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Let (S3, c) be the standard 3-sphere, i.e., the 3-sphere equipped with the 
standard metric. Let K be a C2 positive function on S3. The Kazdan- 
Warner problem [l] is the problem of finding suitable conditions on 
K such that K is the scalar curvature for a metric g on S3 conformally 
equivalent to c. The metric g then reads 

g=u4c 

and u is a positive function on S3 satisfying the partial differential equation 

- 8 Au + 6u = K(x) us 

u > 0. 
(1) 

Let L = - 8 Au + 624 be the conformal Laplacian. The same problem can be 
formulated for any compact Riemannian manifold (M”, g). Since this 
problem has been formulated, there have been some partial answers (see 
[3-7, 181). Obstructions have also been pointed out [l, 21. The main 
difficulty, arising when one tries to solve equations of type (4), consists of 
the failure of the Palais-Smale condition. We show, in this paper, how this 
difficulty may be overcome in the case Eq. (1). Our method consists of 
studying the critical points at infinity of the variational problem, in 
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SCALAR-CURVATURE PROBLEM 107 

computing their total index (as singularities for the gradient flow), and 
comparing this total index to the Euler-Poincare characteristic of the space 
of variations. The equality of both numbers is not automatically satisfied 
for n = 3. The conceptual and analytical framework of this paper originates 
in [S-lo]. Observe, in particular, in this paper the use of the gradient flow, 
to overcome the noncompactness. This is extensively used in [lo] and has 
displayed the role of Green’s function in equations of type (1). See [lo] for 
further details. We state now the theorem that we will prove here. 

Assume K is C2 and has only nondegenerate critical 
points x1, . . . . x, such that -LK(xi) # 0 Vi= 1, . . . . m. Each 
xi is assumed to be of index kj. WI 

THEOREM ‘. rf xi such that - LK(X,) > 0 ( - 1)“’ # -1, then (1) has a solution. 

Remark 1. For a corresponding result on (S4, c), the reader is referred 
to the end of this paper, Appendix C. 

Problem (1) has a variational structure, the functional being 

J(u)=’ 
1 

3 (js, K(x) u6 du)“” 
(2) 

where dv is the volume element of (S3, c) and where u belongs to the space 

c+ = uEH’(S3); 2420 s.t. 
i I (-Luu)du= 1 . 

s’ 1 

We will denote 

The functional J is known not to satisfy the Palais-Smale condition, which 
leads to the failure of classical existence mechanisms. Although J is lower 
bounded, the minimum does not need to be achieved, and in fact is not 
achieved if K is nonconstant. The failure of the Palais-Smale condition has 
been analyzed throughout the work of [13-17, 191. The analysis carried 
out in [ll], and [12], in particular, comes out here virtually without any 
change. Introducing 

( 
;1 

> 
II2 

for aES3, 1>0, 6(a, 2) = co 
~Z+1+(12-l)COSd(a,x) ’ (5) 

580/95/l .8 



108 BAHRI AND CoRON 

where d(x, y) is the geodesic distance on (S3, c). 6(u, i”) is a solution of the 
Yamabe problem on S3 and therefore satisfies 

L6(a, 1.) = cs(u, i)’ (6) 

and for PEN*, s>O, 

W(p,E)= 
i 

uEC+ s.t. 3x,, . . . . cr,>O; 3a ,,..., a,ES3, 

32 ,, . . . . ;I,,; ii>’ Vi with 
E 

Iu-i, 4 -L <E; la4K(xj) A(u)” - 1 I <E Vi; 

n I 
=?+?,+liljd(ai,ir,)2>i Vi#j 

7 1 

‘3 (7) 

where di = &a,, A,), sCi= (A;/%, + A,/,$ + A,Ajid(ai, u,)‘)-‘/~ will be exten- 
sively used later. 

The failure of the Palais-Smale condition is characterized as follows: Let 

U(u) be the gradient of J. (8) 

PROPOSITION 1. Assume ( 1) has no solution. Let ( uk) E C+ be a sequence 
such that aJ(u,) -+ 0 and J(u~))~ is bounded. Then there exists then an 
integer p E N *, a sequence ck > 0, Ed + 0, and an extracted subsequence of 
the u,‘s, again denoted (uk) such that USE W(p, Ed). (J(uk)) converges then 
to a limit 1 such that 1~ p x (s @/3 x) m w h ere m is a lower bound for K 
on S3. 

The proof of Proposition 1 is by now classical (see [ 15, 16, 10, 111 for 
instance). 

Following a method introduced in [lo] and used in [ 111, we optimize, 
for u E W(p, E), E small enough, the approximation of u by u = Cp=, cliSi, 
i.e., we introduce the minimization problem 

UE W(P, E) Iyj; u- 5 a,qa,, Ai) . 
a,sS 

i=l -L 

1, P 0 

(9) 

The following proposition is also, as in [IO, 111, available in this 
framework and its proof, which we omit here, requires only minor 
modifications. 
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PROPOSITION 2. For any p E N *, there exists ep > 0, y(p), 6(p) > 0 such 
that for any u in W(p, E*), the problem of minimization (9) has a unique 
solution (aj, aj, A,), up to permutations. Denoting v = u - u = Cr=, cliSi, v 
satisfies 

(vy hi)-,=0 

asi 
( > “‘a, -L =o Vi = 1, . . . . p. 

Wo) 

asi ( > “‘i, pL=o 

cli satisfies 

6(P) G ai G Y(P) Vi = 1, . . . . p. 

In the sequel, we will often split u, a function W(p, E), under the form 
u = Xi”= i aidi + v, after solving problem (9). We will refer to this splitting 
by stating that u is in W(p, E) and v satisfies (Vo). 

Note that 

&r(u) = ;i(u)u+ A(u)5 L-‘K(x) us VUEZ+, (10) 

where A(u) has been defined in (5). U(u) is the gradient of J with respect 
tot the ( )--L scalar product. A(u) is a Lagrange multiplier which is equal 
to (342~))~ and we have the following lemma: 

LEMMA 1. 1. There exists A,, > 0 such that A(u) B & VUE Z+. 
2. For any be R**, there exists C(b) >O such that Vu, w such that 

J(u), J(w) < b, we have 

IA(u) - A(w)1 < C(b) Iu- WI M-L. 

The proof of Lemma 1 is also very easy and we shall omit it here. 

LEMMA 2. Let p E N * be given and E > 0 be small enough. There exists a 
constant C(p) such that for any UE W(p, E), u=C~=~ criS(xi, Ai)+v, v 
satisfying (Vo), the following estimate holds: 

101 --L < C(p) 
( 

1 EU(log Ez;1)1’3 + liIJ(u)l + i ‘DT;i’l ++J. 
i#j i=l I I 
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Proof: We now compute i)J(u) ‘0. 

dJ(u).c= -i(u) I,< Lu’u-i(uy l.yj K(x)u% 

= -i(u) j~y3 c XjLfijU - i(u)’ 

x K(x) i .s.+o 
J ( 

i=, a, I )iu--l(u) js3 Lu.u. 

Using (Vo), we derive 

&qu).u= -A(u) js3 Lu.u-A(u)5 K(x) (i nibi+u)5 u 
i=l 

+ n(u)’ js3 ic, “,SKtxi) stU 

since fs3 -L aiu = Is3 Sju = 0. Then 

al(u) .u= -A(u) js3 Lu .u- 5A(u)’ jSj K(x) i cc; 6$l2 
i= 1 

+quy i j 
j=l .s3 

a;(K(x) - K(xi)) Si’u + R 

= -A(u) js3 Lu . u - 51(u)5 j$ ,f K(Xi) a; cyu2 
1=1 

+ 4u)’ i js3 u.;(K(x) - K(Xi)) s;u 

i=l 

- 51(u)’ i j 
i=l s3 

(K(x) - K(x,)) 6;u2 + R, 

(11) 

(12) 

(13) 

where, using the fact that 8fbf < (64~3~ + 646,) and 6?8$jk < a;($ + SE), 

IRIGC 1 ~js3S:6/Iul+luliL). 
( 

(14) 
i#j 

By Lemma A5, we have 



SCALAR-CURVATURE PROBLEM 111 

By Proposition 1, we have 

v’u E WA E), u= 5 ai6i+u, v satisfying (Vo), (16) 
i=l 

IA(u)” K(xJ a; - 11 < (PJE), 

where (PJE) satisfies lim, _ 0 (PJE) = 0 ((PJE) is independent of u in WJE)). 
Finally, by Lemma A6, we have the estimates 

I ( 

516 
(K(x) - K(Xi)) s:v d IUI -L Ifqx) - K(x,)16’5 6; 

<c ‘DK(xJl +’ 
( A; 1; > 

lvl- 
L’ (17) 

(K(x)-K(xi))6;v2 <g, Iul’,. 
I 

Using (14)-(17), we derive from (13) 

A(u) Q(v)< c W(u)1 + c E,(logE,;1)“3+ 
( 

IDKtxi)l +L IvI _ 
if/ 

~, 
I .> 

12 L 

where 

+ c 143L+wp(d I42L, (18) 

Q(v) = I4 t, - 5 Js3 jI gv2. 

By Lemma A2, we know that, if E is small enough, 

(19) 

ecu, 2 a0 Id’, vu E WJE) 

a0 > 0. (20) 

Lastly, by Lemma 1, 

/l(u)>A.,>O vu E WJE). (21) 

Thus 

a0 blZ,dC W(u)1 + 1 Eij(10gE,~1)1/3+ 
( 

IDK(xi)l +’ IvI _ 
if/ 

1- 
I ,) 

;If L 

+w3L+wPp(E) Iul’,. (22) 
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Choosing E small enough, Lemma 2 follows from (22). 

Lemma 2 is not actually the best estimate on Iu/ --L. The following 
proposition provides us with the best estimate on /uI L. The proof of 
Proposition 3 is deferred to Appendix A. 

