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Abstract
In this paper, we consider the second-order Emden-Fowler neutral delay dynamic
equation
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on time scales, where z(t) = x(t) + p(t)x(τ (t)) and β ≥ α > 0 are constants. By means of
the Riccati transformation and inequality technique, some oscillation criteria are
established, which extend and improve some known results in the literature.
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1 Introduction
In this paper, we are concerned with the oscillation for the following generalized Emden-
Fowler dynamic equations:

(

r(t)
∣
∣z�(t)

∣
∣
α–z�(t)

)� + q(t)
∣
∣x

(

δ(t)
)∣
∣
β–x

(

δ(t)
)

= , (.)

where t ∈ [t,∞)T := [t,∞) ∩T with supT = ∞, z(t) := x(t) + p(t)x(τ (t)), α and β are two
constants.

Throughout this paper, we assume that:
(A) β ≥ α > ;
(A) r ∈ Crd([t,∞)T, (,∞)),

∫ ∞
t

( 
r(t) ) 

α �t = ∞;
(A) p ∈ Crd([t,∞)T, [,∞)), q ∈ Crd([t,∞)T, (,∞));
(A) τ , δ ∈ C

rd([t,∞)T,T), limt→∞ τ (t) = limt→∞ δ(t) = ∞.
A time scale T is an arbitrary nonempty closed subset of the real numbers R. On a time

scale T we define the forward and backward jump operators by σ (t) := inf{s ∈ T|s > t} and
ρ(t) := sup{s ∈ T|s < t}, inf∅ := supT, ∅ denotes the empty set. A point t ∈ T is said to
be left-dense if ρ(t) = t and t > infT, right-dense if σ (t) = t and t < supT, left-scattered if
ρ(t) < t, and right-scattered if σ (t) > t. Points that are right-scattered and left-scattered at

© 2015 Shi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81181271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13662-015-0701-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0701-6&domain=pdf
mailto:hanzhenlai@163.com


Shi et al. Advances in Difference Equations  (2016) 2016:3 Page 2 of 12

the same time are called isolated. The graininess function μ : T → [,∞) is defined by
μ(t) := σ (t) – t and for any function f : T→R the notation f σ (t) := f (σ (t)). For some other
concepts related to the notion of time scale, see [, ].

As a solution of (.), we mean a nontrivial real function x such that x(t) + p(t)x(τ (t)) ∈
C

rd[tx,∞) and r(t)|z�(t)|α–z�(t) ∈ C
rd[tx,∞) for a certain tx ≥ t and satisfying (.) for

t ≥ tx. Our attention is restricted to those solutions of (.) which exist on the half-line
[tx,∞) and satisfy sup{|x(t)| : t > t∗} >  for any t∗ ≥ tx. We recall that a solution x of equa-
tion (.) is said to be nonoscillatory if there exists a t ∈ T such that x(t)x(σ (t)) >  for all
t ∈ [t,∞)T; otherwise, it is said to be oscillatory. Equation (.) is said to be oscillatory if
all its solutions are oscillatory.

In recent years, there has been an increasing interest in studying oscillatory behavior of
second-order neutral delay dynamic equations on time scales, and many results have been
obtained; see, for example, [–].

We known that the Emden-Fowler equation and its generalized forms have attracted
extensive attention because of the relevance to nuclear physics and gaseous dynamics in
astrophysics. Besides, the second order neutral delay differential equations are also used
in many fields. Recently, many results have been obtained on the oscillation of these equa-
tions, we refer the reader to [–] and the references cited therein.

Liu et al. [] studied the generalized Emden-Fowler equation
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where z(t) = x(t) + p(t)x(τ (t)),  ≤ p(t) ≤ ; α and β are two constants. By use of an aver-
aging technique and specific analytical skills, some oscillation and asymptotic criteria are
established.

Chen [] considered the Emden-Fowler neutral delay dynamic equation
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(
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(
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where z(t) = y(t) + p(t)y(τ (t)), α >  is a constant, and there exists a positive right-dense-
continuous function q(t) such that |f (t, u)| ≥ q(t)|uα|. By applying a generalized Riccati
transformation technique, they obtained several oscillation theorems for equation (.).

