(A56)

(A57)

(A58)

(A59)

(A60)

(A61)

(A62)

(A63)
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S _(&>” j dz
AL Jcacouy (L1212 (L + 1(A;/A) 2 — 2a,4,7)
(A64)

S =(&)3/2 J dz
R 21> acu (14121772 (14 2= 2a,4,%) 1))

We have, by (A59),

/1- 3/2 dZ /l 3/2
s.<c (4 %= o () 10g(ah) (A65
e (L’) J|z|<4€u..-//1j) (14222~ 72 <ii> og(hi/4) (A63)

1
=0 (83 log ,—).
&
If |2/ > 4CA,/A;, then by (A60),

(A66)

Thus

N2 (AN dz L\
S, < (] —j> (—') — =} (—1> = 0(&9%). A67
2 1(” vy j|z|>4C(/‘..»/A,-) lz|¢” 2\4, (). (A67)

i j i

Relations (A65) and (A67) imply the desired estimate under (A60). Q.E.D.

LEMMA AS. The following estimates hold, if €;, €4, and '1/,1,4 are small

enough:
5/6 11\ 173
24/5 5 6/5 _ 3 2
(1, os7) " =o(( (s 3)) )

LS 525,,8,=0(s; + )

j |K(x)— K(x,)| 658,=o(e,).

Proof of Lemma AS. By Hélder’s inequality, we have

j §24/556/5 < J' 5363 ” j §¢ ” (A68)
53 i Jj = 53 iYj 53 i .
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Using Lemma A4, we thus have

| 1\
L‘ §25 55 = 0( (log - ) ) (A69)
AS i

hence the first estimate in Lemma AS. For the second estimate, let us
consider a very large real M > 0.
We have

1
j 54 5k5,<Mj 5382 +0%) + ML (835, +833).  (AT0)
Thus, by Lemma A4, with C a fixed constant,
1 1 1
f 338,.8,<CM (& 10g—+s log — )+ Cle, +8x) =ole,)  (AT1)
jk

hence the second estimate in Lemma AS.
Lastly, we have, for £ >0 given, with a suitable constant C independent
of ¢,

[ 1KG0) — K(x)1 635, < |K(x) — K(x)| 83,+C | 5%,
dlx x)<e dix|x))=ze
<Cey+——F

5/2 sf

1
< Cey <s+ﬁ>=o(s[j). (A72)
The proof of Lemma A5 is complete.

LeMMA A6. Let 8, be 8(x,, A,) and let v satisfy (Vo). We then have

<j IK(X)_K(XI)’WS 5?>5 <C<|Dli(x1)| +1!5)

J 1k~ Ko 0t < 0 (15 )

1

06| C
[ (ko= K oty 5 < <5
[ e e e L

2
fK(x)a‘* 2—1<(x1)f54 2+0<'"Ll )
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Proof of Lemma A6. We can upper bound |(K(x)—K{(x,))| by
C [IDK(x,)| d(x, x,)+ d(x, x,)*]. Therefore

[/ 1K) — K1 68
< CIDK(x))| | dlx, x,)%° 8+ C [ dlx, x,)'2° 6

 (IDKGe)|*® 1
<c( Tl | (AT3)
78 A

The last inequality in (A73) is a direct estimate.
Relation (A73) implies the first inequality in Lemma A6. The proof of the
second inequality is very similar.

Next, we have
1/6
<C (f v6> (j |K(x) — K(x,)|** 5f>

5/6

[ k- Kex) a1

, DK(x))| 1
<C|v|_L( t U_%) (A74)
1/3 2/3
J ke kot <c (o) ([ 1Kt -Ker )
2/3 1" 2
<C’IUIAL<Jd(x,x1)3/25?> s%. (A75)
1

This establishes the two last inequalities in Lemma A6. We are thus left
with the third inequality. Let £ >0 be given. We have, using the symmetry
of 86,/04, around x,,

06
[ ko -Kx)sin =t
d(x, x1)<e 1
= DK(x,) - (x—x,) 83, L
dix, x)<¢e 02y

=0
+0<j d(x,x1)25?>=0<}%> (A76)
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s, 09,
L“ o, (K= Kx) 670, 2
C 1
<C <—-==0 ATT
Jd(.v..rl)ZJ: ! £ /“? <’12> ( ! )

Relations (A76) and (A77) imply the third estimate in Lemma A6. The
proof of this lemma is thereby complete.