PROPOSITION 3. Let p E N * be given. There exists Ed > 0 and C > 0 such 
that for any u=xpE1 ~~6, + v in W(p, Ed), v satisfying (Vo), the following 
estimate holds: 

LEMMA 3. Let p E N* be given and E > 0 small enough. For any 
u = Cf= I cridi + v, v satisfying (Vo), in WJE), the following estimate holds: 

Proof: We denote 

(23) 

Since IuI --L = 1 and since 101 -L tends to zero when E tends to zero, we have 

)u-wl~.~clvlL.; IWlI --L(l - c I4 --L) 6 I4 -L.< IWII -(I + c I4 -A 
(24) 

for a suitable constant C. Hence, given .si > 0, .si > E, we may choose E such 
that w E W(p, ai). If .si is small enough, J is bounded on W(p, E, ) by 
Proposition 1. Thus, by Lemma 1, 

I(n(u)-n(w))l~Rlu-wl~L~R1 lOILL 

l(u) G P(P) (25) 

A(w) G B(P). 

Let us compute now 

asi 
A=(dJ(u)-U(w)).2 ix. (26) 
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A splits in 

where 

A=A,+A,+A,, 

Clearly, using Lemma A3, 

w, - w is parallel to w, , with a coefficient 8 satisfying, by (24), 

wl-w=owL, 101 <c I4 -L’ 

Therefore, if E is small enough, we also have 

I( wlww, Ai~)~zo (loILL. (ziEii)). 

Using (25), (31), and (33), we therefore have 

+ l(w) WI--W, 3.; - I ( ;;:)-,1=+-L (p)). 
We estimate now 

where R is upper bounded by 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 
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Observe that we have 
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Therefore by Lemma A3 

JR1 6 c c El,. /fl 
On the other hand, 

Thus, using (37) and (39) 

By Lemma A6, we have 

s 
J(K(X)-K(Xi))J ST d c ‘Dyri)’ +$ 

( I ,I 
. 

Combining (38), (40), and (41), we derive 

s Kw$l, $,= 0 lDKCxi)l l I ( I II +z+Cj+i ‘ii ’ 

I > 

Let us estimate now 

where, using in particular (37), 

JR,1 <c Iul’,. 

We have 

j KW;'Ai g U=K(Xi) j KW:li 2 V+ j (K(X)-K(Xi))lj 5 UW:. 
I I I 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(4) 

(45) 
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Observe that by (37) 

(K(x) - K(xJ) Ai $ uw;’ 
I 

6 c 
s 

I(K(X)-K(xi))l 6iwT loI 

< c 101 -LX i (j IK(x) - K(xi)16’5 6p15cy5) 

516 

,= 1 

<c IUI-L IK(x) - K(x,)1615 6;)“* + C’ (zi 6p%j‘-‘)‘.h). (46) 

By Lemma A6, we therefore have 

I j 
I(K(x) - K(Xi))l /Ii 2 uw; j 

I 

..,ul~.(,,(lo~~)1’3+(l~~~~“+~)). 

Next we have 

where 

IRJ <C 1 1 $8; (uJ <C (uIpL (1 6"15d:"i)5-* 
i#i 

<c 14-L (,r,+g;)1i3). 

Since 

-L !?!-5p !zLQ 
aii 1 ali 

we have 

Relations (49) and (51) yield 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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Thus, by (43) (44) (45), and (47). 

Combining (25), (32), (42) and (53) we derive 

(n(u)5-i(w)5) j Kdi., 21 
I 

Relations (34) and (54) provide the desired upper bound on A. The proof 
of Lemma 3 is thereby complete. 

LEMMA 4. Let p E N * be given and E > 0 be small enough. For any u in 
W(p, E), u = CP=, aI6, + v, u satisfying (Vo), the following estimate holds: 

” -aJ(w).lj$& c Ai.- 
I $+o (-$)+o, (;,Ekr), ,zi w,P4 an, 

where w=~~=r U,,Si/‘lCy=r C?,6,1-, and where ol(xkfr skr)EkZr Ekr 
tends to zero when E tends to zero; c is a suitable constant. 

Proof: By Proposition 1, we know that 

l-4(u) K(Xj) a,” e-6’ 1. (55) 

By (25), we know that 

I(4u)-4w)l bC IUI -L3 0. (56) 

(57) 

Then 

A”(w) zqx,) a; ,-6 1. 
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Let us compute -&l(w) .A,(a6,/81,). 

-aJ(w).& $,=qw) (58) 
I 

As in the previous lemma, we denote w, by the function CT=, 01~6~ and we 
have 

w=(l-0) w,; WldC I~l-L~O. (59) 

Clearly, by Lemmas A3 and A4, (37), and (55), 

1 
s 

asi 
=K(x,) ATli ali + O(Q) for i # j. (60) 

Next, we estimate n(w)’ { Kw’&(Gi/a&). 

A(w)’ j Kw52, 2 
I 

=2(w)’ (1 K ( i $6;) 
j= 1 

2, z,+ 5 c 1 Kctjcr;S;Ai 
* j#i 

(61) 

where 

Observe that SjSi d 646, + SiSj; hence, by (37) 

IR,( <C C / 6;6k6i. 

j#k 
J#i 

Then, by Lemma AS, 

(62) 

(63) 

(64) 
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We consider now 

= iw5aj I (K(x) - K(x;)) 6;lb, 2 
.I 

+ is c 2; 1 (K(x) - K(x,)) SjA, 2 
j#r -I 

We have, using Lemma A6 

(65) 

1 j#i ’ 

IL5 C c13 (K(x)-K(xj))6jL* 2. <A5 C o(j 1 I(K(X)-K(Xj))( SjS, 
I /#i 

(67) 

Using (55), we derive 

A5 2 or,SK(x,) s S;ii 3 = C 1 j ai’& z+ o 
d/l, j+i K(x~)“” 

. (68) 
j#i 

I 

Relations (66), (67), and (68) imply 

Finally, we estimate 

= 51(w)’ 1 cx;K(xi) I cxj&‘Ai 2 bj 
i#i I 

+ 54w)’ 1 a:uj J (K(x) - K(xJ) s;n, 2, sj. (70) 
j#i I 
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Using (.55), we derive 
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5A(w)5 1 a;K(xi) / u,s;ni $ sj 
j#i I 

(71) 

Using Lemma A6 and (37), we derive 

51,(W)5 C M:Ctj S K(X)-K(X,)) S:A; $, sj 

j#i I 

<C 1 5 IliT(K(Xi)l 6:6jG" 1 &ij 
( 1 

. (72) 
j#i 

Combining (71) and (72) yields 

. 

Observe now that, by Lemma A4 and (50) 

(73) 

(74) 

Combining (58), (60), (61), (64), (69), (71), (74), and the fact that 0=0(l) 
(see (59)), see we derive 

(+)+O (&&r). (75) 

The proof of Lemma 4 is thereby complete. 

LEMMA 5. Let p > 2 be given and .Q > 0 be given small enough. Then, for 
any solution u(s, uO) of the differential equation 

au -= -a+) as 
s>,o (El) 

40, uo) = uo 
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starting at u0 in W(p, E,,), there exists s1 > 0 such that u(s, uO) 4 W(p, t;,l 2) 
for any .s3s,. 

Remark 2. As states in 19, lo], the Palais-Smale condition is satisfied 
on the flow-lines of the gradient for pa 2. See [9, lo] for further preci- 
sions, results, and conjectures. 

Remark 3. The fact that along the gradient flow u cannot “concentrate” 
at several points is due to an “interaction” between the 6,)s: any di leads 6, 
with j#i to deconcentrate (see, e.g., (102)). This interaction is strong 
enough on (S3, c). It is no longer the case for S”, with n > 4; but still, in 
that case, the analysis of the gradient lines can be carried out (see 
Appendix C for n = 4; also [lo]). 

Remark 4. In Siu and Yau [21] and Taubes [17], interaction between 
two “bubbles” has been used, in a very different way, in order to establish 
the existence of harmonic maps [21] and for the Yang-Mills equations 
[ 173. The result of Lemma 5, involving direct computations on gradient 
lines, with no restriction on the number of “bubbles,” is of a new type. 

Proof: Let us consider a solution of 

au 
as’ -a+) 

u(s) = 240. 

We first claim that 

s 
+m ja.+)l*< +m; lim laqu)l = 0. 

0 A’ + cc (76) 

Relation (76) is proven in Appendix A in Lemma Al. Taking a0 small 
enough, let us suppose that u(sr , uO) E W(p, s0/2). Let s2 be the largest time 
larger than sr such that U(S, uo) E W(p, so), for s E [s,, sz). Since so is small, 
we may solve problem (9) for U(S, uo) and write 

‘(‘9 ‘O)= i GIl(s) s(xi(s), n,(s)) + u(S), (77) 
i=l 

where v satisfies (Vo). The uniqueness of (cc;, xi, ;li) as solutions of (9) 
implies that ai( xi(s), n,(s), and also u(s) are differentiable functions of 
s. We now successively complete the scalar product of Eq. (El) with di(s), 
&(%,/a&)(s), (1/&)(&5,/8x,)(s). We then derive 
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(78) 

Differentiating (Vo), we obtain 

Thus, Eqs. (78)-(80) may be rewritten as 

= (6Wu), hi)--L, (82) 

and the analogs of (82) with 6; replaced by c%~/&x, and &?,/aA,. Observe 
that 

(83) 

( T.x,(S3) is the tangent space to S3 at x,). 

(84) 

since (Sj, Bi)--L is independent of xi and Ai. Observe also that 

(hi, dj)-L=C,>O (85) 
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a26 
I 
ax; 

a% I 
ax; 

a2di 
ali ax, 

= CJf 
-L 

= c,/n; 

-L 

=C,. 
-L 

c,>o 

for i#.j 

for i#j 

for i#j 

for i#j 

for i#j 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

Relation (82) and the corresponding formulas for %/a,$ and %,/ax, may 
therefore be rewritten as 

(96) 

(97) 

. (98) 
-L 



SCALAR-CURVATURE PROBLEM 123 

These three equations may be rewritten in a 3p x 3p matrical form 

.i+P 

j+2P 

i 
I 

i+p i+2p 

ii 

;liii 

li 
x 

I - 

(99) 

Remark. The term O(lvl PL+~ij) is O(E~) at row (i, j) for j- i f O(p). 
It is O(luPL) at row (i, j) for j-icO(p). 