Our research in this paper is the extension of equation (.) on time scale, and we will
derive several oscillation criteria of equation (.), respectively, for two cases, i.e.,  ≤ p ≤ 
and p > . Compared with equation (.), equation (.) contains another parameter β and
it does not satisfy the assumption on function f in []; then the existing results cannot be
applied to our equation.

All functional inequalities considered in this paper are assumed to hold eventually, that
is, they are satisfied for all t large enough.

2 Some preliminaries and lemmas
We will make use of the following product and quotient rules for the derivative of the
differentiable functions on time scales:

(fg)�(t) = f �(t)g(t) + f
(

σ (t)
)

g�(t) = f (t)g�(t) + f �(t)g
(

σ (t)
)

, (.)
(

f
g

)�

(t) =
f �(t)g(t) – f (t)g�(t)

g(t)g(σ (t))
, where ggσ �= . (.)



Shi et al. Advances in Difference Equations  (2016) 2016:3 Page 3 of 12

For b, c ∈ T and a differentiable function f , the Cauchy integral of f � is defined by

∫ c

b
f �(t)�t = f (c) – f (b).

The integration by parts formula reads

∫ c

b
f �(t)g(t)�t = f (c)g(c) – f (b)g(b) –

∫ c

b
f
(

σ (t)
)

g�(t)�t,

and infinite integrals are defined by

∫ ∞

b
f (s)�s = lim

t→∞

∫ t

b
f (s)�s.

For more details, see [].

Lemma . Assume that x(t) is an eventually positive solution of (.). Then there exists
t ∈ [t,∞)T such that

(

r(t)
∣
∣z�(t)

∣
∣
α–z�(t)

)� < , z�(t) > , t ∈ [t,∞)T.

Proof Since x(t) is an eventually positive solution of (.), there exists t ∈ [t,∞)T such
that x(t) > , x(τ (t)) > , x(δ(t)) >  for all t ∈ [t,∞)T. From the definition of z(t) and (A),
we get

z(t) ≥ x(t) > , t ∈ [t,∞)T. (.)

It follows from (.), (.), and (A) that

(

r(t)
∣
∣z�(t)

∣
∣
α–z�(t)

)� = –q(t)
[

x
(

δ(t)
)]β < , t ∈ [t,∞)T.

Therefore r(t)|z�(t)|α–z�(t) is a strictly decreasing function on [t,∞)T and z�(t) is even-
tually of one sign.

We claim that

z�(t) > , t ∈ [t,∞)T. (.)

If not, then there exists t ∈ [t,∞)T such that z�(t) ≤ , t ∈ [t,∞)T. Hence from (A)
we have r(t)|z�(t)|α–z�(t) ≤ , t ∈ [t,∞)T. Since r(t)|z�(t)|α–z�(t) is strictly decreasing
on [t,∞)T, it is clear that r(t)|z�(t)|α–z�(t) < r(t)|z�(t)|α–z�(t). Therefore, for t ∈
[t,∞), there exists a constant c ≥  such that
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∣
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α

(
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) 
α

, t ∈ [t,∞)T.
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Integrating both sides of the last inequality from t to t, we get

z(t) – z(t) ≤ –c

α

∫ t

t

(


r(s)

) 
α

, t ∈ [t,∞)T.

Noting (A) and letting t → ∞, we see that limt→∞ z(t) = –∞. This contradicts the fact
that z(t) > . Hence (.) holds. This completes the proof. �

Lemma . ([], Theorem .) If x is differentiable, then

(

xγ
)� = γ x�

∫ 



[

hxσ + ( – h)x
]γ – dh,

where γ is a constant.

3 Oscillation of equation (1.1) when 0 ≤ p(t) ≤ 1
Theorem . Assume that (A)-(A) hold, and τ (t) ≤ t, δ(t) ≤ t for t ∈ [t,∞)T. If there
exists a positive function ϕ ∈ C

rd([t,∞)T,R) such that for any positive number M and
sufficiently large t ≥ t we have

lim sup
t→∞

∫ t

t

[

ϕ(s)Q(s)ψβ(s, t) –
ααr(s)((ϕ�(s))+)α+

(α + )α+(βM)αϕα(s)

]

�s = ∞, (.)

where t > t such that δ(t) > t for t ∈ [t,∞)T, ψ(s, t) = (
∫ s

t


r

α (u)

�u)– ∫ δ(s)
t


r


α (u)

�u,

s ∈ [t,∞)T and Q(s) = q(s)[ – p(δ(s))]β , (ϕ�(s))+ = max{ϕ�(s), }. Then equation (.) is
oscillatory.