LEMMA A7. Let 6, =0(x,, ;). We then have

1 66 DK(x,) 1

5 = —c——+0(
fK( ) 1/1 6/11 c 7, +0</1%>

il DK{(x,) 1

3y e S L —
fK(x)(S,.l1 a7, ¢ 2 +0<Af>'

Proof of Lemma A7. For the second expansion, observe that

051_ p
J K)ot = Eaz J K88
A 0
2o (Jwe-kwpet)  am)

In the course of the proof of the following lemma, Lemma A8, we will give

an expansion of —(d/d4,) j (K(x)— K(x,)) 6%; see (A82) to (A92). This

expansion, in particular in (A92), is the same as the one proposed here.
We consider now

0o, 00,

1 1
K(x) 63 — 221 . it
[ k(x) 53 R [ (&)~ K(x1)) 83 R (A79)
Expanding X around x,, we derive
1 06
fK( f(DK(x,) x—x) of o 2
1|06
285 1
+0<j (x5 3|3t ) (A80)
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Using the symmetry of &, around x, and (A38), we derive

1 35, DK(x, 1 2, L
j'K()(S‘ e ;x) 8. e x1)+0<fd(x,xl) 51>

DK(xl) 00,
= 3 J(Sf T (x— x1)+0<12)

j
DK(xl) ( )

(A81)

The proof of Lemma A7 is thereby complete.

LEMMA A8. Let y; be a critical point of K such that —AK(y;)>0; let p
be small enough so that —AK(x,)>= —AK(y;)/2 for any x, in N,(y;). Let
0y =0(xy, 4,) be such that x, belongs to N,(y;). We then have that there
exists exists A, >0, A, uniform on N (y;) such that for A, in [4,, + o[,
—f (K(x)~— K(x,)) 8% decreases when A, increases. Furthermore the follow-
ing expansion holds:

j K(x) 8% = K(x,) j 3+ ¢ ﬂjiz’l)w (%)

Proof of Lemma A8. For the sake of simplicity, we will first complete
a stereographic projection n:S°— R® of north pole N= —x,, the
antipodal point of x, on S* After having completed this transformation,
we are left with a new quantity,

= [ (k) - K(0)) 80, 21), (A82)

where K corresponds to K and where

Ji

5(0, Ax)=cq W;

¢ such that —45=45°. (A83)

A} satisfies

V14247 =4, (A84)

We leave aside the precise computations, which can be found in [20]. We
wish to prove that if —4K(0) is larger than B> 0, there exists 4,(f8) such
that if 11> 4,(B), (A82) decreases.

We complete the change of variables:

Aix=y. (A85)
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We thus have to study

(¥ . 1
— = - K(0) ) ————= dy. A86
J, (R(5) - £0) Gy (AS0)
Differentiating with respect to 4}, we obtain
if pR(X) .y —L 47 (A87)
2 e T A YT

Introducing a number M > 1, which we will take large, we have, after
cutting the integral in two pieces,

1 (VN ¥ 1
A 'Ey\//:;sM/x; A A+ 1Py

1 y
+ ———dy. (A88)
)~12 J~I,VIZM I+ |}’|2)3

If 4] is large enough, M/4| is small and we can expand

Dk(f—,):p[&(onpzmoy%m(%) for |y|<M. (A89)
i 1 1
Thus
T:LJ (1)2[2(0).1.1>__1__
AL vz < My A Ay L+ 1y

1 |yl ) ( 1 >
+ — N V40 (s
AP ? (L.vvi;sM/z; (1+1»?)° APM?