Observe that I(aJ(u), Bi)-J, [(Mu), (l/Ai)(~~i/~x,))),l, and I(aJ(u), 
Ai(&5i/8Ai))-ll are upper bounded by C laJ(u)l with a suitable constant C. 
Thus 

Cii= -$ (dJ(U), 8i)-L + 0 (laJ(U)l ( C &kr + bi --L 
0 k#r >> 

Relation (100) holds for s E [s,, s2). In view of the statement of Lemma 5, 
we may choose si as large as we wish. Therefore, by (76), the terms 
o(laJ(u)l (Ck+r &kr)) may be considered 02(xk +r &), where 02( ), here, 
refers to s1 tending to + co. 

5X0’95’L9 
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Using Lemmas 3 and 4, the third equation in (100) yields 

+o l42L+1~1-L ( 
PK(x,)l 1 ) *, +2 + c E,(h3 c,; 1 .I IfI 

1 l/3)+ Ia+)~2). 

(101) 
Thus, using Proposition 3, we derive 

(102) 

By (55), ~41(u)~ K(xi) tends to 1 when s0 tends to zero. Observe that 
&(a@&) = O(Q). Thus 

ii K(x~)“~ 
-- 

a- &A(u) c 
Ai aE- 

,+, K(xj)“” aA, “+O (z, ‘kr) + o (+) + O(wb~i2h031 

In this last formula, o(C k+r skr) means that, when Ed is small and S, is 
large3 O(ck + r Ekr)/(C k+r &k,) iS Small. We observe now the following facts: 

(104) 

Assuming J.,/Aj > 1 and Ed is small enough, then 

(Ebb < Ed here; thus &/S or &lLjd(xi, xi)’ is very large, if Ed is small). Con- 
&(s), ..., n,(s), we may order them in an increasing sidering the functions 

order at each time S: 

Let m and M be such 

Ai* Q- < lip($). (106) 

that 

(107) 

We introduce the function 

2M p-2 
i(s)=lOgii*(~)+~lOgij,(s)+-+(m) log A,(s). (108) 
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4 is a continuous function, which may be not differentiable at times s s.t. 
A,(s)= Ai,+, for a certain index k. However, at those points, ~+4 has at 
most a finite number of derivatives, i.e.; 

lim 4s + h) - 4(s) 

h h+O 
(109) 

takes at most a finite number of values. We compute one of these values: 

if (105) holds. Observe that, for any x1, x2, xl,, x;ES~, (M/~)(K(x;)‘/~/ 
K(x,p4) 3 K(x;p4/K(x2) . ‘I4 Using (103) and (107), we derive 

K(x,)“~ 

c- 
j> k K(~t,)l'~ 

(111) 
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Using then (111) (104) and (105), we derive 

where C is suitable positive constant. Observe now that 

1 
- = &,i,) A; 

for j>2. 

Thus, if E,, is small enough and si is large enough 

w(s) < -c 1 Eii+ O( pqu)l’). (114) 
i#j 

From (109), (llO), and (114), we derive 

(115) holds if SE [s,, s2). We claim that 

s2-c +co. (116) 

Indeed, if s2 is equal to + co, then by (76) and Proposition 1, 4(s) tends to 
+ co when s -+ +oo, since u(s) E W(p, .sO) for s z s, (E,, small enough); this 
contradicts (115). 

Thus, for any si large enough such that 

4SI 2 4 E WA h/2), (117) 

there exists sz < +co such that u(sz, uO) # IV@, E,,). Any flow-line entering 
W(p, E,,,) must therefore leave W(p, .sO) at a later time. For s E [s,, s,], 
U(S)E W(p, Q,)\ W(p, E,,,). By Proposition 1, 

3a > 0 such that laJ(u)l 3 u vue WP, -d\ WP, ~2). (118) 

Moreover, there exists /I > 0 such that 

Thus 
B G 4 WP, hJ)C, WA ~0,2)). (119) 

JT2 l&qu)12>a IS2 liv(u)l >cq?>o. (120) 
“I .TI 

Relation (120) implies that there are only finitely many of these intervals 
[s,, s2). Lemma 5 follows. 
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LEMMA 6. Let E > 0 be small enough. For any u0 = CI I 6 1 + v, v satisfying 
(Vo), in W(l, E), the following estimates hold: 

> 0 

+. L 

2: 
(121) 

i-l(O)= -41+0(l)) i.PKg!‘d+o ( 
laJ(uo)12 +’ , 

1 1 1 (122) 
1 13 1 > 

where c1 and c2 are positive constants and where o( 1) tends to zero when E 

tends to zero. 

Proo$ We apply (100) with a single function 6 I. We obtain 

*I=$ (aJ(uo), 81)--L+ O(lvl --L laJ(%Jl) 
0 

1 
Al.21 = -- 

Cl a1 

aJ(u,), + 2 
> 

+ O(bl --L IWkJl) (123) 
1 1-L 

Xl 1 361 --- 
z- c,cr, ( 

aJ(uoh 4 an, 
> 

+ O(lvl -L lWuo)l). --L 

Since (a,, ~%~/ax,)-,= (a,, 86,/8L,)-,= (4 Lk3,/8x,)-,= (24 f%,/~%~)-, 
= 0, we have 

mo) 
x1=c,i,cc, s K(x)(a,G, + v)’ + 2+ 0 

1 -j- 1 > 
IVJ -L laJ(uo)l 

-= :r’ ~jK(x)(a,B,f~)~I, $+O(/vl,/aJ(u,)i). 
(124) 

1 2 1 1 

Expanding, we obtain 

(125) 

X I K(x) d:h 2 u-t O(lult,) + O(lul -L l8J(u,)l). 
1 
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Observe that 

Setting 

we are led to estimate, in both cases, 

In both cases cp is upper bounded by CS, . Thus, by Lemma A6, 

> 
516 

bC lul-L 

(126) 

(127) 

(128) 

(129) 

(130) 

This, together with Lemma 2, yields 

Expanding K around x, , we obtain (see Lemma A7) 

j K(x,d+~=/ (K(x)-K(x,))~:+$ 
1 1 1 1 

DK(x,) = -c -+o ; 
21 0 1 

(132) 

for a suitable constant c>O. 
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We also obtain, using the symmetry of &?,/an, around x1 and its sym- 
metry with respect to the permutation of coordinates (see Lemma A7) 

j K(x) s:n, g=j (K(x)-K(x,))6:A, 2 
1 1 

= -c’ (133) 

Observe lastly that, by (55) 

;l(q$ cf: = &pi (1+0(l)); 1 
c(1 = (J Iv6112)1’2 

(1+0(l)). (134) 
1 

Relations (125), (131), (132), (133), (134), and Lemma2 imply then 
Lemma 6. 

LEMMA 7. There exists q, > 0 such that for any U(S, uO) = al(s) 6, + v 
satisfying 

au 
as’ -a&J(u) 

40, %J = 4J E Wl, &oh u(s, UO)E W(1, EO) vsao 

(v satisfying (Vo)), we have: 

(1) x1(s) converges to a critical point yj of K s.t. AK(y,) < 0 

(2) J(u) al(S) + l/K(Yj) 1’4; J(U)(S) + Cf S”12/K(Yj) 
(3) n,(s)-,+ +co c3J=Gw; c,>o. 

ProoJ As a consequence of Lemma 6, the expansions provided in (121) 
and (122) hold if &o is chosen small enough, for any s > 0. Thus 

i,(s)= -c2(l+41)) ,p,ljl’;!,4+o 
ww + L 

1 1 
----j-- 

I 
A3 

1 > 
(135) 

; 1 @)= -c1(1+41)) I:;;;!/4+o($) 1 1 1 

IWx,)12 
122 > . 

1 
(136) 

Observe that, as already pointed out (see (76) in particular), 

s 
+m la.qu)p +CO. 

0 
(137) 
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Relation (136) then implies the existence of a constant C such that 

n:<qs+ 1). (138) 

Indeed, we have (21,x, +~~O(laJ(u)l’)\ <C,, where C, is a suitable 
constant. Thus 

+J:,o(IPJ(u)12) < c, s + q(o). (139) 

Using (137), (138) follows. Relation (138) implies that 

5 
2 1 

7>clogs- 1 
0 Al 

for a suitable c > 0. 
Assuming (l), (3) follows then immediately, since dK(yj) < 0 and 

Jof m (aJ(u)(’ < +co. Part (2) also follows immediately from (1) and 
Proposition 1. 

We prove now (1). Let so be a large positive time. Considering the 
0((&J(u)(‘/n,) in (135), we set, after completing a suitable stereographic 
projection, in order to be able to work linearly, 

x;(s)=x,(s)- j’ o(T). 
5” 1 

(141) 

Then x; satisfies using the mean value theorem 

i-;(x) = -cz( 1 + 0( 1)) DW;) 
A: K(x;)~‘~ 

(142) 

Let 

dT=+ ds; s 
s 1 

T= - ds. 
1 0 n: 

(143) 

Relation (140) implies that r runs from zero to + cc when s runs from zero 
to + co. We complete this change of variables in (135). This yields 

ii(t)= -c,(l+o(l)) !zKi+ o (s”” !!y +L-) (144) 
I so 1 1 

TE(O, +co). 

Clearly, for any p >O, we may find, using the fact that 
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szoo (laJ(u)l’/Ar) < +a, an Q(P), N,(y,), . . . . N,(y,), p-neighbourhoods 
of the y,‘s, and y(p) > 0 such that 

; KM(z)) Q - -c2 I~wl)12 < -y(p) 

2 K(x;)i'4 ' 
for any z such that s(r) 2 so(p) 

(145) 

and such that 

x;(z) 4 NJYj) Vj = 1, . . . . m. 

We claim now that, for z large enough, x;(r) stabilizes in one of the 
NP(yi)‘s. This statement implies the convergence of x;(z) to one of the yis, 
after considering a sequence pk + 0. Taking sO(pk) s.t. sO(pk) + +co, (141) 
implies that xi (7) converges to the same yj. 