Proof Suppose that x(t) is a nonoscillatory solution of (.). Without loss of generality,
we may assume that x(t) > , x(τ (t)) > , x(δ(t)) > , t ∈ [t,∞)T. From Lemma ., we get
z�(t) > , then z(t) is a strictly increasing function on [t,∞)T. Using the definition of z,
we have

z(t) ≤ x(t) + p(t)z
(

τ (t)
) ≤ x(t) + p(t)z(t),

that is,

x(t) ≥ (

 – p(t)
)

z(t).

Then we have

(

x
(

δ(t)
))β ≥ (

 – p
(

δ(t)
))β(

z
(

δ(t)
))β .

Notice by the definition of Q(t) and (.), we get

(

r(t)
(

z�(t)
)α)� + Q(t)

(

z
(

δ(t)
))β ≤ . (.)

Define a function

ω(t) = ϕ(t)
r(t)(z�(t))α

zβ (t)
, t ∈ [t,∞)T. (.)
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Obviously, ω(t) > . From (.), (.), (.), and (.), we have

ω� =
(

r
(

z�
)α)� ϕ

zβ
+

(

r
(

z�
)α)σ

(
ϕ�

(zβ )σ
–

ϕ(zβ )�

zβ (zβ )σ

)

≤ –Q(z ◦ δ)β
ϕ

zβ
+

(ϕ�)+

ϕσ
ωσ –

ϕ

ϕσ

(zβ )�

zβ
ωσ . (.)

Since r(t)(z�(t))α is strictly decreasing on [t,∞)T, we get

z(t) – z
(

δ(t)
)

=
∫ t

δ(t)

(r(u)(z�(u))α) 
α

r 
α (u)

�u

≤ (

r
(

δ(t)
)(

z�
(

δ(t)
))α) 

α

∫ t

δ(t)


r 

α (u)
�u, t ∈ [t,∞)T. (.)

Taking t ∈ [t,∞)T such that δ(t) > t for t ∈ [t,∞)T, we obtain

z
(

δ(t)
)

> z
(

δ(t)
)

– z(t) =
∫ δ(t)

t

(r(u)(z�(u))α) 
α

r 
α (u)

�u

≥ (

r
(

δ(t)
)(

z�
(

δ(t)
))α) 

α

∫ δ(t)

t


r 

α (u)
�u. (.)

For t ∈ [t,∞)T, from (.), (.) we obtain

z(t)
z(δ(t))

≤  +
(r(δ(t))(z�(δ(t)))α) 

α

z(δ(t))

∫ t

δ(t)


r 

α (u)
�u

and

(r(δ(t))(z�(δ(t)))α) 
α

z(δ(t))
<

(∫ δ(t)

t


r 

α (u)
�u

)–

.

Therefore

z(t)
z(δ(t))

≤  +
(∫ δ(t)

t


r 

α (u)
�u

)– ∫ t

δ(t)


r 

α (u)
�u

=
∫ t

t


r 

α (u)
�u

(∫ δ(t)

t


r 

α (u)
�u

)–

, t ∈ [t,∞)T,

that is,

(z(δ(t)))β

zβ (t)
≥ ψβ (t, t), t ∈ [t,∞)T.

Thus, from (.) we have

ω�(t) ≤ –Qϕ(t)ψβ(t, t) +
(ϕ�(t))+

ϕσ (t)
ωσ (t) – ϕ(t)

ωσ (t)
ϕσ (t)

(zβ )�(t)
zβ (t)

, t ∈ [t,∞)T. (.)
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Using z�(t) >  on [t,∞)T and Lemma ., we obtain

(

zβ (t)
)� = βz�(t)

∫ 



[

hzσ (t) + ( – h)z(t)
]β– dh

≥
{

βzβ–(t)z�(t) if β ≥ ,
βzβ–(σ (t))z�(t) if  < β < .

(.)