4K(0) 1 1
=c =)+0(—=) A90
« S rolm)rolzmn) (A%0)

We now choose
M= 272" (A91)
Then M/4} is small when 1] is large and we have

4K(0) 1\ _—B¢ 1
T=c —)<—5+o(5)
R ”(/113) A ”(Aﬁ) (A%2)

Relation (A92) implies the existence of A,, independent of x,, such that
if A,24,, T is negative and —{ (K(x)— K(0)) 8¢ decreases when A,
increases.
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We establish now the expansion, or rather the corresponding expansion,
on

j Rix) 86, (A93)
We have

~ [ (k) - Ri0)) 6°0, 47)

. % 1
= DR(0)- = ———— d
s s ROV G @
- vy y dy
+ D2K(0) + o(1 -—,.—,)———
s ca (( O+ oD)-3030 ) vy
Sy . 1
+ K(_,)_Ko)__d
JWM( ) KO e Y
¢’ 4K(0) 1 1 1
= /“2 +o0 (1—52> +0 (W-}-ﬁg) (A94)

Since M = 1;*%, we derive from (A94) the desired expansion. The proof of
Lemma A8 is thereby complete.

Proof of Proposition 3. Let

5.
d or =1,
. »

1

| —
job)

83,

i (A95)

(p:

>
jos}

i
In both cases, we have

lol < Cé;; lp| . <C (A96)

with a suitable constant C (see Lemma A3 for the second inequality).
Observe also that

JL6i<p=0 (A97)

since | L3,9, is independent of 4; and x;.
We compute

J(u) - . (A98)
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We have, by (A97) and (Vo),

~iw)* | K(x) (f

i=1

I

5
oJu)-o @0, + 0) o —Mu) Y f ;-

J#EL
= —Mu) o j K(x) 839 + R (A99)
s§3
Using (A96), Lemma (A5), and (131), we have

|R|<C(Z j5j5i+ Y J6j5i|v|+U K(x) é}ve
i

J#i

+}v)iL>

<C (Z e+ l”\Ll:z (loga—-l)l/_’; IDK,;()C 3] Az}_}_ Mz )
(A100)

Therefore, using Lemma 1 which provides us with a lower bound on A(u),
using (A96), and Lemma 2, we derive, for g; small enough,

DK(x)))? 1
“ K(x)&fcp‘sC[\aJ(u)\,pL Y 6,,~+'—-A(—f—)~,—+1—;} {A101)

J#i

Using Lemma A7, we derive

1 89, .. 35,
UK( )55—5; HK( x) 874, 2

DK | [4K(x; 1
2o () ¢ [F5o ()

By (H1), 4K(x,) is nonzero at the critical points of K. Therefore, with a

suitable constant ¢,
DK(x,) 1 .| 4K(x;) 1
C‘__—ﬂi +0(Ii5> +c) lf +o0 I,E

>e, (E%(—xl+%) (A103)

i

i

(A102)

Relations (A101), (A102), (A103) imply

IDK(x)| [

IDK(x))* 1
Tx zi T

[0J(u)| — .+ Y, &y 2 F] (A104)

JFEi i



SCALAR-CURVATURE PROBLEM

hence, for ¢, small enough,

|DK(x))| | 1

7 +E<C”[|6J(u)|4+ Y e,.,].

J#i

Lemma 2 and (A105) imply Proposition 3.

APPENDIX B

Proof of (A18) of Lemma A2. Let

1
TR

welb%  Vwel?

A5= —CZSS; Cy >0

A>0;  B,={xeR"such that |x| <1}.

Let 4 be defined by
4h=0 in B,

h=w|,p,.

We then have

L}_ 55 |h| <% <j V| dx)l/z.

165

(A105)

QE.D.

(B1)

(B2)
(B3)

(B4)

(B3)

Indeed, first notice that we can take w to be positive. Otherwise, replacing

w by |w| =W and h by A, we have
Il <h

and

L—p (Vw|? dx = fw Viv)? dx.