Since U(S, uO) remains in W( 1, E,,) Vs 2 0, Al(s) remains large (depending 
on s0 small). This, together with (136) and (138), implies that - dK( y,) > 0 
as stated. Thus, the proof of (1) relies on the proof of our claim, which we 
establish now. Relation (145) implies that, for any r, , there exists z2 > r r 
such that x;(rZ) belongs to one of the N,(yi)‘s. Let us assume now that 
during the time [ri, 2,], x;(z) travels from one N,(y,) to another N,(yk). 
If p is chosen small enough, then, with a suitable constant C, 

We then have 

axI( - K(X,(~,)) = 5:: f @l(t)) d Y(P)(T, - 72) 

-Y(P) =- inf d(y,, yk) CO. 
2c jfk 

(146) 

(147) 

Therefore 

K(Yk)-K(yj)Gcp2. (148) 

Taking p small enough, (148) implies 

K(yk) G K(yj). (149) 

Since yk is distinct from yj, should K( yk) be equal to K(y,), there would 
be no trajectory of -DK(x) from yj to y,. Thus, for p small enough and 
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so(p) large enough, there would be no trajectory of (144) from N,(y,) to 
NP( yk). Thus 

K(Yk) < WY;). (150) 

Clearly, x’,(r), because of (150), can travel between the NP(yj)‘s only a 
finite number of times. This proves our claim and (1). The proof of 
Lemma 7 is thereby complete. 

Let 

y,, . . . . y, be the critical points of K such that dK(y,) < 0, (151) 

yr has kj as Morse index. 
We denote 

1 
‘I = - 3 

K(yj)1/2Qcj+L=; (152) 

For the sake of simplicity in the presentation, we will assume in the 
remainder of this paper that 

cj < c/ + I ’ (153) 

Our arguments adapt to the case where equalities occur with only minor 
modifications. Let p > 0 be a small number and let 

up: s3+ [O, l] (154) 

be a C” function such that 

up(x) = 1 if x belongs a p/2-neighbourhood NPlz of yj 

up(x) = 0 if x belongs to the complement 

of a p-neighbourhood N, of y, 
(155) 

kqX)l~4/P. 

Let 

Let 

0 <p < q be two small numbers such that cc/r] is small. (156) 

w: R+ -+ [0, ~1 be a C” function such that w(x) = p if 1x1 d 4/2; 

u(x)=0 if xaq; b’(x)l G4Ph. (157) 
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For E small enough, the function 

qAx1) ~WJW) =&Y(u) (u=a,6,+u) (133) 

is well defined on W( 1, E). Choosing E > 0 small enough such that 
W( 1, E) n W(p, E) = $ Vp B 2, we then choose q such that 

o<q< inf laJ(u)l*. (159) 
UE W(l,E)- W(l,E/2) 

g may then be extended by zero to all of Cf. Let 

F(u) = J(u) -g(u). (160) 

We have: 

LEMMA 8. Let b > 0 be given. There exists c > 0 such that if p, yl, and E 
are given small enough, q subject to (159), and if p < c inf(p*, p3/~, q) then 
S(u) .aJ(u) > Ofor any u such that J(U) G b. 

Proof: In the proof of Lemma 8, we will consider functions U, u,, in 
W( 1, E), which can be split, by Proposition 2, as u = c1i 6, + v, 6, being 
6(x,, A,), and v satisfying (Vo). For the sake of simplicity in the presenta- 
tion, we will omit stating this splitting and we will refer directly to x1 
and u. 

Relations (122) and (123) imply 

There exist constants c, C such that 

VUOE W(1, E), jaJ(u,)( 2 ;1l ‘2(O)’ 

> c DK(x,) , --c 
1, (161) 

Taking E small enough, we may upper bound C laJ(u,)l* by laJ(u,)l. Thus 
(161) implies 

VUE W(1, E), IDK(x,)l C’ PJ(u)l2C ;1 
1 

-2. 
1 

Relations (121) and (123) imply 

VUE W(1, E), laJ(u)l > c (‘A~;1 “) 

(162) 

(163) 
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Using the fact that y, is nondegenerate, we derive the existence of c( > 0 
such that, if p is small enough, 

IDK(x,)l3ap>O Vx, such that 0 < wP(x,) < 1 (i.e., X, EN, - Np,2). 

(164 

Since dK(y,) is nonzero, we derive the existence of fi > 0 such that, if p is 
small enough, 

I~W,)l >D>O Vx, such that op(x,) > 0 (i.e., x, E NP). (165) 

Therefore, if p is small enough, we have by (163) and (165) 

Vu E W( 1, E) such that x, EN,, laJ(u)l 2 cJj?/Af. (166) 

Relations (162) and (166) imply 

VU E W( 1, E) such that xl E NP, I JJ(u)l 2 cq IDK(xl)l + L . A (167) 
1 A: > 

Relations (164) and (167) imply then 

V’u~W(l,~)suchthatx,~N,~-N,,,, j&J(u)l>y (168) 
I 

under no other constraints than the smallness of E and p. C4 and a are 
uniform when E and p are small enough. Observe that, for any u E W( 1, E), 
we have, by (122) and (155), 

lol(x ).il,<:5 P 1 PW,)l + lww,~ 
2: 2, (169) 

P 

where Cs is uniform for E small and is independent of p. We now impose 
on p the two following constraints. Let y be such that 

IDax1 )I d YP Vx, eNp, (170) 

<f lJJ(u)12 Vu E W(1, E) such that x, EN, - NP12 (171) 

and 

1~‘~1~~~~~12~~1~~~~~12~‘1 d d lWu)l Vu such that J(u) < 6. (172) 



SCALAR-CURVATURE PROBLEM 135 

We assume pCs/p < l/4; 1, > 1. By (168), (171) will then be satisfied as 
soon as 

(173) 

Since I, > l/& on W( 1, E), (173) will be satisfied if 

P < G inf(p2, p3/&); C, a uniform constant. (174) 

In order to ensure (172), we observe that I(laJ(u)12)‘1 is bounded by 
C(b) laJ(u)l on the set of U’S such that J(U) Q b. Hence, (172) is satisfied if 

4/h. C(b) W(u)1 d i lMu)l, (175) 

i.e., 

? 
” 16C(b)’ (176) 

Relations (174) and (176) provide the constraint on p as stated in 
Lemma 8. Let us compute 

dF(u) . iv(u) = ldJ(u)(‘- g’(u). a.+). 

By (171) and (172), 

(177) 

lW~)l’ 1 --+? 
4 I 

+i IdJ(u)l’<~ liV(u)l’, (178) 

VUE W(l,s) such that x,EN,-N,,, and J(U) d b. Since3 wP = 1 outside 
N, and in Npj2, we also have by ( 172) 

Ig’(u)-Wu)l G W(u)l Iw’(laJ(u)12)(laJ(u)12)‘l 

6 t laJ(u)l’ (179) 

VUE II’ s.t. x,$Np-Np12 and J(U) Gb. Lastly, if u 4 W( 1, E), then 
g(u) = 0 and g’(u) = 0. This, together with (178) and (179), implies 

cYF(u) ‘%l(U) 2 a laJ(u)l’ > 0. (180) 

Lemmas 5 and 8 imply the following deformation lemma (here E is given 
small enough so that Lemma 8 applies): 
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LEMMA 9. Let c,<b<c,,, be given. There exists O,(E) > 0, T and c > 0 
s.t. for any 0 < 0 < O,(E), the set Jh = {u E ,?I+ s.t. J(u) <b} retracts blj defor- 
mation onto J,,- 0 u A, where 

Ac UE W(~,E), u=cc,~,+u such that l~?J(u)l <CO, 

i Xl E NqJ(Qic,(Y,) 

and where q(x) = & ifx 2 E’; q(x) = $ if x< E’. 

ProoJ: Consider the flow ~(s, .) of the differential equation 

au 
&= -aJ(u) 

u(0) = 24,; J(uo) < 6. 
(181) 

Let n > 0 be subject to (159), i.e., 

0 < rl< %I(&). (182) 

Let 

inf(p3/s, p’) = r]; p=;q. 
L 

(183) 

Then ,U satisfies the constraint of Lemma 8; I],,(E) may be chosen small 
enough so that this lemma applies with such choices of E, p, p, n. 

Setting 

(184) 

any 8 less than B0 may be written as 

e=pj2 (185) 

with 

p=f v; 0 < rl< 4%(E). (186) 

We are then given F(U) with p = cp(q) for each 8 less than oO. (cp is the 
converse function of cp - ‘(x) = inf(x3/s, x2); x Z 0.) 

Let u0 E Jb. We introduce 

s such that F(q(s, ,M,,)) < cj- f . (187) 
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We claim that s(u,,) < +co. Indeed, by Lemma 5, n(s, uO) remains outside 
W(p, E), p > 2, for s large. If ~(8, ZQ,) does not remain in W( 1, E) for 
s large, then standard deformation arguments show that ~(s, u,,) has to 
enter Jc,-r,z = {U such that J(u) < cj- 3~/4}. Thus, s(uO) < +co in this 
case. If ~(s, uO) remains in W(1, E) for s large, then, by Lemma 7, U,(S) 
converges to yj, J(q( S, uO)) converges to c,, while, by Lemma Al, 
l~J(rlb, uo))l +s+ +a, 0. Thus, wP(xl) o( laJ(q(s, u0))12) converges to p and 
F(q(s, uO)) to cj- p < cj - ,u/2. Again, s(uO) < +cc and our claim is proved. 

Due to Lemma 8, the function 

is then continuous. The map 

retracts by deformation Jb onto E;,-,,, = {U EC+ such that F(u) < 
cj - p/2}. If u belongs to F+ P,2 and does not belong to JC,- e = J,- P,2, 
then g(u) is strictly positive. Therefore, UE W( 1, E), x1 E NP( yj), \aJ(u)l* is 
less than q. By (185)-(186), q is equal to (4/c)8 and p is cp(r]); this 
completes the proof of Lemma 9. 

The last step in the proof of Theorem 1 is provided by the following 
lemma, which provides an expansion of J, holding on functions which are 
not necessarily positive. 

LEMMA 10. Let .zO>O, po>O be small; let (h,, h,, h3) being local 
coordinates on S3 around yj, representing x1. Let u=a,6, +v, with 
Icr,b,(xl, A,) + VI --L = 1, v satisfying (Vo). We make the following assump- 
tions on v, x,, p, @l, 4 : bLr.<&O, XI ENp(Yj) With P<PO; 

1% - l/l4 --LI <co; l/l, < Eo. 
Under these assumptions, the following expansions hold: 

1 1 
5 [J,$3 K(x)(cr,G, + vyy 
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The quantity -ss3 (K(x)-K(x,)) 6: decreases.for i1 2 A,, A, uniform on 
x, in NPO( yj), and has the expansion 

- s3 uw-~(xlw~= --c s 
I dK(Yj) I o i 

]“Y 
0 1: . 