From (.) and (.) we obtain, if β ≥ ,

ω�(t) ≤ –Q(t)ϕ(t)ψ(t, t) +
(ϕ�(t))+

ϕσ (t)
ωσ (t)

– βϕ(t)
ωσ (t)
ϕσ (t)

z�(t)
zσ (t)

zσ (t)
z(t)

, t ∈ [t,∞)T. (.)

If  < β <  then

ω�(t) ≤ –Q(t)ϕ(t)ψ(t, t) +
(ϕ�(t))+

ϕσ (t)
ωσ (t)

– βϕ(t)
ωσ (t)
ϕσ (t)

z�(t)
zσ (t)

(
zσ (t)
z(t)

)β

, t ∈ [t,∞)T. (.)

Since z�(t) >  and r(t)(z�(t))α is strictly decreasing on [t,∞)T, we have

zσ (t) ≥ z(t), z�(t) ≥
(

rσ (t)
r(t)

) 
α (

z�(t)
)σ , t ∈ [t,∞)T. (.)

Then, from (.), (.), (.) we can obtain

ω�(t) ≤ –Q(t)ϕ(t)ψ(t, t) +
(ϕ�(t))+

ϕσ (t)
ωσ (t)

– βϕ(t)
ωσ (t)
ϕσ (t)

(
rσ (t)
r(t)

) 
α (z�(t))σ

zσ (t)

= –Q(t)ϕ(t)ψ(t, t) +
(ϕ�(t))+

ϕσ (t)
ωσ (t)

–
βϕ(t)(z

β–α
α (t))σ

r 
α (t)(ϕσ (t)) α+

α

(

ωσ (t)
)+ 

α , t ∈ [t,∞)T.

We know that if z(t) >  is strictly increasing on [t,∞) and β ≥ α, then there exists a
positive constant M such that (z

β–α
α )σ (t) ≥ M. Hence, we have

ω�(t) ≤ –Q(t)ϕ(t)ψ(t, t) +
(ϕ�(t))+

ϕσ (t)
ωσ (t)

–
βMϕ(t)

r 
α (t)(ϕσ (t)) α+

α

(

ωσ (t)
) α+

α , t ∈ [t,∞)T.

Letting B = (ϕ�(t))+
ϕσ (t) , A = βMϕ(t)

r

α (t)(ϕσ (t))

α+
α

, u = ωσ , and using the inequality

Bu – Au
α+
α ≤ αα

(α + )α+
Bα+

Aα
, A > ,
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we have

ω�(t) ≤ –Q(t)ϕ(t)ψβ(t, t) +
ααr(t)((ϕ�(t))+)α+

(α + )α+(βM)αϕα(t)
. (.)

Integrating both sides of (.) from t to t, since ω(t) >  for t ∈ [t,∞)T, we obtain

∫ t

t

[

Q(s)ϕ(s)ψβ(s, t) –
ααr(s)((ϕ�(s))+)α+

(α + )α+(βM)αϕα(s)

]

�s ≤ ω(t) – ω(t) < ω(t),

which contradicts (.). The proof is complete. �

Remark . From theorem given in this section, we can get Philos-type oscillation criteria
for equation (.) easily. The details are left to the reader.

Remark . From theorem obtained in this section, we can get various oscillation criteria
of equation (.) by different choices of ϕ(t).

For example, let ϕ(s) = s. We can get the following results from Theorem ..

Corollary . Assume that (A)-(A) hold,  ≤ p(t) ≤  and τ (t) ≤ t, δ(t) ≤ t for t ∈
[t,∞)T. If for any positive number M and sufficiently large t ≥ t we have

lim sup
t→∞

∫ t

t

[

sQ(s)ψβ(s, t) –
ααr(s)

(α + )α+(βMs)α

]

�s = ∞,

where t > t such that δ(t) > t for t ∈ [t,∞)T, Q(s) and ψ(s, t) are defined as in Theo-
rem .. Then every solution of (.) is oscillatory.

Let ϕ(s) = . Then from Theorem ., we have the following results.