(B6)

(B7)

Thus, if (BS) holds for w>0, i will hold for all w. Assuming that w is

positive, (B5) becomes

C 1/2
JB. Sshéﬁi <J |VW|2> .

(B8)
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We prove now (B8). We have

s ¢y Jop, on : 1+ 42
1
= h. B9
Cy LB 571 LB, ( )
Let
E(x)zﬁh(lx); W(x)zﬂw().x). (B10)
We have
A4h=01in B, = {xs.t. x| <1
i=0in 8, { } (B11)
h= WlﬁBl
and

[yt o) (1, ) Jec(l, we) o

Since [ |V = fgs [Vw|? and {5 A= (1/2"2)[,p, h, (B8) follows from
(B12). We prove now (A18). First, we assume that p =2, i.e.; we have only
two functions 8, and &, and two sets 2, and £, as in (A15). Next, we
derive the general case. We take j=1in (A18). We also complete a transla-
tion and a dilation, so that

=1 x,;=0. (B13)
Thus
€5=\/Z§0('{1x+x1); 5f=ﬁ51(x1+)v1x) (B14)
£12= £, i=1; '7-2='12/'{1§ X, =0; Xy =A(x; —x,).
Assume first that
A=Ay ies L<l, (B15)
Then
{XI x| <——}
(B16)

1\=@—h; with 4h=01in Q,; h=¢ on 6Q,.

e.
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We have
_ _ 1 _
J,, Fe—ai<] 51601+ 1ol (BI7)

x> 1z (14 1x]7)

Relation (B8) implies
l

On the other hand

172

1/2
5t 10— a < (] Worar) = e (] Vol ax)
R3 R3
(B18)

1

1 _ B 1/2 )
x| > 1/8e12

1/2
_ cﬁ/;(jﬂ} |V(p|2) : (B.19)

Since [ 8316 — @11 = 5 63 16 — 4], (B17), (B18), and (B19) imply (A18)
under (B15).
We now consider the other case, namely

Ay = Ay, ie, A,=1. (B20)
Then

Q= {x/lxl < and |x — X,| > (B21)

e

8¢},

Let then

~ 1 ~ 1
Q= {x such that |x| <T‘}; W= {x/]x—i2| >W} (B22)

8¢, 2812

Let

¢, = orthogonal projection of @ on H () (B23)
_ B
¥, = orthogonal projection of @ on H }(W).

We may assume that @>0, as we already pointed out. Since
08, < 0@ L OW, we then have

g —¢:1<26-[¢,+¢,] in R (B24)
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and
| 86-ai<] Sio-a0+] si6-i)

+[ . S+ 5. (B25)
R’ — 3 RYI- 3

Relation (B19) provides us with a suitable inequality on g5 67¢. We
estimate now

fﬁa_w‘gf‘f’:ﬁ 519 (B26)

X ix— %3l < 1/8ép3

A direct computation shows that if ¢, is small enough, then

5, 1 NEINEE it I x—fl<——  (B2)

= < .
L+ 1xIP)2 7 (1 + 22 |x — 5, )2 861,

We then have

5/6 1/2
[, stes<c([, 5) (Jwar)
5/6 172
sc(fﬂ}w(ﬁ&g) x(j |Vq';|2> . (B28)

By Lemma A4, we derive

] 5/6 172
fR3W5f¢<Cs;/2<1og;> (j 1V¢|2) . (B29)

y

Relation (B29) is also satisfactory for (A18).
We estimate now the two remaining terms in (B25)

51(¢— 1) (B30)

[EHCE (B31)
w
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Relation (B30) is estimated using (B5). We are left with 5, §3(¢ ~ ). We
have

[, 510 -F0= e[ 256-F0=c; [ VEilo—0)Vo-7)