Lemma 10 has the following corollary, which we prove now: 

COROLLARY 1. Let cjp, -C a < cj < b < cj+ , . For any coefficient group G, 
H,(J,, J,)=Ofor q#3-k,; H,-k,(Jb, J,)=G. 

Proof We first derive, assuming the expansion of Lemma 10, the 
homological conclusion. Let, for E, p, p, v given satisfying (159), (183), 

UE W(1,s)n=C1161+v, u satisfying (Vo), 
such that x1 E NJy,) 

(190) 

By Lemma 9, we know that the pair (Jb, Jr,pti,2) retracts by deformation 
onto (Jr,pp,2 u A, JCjpv,2), when A c B. Therefore 

H(J,, J<,-& = WA n By Jc,-p/z n W (191) 

Let u = CI, 6 I + u, v satisfying (Vo), belong to A n B. Since F(u) is less than 
or equal to cj - ~12 on A, 

J(u)=J(a,6,+u)<cj+p VueAnB (192) 

while 

J(u)=J(a,6,+u)<c,-p/2 VUEJ,,-~,,~B. (193) 

U sing then the expansion of Lemma 10, we see that 

$, Ihi12- i lhz12<2/4cj VluEAnB (194) 
k,+ I 

=$ Ihilz- i [hiI*< -p/c, 
i= I k,+ 1 

Vu E J, ~ p/2 n B (195) 

since the remainder term in the expansion is strictly positive. We have 
therefore defined a map 

(A n By Jr,-p,2 n B) 2 Cx,, X-p/2), (196) 
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where 

X, = (x1 E N,(yi) such that (194) holds). 

x- PI2 = {x1 E N&y,) such that (195) holds}. 

(197) 

(198) 

Let 

x -p/2 = x,~N,(y~) such that % lh,12- i lhJ2< -2p/cj . (199) 
i=l k,+l 

We define 

where 1,(x,) is chosen continuously dependent of x, and subject to the two 
following constraints : 

(201) 

(hence I,(x,) must be large enough). 
Considering -c dK(yj)/A,(x,)’ + 0(1/1,(x,)~) from the expansion of 

Lemma 10, 

VX,EX-,, 
-c dK(yj) I o 1 

h(x,)2 ( > - < /A/2Cj. 
4(x3 

(202) 

Observe that rflosp is the injection of (X,, XP,) in (X,, XPP,2). Observe 
also that, with N,(yj) chosen to be disc of radius p around uj, 

H*(X,, X-J (w)* H*(X,, Xppi2) 

NG if *=3-k, 

!XO if *#3-k,. (203) 

Therefore H,(A n B, J,- ,,,2 nB) = H,V,, Jc,-p,2) 1: ff,(J,, J,) has 
H,(X,, X-,) as a direct factor and contains thus G in dimension 3 - kj. 

Conversely, let 

UE W(1, E) such that U= a,6, + u, u satisfying (Vo), 

B, = . (204) 

laJtu)12 G E ” x1 ENq(,/2c)(Yj) 2’ 

580/95/l-10 
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By Lemma 9, (Jh, J,.,- P,2) retracts by deformation onto (J,., ml,;2 u A, 
J. (, ~ 11,2), when A c B, . Therefore 

H,(J,, Jc,pp+) N H,(A n B,, J<, mpiZn B,). (205) 

Clearly 

H,(J,, J<,-p/A = H,(J,, J,-p/d 

Therefore, the injection 

i,: (A n BI, Jc,-p,2 n B,) -+ (Jb, Jc,-p/A 

provides us with a homological isomorphism. 
Let us consider the following homotopy of i,: 

(206) 

(207) 

la,61 + Cl- tbl 
U(t,cc161+u)=JCIISI+(1-t)uI~L’ 

rE [O, 11. (208) 

Setting 

I,-J3yp (209) 

6,(x,,(2-t);1,+(r-l)X,) 
u(t~a161(X1~~1)+U)= 16,(x,,(2-t)~,+(r-l)X,)I_. 

for f fz [l, 21. (210) 

We will denote 

A,(t) = (2 - ?)A + (t - 1) x, for t E [l, 21. (211) 

Clearly U(t, .) is continuous. U(0, .) = i,; U(2, a,6,(x,, Al) + 0) = 
6,(x,, ~,)/I~,(x,, x,)1 --L. We will prove later that U(t .) is a homotopy of 
i, is a map of pairs from (A n B, , Jc,-p,2 n B, ) in (Jb, J, _ &. Assuming 
this, then (ip)* from H,(A n B, , J, _ ,,,* n B, ) into H,( Jb, J,- P,4) is equal 
to (sJ.+ where 

To any u=a,6,(x,,,l,)+o in AnB,, we may associate 

(212) 

AnB,L Np 

a,6,+u-,(h,,h,,h,)localcoordinatesofx,. 
(213) 
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If or,6,+vEJg-P,~ n B,, then the expansion of Lemma 10 implies 

-i (hiI’+ 3 l~i12+~(l~13)+Q(~)+~(l~l~~) 
k,+l i=l 

Since u satisfies (Vo), 

Q(u) 2 go bl:L, 

Therefore, if E is small enough, 

c10 > 0. 

Q(u)+o(lul’,)--c~+o(~)>O. 
J 1 1 

On the other hand, if E and p are small enough, with p = (p(p/2c) 

0( lh13) = 0(p3) = o(inf(p2, p3/s)) = o(p). 

Relations (214), (216), and (217) imply 

f, lhi12- i lhi12< -E V’cc,6,+ueJ,,-,,,nB,. 
k,+ I J 

Therefore, the map 3 maps 

Let 

~“:(AnBl,J,-,,znB,)-,(N,,X-,,,). 

Jo-: N, -+ C+ 

(214) 

(215) 

(216) 

(217) 

(218) 

(219) 

(220) 

where 1, is defined in (209). Using the expansion of Lemma 10, we see that 
if E, p are small enough (hence p small, p = cp(p/2c)) 

> 
<b W,,h,,h,)EN,. (221) 
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Furthermore, 

J(~(h,,h,,h,))dc, l~+O(pJ)+~+o(p) ! I > 

dc, 
i 

1-%.+0(p) <c I >- .&) (222) 

if (hi, h,, h,)EXpp,4 and p is small enough. (Again 0(p4) = 
4inf(p2, P’/c)) = 4~1.1 

Therefore 

y-: (N,, Xpp,4) -+ (J/u Jc,-p,d. (223) 

Observe that 

(224) 

where 

i: (Jb, A-p,41 -+ (Jb, A-p/8) v-5) 

is the inclusion. i, is of course an isomorphism. Therefore (ios,), = 
i,o(s,), is an isomorphism. Thus Y* 0 S?* is an isomorphism; .SY.+ is 
therefore an injection. Observe that for y > 0, 

H&N,, X-J = 0 if 9+3-k, (226) 

and 

H 3s-k,U$ X-,1 = G if yjcj<p2 

= 0 otherwise. 
(227) 

We already know that H,-,,(Jb,Jcp,,,) has H3-,JXn, X_,)=G as a 
direct factor. Therefore, p/4cj is less than p2; and since 9, is injective, 
Hjpk,(Jb, Jc,-P,2) = Hjeq(N,, XP,,4) = G. The injectivity of To* implies 
also that H&J,, Jc,pfl,2) = 0 for q # 3 -k, since H&N,, X-p,4) = 0. 
Corollary 1 follows. 

We prove now that U(t, .) takes its values in (Jb, J,,PP,4). 
We first observe that, if u = t~i 6, + u E B,, then 

Iu(:,+ i lh,l* 3’2=o(p). 
( > 

(228) 
i=l 

Indeed, by (167), /U(u)1 is lower bounded by c4(lDK(x1)l/~i + l/n:) 



SCALAR-CURVATURE PROBLEM 143 

for u in B,. By Lemma 2, laJ(u)l is lower bounded by c Ju( PL - 
C( lDK(xi)l/A, + l/AT). Therefore 

lwu)l’a c* 
( 

Imxl)l ; 1 ) lul’ 1* A4 L 
> 

VUEB, (229) 
1 1 

since 

laJ(u)12<y VMEB,, (230) 

and we have 

bC=w4; bL=4d ‘due B,. (231) 

Next, we have, if E is small enough, 

(i, Ihii2y<[q (~)1I=P’=O(inf(p’,P’i&))=o(~). (232) 

Relations (231) and (232) imply (228). If furthermore, u E B, n J,- p,2, then 

(233) 

Indeed, using the expansion of Lemma 10, we see that 

(234) 

Relations (228) and (234) imply (233), since -c AK( yj) is strictly positive. 
Thus, if E is small enough, we have 

Vu E B, (235) 

c(I~l’,+($~ Ihi12)3’2+$)<i Vu~BlnJ,-,/2, (236) 

where 

(2.37) 

g(IuI?,~+(i~ Ihi12)li2+~)b10(lUllL+(~, Ihr12)112+$)i, (2.38) 
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the quantities 0( .) being the ones provided by the expansion of Lemma 10. 
For t E [0, 11, we have 

~ct,61+(1-r)u12 ,=la,b,12+(1-~)21u12 L=1+((1-f)2-1)l IulZ. 

(239) 

since u satisfies (Vo) and (cr,6, + UJ -L = 1. Thus 

q6, + (1- t)u 
la,s,+(l-t)ul~.=S(;61+ul; { 

4 = a,(1 + O(l4Z,)) 
o,=(l-t)u(l+O(lulZL)). 

(240) 

Using the expansion of Lemma 10, we derive 

J lc1,6i+(1-t)ulP. ( b,~,+(l-t)ul =J(cr’6 +u,) 
> ’ i 

6J(o1,6,+u)+C(lv’+~+(~~ lvz,l’)3’2). 