Corollary . Assume that (A)-(A) hold,  ≤ p(t) ≤  and τ (t) ≤ t, δ(t) ≤ t for t ∈
[t,∞)T. If for any positive number M and sufficiently large t ≥ t we have

lim sup
t→∞

∫ t

t

Q(s)ψβ(s, t)�s = ∞,

where t > t such that δ(t) > t for t ∈ [t,∞)T; Q(s) and ψ(s, t) are defined as in Theo-
rem .. Then every solution of (.) is oscillatory.

4 Oscillation of equation (1.1) when p(t) > 1
In this section, we will use the following notation:

τ– is the inverse function of τ ;

η�(t)+ := max{,η�(t)}, γ (t) :=
{ m(t)

mσ (t) if β < ,

( m(t)
mσ (t) )β if β ≥ ;

p∗(t) := 
p(τ–(t)) ( – 

p(τ–(τ–(t))) ) > ;

p∗(t) := 
p(τ–(t)) ( – 

p(τ–(τ–(t)))
m(τ–(τ–(t)))

m(τ–(t)) ) > , for all sufficiently large t, where m will
be specified later.
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Theorem . Assume that (A)-(A) hold, and let τ be strictly increasing, τ (t) > t and
τ (σ (t)) ≥ δ(t). If there exists a positive function η, m ∈ C

rd([t,∞)T,R) such that

m(t)
r 

α (t)
∫ t

t
r– 

α (s)�s
– m�(t) ≤ , (.)

for all sufficiently large t ≥ t ≥ t, and for some t ∈ [t,∞)T and any positive constant M,
one has

lim sup
t→∞

∫ t

t

[

ησ (s)q(s)
(

p∗(δ(s)
))β

(
m(τ–(δ(s)))

mσ (s)

)β

–
ααr(s)((η�(s))+)α+

(α + )α+(βMγ (s)ησ (s))α

]

�s = ∞, (.)

then every solution of (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we may assume
that there exists t ∈ [t,∞)T such that x(t) > , x(τ (t)) > , x(δ(t)) >  for t ∈ [t,∞)T. Then
z�(t) >  for t ∈ [t,∞)T due to Lemma .. From x(τ (t)) = 

p(t) (z(t) – x(t)), it follows that

x(t) =


p(τ–(t))
(

z
(

τ–(t)
)

– x
(

τ–(t)
))

=
z(τ–(t))
p(τ–(t))

–


p(τ–(t))

(
z(τ–(τ–(t)))
p(τ–(τ–(t)))

–
x(τ–(τ–(t)))
p(τ–(τ–(t)))

)

≥ z(τ–(t))
p(τ–(t))

–
z(τ–(τ–(t)))

p(τ–(t))p(τ–(τ–(t)))

≥ 
p(τ–(t))

(

 –


p(τ–(τ–(t)))

)

z
(

τ–(t)
)

= p∗(t)z
(

τ–(t)
)

.

From this and (.), we have

(

r(t)
(

z�(t)
)α)� + q(t)

(

p∗(δ(t)
))β(

z
(

τ–(δ(t)
)))β ≤ . (.)

On the other hand, we have

z(t) = z(t) +
∫ t

t

(r(s)(z�(s))α) 
α

r 
α (s)

�s ≥
(

r

α (t)

∫ t

t


r 

α (s)
�s

)

z�(t).

From (.) and (.), we have

(
z
m

)�

(t) =
z�(t)m(t) – z(t)m�(t)

m(t)mσ (t)

≤ z(t)
m(t)mσ (t)

(
m(t)

r 
α (t)

∫ t
t

r– 
α (s)�s

– m�(t)
)

≤ .
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Hence z
m is a nonincreasing function. Since τ–(δ(t)) ≤ σ (t) and t ≤ σ (t), we obtain

z(τ–(δ(t)))
zσ (t)

≥ m(τ–(δ(t)))
mσ (t)

,
z(t)

zσ (t)
≥ m(t)

mσ (t)
. (.)

Define a function

ω(t) = η(t)
r(t)(z�(t))α

(z(t))β
, t ∈ [t,∞)T. (.)

Obviously, ω(t) > . From (.), (.), (.), and (.), we have

ω�(t) = η� r(z�)α

zβ
+ ησ (r(z�)α)�zβ – r(z�)α(zβ )�

zβ (zβ )σ

≤ (η�)+

η
ω – ησ q

(

(p ◦ δ)∗
)β

(
z(τ ◦ δ)–

zσ

)β

– ησ r(z�)α(zβ )�

zβ (zβ )σ
. (.)