0 -
~a | = (6006 -

0 _
= —C3 LWE (51‘9—1)(¢—$1)> (B32)
where
40,=0, 0,=65,/0W. (B33)
Thus
J‘ 5(6—¥,|<Csup i(5 -0) f ]
w 1 1 o an 1 1 o
0
=C — (5, -8 D. B34
5;5 5n( 1= Lzu—xﬂ=1maz¢ (B34)

Relation (B12) then implies

U 5f(¢—$,)’<0sup
w oW

P 1 A\
%(Sl_gl)lmfx(j |V<P|2) . (B35)

W is the exterior of a ball around X, of radius 1/8¢,,4,. By a homogeneity
argument, we can check that

g 0 ) [x - ((x = x3)/1x — x,])
A - S - =
W e 9‘)1 R an 5‘] T T
(B36)
Let
1
= : (B37)
8426,
Then
[x - ((x =x2)/Ix = x,0)| r+ 1%
sauﬂl/) (1+ |x]?)*? T4+ Xl —2r |, (B38)
Thus

I, so-a0|<co (] o) ", (B39)
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where

F X,

-
. . B
(L4174 |x,]2 =28 [x4] ) v (B40)

p:

One can check directly that
p=0(? (B41)

hence (A18) in case we have two indexes only.
For the general case, one introduces the sets, assuming A, =1, x,=0,
and ¢ =0,

1 1
0= {xe R” such that |x| <— and |x— x| >—if 4,> l}. (B42)
&y €1
Then 0Q, < U d6,. Let
h: dh;=0, h,=@/00,. (B43)
h: Ah=0, h=/00,. (B44)

Then h=¢ — ¢, where ¢, is the orthogonal projection on H(£2,) of ¢
and h,= ¢ — @,, where @, is the orthogonal projection on H (8,) of ¢. The
above arguments show that

1/2
J othi<c Vo ([ vor) (B45)
1/2
[ sth<c e (j |V(p|2> . (B46)
R3—
Relations (B45) and (B46) imply the general case. Q.E.D.

APPENDIX C

We state here a result similar to Theorem 1 which can be derived on
(5% ¢). (S84 c) is the standard euclidian sphere.
We want to solve

—Lu= —Au+2u=Ku’
(C1)
u>0 on S*

where 4 is the Laplace operator on S$*= {xeR’s.t. |x|=1}. xy, ..., x,, are
the critical points of K; k; is the Morse index of K at x;.
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Let

i (C2)

and let, for t=(i,, .., i;), 1 <i, <i,<m, M(z) be the symmetric / x / matrix
defined by

M, (0)= ~LK(x,). 1<q<!
1 1 12
lxi,,“xi,|2 <K(xi,,) K(xi,)) ’

where |x — y| is the euclidean distance between x and y in R°. Let then J(u)
be

(C3)
M, ()= —¢

3
2 [ Ku*

J(u) (C4)

We make the following assumptions on K:

(A) for any 1, M(t) is nondegenerate
(B) K>0
(C) there is no polynomial Q with integer coefficients such that

(1+00Q(n-1 :ZT, M(1)>0 I_I;'(T:)l 13k,
Under (A), (B), (C), we have:

THEOREM 1'.  Egquation (Cl) has a solution u> 0.

In this framework, some phenomena are different.

In particular, Lemma 5 does not hold and we need to make a more
detailed study of the dynamical system of (99). The analog of Proposition 3
is used in a crucial way at this step, in particular in order to derive the
differential equation satisfied by x,. Some of the details are available in
[10]. The critical values at infinity are now the values

(=i 3 =
c(t)y=—F53 —_— C5)
4[54}.:1K(x,-1) (
For the sake of simplicity, we assume c(t ) #c(t') if T#1"
In this new framework, the difference of topology at the crossing of the
level ¢(t) is given by the formula

(Co)

0 for gq#k(z)
Hq(‘]c(r)+55']('(r)e)={ 7 }

G for g=k(r)
with k(t) = 5I(1) - 217, ki.

580/95/1-12
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