(241) 

If uEAnB,, we have 

J(U)=J(O:,b,+U)<Cj+~> 

hence, using (235) and the fact that l/A, -CC 

(242) 

VfE co, 11, J(L!(r,a,fi,+U))~~j+~+~+C~3<h (243) 

if E and A4 are small enough. Moreover if u = c~i 6 i + u E J, _ P,2 n B,, then 
by (236) 

vte co, 11, J(Li(l,a,6,+v))~c,-~+~<ci-~/4. (244) 

Therefore, for t E [0, 11, by (243) and (244), U(t, .) is a homotopy of i, as 
a map of pairs (AnB,, Jr,PP,2nB1) into (Jb, JC,-P,4). Let tC [l, 21. 

Observe that by the choice of X, in (209) and by the fact that l/1, <E 
we have 

(245) 

and by (233) 

Vu=a,6,(x,,A,)+u, uEJ,,-,,,nB,O <fi+o(p). (246) 
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Using the expansions of Lemma 10 and the fact that -jS3 (K(x) - 
K(xj)) ST decreases with I, 

(247) 

Therefore, using (241) with t= 1, (235), (245), (247) and the fact that 
l/A, <E, we now derive 

<J(ci,6,+u)+C Iv~~+~+ i Jh.12 
( n; (i_, 1 )3’2)+~+o(&-)) 

<c,+p+;+2CE3<b Vu=a,6,+uEBI. (248) 

If p belongs to B, n Jc,- p,2r then, from (236), (246), and (247), we derive 

for p small enough. Relations (248) and (249) imply that U(t, .) is again 
valued in (Jbr J, _ P,4) for t E [ 1,2]. The proof of Corollary 1 is thereby 
complete. 

Proof of Lemma 10. Rather than assuming that 1~~6, + u( --L = 1, we 
will relax this last constraint and provide an expansion of the ratio 

u satisfies (Vo). Therefore 

(251) 
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Since (6, (1, = 1 Sy = j” b6, N is also equal to 

We expand D: 

D= s (K(x))(a,G, +u)~ 

(253) 

=~~jK(x)~~+6jK(~)(a,6,)~~+15jK(x)a~S~+v*+o(~u~~,). 

We have, by Lemma A8, 

j K(x) sy = K(x,) j d6 + j (K(x) - @I)) 87 

=Mx,) j b6+cg y++ 
1 1 

=&xl) j P+cg ~+o($). 
1 1 

(254) 

Since x1 EN,, we also have, by Lemma A6 and the fact that DK(y,) = 0, 

j K(x)~;02=K(x,)j 6:v2+j (K(x)-K(d)@* 

=K(x,)l 6;u2+ 

=K(x,) j a:~++~+~). 

(255) 

(256) 



SCALAR-CURVATURE PROBLEM 147 

Thus, 

N 
o= 

cl o* ((1 + 3 I42J4 J a6 + Wl3,)) 
W,)C(l +c9)/K(x,) x (dK(yj)/A: j 66)(15 J6:u*/cr: s 66) 1 

(257) 

+alC+ cc:=, l~,1*H3’*+41/~:)1 
We may complete a Morse Lemma reduction for l/K around y, in 
(hi, h,, h3) local coordinates. 

We then have 

(258) 

Thus 

(259) 

Observe that -c(dK(y,)/lT) + o( l/n:) = -c’ jS, (K(x) - K(x,)) ST + 
0( l/A:) since the term o( l/1:) comes from j (K(x) - K(x,)) Sy in (254), the 
other estimates (255) and (256) providing 0(1/n:). The behaviour of 
-js3 (K(x) - K(Xl)) ST? xi E NP( yj), is studied in Lemma A8. This com- 
pletes the proof of Lemma 10. 

Proof of Theorem 1. Let 

a,<Min J(u)=c,<a,<c,< ... <c,<a,,,<c,+,< .‘. 
USZ+ 

<a,y<c,<a,p,. (260) 

If X is a topological set, then x(X) is its Euler-Poincare characteristic with 
rational coefficients. 

We know, by Lemmas 5 and 7, that Z+ retracts by deformation on J,-,. 
Therefore x(J,$-,) = 1. 

Since ( 1) has no solution, we have by Corollary 1 

&(Ja’r+,> Jar)=0 if q#3-k, 

H3-,c,(Jo,+,> Jar)=Q. 
(261) 

Thus 
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Of course x(Ju,) = ~(4) = 0. Therefore 

l= 1 (-1)3-% 
i-= I 

(263 1 

If (263) is violated, (1) has a solution. Q.E.D. 

APPENDIX A 

LEMMA Al. Let 

au 
as’ -aJ(g 

s 2 0 be a decreasing flow-line. (Al) 
u(O)=u,Ez+ 

Then scco l&I(u)l* dt < +co and lim,, +% l&I(u)] =O. 

Proof of Lemma Al. Since J is bounded below on C+, JO+” laJ(u)l’dt 
has to be bounded on any flow-line. Therefore, we can find a sequence (s;), 
s; tending to + co, such that 

lim laJ(u)l (sb) = 0. (A21 k- +m 

Let 

b = J( u,,). (A3) 

Using the expansion of aJ(u) provided in (10) and Lemma 1, we derive, 
since J(u(s)) <b Vs 2 0, 

3 C1 such that Vs B 0, 

laJ(u(s)) - aJ(u(z))l < Cl MS) - 4t)l -L VT20. 
(A4) 

Let us assume, arguing by contradiction, that there exist a sequence 
(rk) --) +co and a number s1 > 0 such that 

laJ(4rk))l 2 El. (A5) 

We may assume 

s;<~,<s;.,<~k., W) 
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and, by continuity of j&I(u(s))l, we may find a sequence (sk) such that 

ldJ(u(s,))l = ?;. . . <s,<z,<s~+l<zk+l< . . . . 

(A7) 
El 

lW4~))l a- 2 
VT E [s,, zk] Vk. 

We then have 

“* ldJ(u(t))l’ dt z+ ST’ l8J(u(z))l dt. 
Sk Sk 

Since u( .) satisfies (A2), we also have 

Finally, by (A5), we have 

1 El 
b(~k)-4sk)l a-.--. 

Cl 2 

Combining (A8), (A9), and (AlO), we derive 

IdJ(u)(~)[‘dr& (;)‘. 
1 

WI 

649) 

(A101 

(All) 

This contradicts the finiteness of JO+ oj 18J(u)12 ds. The proof of Lemma Al 
is thereby complete. 

LEMMA A2. Let p E N * be given. There exists E,,(P) > 0 and a, > 0 such 
that for any 6, = &a,, A,), . . . . 6, = @a,, A,), ai E S3, Ai > 0, satisfying 

%j” < Q(P) Vi#j (‘412) 

the following estimate holds: 

for any 0 satisfying (Vo). 

Proof of Lemma A2. For the sake of simplicity in the presentation, we 
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will work on R3 rather than on S3, having completed a stereographic 
projection. We thus have functions 

and we denote 

(A13) 

(A14) 

The correspondence between si, ii, and hi, sij is given through 
stereographic projection. Details are available in [2Oj. 

The proof of Lemma A2 requires the following construction: For 8, 
given, i= 1, . . . . p, we introduce 

for those j s.t. Aj > li . 

By construction, Oi n tij = 4 for i # j. Let 

Qi be the orthogonal projection on Ht(a;) 

and for cp in H= {cp~L~;VqeL~}, let 

(pi= Qi(P. 

We then have the estimate 

Assuming that (A18) holds, we give the proof of Lemma A2. Let 

v; = Q,v 

E; =span (6,, 2, z}; E,? =(E;)l; 

W5) 

(A161 

(A17) 

(‘418) 

6419) 

(A201 

the orthogonal being taken in the sense of the scalar product l VCP V$, for 
$ and cp in H. c(, is in the sequel a strictly positive fixed constant. On ET, 
we have 
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On E;, we have 

(1 IVq12-5 [ d”+C\Vq,’ V~EE;. (A22) 

We split ui: 

vj = 0; + v,?; vi EE;; v,+ EE+. 6423) 

We have 

(~24) 

The notation (s Vu, V(~s^,/~~,))(~s^~/~x~) should be understood as a summa- 
tion on each component of xi in R3. We estimate j IVv; 12. We have 

J VVjV8{= -J s^l(Vipu) (A251 

since S J:v = 0 (u satisfies (Vo)). 
Thus, by (A18) 

11 vu,0 Jm (1 ,V”,‘)lil. 
i#j 

6426) 

By (Vo), we also have 

/IV,iV~l=/IV(.i-,)V~l=1-5161V~(Vi-”)/ 

<c&~ 8;lvi-,I <c’ili a (j ,VV,~)‘:~. (A27) 
i# i 

Similarly, we have 

1 j vv,v 2.1 g Jm (j lvu,2)‘i2. 
I 1 i#j 

Thus, combining (A26), (A27), we derive from (A24) 

(j ,VVlJ2)<C Jm (j Ivv12)1'2. 

i#j 

W’8) 

(~29) 
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Using then (A21 ) and (A22), we derive 

-c(j lv”~~*)‘~2 (j ,VUT12)‘i’ 

>a, j IVv;l’-c( c k-J j lV”l2 
i#j 

-c(j lv”q2 (j lv”;l’)“‘. 

With a suitable constant M = M(a, , C), we have 

-c(j lv”i,2)“2(j ,v”;l*)1’2drr,-2 j ,V”+l2+M j lV”J2. 

Since the 52,‘s are disjoint, we have 

T j Ivui126C j Ivu12~ 

I *I 

On the other hand 

j cfq I”*-“UfJ < j I ( “+“i,6)1’6 (j p l”-“ily6 

<C(j [V”[2)1’2 (I,,,-“ii)‘“” (j [“-“f/6)1’2s. 

Thus, by (A18) 

j & I”* - “21 < c j IV”,12 ( 1 E,)‘2’25. 
i#i 

Relations (A30), (A31), (A32), and (A34) imply 

j IV”12-5 T j J4”% jCUQ, Ivu12+C j (Ivu12-Ivui12) 
tc i [nn 1 

+? j lV”,l2-0(l) j IVuJ2. 

(A30) 

(A31) 

(~32) 

(A33) 

(A34) 

(A35) 
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By (A32), we have 

T I, (IW2-lW2)+~~ j Wi12>inf(~, 1) 1 IQ, WI* I I 

=clo 1 1 Ivui(2. (A36) 
i R, 

Relations (A35) and (A36) imply 

5 \V01~-5 c 1 &‘u2&inf(&,, 1) 5 IVu12-~(l) 1 IVul*. (A37) 
I 

The proof of Lemma A2 will thus be complete once (A18) is established. 
Since this proof is rather lengthy, we have delayed it until Appendix B. 