By (.), (.), (.), and (.), we can get, if β ≥ , then

ω�(t) ≤ (η�(t))+

η(t)
ω(t) – ησ (t)q(t)

(

p∗(δ(t)
))β

(
m(τ–(δ(t)))

mσ (t)

)β

– β
ησ (t)

r 
α (t)η α+

α (t)
z

β–α
α (t)ω

+α
α (t)

(
m(t)

mσ (t)

)β

, (.)

and if  < β < , then

ω�(t) ≤ (η�(t))+

η(t)
ω(t) – ησ (t)q(t)

(

p∗(δ(t)
))β

(
m(τ–(δ(t)))

mσ (t)

)β

– β
ησ (t)

r 
α (t)η α+

α (t)
z

β–α
α (t)ω

+α
α (t)

m(t)
mσ (t)

. (.)

Since z(t) is strictly increasing on [t,∞)T and β ≥ α, there exists a positive constant M
such that z

β–α
α ≥ M. Combining with (.), (.), and the definition of γ (t), we know that

ω�(t) ≤ (η�(t))+

η(t)
ω(t) – ησ (t)q(t)

(

p∗(δ(t)
))β

(
m(τ–(δ(t)))

mσ (t)

)β

–βMγ (t)
ησ (t)

r 
α (t)η α+

α (t)
ω

+α
α (t)

holds for β > . Letting B = (η�(t))+
η(t) , A = βMγ (t) ησ (t)

r

α (t)η

α+
α (t)

, u = ω(t), and using the inequal-
ity

Bu – Au
+α
α ≤ αα

(α + )α+
Bα+

Aα
, A > ,

we have

ω�(t) ≤ –ησ (t)q(t)
(

p∗(δ(t)
))β

(
m(τ–(δ(t)))

mσ (t)

)β

+
ααr(t)((η�(t))+)α+

(α + )α+(βMγ (t)ησ (t))α
. (.)
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Integrating (.) from t ∈ [t,∞)T to t, we have

∫ t

t

[

ησ (s)q(s)
(

p∗(δ(s)
))β

(
m(τ–(δ(s)))

mσ (s)

)β

–
ααr(s)((η�(s))+)α+

(α + )α+(βMγ (s)ησ (s))α

]

�s ≤ ω(t),

which contradicts (.). The proof is complete. �

Theorem . Assume that (A)-(A) hold, and let τ be strictly increasing, τ (t) > t and
τ (σ (t)) ≤ δ(t). If there exists a positive function η, m ∈ C

rd([t,∞)T,R) such that (.) holds
for all sufficiently large t, and for some t ∈ [t,∞)T and any positive constant M, one has

lim sup
t→∞

∫ t

t

[

η
(

σ (s)
)

q(s)
(

p∗(δ(s)
))β –

ααr(s)((η�(s))+)α+

(α + )α+(βMγ (s)η(σ (s)))α

]

�s = ∞, (.)

then every solution of (.) is oscillatory.

Proof Proceeding as in the proof of Theorem ., we have (.). Since τ (σ (t)) ≤ δ(t) and
z is strictly increasing on [t,∞)T, we obtain τ–(δ(t)) ≥ σ (t) and z(τ–(δ(t)))

z(σ (t)) ≥ . Hence

ω�(t) ≤ (η�(t))+

η(t)
ω(t) – η

(

σ (t)
)

q(t)
(

p∗(δ(t)
))β – η

(

σ (t)
) r(t)(z�(t))α(zβ (t))�

zβ (t)zβ (σ (t))
.

The remainder of the proof is similar to that of Theorem ., we can get a contradiction
to (.). This completes the proof. �

Theorem . Assume that (A)-(A) hold, and let τ be strictly increasing, τ (t) < t and
τ (σ (t)) ≥ δ(t). If there exists a positive function η, m ∈ C

rd([t,∞)T,R) such that (.) holds
for all sufficiently large t, and for some t ∈ [t,∞)T and any positive constant M, one has

lim sup
t→∞

∫ t

t

[

η
(

σ (s)
)

q(s)
(

p∗
(

δ(s)
))β

(
m(τ–(δ(s)))

m(σ (s))

)β

–
ααr(s)((η�(s))+)α+

(α + )α+(βMγ (s)η(σ (s)))α

]

�s = ∞, (.)

then every solution of (.) is oscillatory.