LEMMA A3. Using the notations cYi = 6(a,, A,); Sj = 6(aj, Aj), the following 
estimates hold if IQ is small enough: 

(hi, bi)-L=C; = c,n; 

Proof of Lemma A3. The three first equalities are straightforward com- 
putations, using the inequalities 

I ah. 
I I 
-I 
~~~~~ 

<CSi (A3g) 

adi 
I I Aian, U GC6i (A391 

and the equations 

(A40) 

(A41) 

ahi aSi 
-LdR=564-. 

I ali 
(~42) 
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The four last inequalities of Lemma A3 are easily derived from 

(6,. 6j)L,6 cc,. (A43) 

In the next lemma, we give a much more precise expansion of 
(Sf* dj)-L=Js3 6!6j f m unction of E;, which implies (A43) in particular. 

LEMMA A4. The following estimates hold if E,- is small enough: There 
exists a constant C such that 

Proof of Lemma A4 The proof of the three estimates is roughly the 
same. We refer the reader to [IO] for the detailed computations. In [lo], 
the aim is different and the computations are therefore carried out in much 
more detail. We give here the proof of the second estimate, as an example 
illustrating how these estimates are established in the three cases. For the 
sake of simplicity in the presentation, we will work here also on lR3 with 
the functions 

&a, A) = CO J;i 
(1 +A* Ix--a(*)“* 

( 
4 4 $= T+z+&ij la,-a,!* . 
, ’ > 

~ l/2 

We consider 

s = jR3 sic?; = c”o j vm dx. 
@ (1 +;I; Ix-xxi1*)3’* (l+$ Ix-xj12)3’* 

Let 

xi - x 
a.-= 2; 

Xi+Xj 
!I z=x- 

2 . 

(A44) 

(A45) 

(A46) 

(A47) 
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We have 

1 
s = 4 (J;~j)3/* s 

dz 
R3 (l/n; + Iz + ajj *)3’* (l/q? + )z - aiil *)3’* 

By symmetry, we may assume 

3Lj<ii. 

Consider first the case 

l*J, lai,12 2 cni/lj; C being a large constant. 

Thus 

Iii’ lujy 2 c; A; lai,12>/ c. 

We upper bound then S as 
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6448) 

6449) 

(A501 

(A51 1 

6452) 

where C1 is a suitable constant. Indeed, if lz+u,l < l/n,, then by (A51), 
Iz+u~I ,< (uJ and thus Iz-u~( 2 (uV(. If (z-uV( < 1/;1,, then by (A51), 
Iz-u~I < IuJ and thus )z +a$ > \uJ. Let us estimate 

s dz 

Jz+u,JZl/i., lZ+ Uqj3 IZ-Ua,ij3' 
(A53) 

IZ+aqlr I/-$ 

We have, using the fact that Iz f aiil < laiil implies )z T aijl > 1~~1, 

dz 

Iz+a,l2l/i., 
I= + Llz,l > I/%, 

lz+Uq13 IZ-Ua,i13 

dz dz 
< 

s l/i,~lz+u,l<lo,l lz+uii13 laij13 s l/i,<(;Pu,l<k&/( IZ-ujj13 IQ 

+j, + ,>,(I/ Iz+u..~~z-u..13~ 
(A541 z %I- 8, 

I= ~ &,I 2 la,,1 
‘J u 
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Observe that 

lz+aiil 2; /z-uad/ if /z + a,/ 3 IaJ. 

Thus 

s 
dz 

lz+ag13 IZ--a,jl 
3 643 

dz 1 
b+ul/l~l”gl 
lz- q a I&/ 

Iz+ay121aul lz+a;,16=C3X lqj3 

On the other hand 

s dz 

l/l,Clr+ayl~la~I lz+ag13 
= log /Ii la(jl 

s 
dz 

~ = log Aj IQ. 
1/1,<lz-q/l<la,/l IZ--ij13 

Relations (A52), (A54), (A56), and (A57) imply 

1 1 
(lli/Aj++Jj lu,12)3!2+(~j/~i+I’i~j luii12)3’2 

1 
+ (/lilj luiJ12)3’2 

log(l,Aj lqf+ 1) 
I 

. 

Relation (A58) provides the desired estimate under (A50). 
We assume now 

#liAj luti12 < cnipj, 

i.e., 

A; Iuii12 d c. 

Let 

z=&(x-Xi). 

Then 

dz 

We split S into two parts, 

s=s, +s,, 

t.455) 

(‘456 1 

(A57) 

(‘458) 

G459) 

(A601 

(A61) 

(A62) 

(A63) 
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where 

157 

dz 

lZl<4C(A,/l,) (l + lz12)3’2 (1 + )(~j/jli)Z-22aii~i12)3'2 

dz 
(‘464) 

We have, by (A59), 

dz 
l"iS(Ai/Aji) (A65) 

Irlc4C(j.,/A,) (1 + lZ12)3’2 

co E^;1og; . 
( ) (I 

If Iz( >4CLj/Aj, then by (A60), 

(A66) 

Thus 

&QC; (?)‘I’ (32 j,Z,34c(i,,il, +=c;(33=O@3. (A671 

Relations (A65) and (A67) imply the desired estimate under (A60). Q.E.D. 

LEMMA A5. The following estimates hold, if Ed, ejk, and l/Ii are small 
enough : 

s 
IK(X)-K(Xi)l ~!6j="(E~). 

Proof of Lemma A5. By HGlder’s inequality, we have 

js, cy5iy5 d Js3 si sj ( 3 3)“’ (I, sy. (A681 
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Using Lemma A4, we thus have 

(A69 1 

hence the first estimate in Lemma AS. For the second estimate, let us 
consider a very large real M > 0. 

We have 

I (A701 s’ 
6;6,6,<M j 

s’ 
qh;+cs;)+; j 

s) 
(SjS,+SjSJ. 

Thus, by Lemma A4, with C a fixed constant, 

s 
E~lOg~-kE~~lOg~ +~C(&~+&j~)=O(Eg) 

> 
(A71) 

S’ 1, 

hence the second estimate in Lemma A5. 
Lastly, we have, for E > 0 given, with a suitable constant C independent 

Of E, 

64721 

The proof of Lemma A5 is complete. 

LEMMA A6. Let 6, be 6(x,, %, ) and let v satisfy (Vo). We then have 
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Proof of Lemma A6. We can upper bound ](K(x)- K(x,))] by 
C []DK(x,)] d(x, x,) + d(x, x1)*]. Therefore 

< c pK(x,p j d(x, x,p5 sy + c J d(x, xp5 ST 

(A73) 

The last inequality in (A73) is a direct estimate. 
Relation (A73) implies the first inequality in Lemma A6. The proof of the 
second inequality is very similar. 

Next, we have 

/I 
(K(x)-K(x,))s;u <c 1. (1 v6)‘:” (J IK(x) -K(x,)16’5 ST )“” 

GC’IUI--L ~ 
( 
DG,)l +’ 

1 

nf 

) 

Ii 
W(x) - WI)) +* ) sc(j dg’-’ (1 IK(x) - K(x,)13’* sy )“’ 

(A74) 

< C’ Iv1 -L j d(x, x,)3’2 s: > 
2’3<c” Iul’, 

1, . (A75) 

This establishes the two last inequalities in Lemma A6. We are thus left 
with the third inequality. Let E > 0 be given. We have, using the symmetry 
of as,ja& around x1, 

+ 0 j d(X,X,)2 s:, = 0 ( > 0 $ 
1 

(A76) 
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(A77) 

Relations (A76) and (A77) imply the third estimate in Lemma A6. The 
proof of this lemma is thereby complete. 

LEMMA Al. Let 6, =6(x,, A,). We then have 

s DW, 1 K(1)6:fgL~ +o L 
1 I I 0 2: 

Proof of Lemma Al. For the second expansion, observe that 

j K(x) 6:1, z=+ -& j K(x) ST 
1 

(K(x) - K(x,)) 6; . (A78) 

In the course of the proof of the following lemma, Lemma A8, we will give 
an expansion of -(a/an,) 1 (K(x) - K(x,)) 8:; see (A82) to (A92). This 
expansion, in particular in (A92), is the same as the one proposed here. 

We consider now 

j K(x) 6; + z= j (K(x)- K(x,)) 8: + 2. (A79) 
1 1 1 1 

Expanding K around x1, we derive 

jK(x)6+$=j(DK(x,)-x-x,)&z 
1 I I I 

. (A801 
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Using the symmetry of 6, around x, and (A38), we derive 

The proof of Lemma A7 is thereby complete. 

LEMMA A8. Let yj be a critical point of K such that - AK( y,) > 0; let p 
be small enough so that -AK(x,)> -AK(y,)/2 for any x1 in N&y,). Let 
6, =6(x,, 1,) be such that x, belongs to N,(yj). We then have that there 
exists exists A 1 > 0, A, uniform on NJ yj) such that for I, in [A 1, + CC [, 
-jW(+K(x,W; d ecreases when I, increases. Furthermore the follow- 
ing expansion holds : 

j KWd:=K(x,) j 6:+c’y+,($). 
1 1 

Proof of Lemma A8. For the sake of simplicity, we will first complete 
a stereographic projection rr: S3 + R3 of north pole N = -x1, the 
antipodal point of x, on S 3. After having completed this transformation, 
we are left with a new quantity, 

where k corresponds to K and where 

1 J;i WY n)(x) = co (1 + AZ ,x,2),,2; co such that - A8 = 8’. (A83) 

1; satisfies 

J 1+21;2=4. (A84) 

We leave aside the precise computations, which can be found in [20]. We 
wish to prove that if -A@(o) is larger than p > 0, there exists n,(p) such 
that if A; > n r(B), (A82) decreases. 

We complete the change of variables: 

n;x= y. (A851 
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We thus have to study 

-jR3 (+J-m)) (I +I?.,‘)1 4 

Differentiating with respect to I,‘,, we obtain 

(A861 

(A87) 

Introducing a number M> 1, which we will take large, we have, after 
cutting the integral in two pieces, 

T=$j 0 
1 

I M/i; <M/i.; DR $ $.(l+,y,y 