Proof Proceeding as in the proof of Theorem ., we know that z
m is nonincreasing. Since

τ–(τ–(t)) ≥ τ–(t), we obtain z(τ–(t))m(τ–(τ–(t)))
m(τ–(t)) ≥ z(τ–(τ–(t))), then we have

x(t) =


p(τ–(t))
(

z
(

τ–(t)
)

– x
(

τ–(t)
))

≥ z(τ–(t))
p(τ–(t))

–
z(τ–(τ–(t)))

p(τ–(t))p(τ–(τ–(t)))

≥ z(τ–(t))
p(τ–(t))

–


p(τ–(t))p(τ–(τ–(t)))
z(τ–(t))m(τ–(τ–(t)))

m(τ–(t))

= p∗(t)z
(

τ–(t)
)

.
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The remainder of the proof is similar to that of Theorem . and we can get a contradiction
to (.). This completes the proof. �

Remark . From the theorems obtained in this section, we can get various oscillation
criteria of equation (.) by different choices of m(t) and η(t).

For example, let η(t) =  and m(t) =
∫ t

t
r– 

α (s)�s. We obtain the following results from
Theorem ..

Corollary . Assume that (A)-(A) hold, and let τ be strictly increasing, τ (t) > t and
τ (σ (t)) ≥ δ(t). If for all sufficiently large t, and for some t ∈ [t,∞)T, one has

lim sup
t→∞

∫ t

t

q(s)
(

p∗(δ(s)
))β

(
m(τ–(δ(s)))

mσ (s)

)β

�s = ∞,

then every solution of (.) is oscillatory.

5 Examples
In this section, we will give some examples in order to illustrate our main results of this
paper.

Example . Consider the equation

(∣
∣z�(t)

∣
∣z�(t)

)� + t
∣
∣
∣
∣
x
(

t


)∣
∣
∣
∣



= , t ∈ [, +∞)T, (.)

where z(t) = x(t) + 
 x( t

 ).
In equation (.), τ (t) = t

 , δ(t) = t
 , α = , β = , r(t) = , p(t) = 

 , q(t) = t, take τ (t) < t,
δ(t) < t, and (A)-(A) to hold. Choose ϕ(t) = . For any given t > , we have

Q(s) = q(s)
[

 – p
(

δ(s)
)]β =

s


,

ψ(s, t) =
(∫ s

t


r 

α (u)
�u

)– ∫ δ(s)

t


r 

α (u)
�u =

s
 – t

s – t
≥ 


, for s ≥ t.

Thus as t > t we get

lim sup
t→∞

∫ t

t

[

ϕ(s)Q(s)ψβ(s, t) –
ααr(s)((ϕ�(s))+)α+

(α + )α+(βM)αϕα(s)

]

�s = ∞.

Therefore, condition (.) holds, and hence equation (.) is oscillatory due to Theo-
rem ..

Example . Consider the equation

z��(t) +
σ (t)
t x(t) = , t ∈ [,∞) ∩T, (.)

where z(t) = x(t) + x(t).
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In equation (.), α = β = , r(t) = , p(t) = , q(t) = σ (t)
t , τ (t) = t, δ(t) = t, τ is a strictly

increasing function and τ (σ (t)) ≥ δ(t) and (A)-(A) hold. Choosing η(t) =  and m(t) = t,
then we have (.) for t ≥ t ≥ . In order to using Theorem ., we need to show that
(.) holds. In fact,

q(s)
(

p∗(δ(s)
))β

(
m(τ–(δ(s)))

mσ (s)

)β

=
σ (s)
s × s

σ (s)
=


σ (s)

.

Using Theorem . of [], we can obtain

lim sup
t→∞

∫ t

t

q(s)
(

p∗(δ(s)
))β

(
m(τ–(δ(s)))

mσ (s)

)β

�s = ∞, t ≥ t.

Therefore, condition (.) holds, and hence equation (.) is oscillatory due to Theo-
rem ..
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