++ S,,.,>M (1 +;y,2)3dy. (‘488) 

If A’, is large enough, M/J.‘, is small and we can expand 

=Dk(O)+D’K(O)$+o for ly( GM. (A89) 

Thus 

We now choose 

M = l.;3i4. 

Then M/1; is small when 2; is large and we have 

T=c’m)+o L <-Pc’+o L 
n;3 ( > 1, ‘7 I3 

( > 
I3 . 

11 

(A90) 

(A91) 

(~92) 

Relation (A92) implies the existence of /ii, independent of x,, such that 
if Ala/i,, T is negative and -1 (&x)-K(O)) ST decreases when 1, 
increases. 
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We establish now the expansion, or rather the corresponding expansion, 
on 

We have 

s I?(x) F. (A93) 

= DR(O).Y. l dy 
Iylli.; <Ml).; 1; (1 + lY12)3 

(A94) 

Since M = I i314, we derive from (A94) the desired expansion. The proof of 
Lemma A8 is thereby complete. 

Proof of Proposition 3. Let 

1 asi 
(p=x. Or 

cp=p 
an; 

In both cases, we have 

IqI G C6,; I&LGC 

with a suitable constant C (see Lemma A3 for 
Observe also that 

s L&q = 0 

since l Ldidj is independent of ;li and xi. 
We compute 

dJ( u) . cp. (A98) 

(A95) 

(A96) 

the second inequality). 

(A97) 
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We have, by (A97) and (Vo), 

dJ(u) . cp = -A(u)’ Is3 K(x) ( f crib, + v)’ $7 -A(u) c CY, j 8,;. cp 
i=l J’+ i 

= -Am.; js3 K(x)i$(p+R. (A991 

Using (A96), Lemma (A5), and (131), we have 

< c c &y(lOge,,1)1’3 + 
lDK(xi)l + l 

2 + I& . 
Ai *I > 

(AlOO) 

Therefore, using Lemma 1 which provides us with a lower bound on A(u), 
using (A96), and Lemma 2, we derive, for &a small enough, 

Using Lemma A7, we derive 

(A102) 

By (Hl), dK(x,) is nonzero at the critical points of K. Therefore, with a 
suitable constant c 1, 

Relations (AlOl), (A102), (A103) imply 

(A103) 

IDK(xi)12 1 

Az 
1 +e I 

(A104) 
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hence, for q, small enough, 

IDKtxi)l + l 
2, p” W(u)1 --L + c Eq . 

j#i 1 
Lemma 2 and (A105) imply Proposition 3. 

APPENDIX B 

Proof of (A18) of Lemma A2. Let 

1 
J= (1 +,y,2)l!2; A$= -c,$‘; c2 > 0 

wEL6; VWEL2 

A >o; B,= {xER” such that 1x1 <A}. 

Let h be defined by 

Ah=0 in B, 

h=wlaB;,. 

We then have 

(A105) 

Q.E.D. 

W) 

W) 

(B3) 

(B4) 

(B5) 

Indeed, first notice that we can take w to be positive. Otherwise, replacing 
wby Iwl=Gandhbyh,wehave 

and 

jR3 lVw\ 2 dx = s, IVG.?i(’ dx. (B7) 

Thus, if (B5) holds for w > 0, i will hold for all w. Assuming that w is 
positive, (B5) becomes 

jBj. ~5h& (r’ lV~4~)“. WI 
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We prove now (B8). We have 

$5h = !- j” 
c2 B, 

Let 

We have 

and 

h(x) = >h(ilx); W(x) = J;iw(j.x). 

Ah = 0 in B, = {x s.t. 1x1 < 1 } 

h=h,, 

JSB, h<C{(jg, ,vli,~dx)1’2+(j”B, dy}<C(1,, ,vq2. 

(B9) 

@lo) 

0311) 

0312) 

Since JR3 JVW12 = in3 /VW~~ and fdB, h = (l/n”‘) Jaej h, (B8) follows from 
(B12). We prove now (A18). First, we assume that p = 2, i.e.; we have only 
two functions s^, and s^, and two sets 0, and 52, as in (A15). Next, we 
derive the general case. We take j = 1 in (Al8). We also complete a transfa- 
tion and a dilation, so that 

Thus 

(p = J&p(&x + x,); 

El2 = c12; J&=1; 

Assume first that 

Then 

A,= 1; x, =o. 

si=J,&(x, +%,x) 

x,=2,/i,; x, =o; x, = %,(x, -x2). 
(B14) 

1, =A,, i.e., 2, Q 1. 

0316) 
@jr=@--; with Ah=0 in a,; h=~p on aa,. 
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We have 

(B17) 

Relation (BS) implies 

s 0’: I@ - @,I G C(E^12) lil 3P ( jR3 ,v(p,2 q2 = C(i,,)3/2 ( JR3 ,&I,2 q”’ 

(Bl8) 

On the other hand 

i 
1 

JXI>1/8 ,* (1 + Ixl’)“’ cp’ E 
, - <C(JR3 ,v@,y2L:: 

= ci:f( lR, ,vq2. (B.19) 

Since jrw3 8: I@ - cP,l =jlw3 6: I@ - cPII, (B17), (B18), and (B19) imply (A18) 
under (B15). 

We now consider the other case, namely 

Then 

&a&, i.e., 2, 3 1. WO) 

x/lx, <k and lx-.%,I >A . 
12 2 12 

0321) 

Let then 

31=(x such that 1x1 <$--I; @=(x/lx-i,, >&I. W2) 

Let 

@jl = orthogonal projection of (p on HA(B) 

$, = orthogonal projection of (p on Hi(w). 
(~23) 

We may assume that (p 20, as we already pointed out. Since 
ad, c as’ u am, we then have 

I@-@,I <2@- C45,+511 in R3 (~24) 
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+s S$+ s Qj% (~25) wi-$7 ix-0 

Relation (B19) provides us with a suitable inequality on JiwxPn &fCp. We 
estimate now 

A direct computation shows that if cl2 is small enough, then 

1 AK2 
51=(1+Ix12)l’z4(1+~:ln-n212)li2 

if 2, Ix-&( <$---. 
12 

We then have 

s .3~os:isc(j~~-~~~)516(j Imly2 

ac(jR,~,6;q6X(j lv@ly2- 

By Lemma A4, we derive 

I R3-m t’pl ,5-<c,,2(log~)5~6(j lV@l2)‘;‘. 

Relation (B29) is also satisfactory for (Al8). 
We estimate now the two remaining terms in (B25) 

(B26) 

(~27) 

W8) 

W9) 

(B30) 

(B31) 
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Relation (B30) is estimated using (B5). We are left with J m S:( (p - ql). We 
have 

where 

Thus 

do, =O, 8, =6,/a@. (B33) 

(B34) 
Relation (B12) then implies 

@’ is the exterior of a ball around & of radius l/8&,*X2. By a homogeneity 
argument, we can check that 

Let 

Then 

(B36) 

1 

I==. (B37) 

sup Ix~((x-x2)/Ix--2I)I = r + 1x21 

a&v (1 + Ix1’)3” (1 +r2+ (x21Z-2r Ix21)3’2’ 
(B38) 

Thus 

IJ iP arp-qsqj ,vq2, (B39) 
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7 + lx*1 
p=(l +rZ+ Ix,l’-2r [xzl+. 

One can check directly that 

p = O(E:F) (B41) 

hence (A18) in case we have two indexes only. 
For the general case, one introduces the sets, assuming 2, = 1, x, = 0, 

and 930, 

oj= xER”suchthat (xi<iand Ix-x,1>-&-if&>1 . (B42) 
I I1 

Then &2, c U 8,. Let 

hi: Ah;=O, hi= 'plaoi. (B43) 

h: Ah = 0, h=cp/cTQ,. (B44) 

Then h = cp - ‘pr where ‘p, is the orthogonal projection on HA(Q,) of cp 
and hi = cp - qi, where Qi is the orthogonal projection on HA(tIi) of q. The 
above arguments show that 

j- 
0, 

6:h;< C &,i (j IYDI~)~‘~ 

c,,-, +;6 C q’& (j- l’G42)li2. 0346) 

Relations (B45) and (B46) imply the general case. Q.E.D. 

APPENDIX C 

We state here a result similar to Theorem 1 
(S4, c). (S4, c) is the standard euclidian sphere. 

We want to solve 

which can be derived on 

-Lu= -Au+2u=;Ku3 

u>o on S4. 
(Cl 1 

where A is the Laplace operator on S4 = (xER’ s.t. 1x1 = l}. x1, . . . . x, are 
the critical points of K; ki is the Morse index of K at xi. 
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Let 
32768 

FE----- x4 
27 

((3) 

and let, for z = (i,, . . . . i,), 1 d i, d i, d m, M(r) be the symmetric Ix I matrix 
defined by 

M,,(z) = --LK(xiq), ldq<l 

1 

( 

1 

> 

112 

Mqr(*) = --c IXi, - Xi,12 K(q) K(x,) ’ 
where Ix - yl is the euclidean distance between x and y in R’. Let then J(u) 
be 

(C4) 

We make the following assumptions on K: 

(A) for any z, M(r) is nondegenerate 
(B) K>O 

(C) there is no polynomial Q with integer coefficients such that 
(l+t)Q(t)-l=Cr,M(~)>O~I:(l’, +“,i. 

Under (A), (B), (C), we have: 

THEOREM 1’. Equation (Cl) has a solution u > 0. 

In this framework, some phenomena are different. 
In particular, Lemma 5 does not hold and we need to make a more 

detailed study of the dynamical system of (99). The analog of Proposition 3 
is used in a crucial way at this step, in particular in order to derive the 
differential equation satisfied by ii. Some of the details are available in 
[lo]. The critical values at infinity are now the values 

cc51 

For the sake of simplicity, we assume c(r ) #c(Y) if t # r’. 
In this new framework, the difference of topology at the crossing of the 

level c(z) is given by the formula 

ffq(Jc(r)+E, JC(z)-J = 
0 for q#k(t) 
G for q=k(z) (C6) 

with k(z) = 51(z) - C~(~‘, k,. 

580195'1-12 
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